27

2005 ASME Power Conference Performance Considerations in Replacement of Low Pressure Turbine Rotors for Nuclear Power Plants - A Case Study Sunder Raj Presentation

Embed Size (px)

Citation preview

Objectives • Examine Design, Performance

& Test Considerations • Use of Performance Tool in

Evaluating Performance Gains • Recommendations for

Ensuring Objectives of LP Turbine Rotor Replacement Programs are Met

Background • Majority of U.S. Turbines

Originally GE or Westinghouse • 104 Turbines - 56 GE, 44

Westinghouse, 3 Siemens and 1 BBC

• LSB - 38” or 43” for GE, 40” or 44” for Westinghouse/Siemens, 52” for BBC

Table 1

1 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103%2 Westinghouse TC4F-44" LSB 888,315 6,416,567 495.2 12,958 103%1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%1 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89%2 General Electric TC4F-43" LSB 849,206 5,583,138 495.2 11,275 89%1 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%2 Westinghouse TC6F-44" LSB 1,085,391 7,565,329 742.8 10,185 81%1 General Electric TC6F-38" LSB 883,053 5,997,306 634.2 9,456 75%2 Westinghouse TC6F-40" LSB 877,967 5,869,854 634.2 9,256 73%1 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84%2 General Electric TC6F-43" LSB 1,205,091 7,903,237 742.8 10,640 84%1 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------2 Siemens TC4F-44" LSB 1,160,706 7,960,473 495.2 16,075 ------

8 Westinghouse TC4F-44" LSB 800,838 5,608,615 495.2 11,326 90%1 General Electric TC6F-43" LSB 1,089,095 7,686,079 742.8 10,347 82%2 Brown Boveri TC6F-52" LSB 1,178,674 8,348,511 1055.0 7,913 ------

Plant

5

6

7

9

1

2

3

4

Total LPT Exhaust

Annulus Area, sq.ft.

LPT Exhaust End Loading,

lb/hr/sq.ft

Total LPT Exhaust Steam

Flow, lb/hrRating, KwType

Unit No.

Original Main Turbine Data

%End LoadingManufacturer

Background (contd.) • Usual Arrangement one HP

and Two or Three LP in Tandem

• LP Accounts for Bulk of Total Output with About 10% From Last Stage

Background (contd.) • Performance of LP Turbine

–Initial & Final Conditions –Slope & Shape of Expansion Line

–Moisture Removal Zones Effectiveness

–Exhaust Losses

Background (contd.) • Exhaust Losses

–Leaving Loss –Hood Loss

• Charged to Last Stage • End Loading (Flow/Annulus

Area) Critical Consideration in Operating Range/Losses

Figure 1 – LSB 38” – 40”

Figure 2 – LSB 43” – 44”

Background (contd.) • End Loading About 13,000

Lb/Hr/Sq.Ft. • Best Performance Close to

Choke Point (Max. Flow) • Higher End Loading

–Higher Losses –Narrower Useful Operating Range

Background (contd.) • LP Rotors Classification:

–Fully Integral (U.S., European) –Shrunk-on Disk (U.S., European)

–Welded Fabrication (BBC) • Since 1980’s, Solid

Monoblock Popular

Background (contd.) • Advantages Cited:

–Elimination of SCC –Reduced

Inspection/Maintenance –Improved Efficiencies –Integrally Shrouded Blades –Free-Standing, Longer LSB –End Loadings up to 18,000

Lb/Hr/Sq.Ft.

Fig. 3 – Original LP Rotors Thermal Kit Heat Balance

NSSS THERMAL POWER = 3423.01 MWTGENERATOR OUTPUT = 1162.43 MW

0 W1197.52 H

155,056 W 14,258,423 W162.87 P 370 W 765.00 P

1264.18 H 1197.52 H 1197.52 H0.40%M

10,440,812 W 11,054 W1264.18 H 1197.52 H

2.00 IN.HGA EFF. = 77.00 %995.70 H 14,865,549 W

PB = 722.93 805.00 P P1STG = 575.12 1197.52 H H1STG = 1180.64 0.25%M DELP = 5.50%

16,745 W PB = 165.23 2,846 W 2,846 W1166.74 H 1106.95 H 1106.95 H

337 W 337 W7,262 W 1032.13 H 1056.78 H 1087.89 H 155,056 W 1106.95 H 1106.95 H

1166.74 H 1048.63 H 1070.50 H 1097.60 H 1155.88 H 1155.88 H168.61 P 1156.98 H 1156.98 H

3.06 P 6.45 P 13.60 P 36.38 P 81.88 P 484.84 F 180.96 P 392.79 P 392.79 P 180.96 P7,890,612 W 16,745 W 1264.18 H

ELEP = 977.95 H 596,072 W 753.98 P 596,072 W TEP = 999.09 H TD = 25.00 F

2STG. RHTR. 743.43 P 0 W 596,072 W142,124 W 171.17 P 509.84 F 1197.52 H 499.69 h

110.20 h 415.96 F Blowdown60,629 W 16,745 W 1224.92 H 413,020 W 390.82 P 0 W

CWT = 61.45 F 1048.63 H 98,442 W 1166.74 H TD = 25.00 F 411.83 h HWT = 75.24 F 1.50 IN.HGA 0 W 176.24 h 0 W 1STG. RHTR. 385.35 P 413,020 W

TR = 13.79 F 347,867 W 1166.74 H 173.78 P 440.96 F 0 W 420.10 h GPM = 1,110,000 0 W Makeup 131,251 W 1097.60 H 520,142 W 1196.20 H 499.69 h

CF = 85.00 % 91.72 F 141.21 h 1149.90 H 179.15 P 1,009,092 W672,739 W 586,489 W 1106.95 H 0 W 467.12 h1070.50 H 1207.74 H MSEFF = 100.00 % 10.48 %M 21,418 W 1,156,867 W

250.00 P 1,240,033 W 824,482 W 422.18 h 1156.98 H 373.72 P59.74 h 6.32 P 13.41 P 33.81 P 77.78 P 176.20 P 171.44 P TD = 5.00 F

8,306 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 344.33 h TD = 5.00 F10,613,657 W 250.00 P 1099.02 P 14,865,549 W

10,613,657 W 91.83 F 167.31 F 202.40 F 252.25 F 305.10 F 364.11 F 365.51 F 366.99 F 433.00 F59.74 h 60.51 h 172.31 F 135.86 h 207.40 F 171.04 h 257.25 F 221.33 h 310.10 F 275.30 h 369.11 F 336.78 h 338.26 h 341.06 h 438.00 F 411.83 h

DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F178.20 h 25,590 W 369.11 F

2,365,236 W 2,356,930 W 1,552,941 W 1,106,631 W 586,489 W 341.96 h101.83 F 177.31 F 212.40 F 262.25 F 2,187,376 W69.84 h 145.32 h 180.61 h 231.14 h 376.99 F

350.61 h4,251,892 W 4,251,892 W

341.96 h 250.00 P341.96 h

X

TV CV TV

S

GC

FPT

TVRSV

A

CONDENSER

TANK

T

STM.HTG.

FP

LP TURBINE

REGULATOR

CP

HTR.21 HTR.22 HTR.23 HTR.24

N T

HTR.25

MOIST.SEP.

HP TURBINE

M

N

HTR.26

M

N

W W

S

M H

H

X

X A

STEAMGENERATOR

DP

Original LP Rotors • From Fig. 3:

–LSB 44” –Annulus Area 127.4 Sq.Ft. –Total Exhaust Flow 7,890,612 Lb/Hr –Exhaust Flow Per End =

7,890,612÷6 = 1,315,102 Lb/Hr –Maximum Design Exhaust Flow =

1,560,000 Lb/Hr (Fig. 2) –End Loading = 1,315,012/1,560,000

= 84%

Original LP Rotors (contd.) • From Fig. 3:

–Annulus Velocity = 1123 Fps –Exhaust Loss = 21.1 Btu/lb –HP Shaft Output = 359,763 Kw –LP Shaft Output = 821,047 Kw

= 70% of Total • Design Heat Balance Fig. 4

–Uses Thermal Kit/Design Data –Developed Using Performance

Tool

Fig. 4 – Original LP Rotors Design Heat Balance

0 W 0 W745.11 P 1197.52 H

1197.52 H14,236,296 W

144,230 W 370 W 765.00 P161.91 P 1197.52 H 1197.52 H

1264.13 H 0.40%M10,465,299 W 11,063 W

1264.13 H 1197.52 H

2.00 IN.HGA EFF. = 77.00 %995.94 H 14,842,360 W

PB = 722.48 805.00 P P1STG = 574.24 1197.52 H H1STG = 1180.54 0.25%M DELP = 5.56%

16,744 W PB = 165.62 2,841 W 2,841 W1166.82 H 1107.04 H 1107.04 H

144,230 W 337 W 337 W7,262 W 1032.17 H 1056.84 H 1087.62 H 1264.13 H 1107.04 H 1107.04 H

1166.82 H 1048.67 H 1070.56 H 1097.38 H 1156.03 H 1156.03 H169.00 P 1157.13 H 1157.13 H

3.07 P 6.47 P 13.57 P 36.43 P 82.09 P 484.84 F 181.39 P 393.76 P 393.76 P 181.39 P7,914,791 W 16,744 W 1264.13 H

ELEP = 977.83 H TEP = 999.10 H 142,559 W 595,002 W 753.98 P 595,002 W

110.33 h TD = 25.00 F60,815 W 743.42 P 0 W 595,002 W

1048.67 H 171.57 P 509.84 F 1197.52 H 499.69 h8,306 W 8,306 W 16,744 W 416.20 F 0 W

CWT = 61.40 F 178.20 h 1163.34 H 98,971 W 1166.82 H 1225.00 H 414,216 W 391.79 P 342.67 h HWT = 75.21 F 1.50 IN.HGA W 176.13 h 533,424 W W TD = 25.00 F

TR = 13.80 F 377,694 W 1149.85 H 1166.82 H 386.30 P 414,216 W GPM = 1,110,000 0 W 130,943 W 1097.38 H 174.19 P 441.20 F 420.37 h

CF = 85.00 % 91.72 F 141.35 h 585,183 W 1196.23 H 179.57 P 1,009,218 W630,400 W 1207.77 H 1107.04 H 467.14 h 0 W

253,781 W 1070.56 H MSEFF = 100.00 % 10.47%M 841,754 W 21,348 W 1,101,743 W 510.68 h484.70 P 1,240,981 W 1107.04 H 0 W 422.45 h 1157.13 H

61.54 h 176.61 P 499.69 h344.53 h 0 W

158,888 W 177,808 W 195,061 W 280,585 W 342.67 h374,363 W

6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 374.64 PTD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W TD = 6.27 F

1196.17 H3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 4,947,453 W 4,947,453 W

92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 10,627,317 W 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h

365.90 F 340.06 h 342.67 h785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 338.87 h 0 W

100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h0 W 0 W 0 W 0 W 413,660 W 710,770 W 376.96 F 14,842,360 W

253,781 W 158,888 W 177,808 W 195,061 W 280,585 W 350.33 h 374,363 W 336,406 W 431.97 F6.34 P 13.38 P 10,627,317 W 33.86 P 77.98 P 171.84 P 0 W 374.64 P 410.60 h

TD = 8.21 F TD = 5.31 F 201.84 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 1,405,014 W 384.70 P TD = 6.27 F171.01 h 1196.17 H 369.29 F 369.86 F

3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 342.16 h 343.06 h 4,947,453 W 4,947,453 W92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 310.28 F 305.89 F 365.90 F 384.70 P 1007.20 P 368.65 F 438.24 F 431.97 F61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.2 F 276.38 h 338.87 h 367.03 F 368.65 F 342.67 h DC = 8.31 F 410.60 h

340.06 h 342.67 h785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 0 W

100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 342.16 h 710,770 W 376.96 F0 W 253,781 W 0 W 0 W 0 W 413,660 W 350.33 h 336,406 W

158,888 W 177,808 W 195,061 W 280,585 W 1,405,014 W 0 W 374,363 W6.34 P 13.38 P 33.86 P 77.98 P 171.84 P 369.29 F 374.64 P

TD = 8.21 F TD = 5.31 F TD = 4.16 F TD = 4.39 F TD = 3.39 F 7,942 W 342.16 h TD = 6.27 F1196.17 H 384.70 P

3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 3,542,439 W 369.86 F 4,947,453 W 4,947,453 W92.24 F 172.44 F 164.23 F 207.30 F 201.98 F 201.84 F 257.33 F 253.18 F 257.33 F 305.89 F 365.90 F 343.06 h 368.65 F 438.24 F 431.97 F61.54 h DC = 8.64 F 133.23 h DC = 12.46 F 171.01 h 171.01 h DC = 9.11 F 222.60 h DC = 9.15 F 276.38 h 338.87 h 342.67 h DC = 8.31 F 410.60 h

0 W785,539 W 531,758 W 176.69 F 372,869 W 210.95 F 195,061 W 262.33 F 0 W 288,527 W 369.29 F 342.16 h

100.88 F 68.87 h 144.68 h 179.11 h 231.13 h 413,660 W 710,770 W 376.96 F0 W 0 W 0 W 0 W 350.33 h

1,405,014 W 384.70 P 0 W369.29 F 369.86 F342.16 h 343.06 h

S

HDP

TO COND.

TO COND.

TO COND.TO COND.

TO COND.TO COND.

TO COND.

TANK2B

TANK2C

TANK2A

SG BLOWDOWN

BYPASS BYPASSBYPASS

Y

TV CV TV

S

FPT

TVRSV

CONDENSER

T

FP

LP TURBINE

REGULATOR

CP

HTR.21A HTR.22A HTR.23A HTR.24A

MOIST.SEP.

HP TURBINE

HTR.26A

M

N

W

M H

H

X

X A

STEAMGENERATOR

W

A N T

HTR.21B HTR.22B HTR.23B HTR.24B

GSC

HTR.21C HTR.22C HTR.23C HTR.24C

COND. DEMIN.

HTR.25A

HTR.25B

HTR.25C

FP

HTR.26B

HTR.26C

Y

FROM FP

TO MSCDT

SG BLOWDOWN

1STG.RHTR.

2STG.RHTR.

LP EXHAUST

HDP

N

M

TO COND.

TO COND.

TO COND. TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

FPT EXHAUST

HDP

Fig. 5 – Replacement LP Rotors Thermal Kit Heat Balance

0 W1197.53 H

154,030 W 14,064,720 W159.96 P 409 W 765.00 P

1264.36 H 1197.53 H 1197.53 H0.40%M

10,409,998 W 11,307 W1264.36 H 1197.53 H

2.00 IN.HGA EFF. = 77.00 %996.65 H 14,726,960 W

PB = 718.83 805.00 P P1STG = 548.55 1197.53 H H1STG = 1179.10 0.25%M DELP = 6.03%

17,006 W PB = 163.62 2,849 W 2,849 W1166.93 H 1106.21 H 1106.21 H

337 W 337 W7,536 W 1024.01 H 1049.91 H 1083.28 H 154,030 W 1106.21 H 1106.21 H

1166.93 H 1041.60 H 1064.62 H 1093.72 H 1152.37 H 1152.37 H166.96 P 1153.53 H 1153.53 H

2.72 P 5.91 P 13.22 P 35.55 P 79.39 P 484.84 F 179.20 P 367.24 P 367.24 P 179.20 P7,865,072 W 17,005 W 1264.36 H

ELEP = 977.51 H 650,933 W 753.98 P 650,933 W TEP = 995.21 H TD = 25.00 F

2STG. RHTR. 743.43 P 0 W 650,933 W151,655 W 169.50 P 509.84 F 1197.53 H 499.69 h

105.64 h 409.49 F Blowdown60,508 W 17,006 W 1221.36 H 361,028 W 365.41 P 0 W

CWT = 61.72 F 1041.60 H 105,758 W 1166.93 H TD = 25.00 F 404.44 h HWT = 75.41 F 1.50 IN.HGA 0 W 174.83 h 0 W 1STG. RHTR. 360.29 P 361,028 W

TR = 13.69 F 373,420 W 1166.93 H 172.09 P 434.49 F 0 W 412.89 h GPM = 1,110,000 0 W Makeup 140,135 W 1093.72 H 514,486 W 1196.05 H 499.69 h

CF = 85.00 % 91.72 F 137.40 h 1144.59 H 177.41 P 1,011,961 W626,473 W 581,960 W 1106.21 H 0 W 468.73 h1064.62 H 1203.50 H MSEFF = 100.00 % 10.54 %M 21,996 W 1,021,994 W

250.00 P 1,244,302 W 844,592 W 414.93 h 1153.53 H 348.23 P61.14 h 5.79 P 13.12 P 32.84 P 75.49 P 174.48 P 170.19 P TD = 5.00 F

8,619 W TD = 5.00 F TD = 5.00 F TD = 5.00 F TD = 5.00 F 343.48 h TD = 5.00 F10,582,115 W 250.00 P 1096.00 P 14,726,960 W

10,582,117 W 93.26 F 163.54 F 201.32 F 250.56 F 303.05 F 363.51 F 364.90 F 366.38 F 426.25 F61.14 h 61.94 h 168.54 F 132.08 h 206.32 F 169.95 h 255.56 F 219.62 h 308.05 F 273.19 h 368.51 F 336.16 h 337.61 h 340.41 h 431.25 F 404.44 h

DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F DC = 10.0 F178.20 h 23,798 W 368.51 F

2,350,851 W 2,342,232 W 1,575,624 W 1,096,445 W 581,960 W 341.33 h103.26 F 173.54 F 211.32 F 260.56 F 2,055,950 W71.27 h 141.53 h 179.52 h 229.41 h 376.38 F

349.93 h4,144,845 W 4,144,845 W

341.33 h 250.00 P341.33 h

X

TV CV TV

S

GC

FPT

TVRSV

A

CONDENSER

TANK

T

STM.HTG.

FP

LP TURBINE

REGULATOR

CP

HTR.21 HTR.22 HTR.23 HTR.24

N T

HTR.25

MOIST.SEP.

HP TURBINE

M

N

HTR.26

M

N

W W

S

M H

H

X

X A

STEAMGENERATOR

DP

Replacement LP Rotors • From Fig. 5:

–LSB 47” –Annulus Area 139.18 Sq.Ft/End –Annulus Velocity = 1024 Fps –Exhaust Loss = 17.7 Btu/lb –HP Shaft Output = 361,668 Kw –LP Shaft Output = 838,937 Kw –Increase in LP Shaft Output = 18

Mw

Fig. 6 – Replacement LP Rotors Design Heat Balance

0 W 0 W745.11 P 1197.53 H

1197.53 H14,055,918 W

143,160 W 409 W 765.00 P160.28 P 1197.53 H 1197.53 H

1264.32 H 0.40%M10,432,599 W 11,311 W

1264.32 H 1197.53 H

2.00 IN.HGA EFF. = 77.00 %996.53 H 14,716,904 W

PB = 718.63 805.00 P P1STG = 548.23 1197.53 H H1STG = 1179.10 0.25%M DELP = 6.06%

17,006 W PB = 163.95 2,847 W 2,847 W1166.95 H 1106.20 H 1106.20 H

143,160 W 337 W 337 W7,536 W 1023.99 H 1049.91 H 1083.05 H 1264.32 H 1106.20 H 1106.20 H

1166.95 H 1041.59 H 1064.62 H 1093.52 H 1152.52 H 1152.52 H167.30 P 1153.68 H 1153.68 H

2.73 P 5.92 P 13.19 P 35.58 P 79.58 P 484.84 F 179.56 P 368.21 P 368.21 P 179.56 P7,877,284 W 17,004 W 1264.32 H

ELEP = 977.41 H TEP = 995.17 H 151,954 W 649,675 W 753.98 P 649,675 W

105.70 h TD = 25.00 F60,603 W 743.42 P 0 W 649,675 W

1041.59 H 169.84 P 509.84 F 1197.53 H 499.69 h8,619 W 8,619 W 17,006 W 409.74 F 0 W

CWT = 61.76 F 28.06 h 1163.65 H 106,190 W 1166.95 H 1221.46 H 362,395 W 366.37 P 341.96 h HWT = 75.43 F 1.50 IN.HGA 0 W 174.72 h 530,599 W 0 W TD = 25.00 F

TR = 13.68 F 399,648 W 1144.56 H 1166.95 H 361.24 P 362,395 W GPM = 1,110,000 0 W 139,867 W 1093.52 H 172.43 P 434.74 F 413.17 h

CF = 85.00 % 91.72 F 137.46 h 580,659 W 1196.08 H 177.76 P 1,012,070 W595,265 W 1203.57 H 1106.20 H 468.71 h 0 W

245,044 W 1064.62 H MSEFF = 100.00 % 10.54%M 864,371 W 21,937 W 978,099 W 510.68 h484.70 P 1,246,580 W 1106.20 H 0 W 415.21 h 1153.68 H

61.54 h 174.83 P 499.69 h343.65 h 0 W

168,613 W 176,866 W 193,553 W 288,124 W 341.96 h333,345 W

5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 349.15 PTD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W TD = 5.66 F

1196.06 H3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 4,905,635 W 4,905,635 W

92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 10,593,848 W 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h

365.23 F 339.35 h 341.96 h784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 338.17 h 0 W

100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h0 W 0 W 0 W 0 W 415,527 W 670,702 W 374.83 F 14,716,904 W

245,044 W 168,613 W 176,866 W 193,553 W 288,124 W 348.05 h 333,345 W 337,357 W 425.84 F5.80 P 13.09 P 10,593,848 W 32.87 P 75.66 P 170.53 P 0 W 349.15 P 403.90 h

TD = 7.95 F TD = 5.62 F 200.45 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 1,374,352 W 384.70 P TD = 5.66 F169.61 h 1196.06 H 368.68 F 369.24 F

3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 341.50 h 342.41 h 4,905,635 W 4,905,635 W92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 308.21 F 303.85 F 365.23 F 384.70 P 1007.20 P 367.97 F 431.50 F 425.84 F61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.0 F 274.28 h 338.17 h 366.36 F 367.97 F 341.96 h DC = 6.86 F 403.90 h

339.35 h 341.96 h784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 0 W

100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 341.50 h 670,702 W 374.83 F0 W 245,044 W 0 W 0 W 0 W 415,527 W 348.05 h 337,357 W

168,613 W 176,866 W 193,553 W 288,124 W 1,374,352 W 0 W 333,345 W5.80 P 13.09 P 32.87 P 75.66 P 170.53 P 368.68 F 349.15 P

TD = 7.95 F TD = 5.62 F TD = 4.14 F TD = 4.36 F TD = 3.44 F 6,184 W 341.50 h TD = 5.66 F1196.06 H 384.70 P

3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 3,531,283 W 369.24 F 4,905,635 W 4,905,635 W92.24 F 168.60 F 160.65 F 206.21 F 200.59 F 200.45 F 255.61 F 251.47 F 255.61 F 303.85 F 365.23 F 342.41 h 367.97 F 431.50 F 425.84 F61.54 h DC = 8.22 F 129.66 h DC = 13.38 F 169.61 h 169.61 h DC = 8.98 F 220.87 h DC = 9.00 F 274.28 h 338.17 h 341.96 h DC = 6.86 F 403.90 h

0 W784,076 W 539,032 W 174.03 F 370,419 W 209.43 F 193,553 W 260.48 F 0 W 294,308 W 368.68 F 341.50 h

100.46 F 68.46 h 142.01 h 177.57 h 229.24 h 415,527 W 670,702 W 374.83 F0 W 0 W 0 W 0 W 348.05 h

1,374,352 W 384.70 P 0 W368.68 F 369.24 F341.50 h 342.41 h

S

HDP

TO COND.

TO COND.

TO COND.TO COND.

TO COND.TO COND.

TO COND.

TANK2B

TANK2C

TANK2A

SG BLOWDOWN

BYPASS BYPASSBYPASS

Y

TV CV TV

S

FPT

TVRSV

CONDENSER

T

FP

LP TURBINE

REGULATOR

CP

HTR.21A HTR.22A HTR.23A HTR.24A

MOIST.SEP.

HP TURBINE

HTR.26A

M

N

W

M H

H

X

X A

STEAMGENERATOR

W

A N T

HTR.21B HTR.22B HTR.23B HTR.24B

GSC

HTR.21C HTR.22C HTR.23C HTR.24C

COND. DEMIN.

HTR.25A

HTR.25B

HTR.25C

FP

HTR.26B

HTR.26C

Y

FROM FP

TO MSCDT

SG BLOWDOWN

1STG.RHTR.

2STG.RHTR.

LP EXHAUST

HDP

N

M

TO COND.

TO COND.

TO COND. TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

TO COND.

FPT EXHAUST

HDP

Table 3 Comparison of LP 10,465,299 10,432,599

165.62 163.951264.13 1264.32585,183 580,659

82.09 79.581207.77 1203.57

0.4956661 0.48538341856.36 60.76

5.899E+08 6.338E+089,880,115 9,851,940

533,424 530,59936.43 35.58

1149.85 1144.569,346,692 9,321,342

0.4437778 0.44707383257.916602 59.00663225.722E+08 5.813E+08

377,694 399,64813.57 13.19

1087.62 1083.0598,971 106,190176.13 174.72

1097.38 1093.520.3724004 0.370675533

62.23 61.515.816E+08 5.734E+088,870,026 8,815,503

LP Turbine

LP Bowl Flow, lb/hrLP Bowl Pressure, psiaLP Bowl Enthalpy, btu/lbExt. 3 Flow, lb/hrExt. 3 Pressure, psiaExt. 3 Enthalpy, btu/lbExt. 3 Press/LP Bowl Press.Work Done Per lb of SteamWork Done, btu/hrFFS3, lb/hrExt. 4 Flow, lb/hrExt. 4 Pressure, psiaExt. 4 Enthalpy, btu/lbFFS4, lb/hrExt. 4 Press/Ext. 3 Press.Work Done Per lb of SteamWork Done, btu/hrExt. 5 Steam Flow, lb/hrExt. 5 Pressure, psiaExt. 5 Enthalpy BMSR, btu/lbExt. 5 Moisture Removed, lb/hrExt. 5 Moisture Enthalpy, btu/lbExt. 5 Enthalpy AMSR, btu/lbExt. 5 Press/Ext. 4 Press.Work Done Per lb of SteamWork Done, btu/hrFFS5, lb/hr

Original Replacement LP Rotor

Table 3 Comparison of LP (contd.)

630,400 595,2656.47 5.92

1056.84 1049.91130,943 139,867141.35 137.46

1070.56 1064.620.4770318 0.449108965

40.54 43.613.596E+08 3.844E+088,108,683 8,080,371

60,815 60,6033.07 2.73

1032.17 1023.99142,559 151,954110.33 105.70

1048.67 1041.590.4744251 0.460255436

38.38 40.633.112E+08 3.283E+087,905,309 7,867,8140.736725 0.736725

977.83 977.41999.10 995.17

0.2399465 0.27026205349.57 46.42

3.918E+08 3.653E+082.806E+09 2.867E+09

822,475 840,0920.0044483 0.004493594

78.67% 78.95%72.83% 74.06%

LP Turbine

Ext. 6 Steam Flow, lb/hrExt. 6 Pressure, psiaExt. 6 Enthalpy BMSR, btu/lbExt. 6 Moisture Removed, lb/hrExt. 6 Moisture Enthalpy, btu/lbExt. 6 Enthalpy AMSR, btu/lbExt. 6 Press/Ext. 5 Press.Work Done Per lb of Steam

MRZ Moisture Removed, lb/hrMRZ Moisture Enthalpy, btu/lbMRZ Enthalpy AMSR, btu/lb

Work Done, btu/hrFFS6, lb/hrMRZ Blowdown Steam Flow, lb/hrMRZ Pressure, psia

LPT Efficiency (ELEP), %LPT Efficiency (TEP), %

Original

Work Done Per lb of SteamWork Done, btu/hrTotal Work Done in LP Turbine, btu/hTotal Work Done in LP Turbine, Kw

LP Exh. Pressure, psiaLPT ELEP, btu/lbLPT TEP, btu/lb

Replacement LP Rotor

LP Exhaust/LP Bowl Pressure

LP Exh. Press/Ext. 6 Press.

MRZ Press/Ext. 6 Press.Work Done Per lb of SteamWork Done, btu/hrFFSMRZ, lb/hr

MRZ Enthalpy BMSR, btu/lb

Fig. 7 – Exhaust Loss Curves

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

0 100 200 300 400 500 600 700 800 900 1000

Exhaust Volumetric Flow, million cft/hr

Dry

Exha

ust L

oss,

btu

/lbOriginal Replacement LP Rotor

Fig. 8 – LP Expansion Lines

950

1000

1100

1200

1.5

1.5

1.6

1.6

1.7

1.7

1.8

1.8 1.9 2.0

600 500 400 300 250 200 150 120 100 80 60 50 40 30 20 16 12 10 8.0 6.0 5.0 4.0

5.00"

5.00"

4.00"

4.00"

3.50"

3.50"

3.00"

3.00"

2.50"

2.50"

2.00"

2.00"

1.50"

1.50"

1.00"

1.00"

0.75

0.75"0.50"

520

500

480

460

440

420

400

380

360

340

320

300

280

260 240

220

200

180

160

12

34

56

78

910

1112

1314

1516

1718

9

Replacement LP Rotor Expansion Line

Original LP Rotor Expansion Line

Comparison of Results • HP Shaft Output About 2 Mw

Higher • Exhaust Losses About 3.5

Btu/Lb Lower • LP Shaft Output About 17.6

Mw Higher • Internal Moisture Removal

Zones Effectiveness Assumed Unchanged

Recommended Approach - Design

• From Thermal Kit Develop Licensed Power HB

• Revise to Include Design, Startup, Test, Plant Data

• Address Cycle Isolation • Obtain/Develop New Thermal

Kit Data for Replacement LP • Develop New

Baseline/Correction Factors

Recommended Approach - Test

• Conduct Test Close to Licensed Thermal Power

• Steady-State Conditions • Correct for Deviations in

Thermal Power, Throttle Pressure, LP Exhaust Pressure, Generator PF, etc.

• Isolate and/or Account for Leakages

CONCLUSIONS/RECOMMENDATIONS

• Objectives May Be Met By: –Proper Planning, Preparedness

& Execution –Essential to Develop Accurate

Baseline Models –Models Are Invaluable in

Examining Options, What-if Analysis, etc.