4
@ IJTSRD | Available Online @ www ISSN No: 245 Inte R Singular Th Valu G. Pushpalatha Assistant Professor, Department of M Vivekanandha College of Arts and S Women, Tiruchengode, Namakkal, Tam ABSTRACT The present paper is particularly exhib derive results of a third-order singul boundary value problem at resonance us degree arguments. Keywords: The present paper is particu about the derive results of a third-o multipoint boundary value problem using coindence degree arguments. INTRODUCTION This paper derive the existence for t singular multipoint boundary value resonance of the form โ€ฒโ€ฒโ€ฒ = (), (), โ€ฒ (), โ€ฒโ€ฒ ()) + โ€ฒ (0) = 0, โ€ฒโ€ฒ (0) = 0, (1) = แˆง เตซ เตฏ, เฌท ,เญ€เฌต Where โˆถ [0,1] ร— โ„ เฌถ โ†’ โ„ is caratheodo (i.e., for each (, ) โˆˆ โ„ เฌถ the function measurable on [0,1]; for almost everyw the function (, . , . ) is continuous โˆˆ (0,1), , = 1,2, โ€ฆ , โˆ’ 3, and 1, where and โ„Ž have singularity at = In [1] Gupta et al. studied the above equ and โ„Ž have no singularity and โ‹ เฌท ,เญ€เฌต obtained existence of a เฌต [0,1] solutio w.ijtsrd.com | Volume โ€“ 2 | Issue โ€“ 3 | Mar-Apr 56 - 6470 | www.ijtsrd.com | Volum ernational Journal of Trend in Sc Research and Development (IJT International Open Access Journ hird-Order Multipoint Bounda ue Problem at Resonance Mathematics, Sciences for milnadu, India S. K. Re Research Scholar, Departm Vivekanandha College of A Women, Tiruchengode, Nama ibits about the ular multipoint sing coindence ularly exhibits order singular at resonance the third-order problem at + โ„Ž() oryโ€™s function n (. , , ) is where โˆˆ [0,1], on โ„ เฌถ ). Let โ‹ = เฌท ,เญ€เฌต =1. uation when โ‰  1. They on by utilizing Letay-Schauder continuation correspond to the nonresonan this article is therefore to obta when โ‹ =1 เฌท ,เญ€เฌต (the res and โ„Ž have a singularity at Definition 1 Let and be real Banach s linear operator : โŠ‚ mapping of index zero if Ke finite dimension, where d Note We will require the continuou : โ†’ such that Im P = =Ker L โจ Ker , | เฏ— โ‹‚ : dom L โ‹‚ isomorphism. Definition 2 Let be a Fredholm mapping bounded open subset of U such โ‹‚ฮฉ โ‰ . The map M: โ†’ on เดฅ , if the map (ฮฉ เดฅ ) is bo compact, where one denotes b โ‹‚ the generaliz addition is -completely co on every bounded ฮฉ โŠ‚ . r 2018 Page: 623 me - 2 | Issue โ€“ 3 cientific TSRD) nal ary eka ment of Mathematics, Arts and Sciences for akkal, Tamilnadu, India principle. These results nce case. The scope of ained the survive results sonance case) and when = 1. spaces. One says that the โ†’ is a Fredholm er and / are of denotes the image of . us projections : โ†’ , = Ker L,Ker Q = Im L, =Im L โจ Im Q, ker โ†’ Im Iis an of index zero and ฮฉ a h that dom is called -compact unded and ( โˆ’ ) is by โˆถ Im โ†’ zed inverse of . In ontinuous if it -compact

Singular Third-Order Multipoint Boundary Value Problem at Resonance

  • Upload
    ijtsrd

  • View
    2

  • Download
    0

Embed Size (px)

DESCRIPTION

The present paper is particularly exhibits about the derive results of a third order singular multipoint boundary value problem at resonance using coindence degree arguments. G. Pushpalatha | S. K. Reka "Singular Third-Order Multipoint Boundary Value Problem at Resonance" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-3 , April 2018, URL: https://www.ijtsrd.com/papers/ijtsrd11058.pdf Paper URL: http://www.ijtsrd.com/mathemetics/other/11058/singular-third-order-multipoint-boundary-value-problem-at-resonance/g-pushpalatha

Citation preview

Page 1: Singular Third-Order Multipoint Boundary Value Problem at Resonance

@ IJTSRD | Available Online @ www.ijtsrd.com

ISSN No: 2456

InternationalResearch

Singular ThirdValue Problem

G. Pushpalatha Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for

Women, Tiruchengode, Namakkal, Tamilnadu, India

ABSTRACT The present paper is particularly exhibits about the derive results of a third-order singular multipoint boundary value problem at resonance using coindence degree arguments.

Keywords: The present paper is particularly exhibits about the derive results of a third-order singular multipoint boundary value problem at resonance using coindence degree arguments.

INTRODUCTION

This paper derive the existence for the thirdsingular multipoint boundary value problem at resonance of the form

๐‘ขโ€ฒโ€ฒโ€ฒ = ๐‘”(๐‘ก), ๐‘ข(๐‘ก), ๐‘ขโ€ฒ(๐‘ก), ๐‘ขโ€ฒโ€ฒ(๐‘ก)) +

๐‘ขโ€ฒ(0) = 0, ๐‘ขโ€ฒโ€ฒ(0) = 0,

๐‘ข(1) = ๐‘Ž ๐‘ ๐‘ข ๐œ ,

,

Where ๐‘” โˆถ [0,1] ร— โ„ โ†’ โ„ is caratheodoryโ€™s function (i.e., for each (๐‘ข, ๐‘ฃ) โˆˆ โ„ the function measurable on [0,1]; for almost everywhere the function ๐‘”(๐‘ก, . , . ) is continuous on ๐œ โˆˆ (0,1), ๐‘–, ๐‘— = 1,2, โ€ฆ , ๐‘š โˆ’ 3, and 1, where ๐‘” and โ„Ž have singularity at ๐‘ก=1.

In [1] Gupta et al. studied the above equation when and โ„Ž have no singularity and โ‹ ๐‘Ž,

obtained existence of a ๐ถ [0,1] solution by utilizing

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume โ€“ 2 | Issue โ€“ 3 | Mar-Apr 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

Third-Order Multipoint BoundaryValue Problem at Resonance

Department of Mathematics, Vivekanandha College of Arts and Sciences for

Women, Tiruchengode, Namakkal, Tamilnadu, India

S. K. RekaResearch Scholar, Department of Mathematics, Vivekanandha College of Arts and Science

Women, Tiruchengode, Namakkal, Tamilnadu, India

The present paper is particularly exhibits about the order singular multipoint

boundary value problem at resonance using coindence

e present paper is particularly exhibits order singular

multipoint boundary value problem at resonance

This paper derive the existence for the third-order multipoint boundary value problem at

) + โ„Ž(๐‘ก)

is caratheodoryโ€™s function the function ๐‘”(. , ๐‘ข, ๐‘ฃ) is

for almost everywhere ๐‘ก โˆˆ [0,1], is continuous on โ„ ). Let

and โ‹ ๐‘Ž ๐‘ =,

=1.

In [1] Gupta et al. studied the above equation when ๐‘” ๐‘ โ‰  1. They

solution by utilizing

Letay-Schauder continuation principle. These results correspond to the nonresonance case. The scope of this article is therefore to obtained when โ‹ ๐‘Ž ๐‘ = 1, (the resonance case) and when ๐‘” and โ„Ž have a singularity at ๐‘ก

Definition 1

Let ๐‘ˆ and ๐‘Š be real Banach spaces. One says that the linear operator ๐ฟ: ๐‘‘๐‘œ๐‘š ๐ฟ โŠ‚ ๐‘ˆmapping of index zero if Ker finite dimension, where ๐ผ๐‘š ๐ฟ denotes the image of

Note

We will require the continuous projections ๐‘„: ๐‘Š โ†’ ๐‘Š such that Im P = Ker L,Ker Q = Im L, ๐‘ˆ =Ker L โจ Ker ๐‘ƒ, ๐‘Š๐ฟ| โ‹‚ : dom L โ‹‚ isomorphism.

Definition 2

Let ๐ฟ be a Fredholm mapping of index zero and bounded open subset of U such that dom ๐ฟโ‹‚ฮฉ โ‰  ๐œ™. The map M: ๐‘ˆ โ†’ ๐‘Šon ๐›€, if the map ๐‘„๐‘(ฮฉ) is bounded and compact, where one denotes by ๐‘‘๐‘œ๐‘š ๐ฟ โ‹‚ ๐พ๐‘’๐‘Ÿ ๐‘ƒ the generalized inverse of addition ๐‘€ is ๐ฟ-completely continuous if it on every bounded ฮฉ โŠ‚ ๐‘ˆ.

Apr 2018 Page: 623

6470 | www.ijtsrd.com | Volume - 2 | Issue โ€“ 3

Scientific (IJTSRD)

International Open Access Journal

Order Multipoint Boundary

Reka Department of Mathematics,

Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

Schauder continuation principle. These results correspond to the nonresonance case. The scope of this article is therefore to obtained the survive results

(the resonance case) and when ๐‘ก = 1.

be real Banach spaces. One says that the ๐‘ˆ โ†’ ๐‘Š is a Fredholm

if Ker ๐ฟ and ๐‘Š/๐ผ๐‘š ๐ฟ are of denotes the image of ๐ฟ.

We will require the continuous projections ๐‘ƒ: ๐‘ˆ โ†’ ๐‘ˆ, such that Im P = Ker L,Ker Q = Im L,

๐‘Š =Im L โจ Im Q, ker ๐‘ƒ โ†’ Im ๐ฟ Iis an

be a Fredholm mapping of index zero and ฮฉ a bounded open subset of U such that dom

๐‘Š is called ๐‘ณ-compact is bounded and ๐‘… (๐ผ โˆ’ ๐‘„) is

compact, where one denotes by ๐‘… โˆถ Im ๐ฟ โ†’the generalized inverse of ๐ฟ. In

completely continuous if it ๐ฟ-compact

Page 2: Singular Third-Order Multipoint Boundary Value Problem at Resonance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume โ€“ 2 | Issue โ€“ 3 | Mar-Apr 2018 Page: 624

Theorem 1

Let ๐ฟ be a Fredholm operator of index zero and let ๐‘ be ๐ฟ-compact on ฮฉ. Assume that the following conditions are satisfied :

(i) ๐ฟ๐‘ข โ‰  ๐œ…๐‘€๐‘ข for every (๐‘ข, ๐œ…) โˆˆ[(๐‘‘๐‘œ๐‘š ๐ฟ โˆ– ๐พ๐‘’๐‘Ÿ ๐ฟ) โˆฉ ๐œ•๐œ…] ร— (0,1).

(ii) ๐‘€๐‘ข โˆ‰ ๐ผ๐‘š ๐ฟ, for every ๐‘ข โˆˆ ๐พ๐‘’๐‘Ÿ ๐ฟ โˆฉ ๐œ•๐œ…. (iii) deg (๐‘„๐‘€| โˆฉ , ๐œ… โˆฉ ๐พ๐‘’๐‘Ÿ ๐ฟ, 0) โ‰  0,

with ๐‘„: ๐‘Š โ†’ ๐‘Š being a continuous projection such that ๐พ๐‘’๐‘Ÿ ๐‘„ = ๐ผ๐‘š ๐ฟ. then the equation ๐ฟ๐‘ข = ๐‘€๐‘ข has at least one solution in ๐‘‘๐‘œ๐‘š ๐ฟ โˆฉ ฮฉ.

Proof :

We shall make use of the following classical spaces, ๐ถ[0,1], ๐ถ [0,1], ๐ถ [0,1], ๐ฟ [0,1], ๐ฟ [0,1],

and ๐ฟโˆž[0,1]. Let ๐ด๐ถ[0,1] denote the space of all absolute continuous functions on [0,1], ๐ด๐ถ [0,1] ={๐‘ข โˆˆ ๐ถ [0,1] โˆถ ๐‘ขโ€ฒโ€ฒ(๐‘ก) โˆˆ ๐ด๐ถ[0,1]}, ๐ฟ [0,1] =

๐‘ข: ๐‘ข|[ , ] โˆˆ ๐ฟ [0,1] for every compact interval [0, ๐‘‘] โŠ† [0,1].

๐ด๐ถ [0,1) = ๐‘ข: ๐‘ข|[ , ] โˆˆ ๐ด๐ถ[0,1] .

Let U be the Banach space defined by

๐‘ˆ = {๐‘ข โˆˆ ๐ฟ [0,1] โˆถ (1 โˆ’ ๐‘ก )๐‘ข(๐‘ก) โˆˆ ๐ฟ [0,1]},

With the norm

โ€–๐‘ฃโ€– = (1 โˆ’ ๐‘ก ) |๐‘ฃ(๐‘ก)|๐‘‘๐‘ก.

Let ๐‘ˆ be the Banach space

๐‘ˆ = {๐‘ข โˆˆ ๐ถ [0,1): ๐‘ข โˆˆ ๐ถ[0,1], lim โ†’ (1 โˆ’

๐‘ก ) ๐‘ขโ€ฒโ€ฒ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘ } ,

With the norm

โ€–๐‘ขโ€– = max โ€–๐‘ขโ€–โˆž , (1 โˆ’ ๐‘ก )๐‘ขโ€ฒโ€ฒ(๐‘ก)โˆž

.

(1)

Where โ€–๐‘ขโ€–โˆž = sup โˆˆ[ , ]|๐‘ข(๐‘ก)| .

We denote the norm in ๐ฟ [0,1] by โ€–. โ€– . we define the linear operator ๐ฟ: ๐‘‘๐‘œ๐‘š ๐ฟ โŠ‚ ๐‘ˆ โ†’ ๐‘Š by

๐ฟ๐‘ข = ๐‘ขโ€ฒโ€ฒโ€ฒ(๐‘ก), (2)

Where

๐‘‘๐‘œ๐‘š ๐ฟ = ๐‘ข โˆˆ ๐‘ˆ โˆถ ๐‘ขโ€ฒ(0) = 0, ๐‘ขโ€ฒโ€ฒ(0) = 0, ๐‘ข(1)

= ๐‘Ž ๐‘ ๐‘ข(๐œ)

,

And ๐‘€: ๐‘ˆ โ†’ ๐‘Š is defined by

๐ฟ๐‘ข = ๐‘” ๐‘ก, ๐‘ข(๐‘ก), ๐‘ขโ€ฒ(๐‘ก), ๐‘ขโ€ฒโ€ฒ(๐‘ก) + โ„Ž(๐‘ก).

(3)

Then boundary value problem (1) can be written as

๐ฟ๐‘ข = ๐‘๐‘ข.

Therefore ๐ฟ = ๐‘.

Lemma

If โ‹ ๐‘Ž ๐‘ = 1, then

(i) ๐พ๐‘’๐‘Ÿ ๐ฟ = {๐‘ข โˆˆ ๐‘‘๐‘œ๐‘š ๐ฟ: ๐‘ข(๐‘ก) = ๐‘, ๐‘ โˆˆ โ„, ๐‘ก โˆˆ[0,1]} ;

(ii) ๐ผ๐‘š ๐ฟ =๐‘ฃ โˆˆ ๐‘ง:

โ‹ ๐‘Ž ๐‘ โˆซ โˆซ โˆซ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘  = 0,

(iii) ๐ฟ: ๐‘‘๐‘œ๐‘š ๐ฟ โŠ‚ ๐‘ˆ โ†’ ๐‘Š is a Fredholm operator ๐‘„: ๐‘Š โ†’ ๐‘Š can be defined by

๐‘„๐‘ฃ =๐‘’

โ„Ž๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

,

(4)

Where

โ„Ž = ๐‘Ž ๐‘

,

๐‘’ + ๐œ + ๐œ โˆ’ ๐‘’ โˆ’ ๐‘’ โˆ’ 1

(iv) The linear operator ๐‘… : ๐ผ๐‘š ๐ฟ: โ†’

๐‘‘๐‘œ๐‘š ๐ฟ โ‹‚ ๐พ๐‘’๐‘Ÿ ๐‘ƒ can be defined as

๐‘… = ๐‘ฃ(๐œš)๐‘‘๐œš (5)

(v) ๐‘… ๐‘ฃ โ‰ค โ€–๐‘ฃโ€– for all ๐‘ฃ โˆˆ ๐‘Š.

Proof :

(i) It is obvious that ๐พ๐‘’๐‘Ÿ ๐ฟ = {๐‘ข โˆˆ ๐‘‘๐‘œ๐‘š ๐ฟ: ๐‘ข(๐‘ก) = ๐‘, ๐‘ โˆˆ โ„}.

Page 3: Singular Third-Order Multipoint Boundary Value Problem at Resonance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume โ€“ 2 | Issue โ€“ 3 | Mar-Apr 2018 Page: 625

(ii) We show that

๐ผ๐‘š ๐ฟ =๐‘ฃ โˆˆ ๐‘Š:

โ‹ ๐‘Ž ๐‘ โˆซ โˆซ โˆซ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘  = 0,. (7)

To do this, we consider the problem

๐‘ค โ€ฒโ€ฒโ€ฒ(๐‘ก) = ๐‘ฃ(๐‘ก) (8)

And we show that (5) has a solution ๐‘ค(๐‘ก) satisfying

๐‘ค โ€ฒโ€ฒ(0) = 0, ๐‘ค โ€ฒ(0) = 0, ๐‘ค(๐‘ก) = ๐‘Ž ๐‘ ๐‘ค ๐œ ๐œ

,

If and only if

๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘  = 0

,

(9)

Suppose (3) has a solmution ๐‘ค(๐‘ก) satisfying

๐‘ค โ€ฒโ€ฒ(0) = 0, ๐‘ค โ€ฒ(0) = 0, ๐‘ค(๐‘ก) = ๐‘Ž ๐‘ ๐‘ค ๐œ ๐œ

,

Then we obtain from (5) that

๐‘ค(๐‘ก) = ๐‘ค(0) + ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ ,

(10)

And applying the boundary conditions we get

๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

= ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ , (11)

Since โ‹ ๐‘Ž ๐‘ = 1, , and using (i) and we get

๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘  = 0

,

On the other hand if (6) holds, let ๐‘ข โˆˆ โ„; then

๐‘ค(๐‘ก) = ๐‘ค(0) + ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ ,

Where ๐‘ฃ โˆˆ ๐‘

๐‘ค โ€ฒโ€ฒโ€ฒ(๐‘ก) = ๐‘ฃ(๐‘ก) (12)

(iii) For ๐‘ฃ โˆˆ ๐‘, we define the projection ๐‘„๐‘ฃ as

๐‘„๐‘ฃ =๐‘’

โ„Ž๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

,

๐‘ก โˆˆ [0,1], (13)

Where

โ„Ž = ๐‘Ž ๐‘

,

๐‘’ + ๐œ + ๐œ โˆ’ ๐‘’ โˆ’ ๐‘’ โˆ’ 1 โ‰  0.

We show that ๐‘„: ๐‘Š โ†’ ๐‘Š is well defined and bounded.

|๐‘„๐‘ฃ(๐‘ก)| โ‰ค|๐‘’ |

|โ„Ž||๐‘Ž | ๐‘

,

(1 โˆ’ ๐‘ ) |๐‘ฃ(๐‘ )|๐‘‘๐‘ 

=1

|โ„Ž||๐‘Ž | ๐‘

,

โ€–๐‘ฃโ€– |๐‘’ |

โ€–๐‘„๐‘ฃโ€– โ‰ค (1 โˆ’ ๐‘ก) |๐‘„๐‘ฃ(๐‘ก)|๐‘‘๐‘ก

โ‰ค1

|โ„Ž||๐‘Ž | ๐‘

,

โ€–๐‘ฃโ€– |๐‘’ | (1 โˆ’ ๐‘ ) ๐‘‘๐‘ 

=1

|โ„Ž||๐‘Ž | ๐‘

,

โ€–๐‘ฃโ€– โ€–๐‘’ โ€– .

In addition it is easily verified that

๐‘„ ๐‘ฃ = ๐‘„๐‘ฃ, ๐‘ฃ โˆˆ ๐‘Š. (14)

We therefore conclude that ๐‘„: ๐‘Š โ†’ ๐‘Š is a projection. If ๐‘ฃ โˆˆ ๐ผ๐‘š ๐ฟ, then from (6) ๐‘„๐‘ฃ(๐‘ก) = 0. Hence ๐ผ๐‘š ๐ฟ โŠ† ๐พ๐‘’๐‘Ÿ ๐‘„. Let ๐‘ฃ = ๐‘ฃ โˆ’ ๐‘„๐‘ฃ ; that is, ๐‘ฃ โˆˆ๐พ๐‘’๐‘Ÿ ๐‘„. Then

Page 4: Singular Third-Order Multipoint Boundary Value Problem at Resonance

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume โ€“ 2 | Issue โ€“ 3 | Mar-Apr 2018 Page: 626

๐‘Ž ๐‘ ๐‘ฃ (๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

= ๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

โˆ’1

โ„Ž๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

Here โ„Ž = 0 we get

๐‘Ž ๐‘ ๐‘ฃ (๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

= ๐‘Ž ๐‘ ๐‘ฃ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

,

Therefore ๐‘ฃ = ๐‘ฃ.

Thus ๐‘ฃ โˆˆ ๐ผ๐‘š ๐ฟ and therefore ๐พ๐‘’๐‘Ÿ ๐‘„ โŠ† ๐ผ๐‘š ๐ฟ and hence

๐‘Š = ๐ผ๐‘š ๐ฟ + ๐ผ๐‘š ๐‘„ = ๐ผ๐‘š ๐ฟ + โ„.

It follows that since ๐ผ๐‘š ๐ฟ โˆฉ โ„ = {0}, then ๐‘Š =๐ผ๐‘š ๐ฟ โจ ๐ผ๐‘š ๐‘„.

Therefore,

dim ๐พ๐‘’๐‘Ÿ ๐ฟ = dim ๐ผ๐‘š ๐‘„ = dim โ„ = ๐‘๐‘œ๐‘‘๐‘–๐‘š ๐ผ๐‘š ๐ฟ = 1.

This implies that ๐ฟ is Fredholm mapping of index zero.

(iv) We define ๐‘ƒ โˆถ ๐‘Š โ†’ ๐‘Š by ๐‘ƒ๐‘ข = ๐‘ข(0), (15)

And clearly ๐‘ƒ is continuous and linear and ๐‘ƒ ๐‘ข =๐‘ƒ(๐‘ƒ๐‘ข) = ๐‘ƒ๐‘ข(0) = ๐‘ข(0) = ๐‘ƒ๐‘ข and ๐พ๐‘’๐‘Ÿ ๐‘ƒ ={๐‘ข โˆˆ ๐‘ˆ โˆถ ๐‘ข(0) = 0}. We now show that the generalized inverse ๐พ = ๐ผ๐‘š ๐ฟ โ†’ ๐‘‘๐‘œ๐‘š ๐ฟ โˆฉ ๐พ๐‘’๐‘Ÿ ๐‘ƒ of ๐ฟ is given by

๐‘… ๐‘ฃ = ๐‘ฃ(๐œš)๐‘‘๐œš (16)

For ๐‘ฃ โˆˆ ๐ผ๐‘š ๐ฟ we have

(๐ฟ๐‘… )๐‘ฃ(๐‘ก) = ๐‘… ๐‘ฃ (๐‘ก)โ€ฒโ€ฒ

= ๐‘ฃ(๐‘ก) (17)

And for ๐‘ข โˆˆ ๐‘‘๐‘œ๐‘š ๐ฟ โˆฉ ๐พ๐‘’๐‘Ÿ ๐‘ƒ we know that

(๐‘… ๐ฟ) ๐‘ข(๐‘ก) = ๐‘ขโ€ฒโ€ฒ(๐œš)๐‘‘๐œš๐‘‘๐‘ 

= (๐‘ก โˆ’ ๐‘ )๐‘ขโ€ฒโ€ฒ ๐‘‘๐‘  (18)

= ๐‘ข(๐‘ก) โˆ’ ๐‘ขโ€ฒ(0) ๐‘ก โˆ’ ๐‘ข(0) = ๐‘ข(๐‘ก)

Since ๐‘ข โˆˆ ๐‘‘๐‘œ๐‘š ๐ฟ โˆฉ ๐พ๐‘’๐‘Ÿ ๐‘ƒ, ๐‘ข(0) = 0, and ๐‘ƒ๐‘ข = 0.

This shows that ๐‘… = (๐ฟ| โˆฉ ) .

(v) ๐‘… ๐‘ฃโˆž

โ‰ค max โˆˆ[ , ] โˆซ (๐‘ก โˆ’ ๐‘ ) |๐‘ฃ(๐‘ )|๐‘‘๐‘ 

โ‰ค (๐‘ก โˆ’ ๐‘ ) |๐‘ฃ(๐‘ )|๐‘‘๐‘ 

โ‰ค โ€–๐‘ฃโ€– .

We conclude that

๐‘… ๐‘ฃ โ‰ค โ€–๐‘ฃโ€– .

References

[1] Gupta C.P, Ntouyas S.K, and Tsamatos P.C, โ€œSolvability of an ๐‘š-point boundary value problem for second order ordinary differential equations,โ€ Journal of Mathematical Analysis and Applications, vol. 189, no. 2, pp. 575-584, 1995.

[2] Ma R and Oโ€™Regan D, โ€œSolvability of singular second order ๐‘š-point boundary value problem,โ€ Journal of Mathematical Analysis and Applications, vol. 301, no. 1, pp. 124-134, 2005.

[3] Infante G, and Zima M.A, โ€œPositive solutions of multi-point boundary value problems at resonance,โ€ Nonlinear Analysis: Theory, Methods and Applications, vol. 69, no. 8, pp. 2458-2465, 2008.

[4] Kosmatov N, โ€œA singular non-local problem at resonance,โ€ Journal of Mathematical Analysis and Applications, vol. 394, no. 1, pp. 425-431, 2012.