91
解析半群を用いた半線形放物型 方程式の解に対する精度保証付 き数値計算法とその応用 高安 亮紀 早稲田大学 基幹理工学部 応用数理学科 3 回 数理人セミナー@早稲田大学西早稲田キャンパス 2015 1 15 1/55

Akitoshi Takayasu

  • Upload
    suurist

  • View
    593

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Akitoshi Takayasu

解析半群を用いた半線形放物型方程式の解に対する精度保証付き数値計算法とその応用

高安 亮紀

早稲田大学 基幹理工学部 応用数理学科

第 3回 数理人セミナー@早稲田大学西早稲田キャンパス2015年 1月 15日

1/55

Page 2: Akitoshi Takayasu

自己紹介

高安亮紀早稲田大学 応用数理学科助教(大石研究室)

分野:(偏微分方程式の)数値解析,精度保証付き数値計算

2/55

Page 3: Akitoshi Takayasu

計算機を用いた非線形PDEへの解析アプローチ

3/55

Page 4: Akitoshi Takayasu

共同研究者

水口 信(早稲田大学 基幹理工学研究科 数学応用数理専攻)

久保 隆徹(筑波大学 数理物質系)

大石 進一(早稲田大学 基幹理工学部 応用数理学科)

4/55

Page 5: Akitoshi Takayasu

半線形放物型方程式

Let Ω be a bounded polygonal domain in R2.

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(t0, x) = u0(x) in Ω,

J := (t0, t1], 0 ≤ t0 < t1 <∞ or J := (0,∞),

f : twice differentiable nonlinear mapping,

u = 0 on ∂Ω is the trace sense,

u0 ∈ H10 (Ω).

Lp(Ω): the set of Lp-functions,

H1(Ω): the first order Sobolev space of L2(Ω),

H10 (Ω) := v ∈ H1(Ω) : v = 0 on ∂Ω.

5/55

Page 6: Akitoshi Takayasu

記号

A : D(A) ⊂ H10 (Ω) → L2(Ω) is defined by

A := −∑

1≤i,j≤2

∂xj

(aij(x)

∂xi

),

where aij(x) = aji(x) is in W1,∞(Ω) and satisfies∑

1≤i,j≤2

aij(x)ξiξj ≥ µ|ξ|2, ∀x ∈ Ω, ∀ξ ∈ R2 with µ > 0.

6/55

Page 7: Akitoshi Takayasu

記号

We endow L2(Ω) with the inner product:

(u, v)L2 :=

∫Ω

u(x)v(x)dx.

Use the usual norms:

∥u∥L2 :=√

(u, u)L2 , ∥u∥H10:= ∥∇u∥L2 ,

and∥u∥H−1 := sup

0=v∈H10 (Ω)

∥v∥H10=1

|⟨u, v⟩| ,

where ⟨·, ·⟩ is a dual product between H10 (Ω) and H

−1(Ω)1.

1The topological dual space of H10 (Ω).

7/55

Page 8: Akitoshi Takayasu

精度保証付き数値計算

(PJ)の弱解: For t ∈ J , u(t) := u(t, ·) ∈ H10 (Ω) with the

initial function u0 such that

(∂tu(t), v)L2 + a(u(t), v) = (f(u(t)), v)L2 , ∀v ∈ H10 (Ω),

where a : H10 (Ω)×H1

0 (Ω) → R is a bilinear form:

a(u, v) :=∑

1≤i,j≤2

(aij(x)

∂u

∂xi,∂v

∂xj

)L2

satisfyinga(u, u) ≥ µ∥u∥2H1

0, ∀u ∈ H1

0 (Ω),

|a(u, v)| ≤M∥u∥H10∥v∥H1

0, ∀u, v ∈ H1

0 (Ω).

8/55

Page 9: Akitoshi Takayasu

精度保証付き数値計算

(PJ)の弱解: For t ∈ J , u(t) := u(t, ·) ∈ H10 (Ω) with the

initial function u0 such that

(∂tu(t), v)L2 + a(u(t), v) = (f(u(t)), v)L2 , ∀v ∈ H10 (Ω),

where a : H10 (Ω)×H1

0 (Ω) → R is a bilinear form:

a(u, v) :=∑

1≤i,j≤2

(aij(x)

∂u

∂xi,∂v

∂xj

)L2

satisfyinga(u, u) ≥ µ∥u∥2H1

0, ∀u ∈ H1

0 (Ω),

|a(u, v)| ≤M∥u∥H10∥v∥H1

0, ∀u, v ∈ H1

0 (Ω).

8/55

Page 10: Akitoshi Takayasu

精度保証付き数値計算

(PJ)の弱解: For t ∈ J , u(t) := u(t, ·) ∈ H10 (Ω) with the

initial function u0 such that

(∂tu(t), v)L2 + a(u(t), v) = (f(u(t)), v)L2 , ∀v ∈ H10 (Ω),

where a : H10 (Ω)×H1

0 (Ω) → R is a bilinear form:

a(u, v) :=∑

1≤i,j≤2

(aij(x)

∂u

∂xi,∂v

∂xj

)L2

satisfyinga(u, u) ≥ µ∥u∥2H1

0, ∀u ∈ H1

0 (Ω),

|a(u, v)| ≤M∥u∥H10∥v∥H1

0, ∀u, v ∈ H1

0 (Ω).

8/55

Page 11: Akitoshi Takayasu

精度保証付き数値計算

問題 (PJ)の弱解の存在と一意性を計算機を援用し証明する.すなわちXを J × Ω上のある Banach空間とし,弱解を数値解 ωを中心とする閉球:

BJ(ω, ρ) := v ∈ X : ∥v − ω∥X ≤ ρ.

内に数学的に厳密に包み込む.

9/55

Page 12: Akitoshi Takayasu

精度保証付き数値計算に関する先行研究M.T. Nakao, T. Kinoshita and T. Kimura,

“On a posteriori estimates of inverse operators for linearparabolic initial-boundary value problems”, Computing94(2-4), 151–162, 2012.

M.T. Nakao, T. Kimura and T. Kinoshita,

“Constructive A Priori Error Estimates for a Full DiscreteApproximation of the Heat Equation”, Siam J. Numer. Anal.,51(3), 1525–1541, 2013.

T. Kinoshita, T. Kimura and M.T. Nakao,

“On the a posteriori estimates for inverse operators of linearparabolic equations with applications to the numericalenclosure of solutions for nonlinear problems”, Numer. Math,Online First, 2013.

10/55

Page 13: Akitoshi Takayasu

力学系の観点からみた研究

P. Zgliczynski and K. Mischaikow,

“Rigorous Numerics for Partial Differential Equations: TheKuramoto―Sivashinsky Equation”, Foundations ofComputational Mathematics, 1(3), 1615–3375, 2001.

P. Zgliczynski,

“Rigorous numerics for dissipative PDEs III. An effectivealgorithm for rigorous integration of dissipative PDEs”, Topol.Methods Nonlinear Anal., 36, 197–262, 2010.

11/55

Page 14: Akitoshi Takayasu

離散半群を用いた数値スキームの研究

H. Fujita,

“On the semi-discrete finite element approximation for theevolution equation ut + A(t)u = 0 of parabolic type”, Topicsin numerical analysis III, Academic Press, 143–157, 1977.

H. Fujita and A. Mizutani,

“On the finite element method for parabolic equations, I;approximation of holomorphic semi-groups”, J. Math. Soc.Japan, 28, 749–771, 1976.

H. Fujita, N. Saito and T. Suzuki,

“Operator theory and numerical methods”, Elsevier(Holland),308pages, 2001.

12/55

Page 15: Akitoshi Takayasu

Concatenation scheme

13/55

Page 16: Akitoshi Takayasu

Considered problem

J := (t0, t1] : arbitrary time interval. τ := t1 − t0.

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(t0, x) = u0(x) in Ω,

where u0 is an initial function in H10 (Ω).

Vh ⊂ H10 (Ω) : a finite dimensional subspace.

Starts from: u0, u1 ∈ Vh

ω(t) = u0ϕ0(t) + u1ϕ1(t), t ∈ J,

where ϕk(t) is a piecewise linear Lagrange basis: ϕk(tj) = δkj(δkj is a Kronecker’s delta).

14/55

Page 17: Akitoshi Takayasu

Considered problem

J := (t0, t1] : arbitrary time interval. τ := t1 − t0.

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(t0, x) = u0(x) in Ω,

where u0 is an initial function in H10 (Ω).

Vh ⊂ H10 (Ω) : a finite dimensional subspace.

Starts from: u0, u1 ∈ Vh

ω(t) = u0ϕ0(t) + u1ϕ1(t), t ∈ J,

where ϕk(t) is a piecewise linear Lagrange basis: ϕk(tj) = δkj(δkj is a Kronecker’s delta).

14/55

Page 18: Akitoshi Takayasu

Considered problem

Let the initial function satisfy

∥u0 − u0∥H10≤ ε0.

We rigorously enclose the solution in a Banach space2,

L∞ (J ;H1

0 (Ω)):=

u(t) ∈ H1

0 (Ω) : ess supt∈J

∥u(t)∥H10<∞

.

Namely, we compute a radius ρ > 0 of the ball:

BJ(ω, ρ) :=y ∈ L∞ (

J ;H10 (Ω)

): ∥y − ω∥L∞(J ;H1

0 (Ω)) ≤ ρ.

2∥u∥L∞(J;H10 (Ω)) := ess supt∈J ∥u(t)∥H1

0

15/55

Page 19: Akitoshi Takayasu

Considered problem

Let the initial function satisfy

∥u0 − u0∥H10≤ ε0.

We rigorously enclose the solution in a Banach space2,

L∞ (J ;H1

0 (Ω)):=

u(t) ∈ H1

0 (Ω) : ess supt∈J

∥u(t)∥H10<∞

.

Namely, we compute a radius ρ > 0 of the ball:

BJ(ω, ρ) :=y ∈ L∞ (

J ;H10 (Ω)

): ∥y − ω∥L∞(J ;H1

0 (Ω)) ≤ ρ.

2∥u∥L∞(J;H10 (Ω)) := ess supt∈J ∥u(t)∥H1

0

15/55

Page 20: Akitoshi Takayasu

Considered problem

Let the initial function satisfy

∥u0 − u0∥H10≤ ε0.

We rigorously enclose the solution in a Banach space2,

L∞ (J ;H1

0 (Ω)):=

u(t) ∈ H1

0 (Ω) : ess supt∈J

∥u(t)∥H10<∞

.

Namely, we compute a radius ρ > 0 of the ball:

BJ(ω, ρ) :=y ∈ L∞ (

J ;H10 (Ω)

): ∥y − ω∥L∞(J ;H1

0 (Ω)) ≤ ρ.

2∥u∥L∞(J;H10 (Ω)) := ess supt∈J ∥u(t)∥H1

0

15/55

Page 21: Akitoshi Takayasu

Analytic semigroup

The weak form of A, which is denoted by −A3, generates theanalytic semigroup e−tAt≥0 over H−1(Ω). The followingabstract problem has an unique solution:

∂tu+Au = 0, u(0, x) = u0 =⇒ ∃u = e−tAu0.

Fact Let x ∈ D(A) and λ0 be a positive number. A satisfies

⟨−Ax, x⟩ ≤ 0, R(λ0I +A) = H−1(Ω).

Then, there exists an analytic semigroup e−tAt≥0 generated by −A. Proofs are found in several textbooks.

3A : H10 (Ω) → H−1(Ω) s.t. ⟨Au, v⟩ := a(u, v), ∀v ∈ H1

0 (Ω).16/55

Page 22: Akitoshi Takayasu

Theorem

Assume that the initial function u0 satisfies ∥u0 − u0∥H10≤ ε0;

Assume that ω satisfies the following estimate:∥∥∥∥∫ t

t0

e−(t−s)A(∂tω(s) +Aω(s)− f(ω(s)))ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ δ.

Assume that, for ∀ρ0 ∈ (0, ρ] with a certain ρ > 0, f satisfies

∥f(φ)− f(ψ)∥L∞(J ;L2(Ω)) ≤ Lρ0∥φ− ψ∥L∞(J ;H10 (Ω)),

where ∀φ, ψ ∈ BJ(ω, ρ0) ⊂ L∞ (J ;H10 (Ω)). If

M

µε0 +

2

µ

√Mτ

eLρρ+ δ < ρ,

then the weak solution u(t), t ∈ J of (PJ) uniquely exists inthe ball BJ(ω, ρ).

17/55

Page 23: Akitoshi Takayasu

Theorem

Assume that the initial function u0 satisfies ∥u0 − u0∥H10≤ ε0;

Assume that ω satisfies the following estimate:∥∥∥∥∫ t

t0

e−(t−s)A(∂tω(s) +Aω(s)− f(ω(s)))ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ δ.

Assume that, for ∀ρ0 ∈ (0, ρ] with a certain ρ > 0, f satisfies

∥f(φ)− f(ψ)∥L∞(J ;L2(Ω)) ≤ Lρ0∥φ− ψ∥L∞(J ;H10 (Ω)),

where ∀φ, ψ ∈ BJ(ω, ρ0) ⊂ L∞ (J ;H10 (Ω)). If

M

µε0 +

2

µ

√Mτ

eLρρ+ δ < ρ,

then the weak solution u(t), t ∈ J of (PJ) uniquely exists inthe ball BJ(ω, ρ).

17/55

Page 24: Akitoshi Takayasu

Theorem

Assume that the initial function u0 satisfies ∥u0 − u0∥H10≤ ε0;

Assume that ω satisfies the following estimate:∥∥∥∥∫ t

t0

e−(t−s)A(∂tω(s) +Aω(s)− f(ω(s)))ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ δ.

Assume that, for ∀ρ0 ∈ (0, ρ] with a certain ρ > 0, f satisfies

∥f(φ)− f(ψ)∥L∞(J ;L2(Ω)) ≤ Lρ0∥φ− ψ∥L∞(J ;H10 (Ω)),

where ∀φ, ψ ∈ BJ(ω, ρ0) ⊂ L∞ (J ;H10 (Ω)). If

M

µε0 +

2

µ

√Mτ

eLρρ+ δ < ρ,

then the weak solution u(t), t ∈ J of (PJ) uniquely exists inthe ball BJ(ω, ρ).

17/55

Page 25: Akitoshi Takayasu

Theorem

Assume that the initial function u0 satisfies ∥u0 − u0∥H10≤ ε0;

Assume that ω satisfies the following estimate:∥∥∥∥∫ t

t0

e−(t−s)A(∂tω(s) +Aω(s)− f(ω(s)))ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ δ.

Assume that, for ∀ρ0 ∈ (0, ρ] with a certain ρ > 0, f satisfies

∥f(φ)− f(ψ)∥L∞(J ;L2(Ω)) ≤ Lρ0∥φ− ψ∥L∞(J ;H10 (Ω)),

where ∀φ, ψ ∈ BJ(ω, ρ0) ⊂ L∞ (J ;H10 (Ω)). If

M

µε0 +

2

µ

√Mτ

eLρρ+ δ < ρ,

then the weak solution u(t), t ∈ J of (PJ) uniquely exists inthe ball BJ(ω, ρ).

17/55

Page 26: Akitoshi Takayasu

Theorem

Assume that the initial function u0 satisfies ∥u0 − u0∥H10≤ ε0;

Assume that ω satisfies the following estimate:∥∥∥∥∫ t

t0

e−(t−s)A(∂tω(s) +Aω(s)− f(ω(s)))ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ δ.

Assume that, for ∀ρ0 ∈ (0, ρ] with a certain ρ > 0, f satisfies

∥f(φ)− f(ψ)∥L∞(J ;L2(Ω)) ≤ Lρ0∥φ− ψ∥L∞(J ;H10 (Ω)),

where ∀φ, ψ ∈ BJ(ω, ρ0) ⊂ L∞ (J ;H10 (Ω)). If

M

µε0 +

2

µ

√Mτ

eLρρ+ δ < ρ,

then the weak solution u(t), t ∈ J of (PJ) uniquely exists inthe ball BJ(ω, ρ).

17/55

Page 27: Akitoshi Takayasu

Sketch of proofLet z(t) ∈ H1

0 (Ω) for t ∈ J . We put u(t) = ω(t) + z(t).For any v ∈ H1

0 (Ω),

(∂tz(t), v)L2 + a(z(t), v)

= (f(u(t)), v)L2 − ((∂tω(t), v)L2 + ⟨Aω(t), v⟩)=: ⟨g(z(t)), v⟩ ,

where g(z(t)) = f(u(t))− (∂tω(t) +Aω(t)). Note that bythe definition of the natural embedding L2(Ω) → H−1(Ω),(ψ, v)L2 = ⟨ψ, v⟩ holds for ψ ∈ L2(Ω).

Define S : L∞ (J ;H10 (Ω)) → L∞ (J ;H1

0 (Ω)) using theanalytic semigroup e−tA as

S(z) := e−(t−t0)A(u0 − u0) +

∫ t

t0

e−(t−s)Ag(z(s))ds.

18/55

Page 28: Akitoshi Takayasu

Sketch of proofLet z(t) ∈ H1

0 (Ω) for t ∈ J . We put u(t) = ω(t) + z(t).For any v ∈ H1

0 (Ω),

(∂tz(t), v)L2 + a(z(t), v)

= (f(u(t)), v)L2 − ((∂tω(t), v)L2 + ⟨Aω(t), v⟩)=: ⟨g(z(t)), v⟩ ,

where g(z(t)) = f(u(t))− (∂tω(t) +Aω(t)). Note that bythe definition of the natural embedding L2(Ω) → H−1(Ω),(ψ, v)L2 = ⟨ψ, v⟩ holds for ψ ∈ L2(Ω).

Define S : L∞ (J ;H10 (Ω)) → L∞ (J ;H1

0 (Ω)) using theanalytic semigroup e−tA as

S(z) := e−(t−t0)A(u0 − u0) +

∫ t

t0

e−(t−s)Ag(z(s))ds.

18/55

Page 29: Akitoshi Takayasu

Sketch of proof

For ρ > 0, Z := z : ∥z∥L∞(J ;H10 (Ω)) ≤ ρ ⊂ L∞ (J ;H1

0 (Ω)).

On the basis of Banach’s fixed-point theorem, we show asufficient condition of S having a fixed-point in Z.

S(Z) ⊂ Z Since the analytic semigroup e−tA is bounded,

the first term of S(z) is estimated4 by∥∥e−(t−t0)A(ζ − u0)∥∥H1

0≤ µ−1

∥∥A e−(t−t0)A(ζ − u0)∥∥H−1

≤ M

µe−(t−t0)λminε0.

Then ∥∥e−(t−t0)A(ζ − u0)∥∥L∞(J ;H1

0 (Ω))≤ M

µε0.

4µ∥u∥H10≤ ∥Au∥H−1 ≤ M∥u∥H1

0is used.

19/55

Page 30: Akitoshi Takayasu

Sketch of proof

For ρ > 0, Z := z : ∥z∥L∞(J ;H10 (Ω)) ≤ ρ ⊂ L∞ (J ;H1

0 (Ω)).

On the basis of Banach’s fixed-point theorem, we show asufficient condition of S having a fixed-point in Z.

S(Z) ⊂ Z Since the analytic semigroup e−tA is bounded,

the first term of S(z) is estimated4 by∥∥e−(t−t0)A(ζ − u0)∥∥H1

0≤ µ−1

∥∥A e−(t−t0)A(ζ − u0)∥∥H−1

≤ M

µe−(t−t0)λminε0.

Then ∥∥e−(t−t0)A(ζ − u0)∥∥L∞(J ;H1

0 (Ω))≤ M

µε0.

4µ∥u∥H10≤ ∥Au∥H−1 ≤ M∥u∥H1

0is used.

19/55

Page 31: Akitoshi Takayasu

Sketch of proof

For ρ > 0, Z := z : ∥z∥L∞(J ;H10 (Ω)) ≤ ρ ⊂ L∞ (J ;H1

0 (Ω)).

On the basis of Banach’s fixed-point theorem, we show asufficient condition of S having a fixed-point in Z.

S(Z) ⊂ Z Since the analytic semigroup e−tA is bounded,

the first term of S(z) is estimated4 by∥∥e−(t−t0)A(ζ − u0)∥∥H1

0≤ µ−1

∥∥A e−(t−t0)A(ζ − u0)∥∥H−1

≤ M

µe−(t−t0)λminε0.

Then ∥∥e−(t−t0)A(ζ − u0)∥∥L∞(J ;H1

0 (Ω))≤ M

µε0.

4µ∥u∥H10≤ ∥Au∥H−1 ≤ M∥u∥H1

0is used.

19/55

Page 32: Akitoshi Takayasu

Sketch of proof

Decompose g(z(s)) ∈ H−1(Ω) into two parts:

g(z(s)) = f(ω(s) + z(s))− (∂tω(s) +Aω(s))= g1(s) + g2(s),

g1(s) := f(ω(s) + z(s))− f(ω(s)),

g2(s) := f(ω(s))− (∂tω(s) +Aω(s)) .

Put

ν(t) :=

∫ t

t0

(t− s)−12 e−

12(t−s)λminds,

supt∈J

ν(t) ≤ supt∈J

∫ t

t0

(t− s)−12ds = 2

√τ .

Furthermore, ready an inequality

µ12∥u∥L2 ≤ ∥A

12u∥H−1 ≤M

12∥u∥L2 .

20/55

Page 33: Akitoshi Takayasu

Sketch of proof

Decompose g(z(s)) ∈ H−1(Ω) into two parts:

g(z(s)) = f(ω(s) + z(s))− (∂tω(s) +Aω(s))= g1(s) + g2(s),

g1(s) := f(ω(s) + z(s))− f(ω(s)),

g2(s) := f(ω(s))− (∂tω(s) +Aω(s)) .

Put

ν(t) :=

∫ t

t0

(t− s)−12 e−

12(t−s)λminds,

supt∈J

ν(t) ≤ supt∈J

∫ t

t0

(t− s)−12ds = 2

√τ .

Furthermore, ready an inequality

µ12∥u∥L2 ≤ ∥A

12u∥H−1 ≤M

12∥u∥L2 .

20/55

Page 34: Akitoshi Takayasu

Sketch of proof

Decompose g(z(s)) ∈ H−1(Ω) into two parts:

g(z(s)) = f(ω(s) + z(s))− (∂tω(s) +Aω(s))= g1(s) + g2(s),

g1(s) := f(ω(s) + z(s))− f(ω(s)),

g2(s) := f(ω(s))− (∂tω(s) +Aω(s)) .

Put

ν(t) :=

∫ t

t0

(t− s)−12 e−

12(t−s)λminds,

supt∈J

ν(t) ≤ supt∈J

∫ t

t0

(t− s)−12ds = 2

√τ .

Furthermore, ready an inequality

µ12∥u∥L2 ≤ ∥A

12u∥H−1 ≤M

12∥u∥L2 .

20/55

Page 35: Akitoshi Takayasu

Sketch of proof

The term of g1(s):∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥H1

0

=

∥∥∥∥∫ t

t0

e−(t−s)A(f(ω(s) + z(s))− f(ω(s)))ds

∥∥∥∥H1

0

≤ µ−1

∫ t

t0

∥∥∥A e−(t−s)A(f(ω(s) + z(s))− f(ω(s)))∥∥∥H−1

ds

= µ−1

∫ t

t0

∥∥∥A 12 e−(t−s)AA 1

2 (f(ω(s) + z(s))− f(ω(s)))∥∥∥H−1

ds

≤ µ−1e−12

∫ t

t0

(t− s)−12 e−

12 (t−s)λmin

∥∥∥A 12 (f(ω(s) + z(s))− f(ω(s)))

∥∥∥H−1

≤ µ−1M12 e−

12

∫ t

t0

(t− s)−12 e−

12 (t−s)λmin ∥f(ω(s) + z(s))− f(ω(s))∥L2 ds

≤ µ−1M12 e−

12 ν(t) ∥f(ω + z)− f(ω)∥L∞(J;L2(Ω)).

21/55

Page 36: Akitoshi Takayasu

Sketch of proof

Then ∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ 2

µ

√Mτ

eLρρ.

The term of g2(s) is nothing but the residual of theapproximate solution, which is estimated by δ.

Then it follows

∥S(z)∥L∞(J ;H10 (Ω)) ≤

M

µε0 +

2

µ

√Mτ

eL(ρ)ρ+ δ.

∥S(z)∥L∞(J ;H10 (Ω)) < ρ holds from the condition of the

theorem. It implies that S(z) ∈ Z.

22/55

Page 37: Akitoshi Takayasu

Sketch of proof

Then ∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ 2

µ

√Mτ

eLρρ.

The term of g2(s) is nothing but the residual of theapproximate solution, which is estimated by δ.

Then it follows

∥S(z)∥L∞(J ;H10 (Ω)) ≤

M

µε0 +

2

µ

√Mτ

eL(ρ)ρ+ δ.

∥S(z)∥L∞(J ;H10 (Ω)) < ρ holds from the condition of the

theorem. It implies that S(z) ∈ Z.

22/55

Page 38: Akitoshi Takayasu

Sketch of proof

Then ∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ 2

µ

√Mτ

eLρρ.

The term of g2(s) is nothing but the residual of theapproximate solution, which is estimated by δ.

Then it follows

∥S(z)∥L∞(J ;H10 (Ω)) ≤

M

µε0 +

2

µ

√Mτ

eL(ρ)ρ+ δ.

∥S(z)∥L∞(J ;H10 (Ω)) < ρ holds from the condition of the

theorem. It implies that S(z) ∈ Z.

22/55

Page 39: Akitoshi Takayasu

Sketch of proof

Then ∥∥∥∥∫ t

t0

e−(t−s)Ag1(s)ds

∥∥∥∥L∞(J ;H1

0 (Ω))≤ 2

µ

√Mτ

eLρρ.

The term of g2(s) is nothing but the residual of theapproximate solution, which is estimated by δ.

Then it follows

∥S(z)∥L∞(J ;H10 (Ω)) ≤

M

µε0 +

2

µ

√Mτ

eL(ρ)ρ+ δ.

∥S(z)∥L∞(J ;H10 (Ω)) < ρ holds from the condition of the

theorem. It implies that S(z) ∈ Z.

22/55

Page 40: Akitoshi Takayasu

Sketch of proof

For any z1, z2 in Z,

S(z1)− S(z2) =

∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

holds. We have∥∥∥∥∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

∥∥∥∥H1

0

≤ µ−1M12 e−

12ν(t)∥f(z1 + ω)− f(z2 + ω)∥L∞(J ;L2(Ω)).

Here, zi + ω ∈ B(ω, ρ) (i = 1, 2) holds. Then

∥S(z1)− S(z2)∥L∞(J ;H10 (Ω)) ≤

2

µ

√Mτ

eLρ∥z1 − z2∥L∞(J ;H1

0 (Ω)).

23/55

Page 41: Akitoshi Takayasu

Sketch of proof

For any z1, z2 in Z,

S(z1)− S(z2) =

∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

holds. We have∥∥∥∥∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

∥∥∥∥H1

0

≤ µ−1M12 e−

12ν(t)∥f(z1 + ω)− f(z2 + ω)∥L∞(J ;L2(Ω)).

Here, zi + ω ∈ B(ω, ρ) (i = 1, 2) holds. Then

∥S(z1)− S(z2)∥L∞(J ;H10 (Ω)) ≤

2

µ

√Mτ

eLρ∥z1 − z2∥L∞(J ;H1

0 (Ω)).

23/55

Page 42: Akitoshi Takayasu

Sketch of proof

For any z1, z2 in Z,

S(z1)− S(z2) =

∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

holds. We have∥∥∥∥∫ t

t0

e−(t−s)A(f(z1 + ω)− f(z2 + ω))ds

∥∥∥∥H1

0

≤ µ−1M12 e−

12ν(t)∥f(z1 + ω)− f(z2 + ω)∥L∞(J ;L2(Ω)).

Here, zi + ω ∈ B(ω, ρ) (i = 1, 2) holds. Then

∥S(z1)− S(z2)∥L∞(J ;H10 (Ω)) ≤

2

µ

√Mτ

eLρ∥z1 − z2∥L∞(J ;H1

0 (Ω)).

23/55

Page 43: Akitoshi Takayasu

Sketch of proof

The condition of theorem also implies

2

µ

√Mτ

eL (ρ) < 1.

Therefore, S is a contraction mapping. Banach’s fixed pointtheorem yields that there uniquely exists a fixed-point in Z.

24/55

Page 44: Akitoshi Takayasu

Theorem (A posteriori error estimate)

Assume that existence and local uniqueness of the weaksolution u(t), t ∈ J , is proved in BJ(ω, ρ). Assume also thatω satisfies∥∥∥∥∫ t1

t0

e−(t1−s)A (∂tω(s) +Aω(s)− f(ω(s))) ds

∥∥∥∥H1

0

≤ δ.

Then, the following a posteriori error estimate holds:

∥u(t1)− u1∥H10≤ M

µe−τλminε0 +

2

µ

√Mτ

eLρρ+ δ =: ε1.

25/55

Page 45: Akitoshi Takayasu

On several intervals

For n ∈ N, 0 = t0 < t1 < · · · < tn <∞.

Jk := (tk−1, tk], τk := tk − tk−1, and J =∪Jk. (k=1,2,...,n)

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(0, x) = u0(x) in Ω,

where u0 ∈ H10 (Ω) is a given initial function satisfies

∥u0 − u0∥H10≤ ε0.

26/55

Page 46: Akitoshi Takayasu

Approximate solution (Backward Euler)

Find uhkk≥0 ⊂ Vh such that(uhk − uhk−1

τ, vh

)L2

+ a(uhk, vh)L2 = (f(uhk), vh)L2

and(uh0 , vh

)L2 = (u0, vh)L2 for ∀vh ∈ Vh. Numerically

compute each approximation uk (≈ uhk) ∈ Vh.

From the data uk(≈ uhk) ∈ Vh, we construct ω(t):

ω(t) :=n∑

k=0

ukϕk(t), t ∈ T,

where ϕk(t) is a piecewise linear Lagrange basis: ϕk(tj) = δkj(δkj is a Kronecker’s delta).

27/55

Page 47: Akitoshi Takayasu

Approximate solution (Backward Euler)

Find uhkk≥0 ⊂ Vh such that(uhk − uhk−1

τ, vh

)L2

+ a(uhk, vh)L2 = (f(uhk), vh)L2

and(uh0 , vh

)L2 = (u0, vh)L2 for ∀vh ∈ Vh. Numerically

compute each approximation uk (≈ uhk) ∈ Vh.

From the data uk(≈ uhk) ∈ Vh, we construct ω(t):

ω(t) :=n∑

k=0

ukϕk(t), t ∈ T,

where ϕk(t) is a piecewise linear Lagrange basis: ϕk(tj) = δkj(δkj is a Kronecker’s delta).

27/55

Page 48: Akitoshi Takayasu

Verification scheme

0 t

u0

t1 t2 tk...

...

28/55

Page 49: Akitoshi Takayasu

Verification scheme

0 t

u0

t1 t2 tk...

...

28/55

Page 50: Akitoshi Takayasu

Verification scheme

0 t

u0

t1 t2 tk...

...

28/55

Page 51: Akitoshi Takayasu

Verification scheme

0 t

u0

t1 t2 tk...

...

28/55

Page 52: Akitoshi Takayasu

Verification scheme

0 t

u0

t1 t2 tk...

...

28/55

Page 53: Akitoshi Takayasu

ここまでのまとめ

各 t ∈ Jkにおいて対象問題

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(0, x) = u0(x) in Ω,

に対する弱解の存在と一意性を逐次的に数値解の近傍BJk(ω, ρk)に包み込む.

(PJ)の弱解は各 k = 1, 2, ..., nについて

B(ω) :=y ∈ L∞ (

J ;H10 (Ω)

): y(t) ∈ BJk(ω, ρk), t ∈ Jk

の中に一意存在する事が計算機援用証明できる.

29/55

Page 54: Akitoshi Takayasu

ここまでのまとめ

各 t ∈ Jkにおいて対象問題

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(0, x) = u0(x) in Ω,

に対する弱解の存在と一意性を逐次的に数値解の近傍BJk(ω, ρk)に包み込む.

(PJ)の弱解は各 k = 1, 2, ..., nについて

B(ω) :=y ∈ L∞ (

J ;H10 (Ω)

): y(t) ∈ BJk(ω, ρk), t ∈ Jk

の中に一意存在する事が計算機援用証明できる.

29/55

Page 55: Akitoshi Takayasu

Computational results 1

30/55

Page 56: Akitoshi Takayasu

藤田型方程式

Ω = (0, 1)2: Square domain ∂tu−∆u = u2 in (0,∞)× Ω,u(t, x) = 0 on (0,∞)× ∂Ω,u(0, x) = u0 in Ω,

Let γ > 0 be an parameter of the initial function:

u0(x) = γx1(1− x1)x2(1− x2).

h: spatial mesh size (P2 element),τ : time step of B.E. method.

31/55

Page 57: Akitoshi Takayasu

Computational results

Table: h = 2−4, τ = 2−8, γ = 1.

Tk = (tk−1, tk] εk ρk(0,0.0039062] 0.020155 0.037646(0.0039062,0.0078125] 0.030051 0.041554(0.0078125,0.011719] 0.038089 0.049313(0.011719,0.015625] 0.044657 0.055699(0.015625,0.019531] 0.050001 0.060873

......

...(0.48047,0.48438] 0.00013041 0.00014184(0.48438,0.48828] 0.00012186 0.00013255(0.48828,0.49219] 0.00011388 0.00012386(0.49219,0.49609] 0.00010641 0.00011573(0.49609,0.5] 9.9431E-5 0.00010813

32/55

Page 58: Akitoshi Takayasu

Computational results

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

ρ k

gamma = 1

gamma = 10

33/55

Page 59: Akitoshi Takayasu

Computational results

0 0.1 0.2 0.3 0.4 0.510

−3

10−2

10−1

100

101

102

103

t

ρ k

gamma = 30

gamma = 50

34/55

Page 60: Akitoshi Takayasu

半線形放物型方程式

Ω = (0, 1)2: Square domain ∂tu−∆u = u− u3 in (0,∞)× Ω,u(t, x) = 0 on (0,∞)× ∂Ω,u(0, x) = u0 in Ω.

We set the initial function:

u0(x) = x1(1− x1)x2(1− x2).

h: spatial mesh size (P2 element),τ : time step of B.E. method.

35/55

Page 61: Akitoshi Takayasu

Computational results (h = 2−4)

0 0.1 0.2 0.3 0.4 0.50

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

ρ k

tau = 1/16

tau = 1/32

tau = 1/64

tau = 1/128

tau = 1/256

tau = 1/512

36/55

Page 62: Akitoshi Takayasu

Computational results (τ ≪ h)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

t

ρ k

h = 1/4

h = 1/8

h = 1/16

h = 1/32

37/55

Page 63: Akitoshi Takayasu

Global existence proof

using verified computations

38/55

Page 64: Akitoshi Takayasu

時間大域解の証明

本講演では t ∈ (0,∞)で存在する (PJ)の解 u(t) ∈ H10 (Ω)を

時間大域解といい,以下の 2つのステップで証明を試みる.t′ > 0をある時刻として

(t′,∞)で定常解まわりに大域的に存在する範囲を計算機で導く.(Global existence proof)

ある時刻 t′までの解を数値解の近傍に包み込む.(Concatenation scheme)

上記の方法によって,(PJ)の時間大域解を関数空間

L∞ ((0,∞);H1

0 (Ω))

で一意存在することが計算機を用いて証明できる.

39/55

Page 65: Akitoshi Takayasu

時間大域解の証明

本講演では t ∈ (0,∞)で存在する (PJ)の解 u(t) ∈ H10 (Ω)を

時間大域解といい,以下の 2つのステップで証明を試みる.t′ > 0をある時刻として

(t′,∞)で定常解まわりに大域的に存在する範囲を計算機で導く.(Global existence proof)

ある時刻 t′までの解を数値解の近傍に包み込む.(Concatenation scheme)

上記の方法によって,(PJ)の時間大域解を関数空間

L∞ ((0,∞);H1

0 (Ω))

で一意存在することが計算機を用いて証明できる.

39/55

Page 66: Akitoshi Takayasu

時間大域解の証明

本講演では t ∈ (0,∞)で存在する (PJ)の解 u(t) ∈ H10 (Ω)を

時間大域解といい,以下の 2つのステップで証明を試みる.t′ > 0をある時刻として

(t′,∞)で定常解まわりに大域的に存在する範囲を計算機で導く.(Global existence proof)

ある時刻 t′までの解を数値解の近傍に包み込む.(Concatenation scheme)

上記の方法によって,(PJ)の時間大域解を関数空間

L∞ ((0,∞);H1

0 (Ω))

で一意存在することが計算機を用いて証明できる.

39/55

Page 67: Akitoshi Takayasu

大域解の存在に関する先行研究

S. Cai,

“A computer-assisted proof for the pattern formation onreaction-diffusion systems”, 学位論文, Graduate School ofMathematics, Kyushu University (2012) 71 pages.

反応拡散方程式のあるクラスの定常解に対する精度保証付き数値計算法を示している.

(t′,∞)で定常解まわりに大域的に存在する範囲をL∞(Ω)× L∞(Ω)上で生成された解析半群を用いて,計算している.

40/55

Page 68: Akitoshi Takayasu

Considered problem

Let Ω be a bounded polygonal domain in R2 and J := (0,∞).

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(0, x) = u0(x) in Ω,

where A = −∆, u0 ∈ H10 (Ω) is an initial function, and

f : R → R is a twice Frechet differentiable nonlinear mapping.

41/55

Page 69: Akitoshi Takayasu

Considered problem

Let Ω be a bounded polygonal domain in R2 and J := (0,∞).

(PJ)

∂tu+ Au = f(u) in J × Ω,

u(t, x) = 0 on J × ∂Ω,

u(0, x) = u0(x) in Ω,

where A = −∆, u0 ∈ H10 (Ω) is an initial function, and

f : R → R is a twice Frechet differentiable nonlinear mapping.

41/55

Page 70: Akitoshi Takayasu

Aim of this part

Let Ω be a bounded polygonal domain in R2.

(PG)

∂tu+ Au = f(u) in (t′,∞)× Ω,u(t, x) = 0 on (t′,∞)× ∂Ω,u(t′, x) = η in Ω,

where η ∈ H10 (Ω) satisfies ∥η − un∥H1

0≤ εn for a certain

εn > 0.

We enclose a solution for t ∈ (t′,∞) in a neighborhood of astationary solution ϕ ∈ D(A) of (PJ) such that

Aϕ = f(ϕ) in Ω,

ϕ = 0 on ∂Ω.

42/55

Page 71: Akitoshi Takayasu

記号

For ρ > 0, v ∈ L∞((t′,∞);H10 (Ω)), define a ball

B(v, ρ) :=y ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥y − v∥L∞((t′,∞);H1

0 (Ω)) ≤ ρ.

The Frechet derivative of f at w is denoted by

f ′[w] : L∞((t′,∞);H10 (Ω)) → L∞((t′,∞);L2(Ω)).

For y ∈ B(v, ρ), we assume that there exists a non-decreasingfunction L : R → R such that

∥f ′[y]u∥L∞(J ;L2(Ω)) ≤ L(ρ)∥u∥H10, u ∈ H1

0 (Ω).

43/55

Page 72: Akitoshi Takayasu

記号

Define a function space Xλ: for a fixed λ > 0,

Xλ :=

u ∈ L∞((t′,∞);H1

0 (Ω)) : ess supt∈(t′,∞)

e(t−t′)λ∥u(t)∥H10<∞

,

which becomes a Banach space with the norm

∥ · ∥Xλ:= ess sup

t∈(t′,∞)

e(t−t′)λ∥u(t)∥H10.

44/55

Page 73: Akitoshi Takayasu

Theorem (Global existence)

Assume that

a solution of (P ) is enclosed until t′ > 0,

a stationary solution ϕ ∈ D(A) uniquely exists around a

numerical solution ϕ,

For a un ∈ Vh, εn > 0, the initial function satisfies∥η − un∥H1

0< εn.

For a fixed λ satisfying 0 ≤ λ < λmin/2, if ρ > 0 satisfies

∥η − ϕ∥H10+ L(ρ)ρ

√2π

e(λmin − 2λ)< ρ.

Then a solution u(t) for t ∈ (t′,∞) uniquely exists in

Uϕ :=u ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥u− ϕ∥Xλ

≤ ρ.

45/55

Page 74: Akitoshi Takayasu

Theorem (Global existence)

Assume that

a solution of (P ) is enclosed until t′ > 0,

a stationary solution ϕ ∈ D(A) uniquely exists around a

numerical solution ϕ,

For a un ∈ Vh, εn > 0, the initial function satisfies∥η − un∥H1

0< εn.

For a fixed λ satisfying 0 ≤ λ < λmin/2, if ρ > 0 satisfies

∥η − ϕ∥H10+ L(ρ)ρ

√2π

e(λmin − 2λ)< ρ.

Then a solution u(t) for t ∈ (t′,∞) uniquely exists in

Uϕ :=u ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥u− ϕ∥Xλ

≤ ρ.

45/55

Page 75: Akitoshi Takayasu

Theorem (Global existence)

Assume that

a solution of (P ) is enclosed until t′ > 0,

a stationary solution ϕ ∈ D(A) uniquely exists around a

numerical solution ϕ,

For a un ∈ Vh, εn > 0, the initial function satisfies∥η − un∥H1

0< εn.

For a fixed λ satisfying 0 ≤ λ < λmin/2, if ρ > 0 satisfies

∥η − ϕ∥H10+ L(ρ)ρ

√2π

e(λmin − 2λ)< ρ.

Then a solution u(t) for t ∈ (t′,∞) uniquely exists in

Uϕ :=u ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥u− ϕ∥Xλ

≤ ρ.

45/55

Page 76: Akitoshi Takayasu

Theorem (Global existence)

Assume that

a solution of (P ) is enclosed until t′ > 0,

a stationary solution ϕ ∈ D(A) uniquely exists around a

numerical solution ϕ,

For a un ∈ Vh, εn > 0, the initial function satisfies∥η − un∥H1

0< εn.

For a fixed λ satisfying 0 ≤ λ < λmin/2, if ρ > 0 satisfies

∥η − ϕ∥H10+ L(ρ)ρ

√2π

e(λmin − 2λ)< ρ.

Then a solution u(t) for t ∈ (t′,∞) uniquely exists in

Uϕ :=u ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥u− ϕ∥Xλ

≤ ρ.

45/55

Page 77: Akitoshi Takayasu

Theorem (Global existence)

Assume that

a solution of (P ) is enclosed until t′ > 0,

a stationary solution ϕ ∈ D(A) uniquely exists around a

numerical solution ϕ,

For a un ∈ Vh, εn > 0, the initial function satisfies∥η − un∥H1

0< εn.

For a fixed λ satisfying 0 ≤ λ < λmin/2, if ρ > 0 satisfies

∥η − ϕ∥H10+ L(ρ)ρ

√2π

e(λmin − 2λ)< ρ.

Then a solution u(t) for t ∈ (t′,∞) uniquely exists in

Uϕ :=u ∈ L∞ (

(t′,∞);H10 (Ω)

): ∥u− ϕ∥Xλ

≤ ρ.

45/55

Page 78: Akitoshi Takayasu

Sketch of proof

Let z ∈ Uϕ. A nonlinear operatorS : L∞ ((t′,∞);H1

0 (Ω)) → L∞ ((t′,∞);H10 (Ω)) is defined by

S(z) := e−(t−t′)A(η − ϕ) +

∫ t

t′e−(t−s)A (f(z(s))− f(ϕ)) ds.

On the basis of Banach’s fixed-point theorem, we show acondition of S having a fixed-point in Uϕ.For s ∈ (t′,∞) and ψ1, ψ2 ∈ Uϕ, the mean-value theoremstates that there exists y ∈ Uϕ such that

∥f(ψ1(s))− f(ψ2(s))∥L2 = ∥f ′[y(s)](ψ1(s)− ψ2(s))∥L2 .

Since y ∈ Uϕ ⊂ B(ϕ, ρ) holds, we obtain

∥f(ψ1(s))− f(ψ2(s))∥L2 ≤ L(ρ)∥ψ1(s)− ψ2(s)∥H10.

46/55

Page 79: Akitoshi Takayasu

How to get ∥η − ϕ∥H10?

Since ∥η − un∥H10< εn and a stationary solution ϕ encloses in

a neighborhood of a numerical solution, it follows

∥η − ϕ∥H10

≤ ∥η − un∥H10+ ∥un − ϕ∥H1

0+ ∥ϕ− ϕ∥H1

0

≤ εn + ∥un − ϕ∥H10+ ρ′.

We need to estimate

∥u(t′)− un∥H10≤ εn.

This can be obtained by the concatenation scheme!

47/55

Page 80: Akitoshi Takayasu

How to get ∥η − ϕ∥H10?

Since ∥η − un∥H10< εn and a stationary solution ϕ encloses in

a neighborhood of a numerical solution, it follows

∥η − ϕ∥H10

≤ ∥η − un∥H10+ ∥un − ϕ∥H1

0+ ∥ϕ− ϕ∥H1

0

≤ εn + ∥un − ϕ∥H10+ ρ′.

We need to estimate

∥u(t′)− un∥H10≤ εn.

This can be obtained by the concatenation scheme!

47/55

Page 81: Akitoshi Takayasu

How to get ∥η − ϕ∥H10?

Since ∥η − un∥H10< εn and a stationary solution ϕ encloses in

a neighborhood of a numerical solution, it follows

∥η − ϕ∥H10

≤ ∥η − un∥H10+ ∥un − ϕ∥H1

0+ ∥ϕ− ϕ∥H1

0

≤ εn + ∥un − ϕ∥H10+ ρ′.

We need to estimate

∥u(t′)− un∥H10≤ εn.

This can be obtained by the concatenation scheme!

47/55

Page 82: Akitoshi Takayasu

How to get ∥η − ϕ∥H10?

Since ∥η − un∥H10< εn and a stationary solution ϕ encloses in

a neighborhood of a numerical solution, it follows

∥η − ϕ∥H10

≤ ∥η − un∥H10+ ∥un − ϕ∥H1

0+ ∥ϕ− ϕ∥H1

0

≤ εn + ∥un − ϕ∥H10+ ρ′.

We need to estimate

∥u(t′)− un∥H10≤ εn.

This can be obtained by the concatenation scheme!

47/55

Page 83: Akitoshi Takayasu

Computational results 2

48/55

Page 84: Akitoshi Takayasu

藤田型方程式

Let Ω := (0, 1)2 be an unit square domain in R2.

(F )

∂tu−∆u = u2 in (0,∞)× Ω,

u(t, x) = 0 on (0,∞)× ∂Ω,

u(0, x) = u0(x) in Ω,

where u0(x) = γ sin(πx) sin(πy).

Vh :=∑N

k,l=1 ak,l sin(kπx) sin(lπy) : ak,l ∈ R;

Crank-Nicolson scheme is employed;

we fixed λ = 1/40 in the global existence theorem.

49/55

Page 85: Akitoshi Takayasu

Table: 時間大域解の検証例(N = 8, λ = 1/40, τk = 2−7)

γ n t′ ρ0.01 5 0.046875 0.010850.011 5 0.046875 0.0119360.0121 6 0.054688 0.0116050.01331 7 0.0625 0.0112740.014641 7 0.0625 0.0124030.016105 8 0.070312 0.0120380.017716 8 0.070312 0.0132440.019487 9 0.078125 0.0128450.021436 10 0.085938 0.0124480.023579 10 0.085938 0.0136950.025937 11 0.09375 0.0132630.028531 11 0.09375 0.0145930.031384 12 0.10156 0.014123

...

50/55

Page 86: Akitoshi Takayasu

Table: 時間大域解の検証例(N = 8, λ = 1/40, τk = 2−7)

γ n t′ ρ...

2.2876 40 0.32031 0.0299452.5164 41 0.32812 0.02962.768 42 0.33594 0.0294463.0448 42 0.33594 0.0340853.3493 43 0.34375 0.0346573.6842 44 0.35156 0.0359174.0527 45 0.35938 0.0384194.4579 45 0.35938 0.0505114.9037 46 0.36719 0.0664555.3941 47 0.375 0.17656

このとき∥u(t)∥H1

0≤ ρe−

(t−t′)40 , t ∈ (tn,∞).

51/55

Page 87: Akitoshi Takayasu

半線形放物型方程式

Let Ω := (0, 1)2 be an unit square domain in R2.∂tu−∆u = f(u) in (0,∞)× Ω,

u(t, x) = 0 on (0,∞)× ∂Ω,

u(0, x) = u0(x) in Ω,

where u0(x) = sin(πx) sin(πy).

f(u) = u2 + 4∑

1≤k,l≤3 sin(kπx) sin(lπy);

Vh :=∑N

k,l=1 ak,l sin(kπx) sin(lπy) : ak,l ∈ R;

Crank-Nicolson scheme is employed;

we fixed λ = 1/40 in the global existence theorem.

52/55

Page 88: Akitoshi Takayasu

Fig. The numerical solution ϕ.

時間大域解の検証はN = 10, λ = 1/40, τk = 2−8で成功して,

ρ = 0.04035, t′ = 0.2578125.

53/55

Page 89: Akitoshi Takayasu

Fig. The numerical solution ϕ.

時間大域解の検証はN = 10, λ = 1/40, τk = 2−8で成功して,

ρ = 0.04035, t′ = 0.2578125.

53/55

Page 90: Akitoshi Takayasu

まとめ

解析半群e−tA

t≥0を用いる精度保証付き数値計算手法

Concatenation scheme(数値解のまわりに包み込む) 精度保証付き数値計算を用いた時間大域解の存在証明(定常解のまわりに包み込む)

今後の課題

方程式の拡張(多種の反応拡散方程式,波動方程式等) 無限次元力学系との関連 藤田型方程式の爆発時刻の精度保証付き数値計算

54/55

Page 91: Akitoshi Takayasu

Thank you for kind attention!

55/55