25
Hydropower Si,ng, Design and Opera,ons in a Changing Climate Dondej Tungtakanpoung, PhD. [email protected]

Hydropower Siting, Design, Operations in Changing Climate

Embed Size (px)

Citation preview

Page 1: Hydropower Siting, Design, Operations in Changing Climate

Hydropower  Si,ng,  Design  and  Opera,ons  in  a  Changing  Climate    

 Dondej  Tungtakanpoung,  PhD.  

[email protected]  

     

Page 2: Hydropower Siting, Design, Operations in Changing Climate

Module 3

Module 2

Module 4

Module 5

Module 6

Climate Change and Hydropower Management

Page 3: Hydropower Siting, Design, Operations in Changing Climate

Hydropower  Si,ng,  Design  and  Opera,ons  in  a  Changing  Climate  (for  2015  Greater  Mekong  Forum  on  Water,  Food  and  Energy)  

 Dondej  Tungtakanpoung,  PhD.  

[email protected]  

   

Session  1  Range  of  Si,ng,  Design  and  Opera,ons  Op,ons  Session  4  Planning    Resilient  Hydropower  under  Uncertainty

   

Page 4: Hydropower Siting, Design, Operations in Changing Climate

WHAT  ARE  THE  MAIN  SITING  OPTIONS  IN  A  HYDROPOWER  SYSTEM?    WHAT  ARE  THE  MAIN  DESIGN  OPTIONS  FOR  A  HYDROPOWER  STATION?    WHAT  ARE  THE  MAIN  OPERATIONAL  OPTIONS  FOR  A  RESERVOIR  HYDROPOWER  STATION?    HOW  ARE  CHOICES  AMONGST  THESE  OPTIONS  INFLUENCED  BY  CLIMATE  CHANGE?        

Session  3.1  Range  of  Si,ng,  Design  and  Opera,ons  Op,ons  Overview  Session  3.1.  

Page 5: Hydropower Siting, Design, Operations in Changing Climate

Important aspects for siting  

How large is the overall expected power demand?  

Which reaches or tributaries have

the best conditions  

Are there any factors that

exclude reaches or tributaries

from?  

Is there a choice between building one large station instead of several

small projects?  

Can stations support each other in their operations?  

What other water uses besides

hydropower exist in the area?  

Page 6: Hydropower Siting, Design, Operations in Changing Climate

6  

Si,ng  within  a  Basin  

Page 7: Hydropower Siting, Design, Operations in Changing Climate

7  Hydropower  Project  

Op,on  A  

Page 8: Hydropower Siting, Design, Operations in Changing Climate

Cascade  Arrangements  

Which sites? How many sites?

Page 9: Hydropower Siting, Design, Operations in Changing Climate

Project  idea  

Forma<on  

Layout  

Engineering  Design  

Cost  es<mate  

Economic  and  Financial  analysis  

Bankable  Project  

Optimization of project layout

Page 10: Hydropower Siting, Design, Operations in Changing Climate

Major  Design  Op,ons  

Page 11: Hydropower Siting, Design, Operations in Changing Climate

Module  3.  Hydropower  Si,ng,  Design  and  Opera,ons  in  a  Changing  Climate    Session  3.4  Planning  Resilient  Hydropower  Under  Uncertainty  

Page 12: Hydropower Siting, Design, Operations in Changing Climate

WHAT  ARE  THE  MAIN  TOOLS  FOR  HYDROPOWER  PLANNING?    HOW  SHOULD  PLANNING  TOOLS  BE  ADAPTED?    HOW  DO  DIFFERENT  ADAPTATION  AND  DECISION-­‐MAKING  APPROACHES  APPLY  TO  HYDROPOWER?    

Overview  Session  3.4.  

Page 13: Hydropower Siting, Design, Operations in Changing Climate

Planning  for  an  increasingly  uncertain  future  

Page 14: Hydropower Siting, Design, Operations in Changing Climate

Planning  for  an  increasingly  

uncertain  future  

Page 15: Hydropower Siting, Design, Operations in Changing Climate

Droughts  

Page 16: Hydropower Siting, Design, Operations in Changing Climate

Floods  

Page 17: Hydropower Siting, Design, Operations in Changing Climate

•  Masterplan  •  Electricity  genera<on  expansion  plan  •  Strategic  environmental  assessment  •  River  basin  development  plan  •  Project  iden<fica<on  /  pre-­‐feasibility  study    •  Feasibility  study  (some<mes  with  mul<ple  sub-­‐studies,  such  as  hydrological  studies  etc.)  

•  Detailed  design  •  Environmental  and  social  impact  assessment  •  Environmental  and  social  management  plan  •  Sustainability  assessment  •  Construc<on  plan  •  Opera<ons  plan  

Planning  Tools  

Page 18: Hydropower Siting, Design, Operations in Changing Climate

•  Average  flow  dura<on  curve  as  basis  for  the  average  annual  genera<on  and  determina<on  of  the  op<mal  design  discharge  

•  Flow  dura<on  curve  of  the  driest  year  on  record  for  the  sensi<vity  analysis  (to  check  whether  debt  can  be  serviced  even  during  droughts)  

•  Correc<on  factors  considering  quality  of  flow  data  (to  assess  the  sensi,vity  against  varia,ons  of  water  availability  and  the  influence  of  missing  or  vague  data)  

•  Environmental  flow  requirement  •  Es<mated  flood  events  and  water  levels  (for  safe  design  of  hydraulic  structures)  

Standard  deliverables  of  a  hydrological  study    for  a  small  project  

Page 19: Hydropower Siting, Design, Operations in Changing Climate

EIAs  under  climate  change  

•  Climate  change  is  likely  to  affect  the  environment  and  social  condi<ons  in  the  project  area.  

•  Project  impacts  which  are  acceptable  in  today‘s  environment  may  not  be  acceptable  in  a  future  environment.  

•  Project  impacts  may  be  cumula<ve  with  impacts  of  climate  change.  

•  Climate  change  may  limit  the  poten<al  of  the  project  to  deliver  posi<ve  impacts.    

Page 20: Hydropower Siting, Design, Operations in Changing Climate

Predic,on  oriented  approaches  to  adapta<on  focus  on  

   characterizing,      reducing,      managing  and        communica<ng  uncertainty,    

resul<ng  in  increasing  sophis,cated  modelling  tools  and  techniques  to  describe  future  climates  and  impacts.      Resilience  oriented  approaches  to  adapta<on  are  accep<ng  that  some  uncertain<es  cannot  be  reduced,  and  emphasize  learning  from  experience.  

Predic,on  and  resilience  oriented  design  

Page 21: Hydropower Siting, Design, Operations in Changing Climate

Predic,on  and  resilience  oriented  design  

Prediction

Resilience

Page 22: Hydropower Siting, Design, Operations in Changing Climate

Interconnec<on  of  systems    • to  provide  addi<onal  backup  for  changing  regional  condi<ons.  

Incremental  construc<on    • where  possible  and  economically  feasible  (e.g.,  a  number  of  small  systems  rather  than  one  large  one)  to  allow  for  adapta<on  to  changing  circumstances.  

Choice  of  robust  designs    • in  which  the  chosen  design  will  be  fairly  good  under  a  wide  range  of  outcomes  rather  than  op<mal  under  one  outcome.  

Postponement  of  irreversible  (or  very  costly  to  reverse)  decisions.  

Use  of  a  range  of  formal  decision  techniques,  

including  scenario  analysis,  sensi<vity  analysis,  and  

others.  

Designing  for  extreme  condi<ons  

Standard water resource planning recommendations under climate change (I)

Page 23: Hydropower Siting, Design, Operations in Changing Climate

Standard  water  resource  planning  recommenda,ons  under  climate  change  (II)  

Development  of  non-­‐structural  measures  

 such  as  warning  systems.  Flood  and  storm  warning  systems  (inland  and  coastal)  can  be  used  to  adjust  to  the  risks  and  uncertain<es  of  flooding.  

Preserva<on  of  ecosystems    As  an  adjustment  to  uncertainty,  areas  can  be  reserved  to  protect  against  the  uncertain  effects  of  climate  change  on  ecosystems  

There is as yet very little documented experience in the application of these principles to hydropower planning

Page 24: Hydropower Siting, Design, Operations in Changing Climate

24   Si,ng  within  a  Basin  

Group  work  

Page 25: Hydropower Siting, Design, Operations in Changing Climate

How  could  si,ng  be  influenced  by  climate  change?  Group  Work  –  review  typical  si<ng  considera<ons:      -­‐ How  large  is  the  overall  expected  power  demand?  Base  load  or  peak  load?  -­‐ Which  reaches  or  tributaries  have  the  best  condi<ons  (large  &  regular  flow,  steep  topography)?  -­‐ Are  there  any  factors  that  exclude  reaches/tributaries  from  considera<on  (unstable  geology,  lack  of  access,  protected  areas  etc.)?  -­‐ Is  there  one  site  where  a  large  sta<on  could  be  built,  instead  of  several  small  ones?  -­‐ Is  there  any  logical  sequence  in  which  sta<ons  should  be  built?  -­‐ Can  sta<ons  support  each  other  in  their  opera<ons?  -­‐ If  there  are  other  water  uses  besides  hydropower:  How  much  storage  space  do  they  require,  where  are  the  loca<ons  with  storage  capaci<es,  and  are  their  storage  requirements  going  to  be  compa<ble  with  hydropower  opera<ons?