32
Polytechnic University of Milan Department of Aerospace Engineering Aerospace Systems

Rudder Control Analysis / Hydraulic Pump Analysis

Embed Size (px)

Citation preview

Page 1: Rudder Control Analysis / Hydraulic Pump Analysis

Polytechnic University of Milan

Department of Aerospace Engineering

Aerospace Systems

Page 2: Rudder Control Analysis / Hydraulic Pump Analysis

Andre Odu

Student ID : 789645

Professor : Paolo Astori

September 2014

Laboratory N° 1:

Analysis of a Hydraulic Pump

Page 3: Rudder Control Analysis / Hydraulic Pump Analysis

1.Preface

The objective of the lab is to analyze the performance of a hydraulic pump

responsible for the transfer of fluid between two tanks at a constant flow, in

function of its rotational speed.

As the rotations per minute (rpm) vary from 0 to 4000, we are mainly interested in

studying the speed, flow rate and pressures when entering and exiting the pump,

the coefficient of head losses associated with the delivery duct, the required

hydraulic power and the hydraulic power generated.

As the lab progresses, we find ourselves needing to solve the problem of cavitation

that manifests itself it the aspiration duct, and are the asked to calculate the plate

angle of orientation when the cylinders are placed along a circumference with

diameter of 60 mm.

Page 4: Rudder Control Analysis / Hydraulic Pump Analysis

2. Index

1. Preface

2. Index

3. List of Symbols

4. Description of the Problem and Method of Resolution

4.1 Aspiration Duct

4.2 Delivery Duct

4.3 Pressures

4.4 Coefficient of head losses

4.5 Generated and Required Power

4.6 Verifying Cavitation

4.7 Plate Angle of Orientation

5. Given Data

6. Calculations and Results

6.1 Flow Rates

6.2 Speeds

6.3 Pressures

6.4 Coefficient of head losses

6.5 Generated and Required Power

6.6 Verifying Cavitation

6.7 Plate Angle of Orientation

7. Final Considerations

Page 5: Rudder Control Analysis / Hydraulic Pump Analysis

3.List Of Symbols

PA Pressure in tank A [Pa]

PB Pressure in tank B [Pa]

Np Number of pistons in the pump [ ]

Dp Diameter of the pistons in the pump [m]

Cp Stroke of the pistons [m]

ηv Volumetric Efficiency of the pump [ ]

ηm Mechanical Efficiency of the pump [ ]

L0 Length of the Aspiration Duct [m]

D0 Diameter of the Aspiration Duct [m]

L Length of the Delivery Duct [m]

D Diameter of the Delivery Duct [m]

k Coefficient of Minor Losses [ ]

Keq Coefficient of Head Losses [Pa/(m3/s)2]

λ Coefficient of Distributed Losses [ ]

e Average Roughness [m]

ν Cinematic Viscosity of the liquid [St]

ρ Density of the Liquid [Kg/m3]

Page 6: Rudder Control Analysis / Hydraulic Pump Analysis

Pc Vapor Tension of the Liquid [Pa]

V cilindrata [m3]

Qin Flow Rate in the Aspiration Duct [m3/s]

Qout Flow Rate in the Delivery Duct [m3/s]

vin Speed in the Aspiration Duct [m/s]

vout Speed in the Delivery Duct [m/s]

Pin Pressure at the Pump Entrance [Pa]

Pout Pressure at the Pump Exit [Pa]

Ain Section of the Aspiration Duct [m2]

Aout Section of the Delivery Duct [m2]

ein Relative Roughness of the Aspiration Duct [ ]

eout Relative Roughness of the Delivery Duct [ ]

WHyd Hydraulic Power Generated [W]

WMec Mechanical Power Necessary [W]

ΔP Variation of Pressure between pump exit and Tank B [Pa]

ΔPp Variation of Pressure between pump entrance and exit [Pa]

DT Diameter of the Rotating Drum [m]

α Swash Plate Angle of Orientation [rad]

Page 7: Rudder Control Analysis / Hydraulic Pump Analysis

4.Description of the Problem and Method of Resolution

The instructions ask to calculate the following parameters, in function of the range

of values in which the rotational speed of the volumetric pump may vary:

· Speed and Flow Rate in the Aspiration and Delivery Ducts

· Pressure Entering and Exiting the Pump

· Coefficient of Head Loss Associated with the Delivery Duct

· Generated Hydraulic Power and Required Mechanical Power

The instructions also ask to verify the occurrence of cavitation in the aspiration

duct and to determine the swash plate angle of orientation, knowing that its

diameter is of 60 mm.

4.1 Aspiration Duct

For starters, in order to calculate the Flow Rate in the aspiration duct, I need to

determine the displacement of the pump.

Given the piston diameter, the number of pistons and their stroke, the displacement

of the pump is calculated through the following equation:

V = Np * pi * Cp * ( Dp / 2 )2

Once the displacement of the pump is know, the flow rate of the aspiration duct is

easily obtainable, in function of the rotational speed (n):

Qin = n * V

The final step is finding the fluid's speed in the aspiration duct, which depends on

the section of the aspiration duct:

Ain = pi * (D0 / 2 )2

Page 8: Rudder Control Analysis / Hydraulic Pump Analysis

vin = Qin / Ain

4.2 Delivery Duct

The Flow Rate in the delivery duct depends on the Flow Rate in the aspiration duct

and on the volumetric efficiency of the pump through the following equation:

Qout = ηv * Qin

Having determined the Flow Rate in the delivery duct, the speed is obtainable

through the same procedure used for the aspiration duct

Aout = pi * (D / 2 )2

vout = Qout / Aout

4.3 Pressures

To calculate the pressures at the entrance and exit of the pump we need to

determine the coefficient of distributed losses ( λ ) which varies in function of the

Reynolds numbers of the aspiration and delivery ducts:

Rein = ( d0 * vin ) / v

Reout = ( d * vout ) / v

For Reynolds numbers below 2000, the flow is considered laminar and the

coefficient of distributed losses is approximated as:

λ = 64 / Re

For Reynolds number between 2000 and 4000 the flow is considered transitional,

and above 4000 the flow is considered completely turbulent.

Remembering that the two speeds depend of the rotational speed ( n ) we find that

the coefficient of distributed losses ( λ ) depends on the number of rotations per

minute.

Page 9: Rudder Control Analysis / Hydraulic Pump Analysis

In our case the Reynolds numbers become greater that 2000 in both the aspiration

duct ( at approximately 3000 rpm ) and the delivery duct ( at approximately 3800

rpm) ,while always remaining below the 4000 mark.

The problem now becomes that of a transitional phase with rough ducts, which is

solved by determining the coefficient of distributed losses in function of the

relative roughness of the ducts and their respective Reynolds numbers by

consulting the Moody diagram.

ein = e / D0 = 0.0062

eout = e / D = 0.0080

With these values of relative roughness, and low Reynolds numbers, the coefficient

of distributed losses appears as a curve with equation:

λ = ( 1.8log(Re) - 1.64 )-2

Given the equation for the coefficient of distributed losses, the next step is

calculating the pressures entering and exiting the pump:

λin = ( 1.8log(Rein) - 1.64 )-2

λout = ( 1.8log(Reout) - 1.64)-2

Pin = Pa - ( λin * ( L0 / D0 ) * 0.5 * ρ * vin2

Pout = Pb + ( k + λout * ( L / D ) * 0.5 * ρ * vout2

4.4 Coefficient of head losses

When considering the delivery duct, the coefficient of head losses is easily

calculated through the following equation:

Keq = ΔP / Qout

Page 10: Rudder Control Analysis / Hydraulic Pump Analysis

4.5 Generated and Required Power

The generated Hydraulic Power depends strictly on the variation in pressure

between pump entrance and exit, and on the flow rate in the delivery duct ( which

also depends on the flow rate in the aspiration duct )

Whyd = ΔP * Qout

The Mechanical Power required to generate this Hydraulic Power depends on both

the Mechanical Efficiency and the Volumetric Efficiency

Wmec = Whyd / ( ηm * ηv)

4.6 Verifying Cavitation

With the numerical data obtained we are now able to prevent cavitation, by

ensuring that the pressures at the entrance and exit of the pump stay above the

vapor tension of the fluid ( Pc ) for every rotation speed taken into consideration.

From the equations obtained for the entrance and exit pressures we notice that

above a certain number or rotations per minute the entrance pressure ( P in ) falls

below the vapor tension ( Pc ) , compromising the pump.

4.7 Plate Angle of Orientation

The equation which puts in relation the piston stroke with the diameter of the

rotating drum is as follows:

Cp = DT * tan(α )

From this equation the plate angle of orientation is then:

α = tan-1( Cp / DT )

Page 11: Rudder Control Analysis / Hydraulic Pump Analysis

5.Given Data

PA = 0.25 MPa

PB = 0.80 MPa

Np = 9

Dp = 0.5 in

Cp = 22.5 mm

ηv = 96 %

ηm = 88 %

L0 = 1 m

D0 = 13 mm

L = 4 m

D = 10 mm

k = 4

e = 0.08 mm

ν = 80 cSt

ρ = 950 kg/m3

Pc = 15 kPa

n = 0÷4000 rpm

Page 12: Rudder Control Analysis / Hydraulic Pump Analysis

6.Calculations And Results

All the following results and the associated graph were calculated and plotted with

matlab. The required code will be displayed

6.1 Flow Rates

Vtot = Np * (pi*Cp*(Dp /2)2 (m3)

Vtot_l = Vtot * 1000 (liters)

Qin = n*Vtot_l (liters / minute )

ηv = 0.96

Qout = Qin*ηv (liters / minute )

Page 13: Rudder Control Analysis / Hydraulic Pump Analysis

6.2 Speeds

d0 = 0.013 (m)

Ain = pi * (d0/2)2 (m2)

vin = Qin/(Ain*60000) (m/s)

d = 0.01 (m)

Aout = pi * (d/2)2 (m2)

vout = Qout/(Aout*60000) (m/s)

Page 14: Rudder Control Analysis / Hydraulic Pump Analysis

6.3 Pressures

Rein = (d0 * vin) / v

Reout = (d * vout) / v

Page 15: Rudder Control Analysis / Hydraulic Pump Analysis

lambdain(1:3820) = 64 ./ Rein(1:3820)

lambdain(3821:4000) = ( 1.8 .* log10(Rein(3821:4000)) - 1.64 )-2

lambdaout(1:3061) = 64 ./ Reout(1:3061) ;

lambdaout(3062:4000) = ( 1.8 .* log10(Reout(3062:4000)) - 1.64 )-2

Pin = Pa - (lambdain * (l0 / d0) * 0.5 * rho * (vin)2)

Pout = Pb + (k + lambdaout * (l/d) ) * 0.5 * rho * (vout)2

Page 16: Rudder Control Analysis / Hydraulic Pump Analysis

6.4 Coefficient of head losses

ΔP = Pout - Pb

Keq = ΔP / ( (Qout/60000)2 )

Page 17: Rudder Control Analysis / Hydraulic Pump Analysis

6.5 Generated and Required Power

Whyd = (Pout - Pin) * (Qout/60000)

Wmec = Whyd / (ηm*ηv)

Page 18: Rudder Control Analysis / Hydraulic Pump Analysis

6.6 Solving Cavitation

d1 = 0.015

Ain = pi * (d1/2)2

vin = Qin/(Ain*60000)

Rein = (d1 * vin) / v

lambdain(1:3820) = 64 / Rein(1:3820) ;

lambdain(3821:4000) = ( 1.8 * log10(Rein(3821:4000)) - 1.64 )-2

Page 19: Rudder Control Analysis / Hydraulic Pump Analysis

Pin = Pa - ( lambdain * (l0/d0) * 0.5 * rho * (vin2 )

6.7 Plate Angle of Orientation

α = atan(Cp / d) * (180/pi) = 20.556

Page 20: Rudder Control Analysis / Hydraulic Pump Analysis

7.Final Considerations

After thoroughly analyzing the pump we can deduce that, because of how the plant

was structured , the best parameters are obtained when working at a low number of

rotations per minute. At approximately 3800 rpm the Reynolds number in the

aspiration duct becomes greater than 2000, and in the transition to a turbulent flow

the pressure falls below that of cavitation, compromising the pump. However,

when considering a constant flow rate, the loss of pressure along the ducts depends

exclusively on the width of the duct. Hypothetically speaking, by increasing the

diameter of the aspiration duct by few millimeters one could increase the pressure

enough to avoid cavitation in the entire range of rotation speeds considered. In this

particular case, increasing the diameter to 15 millimeters ( increasing by merely 2

millimeters ) is enough to avoid cavitation.

Page 21: Rudder Control Analysis / Hydraulic Pump Analysis

Laboratorio N° 7:

Comandi di Volo

1. Premessa

L'obbiettivo del laboratorio e' di studiare la funzionalita' dell'attuatore usato per il

comando del timone in un Airbus A320. Nel caso dell'Airbus A320 sono presenti

tre attuatori con doppia ridondanza, ognuno e' quindi progettato per azionare in

modo autonomo la superficie di comando.

Dato il momento della cerniera da contrastare, possiamo ricavare la forza

muscolare necessaria per muovere la superficie di co. mando, possiamo

determinare le dimensioni dell'attuatore che verra' introdotto, e a sua volta ricavare

l'equazioni di funzionamento e stimare il tempo richiesto per completare il

movimento.

Page 22: Rudder Control Analysis / Hydraulic Pump Analysis

2. Indice

1. Premessa

2. Indice

3. Lista dei Simboli Utilizzati

4. Descrizione del Problema e Metodo di Risoluzione

4.1 Stimare l'Entita' della Forza Muscolare Richiesta

4.2 Dimensionare l'Attuatore

4.3 Tracciare i Diagrammi Significativi del Sistema

4.4 Scrivere l'Equazione Dinamica dell'Attuatore

4.5 Stimare il Tempo di Attuazione

5. Dati del Problema

6. Calcoli e Risultati

6.1 Stimare l'Entita' della Forza Muscolare Richiesta

6.2 Dimensionare l'Attuatore

6.3 Disegnare lo Schema Idraulico Completo

6.4 Tracciare i Diagrammi Significativi del Sistema

6.5 Stimare il Tempo di Attuazione

Page 23: Rudder Control Analysis / Hydraulic Pump Analysis

3. Lista Dei Simboli Utilizzati

LC lavoro fatto per ruotare il timone fino alla sua apertura massima [N*m]

LP lavoro fatto per far estendere completamente l'asta di comando [N*m]

M Momento d'Inerzia della cerniera [kg*m2]

J momento d'inerzia del timone [kg*m2]

S Corsa del pedale [m]

b Distanza tra cerniera e punto di attacco dell'attuatore [m]

dS Diametro stelo [m]

AC Area del cilindro [m2]

AS Area dello stelo [m2]

PP Pressione pilota [Pa]

PS Pressione serbatioio [Pa]

a Accellerazione [m/s2]

v Velocita' [m/s]

Q Flusso [m3/s]

Page 24: Rudder Control Analysis / Hydraulic Pump Analysis

4. Descrizione del Problema e Metodo di Risoluzione

Le istruzioni chiedono di studiare il funzionamento di uno dei tre attuatori

indipendenti utilizzati per azionare il timone. In particolare e' richiesto di:

Stimare l'Entita' della Forza Muscolare necessaria in Assenza di

Potenziamento Idraulico

Dimensionare l'Attuatore

Disegnare lo Schema Idraulico Completo del Servocomando (FBW)

Tracciare i Diagrammi Significativi

Scrivere l'Equazione Dinamica dell'Attuatore

Stimare il Tempo di Attuazione

4.1 Stimare la Forza Muscolare Necessaria

Considerando lineare il momento di cerniera, posso ricavare il lavoro fatto per

ruotare il timone fino alla sua apertura massima

Considerando poi la forza manuale applicata all'asta, posso ricavare il lavoro fatto

per far estendere completamente l'asta di comando collegata alla cerniera

Del bilancio dei due lavori ottengo, in funzione del momento massimo della

cerniera, la forza massima che deve esercitare manualmente il pilota

Mmax * ϑmax = Fmusc * s

Fmusc = ( Mmax * ϑmax ) / s

Page 25: Rudder Control Analysis / Hydraulic Pump Analysis

4.2 Dimensionamento dell'Attuatore

Una volta ricavata la forza muscolare necessaria, e' evidente il bisogno di

utilizzare un attuatore idraulico. Conoscendo la distanza tra la cerniera e il punto di

attacco dell'attuatore si ricava la corsa dell'attuatore e il braccio della forza

esercitata rispetto alla cerniera stessa

h = b * cos(ϑ )

x = b * sin(ϑ )

Siccome corsa e braccio dipendono dalla variazione dell'angolo theta, per theta

massimo o minimo otteniamo dei valori significativi

hmin = b * cos(ϑmax )

xmax = b * sin(ϑmax )

Noto il valore minimo assunto dal braccio della forza, e conoscendo il valore

massimo assunto dal momento della cerniera, si ricava la forza massima necessaria

per muovere completamente il timone, ovvero la forza massima che dovra' poter

esercitare l'attuatore

Fmax = Mmax / hmin

Conoscendo la forza che deve esercitare l'attuatore, lo si puo' dimensionare in

funzione delle pressioni esterne e dell'impianto. Sovradimensionando del 20%

ottengo una superficie utile dell'attuatore che mi garantisce il funzionamento

corretto

A = 1.2 * Fmax / ΔP

Dalla superficie utile dell'attuatore, avendo gia' scelto il diametro dello stelo ricavo

il diametro del cilindro richiesto

As = pi * ( ds / 2 )2

Ac = A + As

dc = (Ac / pi )0.5 * 2

Page 26: Rudder Control Analysis / Hydraulic Pump Analysis

Quindi ottengo la forza massima che puo' esercitare questo attuatore

sovradimensionato, che deve essere maggiore della forza massima necessaria per

muovere il timone

Fatt = A * ΔP

4.3 Tracciare i Diagrammi Significativi

Al variare dell'angolo theta studio la corsa e il braccio tra forza e cerniera

x = b * sin(ϑ )

h = b * cos(ϑ )

Avendo interpolato il grafico del momento della cerniera in funzione dell'angolo

theta, possiamo studiare la forza richiesta per bilanciare il momento al variare

dell'angolo theta

F = M / h

4.4 Scrivere l'Equazione Dinamica dell'Attuatore

Bilanciando forze e pressioni applicate all'attuatore, posso scrivere la sua

equazione dinamica

F = ( P1 - P2 ) * A - F(x )

( m + ( J / b2 ) ) * a = ΔP * A - F(x )

P1 = PP - K * Q2 = PP - K * ( A * v )2

P2 = PR + K * Q2 = PR + K * ( A * v )2

( m + ( J / b2 ) ) * a = ( PP - PR ) * A - 2 * A * K * ( A * v )2 - F(x )

Page 27: Rudder Control Analysis / Hydraulic Pump Analysis

4.5 Stimare il Tempo di Attuazione

Per semplificare anziche' considerare F(x) considero una forza media, e

considerando una velocita media (costante) ipotizzo accelerazione nulla

L'equazione dinamica si riduce quindi a

0 = ( PP - PR ) * A - 2 * K * A3 * ( vmed )2 - Fmed

vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5

Avendo ricavato la velocita' media, banalmente si ottiene il tempo di attuazione

t = xmax / vmed

5. Dati del Problema

S = 0.2 m

b = 0.1 m

Mmax = 1500 kg*m2

K = 2.1600e+15 Pa/(m3/s)2

PP = 21000000 Pa

PS = 101300 Pa

ϑmax = 25 °

m = 2.5 kg

Page 28: Rudder Control Analysis / Hydraulic Pump Analysis

6 Calcoli e Risultati

Tutti i risultati e i loro grafici sono stati calcolati tramite matlab. Il codice associato

ad ogni singola richiesta verra' fornito.

6.1 Stimare l'Entita' della forza muscolare richiesta

ϑmax = 25 * ( pi/180 )

Fmusc = ( Mmax * ϑmax ) / s = 3272.5 (N)

6.2 Dimensionamento dell'Attuatore

hmin = b * cos(ϑmax) = 0.0906 (m)

xmax = b * sin(ϑmax) = 0.0423 (m)

Fmax = Mmax / hmin = 16.551 (kN)

ΔP = PP - PR (Pa)

A = 1.2 * Fmax / ΔP = 9.5034e-04 (m2)

dS = 0.02 (m)

As = pi * ( ds / 2 )2 = 3.1416e-04 (m2)

Ac = A + As = 0.0013 (m2)

dc = (Ac / pi )0.5 * 2 = 0.0401 (m)

Fatt = A * ΔP = 19.861 (kN)

Page 29: Rudder Control Analysis / Hydraulic Pump Analysis

6.4 Disegnare lo Schema Idraulico Completo

Nel caso di un controllo fly-by-wire con sistema idraulico, il sistema viene

scematizzato come segue

Page 30: Rudder Control Analysis / Hydraulic Pump Analysis

6.4 Tracciare i Diagrammi Significativi

x = b * sin(ϑ )

Page 31: Rudder Control Analysis / Hydraulic Pump Analysis

h = b * cos(ϑ )

Page 32: Rudder Control Analysis / Hydraulic Pump Analysis

F = M / h = M / ( b * cos(ϑ ) )

6.5 Stimare il Tempo di Attuazione

Fmed = sum(abs(F))/ length(F) = 10.025 (kN)

Q = 5/60000 (m3/s)

vmed = ( ( ( PP - PR ) * A - Fmed ) / 2 * K * A3 )0.5 = 0.0515 (m/s)

t = xmax / vmed = 0.8205 (s)