1
~90 Ma PALEOCENE EOCENE EARLY CRETACEOUS LATE CRETACEOUS AUTHORS: Alexander Minakov - Rolf Mjelde - Earth Sciences Dept., Univ. of Bergen, Norway Jan Inge Faleide - Dept. Geosciences, Univ. of Oslo, Norway Ritske Huismans - Earth Sciences Dept., Univ. of Bergen, Norway Anke Dannowski - IFM Geomar, Kiel, Germany Ernst Flueh - IFM Geomar, Kiel, Germany Vladimir Glebovsky - VNIIOkeangeologia, St.Petersburg, Russia Henk Keers - Earth Sciences Dept., Univ. of Bergen, Norway Youri Podladchikov - Physics of Geological Processes (PGP), Univ. of Oslo, Norway Mail to: Earth Sciences Dept., Univ. of Bergen, Norway [email protected] SUMMARY We present a systematic study of the Northern Barents Sea continental margin (see Figure above), using several types of geophysical data as well as geodynamic modeling. The results are interpreted in terms of geodynamic processes in the crust and upper mantle in the study area during various geological time periods. METHODOLOGY - Wide angle Ocean Bottom Seismometers data acquired east of Svalbard and processed using traveltime tomography - Inversion of gravity data - Finite element thermomechanical modeling of lithospheric extension RESULTS - The seismic velocity structure east of Svalbard contains a high-velocity anomaly. This is interpreted as early Cretaceous magmatic intrusions. - The crustal structure of both the Cenozoic and the Cretaceous N Barents Sea margin was predicted using an integrated gravity inversion method and sparse seismic reflection lines. The northern Barents Sea and Lomonosov Ridge margins are symmetric and narrow (< 150 km). The inferred Cretaceous continent-ocean transition (on the Makarov/Podvodnikov Basin side of the Lomonosov ridge) is much wider (150-400 km). On the continent, the N Barents Sea margin is underlain by Paleozoic to early Mesozoic sedimentary basins, which are separated from the oceanic crust by marginal basement uplift. - A mechanism to weaken the lithosphere is required in order to detach the Lomonosov Ridge - a narrow continental sliver. As such mechanism we propose a short-lived episode of margin-parallel shear. We simulate 2D lithospheric extension accompanied by the shear heating localization using the finite element method. NORTHERN BARENTS SEA EVOLUTION LINKED TO THE ARCTIC OCEAN T31A-2120 L m so R i d o o n o v ge Mak ro Basin a v P dvo kov o dni B n asi na a Ca d B si a n Mendeleev Ridge Alpha Ridge Greenland Franz Josef Land B ff B a in ay Norwegian- Greenland Basin Barents Sea Kara Sea A m e r a s i a B a s i n G a k k e l R i d g e Lo n o R d g mo os v i e G a k k e l R i d g e Nansen Basin Barents Sea Amundsen Basin Novaya Zemlya Svalbard l rd Sva ba Franz Josef Land v Se ernaya y Zeml a Severnaya Zemlya B n affi Bay Greenland Sea Kara Norwegian- Greenland Basin N en as n ans B i nd B n Amu sen asi Canada Basin Mendeleev Ridge Podvodnikov Basin ak ro a n M a v B si Alpha Ridge A m e r a s i a B a s i n Novaya Zemlya ? ? -40 -35 -30 -25 -20 -15 -10 -5 Depth (km) NE Svalbard Lomonosov Ridge (LR) 0 A A’ 0 100 200 300 Distance (km) Distance (km) ? -40 -35 -30 -25 -20 -15 -10 -5 0 Depth (km) C C’ 100 200 0 100 200 km ? ? -40 -35 -30 -25 -20 -15 -10 -5 0 Depth (km) D D’ D D D D GREENLAND GREENLAND D D D D C24 (53 Ma) GREENLAND GREENLAND N Barents Sea N Kara Sea Amerasia Basin N Barents Sea N Kara Sea Amerasia Basin Alpha Ridge Alpha Ridge Alpha Ridge Men eleev d R dge i en M deleev Ridge en M deleev Ridge Svalbard Svalbard Svalbard Franz Josef Land Franz Josef Land Franz Josef Land Severnaya Zemlya Severnaya Zemlya Severnaya Zemlya ACEX Transarctica 89-91 Tra s r tca9 naci 2 1 1 2 2 3 3 Svalbard Franz Josef Land Severnaya Zemlya ACEX s Tran arctica 89-91 Tra sarct ca 9 n i 2 1 1 2 2 3 3 Svalbard Franz Josef Land Severnaya Zemlya ACEX s cc 89 Tran ar ti a -91 r T ansarctica 92 1 1 2 2 3 3 BATHYMETRY BOUGUER GRAVITY MAGNETIC ANOMALIES -28 -15 -7 -1 4 10 16 25 51 129 161 188 232 -2953 -2222 -1299 -336 -251 -187 -107 -58 -34 -16 11 83 426 -2953 -2222 -1299 -336 -251 -187 -107 -58 -34 -16 11 83 426 -170 -99 -62 -41 -26 -13 -2 9 26 50 90 160 332 nT mGal m m o 20 o 30 o 40 o 78 o 76 o 78 NORDAUSTLANDET EDGEØYA BARENTSØYA SPITSBERGEN KONG KARLS LAND PLATFORM 314 313 312 311 310 308 307 306 305 304 302 301 KONG KARLS LAND 301 Carboniferous rifts (Faleide et al., 2008) Sills: 2 - 4 km (Grogan et al. 1998) Sills: 1 - 2 km (Grogan et al. 1998) Reactivated faults Ocean bottom seismometers Sills/lavas: 0 - 1 km (Grogan et al. 1998) Ray coverage NUMERICS PHYSICS North America Eurasia -180 0 0 0 8 1 - 0 0 8 1 - - 1 8 0 0 0 0 8 1 - - 1 8 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LR AR R M Alaska ? ? Greenland CB Barents Sea Emergent area (Barents Sea) Magmatic province Oceanic domain North America -1 8 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 LR a Al ska Greenland Barents Sea Eurasia ? ? ? Emergent area (Barents Sea) Magmatic province Oceanic domain -180 0 0 0 8 1 - 0 0 8 1 - - 1 8 0 0 0 0 8 1 - - 1 8 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA-GRE rotation pole LS Eurasia Greenland Barents Sea LR North America Emergent area (Barents Sea) Magmatic province Oceanic domain 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Eurasia -180 0 0 0 8 1 - 0 0 8 1 - - 1 8 0 0 0 0 8 1 - - 1 8 0 0 0 0 8 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA-EURA rotation pole NA-GRE rotation pole Greenland LS NGS EB EB Barents Sea North America LR Emergent area (Barents Sea) Magmatic province Oceanic domain MARGIN EVOLUTION DATA METHOD RESULTS 25 25 25 0 0 0 75 75 75 125 125 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 4.0 m.y. Depth (km) Depth (km) Depth (km) Distance (km) Distance (km) Distance (km) Effective viscosity o C log (Pa s) 10 Temperature 125 MARGIN-PARALLEL SHEAR (~1 cm/y; 0.5 m.y.) 1 25 25 25 0 0 0 75 75 75 125 125 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 3.4 m.y. Depth (km) Depth (km) Depth (km) Distance (km) Distance (km) Distance (km) 125 Effective viscosity o C log (Pa s) 10 Temperature NO SHEAR 1 - The N Barents Sea, including Svalbard, was not affected by the major Late Jurassic to Early Cretaceous rifting which gave rise to deep basins in the SW Barents Sea. - However, the area experienced widespread Early Cretaceous (Barremian) magmatism related to the High Arctic Large Igneous Province (HALIP). - The magmatism developed without significant crustal thinning. – The emplacement of mafic magmas into the crust east of Svalbard was controlled by Paleozoic rift structures which were reactivated in the Early Cretaceous. - The Mesozoic N Barents Sea passive margin resulted from the formation of the Makarov (and Podvodnikov?) Basin. - N Barents Sea region together with the Lomonosov Ridge was standing high during most of the Late Cretaceous. - The regional uplift sourced from the Alpha Ridge area. - The extension direction in the Podvodnikov Basin is assumed to be parallel to the Mendeleev Ridge. - The Eurasia Basin's breakup in the Paleocene preceded the opening of the Norwegian Sea, implying a connection to the Labrador Sea. - A short-lived lithosphere-scale shear zone has likely facilitated to the detachment of the Lomonosov Ridge microcontinent and the onset of seafloor spreading. The Cenozoic N Barents Sea passive margin is characterized by the narrow symmetric rift mode and magma-poor setting of the margin development. AR MR - Alpha Ridge - Mendeleev Ridge LR - Lomonosov Ridge MB - Makarov Basin CB - Canada Basin PB - Podvodnikov Basin LR - Lomonosov Ridge LS - Labrador Sea PB - Podvodnikov Basin MB - Makarov Basin LR - Lomonosov Ridge LS - Labrador Sea EB - Eurasia Basin NGS - Norwegian- Greenland Sea ~120 Ma ~60 Ma ~53 Ma MB MB PB PB CB AR AR MR MR OBS profile OBS profile OBS profile O r BS p ofile B B’ ? ? -40 -35 -30 -25 -20 -15 -10 -5 0 Depth (km) A’ B’ C’ C D’ D B A A’ B’ C’ C D’ D B A P-wave velocity model from refraction & reflection seismic tomography Velocity anomalies relative to 1-D background model - Conservation of momentum - Conservation of energy - Kinematics - Rheology - Von Mises plasticity - In-compressibility - Lagrangian finite element method, thermomech. coupled - 9-node quadrilateral elements (Q P ) 2 -1 - 3 dofs (u , u , T) per node x y - P is found on the element level using static condensation - Iterative viscosity reducing to account for plasticity + Powell and Hestenes iterations - Re-meshing - 600 x 125 km model: asthenosphere, mantle lithosphere, crust, sedimentary and water layers. Boundary conditions - top surface is stress-free - bottom is free slip - velocity 3 cm/y applied to the right side o - T = 0, T = 1300 C top bot - Heat flux on the sides is zero Initial lithosphere structure derived from gravity inversion Strike-slip related shear strain rate: ã = 2e-14 [1/s] We model lithosphere extension accompanied by development of a shear zone. The problem is solved in 2-D in the plane normal to the strike-slip. u ,u ,T x y P -40 -35 -30 -25 -20 -15 -10 -5 0 0 100 200 400 500 600 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 Pre-Cz sediments Cz sediments Continental crust ? Oceanic crust D pt ( ) e h km vi y nom ( al Gra t a aly mG ) Distance (km) Free-air gravity Mantle residual anomaly Observed Calculated 3D inversion Isostasy Barents50 S N PROFILE 1 NW Barents Sea Nansen Basin ρ (z) = ρexp(-λ z) 0 3 ρ = 2850 kg/m ρ (z) = ρ (1-α T) 0 T = T(β , t, z) The inversion of the mantle residual gravity anomaly (MRA) was performed with the method of Oldenburg incorporating gravity effects of thermal lithosphere (Chappell & Kusznir, 2008) and sediments: b b 1 Mantle lithosphere Asthenosphere Crust 5 25 45 65 85 105 125 Depth (km) Distance(km) mGal FAIR MRA Shear zone 3 Mantle lithosphere Asthenosphere Crust 5 25 45 65 85 105 125 Depth (km) mGal Distance(km) FAIR MRA 2 mGal Mantle lithosphere Asthenosphere Crust 5 25 45 65 85 105 125 Depth (km) Distance(km) FAIR MRA 25 25 25 0 0 0 75 75 75 125 125 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Depth (km) Depth (km) Distance (km) Distance (km) Distance (km) Effective viscosity o C log (Pa s) 10 3.8 m.y. 125 Temperature Depth (km) 2 25 25 25 0 0 0 75 75 75 125 125 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Depth (km) Depth (km) Distance (km) Distance (km) Distance (km) Effective viscosity o C log (Pa s) 10 3.9 m.y. 125 Temperature Depth (km) 2 N Franz Josef Land N Franz Josef Land NW Severnaya Zemlya C24n (53 Ma) C24n (53 Ma) C24n (53 Ma) C24n (53 Ma) LR LR LR Cenozoic sed. Cont. crust Pre-Cenozoic sed. Shear zone Shear zone KM W E 40 0 80 120 160 Synthetic waveforms (OBS 314) Observed waveforms (OBS 314) 0 5 10 time - offset/8 (s) 11 12 9 8 7 6 4 3 2 1 0 5 10 time - offset/8 (s) 11 12 9 8 7 6 4 3 2 1 0 20 40 60 80 100 120 140 km MCR Psed Pg PmP KM - Refraction & reflection travel-time tomography JIVE3D package (Hobro, 1999) - 2 layers (sediments, crust) - Layer-stripping approach - Roughness penalizing, no damping - 10 steps for the sedimentary layer - 20 steps for the crustal layer - 6 nonlinear iterations per step with constant regularization strength - Inversion stability criteria: --high and stable ray hits per cent --convergence within the step --small length of the model update vector - misfit: 55 ms (Psed) and 96 ms (Pg) - misfit: 35 ms (PgP) and 83 ms (PmP) BATHYMETRY BOUGUER GRAVITY S V A L B A R D sv FJL SV - Svalbard FJL - Franz Josef Land LR - Lomonosov Ridge -20 -5 10 30 40 70 100 120 140 160 190 0 mGal C24 (53 Ma) C24 (53 Ma) 90-60 Ma 90-60 Ma 90-60 Ma GRAVITY MODELING GEODYNAMIC MODELING WIDE-ANGLE SEISMIC

NORTHERN BARENTS SEA EVOLUTION LINKED TO THE ARCTIC OCEAN - AGU 2010

Embed Size (px)

Citation preview

  • ~90 Ma

    PALEOCENE

    EOCENE

    EARLY CRETACEOUS

    LATE CRETACEOUS

    AUTHORS:

    Alexander Minakov - Rolf Mjelde - Earth Sciences Dept., Univ. of Bergen, NorwayJan Inge Faleide - Dept. Geosciences, Univ. of Oslo, NorwayRitske Huismans - Earth Sciences Dept., Univ. of Bergen, NorwayAnke Dannowski - IFM Geomar, Kiel, GermanyErnst Flueh - IFM Geomar, Kiel, GermanyVladimir Glebovsky - VNIIOkeangeologia, St.Petersburg, RussiaHenk Keers - Earth Sciences Dept., Univ. of Bergen, NorwayYouri Podladchikov - Physics of Geological Processes (PGP), Univ. of Oslo, Norway

    Mail to:

    Earth Sciences Dept., Univ. of Bergen, Norway

    [email protected]

    SUMMARYWe present a systematic study of the Northern Barents Sea continental margin (see Figure above), using several types of geophysical data as well as geodynamic modeling. The results are interpreted in terms of geodynamic processes in the crust and upper mantle in the study area during various geological time periods.

    METHODOLOGY- Wide angle Ocean Bottom Seismometers data acquired east of Svalbard and processed using traveltime tomography - Inversion of gravity data - Finite element thermomechanical modeling of lithospheric extension

    RESULTS- The seismic velocity structure east of Svalbard contains a high-velocity anomaly. This is interpreted as early Cretaceous magmatic intrusions.- The crustal structure of both the Cenozoic and the Cretaceous N Barents Sea margin was predicted using an integrated gravity inversion method and sparse seismic reflection lines. The northern Barents Sea and Lomonosov Ridge margins are symmetric and narrow (< 150 km). The inferred Cretaceous continent-ocean transition (on the Makarov/Podvodnikov Basin side of the Lomonosov ridge) is much wider (150-400 km). On the continent, the N Barents Sea margin is underlain by Paleozoic to early Mesozoic sedimentary basins, which are separated from the oceanic crust by marginal basement uplift.- A mechanism to weaken the lithosphere is required in order to detach the Lomonosov Ridge - a narrow continental sliver. As such mechanism we propose a short-lived episode of margin-parallel shear. We simulate 2D lithospheric extension accompanied by the shear heating localization using the finite element method.

    NORTHERN BARENTS SEA EVOLUTION LINKED TO THE ARCTIC OCEAN T31A-2120

    L m s o R i d o o n o v g e Mak ro Basina v P

    dvo

    kov

    odn

    i

    Bn

    asi

    na a Ca dB sia n

    Men

    delee

    v Ridg

    e

    Alpha Ridge

    Greenland

    Franz Josef Land

    B ff Ba in ay

    Norwegian-Greenland

    Basin

    Barents Sea

    Kara

    Sea

    A m e r a s i aB a s i n

    G a k k e l R i d g e

    L o n o R d g m o o s v i e

    G a k k e l R i d g e

    Nansen Basin

    Barents Sea

    Amundsen BasinNo

    vaya

    Zem

    lya

    Svalbardl rdSva ba Franz Josef Land

    vSe ernaya yZeml a

    Severnaya Zemlya

    B n affi Bay

    Greenland

    Sea

    Kara

    Norwegian-Greenland

    Basin

    N en as nans B i

    nd B nAmu sen asi

    Canada Basin

    Men

    delee

    v Ridg

    e

    Podv

    odnik

    ov

    Basinak ro a nM a v B si

    Alpha Ridge

    A m e r a s i aB a s i n

    Nova

    ya Z

    emly

    a

    ? ?

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    Dep

    th (k

    m) NE Svalbard

    LomonosovRidge (LR)

    0

    A A0 100 200 300

    Distance (km) Distance (km)

    ?

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    Dep

    th (k

    m)

    C C100 200

    0 100 200 km

    ?

    ?

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    Dep

    th (k

    m)

    D D

    D D D D

    GR

    EE

    NL

    AN

    DG

    RE

    EN

    LA

    ND

    D D D D

    C24 (53 Ma)

    GR

    EE

    NL

    AN

    DG

    RE

    EN

    LA

    ND

    N Barents SeaN Kara Sea

    Amerasia Basin

    N Barents SeaN Kara Sea

    Amerasia Basin

    AlphaRidge

    AlphaRidge

    AlphaRidge

    Men

    eleev

    dR

    dge

    ienM

    delee

    v

    Ridg

    eenM

    delee

    v

    Ridg

    e

    Svalbard

    Svalbard

    Svalbard

    Franz JosefLand

    Franz JosefLand

    Franz JosefLand

    Severnaya Zemlya

    Severnaya Zemlya

    Severnaya Zemlya

    ACEX

    Transa

    rctica

    89-91

    Tra

    sr

    t ca

    9n

    ac

    i

    2

    1

    1

    2

    2

    3

    3

    SvalbardFranz JosefLand

    Severnaya Zemlya

    ACEX

    sTra

    n arct

    ica 89

    -91

    Tra

    sarc

    t ca

    9n

    i

    2

    1

    1

    2

    2

    3

    3

    SvalbardFranz JosefLand

    Severnaya Zemlya

    ACEX

    sc c

    89

    Tran a

    r ti a

    -91

    rTan

    sarc

    tica

    92

    1

    1

    2

    2

    3

    3

    BATHYMETRY

    BOUGUER GRAVITY

    MAGNETIC ANOMALIES

    -28-15-7-14

    10162551129161188232

    -2953-2222-1299-336-251-187-107-58-34-161183

    426

    -2953-2222-1299-336-251-187-107-58-34-161183

    426

    -170-99-62-41-26-13-29

    265090

    160332

    nT

    mGal

    m

    m

    o20 o30 o40

    o78

    o76

    o78

    NORDAUSTLANDET

    EDGEYA

    BARENTSYA

    SPIT

    SBER

    GEN

    KONG KARLS LANDPLATFORM314313 312 311310 308 307306 305 304 302 301

    KONG KARLSLAND

    301

    Carboniferous rifts (Faleide et al., 2008)

    Sills: 2 - 4 km(Grogan et al. 1998)

    Sills: 1 - 2 km (Grogan et al. 1998)

    Reactivated faultsOcean bottomseismometersSills/lavas: 0 - 1 km(Grogan et al. 1998)

    Ray coverage

    NUMERICS

    PHYSICS

    NorthAmerica

    Eurasia

    - 1 8 00

    0081-

    0081-

    - 18 0 0

    0081

    -

    - 18

    00

    00

    81-

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    0081-

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    LR

    AR

    RM

    Alaska

    ??

    Greenland

    CB

    BarentsSea

    Emergent area(Barents Sea)Magmatic province

    Oceanic domain

    NorthAmerica

    - 1 8 00

    0081-

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0081-

    00

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    LR

    aAl

    ska

    Greenland

    BarentsSea

    Eurasia

    ??

    ?

    Emergent area(Barents Sea)Magmatic province

    Oceanic domain

    - 1 8 0 0

    0081-

    0081-

    - 1 8 00

    0081

    -

    - 18

    00

    00

    81-

    0

    0

    0

    0

    0

    0 0

    0

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0081-

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    0

    NA-GRErotation pole

    LS

    Eurasia

    GreenlandBarents

    Sea

    LR

    NorthAmerica

    Emergent area(Barents Sea)Magmatic province

    Oceanic domain

    0081-

    00

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    0

    Eurasia

    - 1 8 0 0

    0081-

    0081-

    - 1 8 00

    0081

    -

    - 18

    00

    0081-

    0

    0

    0

    0

    0

    0 0

    0

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    NA-EURArotation pole

    NA-GRErotation pole

    Greenland

    LS

    NGS

    EBEB

    BarentsSea

    NorthAmerica

    LR

    Emergent area(Barents Sea)Magmatic province

    Oceanic domain

    MARGIN EVOLUTION DATA METHOD RESULTS

    25

    25

    25

    0

    0

    0

    75

    75

    75

    125

    125

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    4.0 m.y.

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Distance (km)

    Distance (km)

    Distance (km)

    Effective viscosity

    oC

    log (Pa s)10

    Temperature

    125

    MARGIN-PARALLEL SHEAR (~1 cm/y; 0.5 m.y.)

    1 25

    25

    25

    0

    0

    0

    75

    75

    75

    125

    125

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    3.4 m.y.

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Distance (km)

    Distance (km)

    Distance (km)

    125

    Effective viscosity

    oC

    log (Pa s)10

    Temperature

    NO SHEAR

    1

    - The N Barents Sea, including Svalbard, was not affected by the major Late Jurassic to Early Cretaceous rifting which gave rise to deep basins in the SW Barents Sea. - However, the area experienced widespread Early Cretaceous (Barremian) magmatism related to the High Arctic Large Igneous Province (HALIP).- The magmatism developed without significant crustal thinning. The emplacement of mafic magmas into the crust east of Svalbard was controlled by Paleozoic rift structures which were reactivated in the Early Cretaceous.

    - The Mesozoic N Barents Sea passive margin resulted from the formation of the Makarov (and Podvodnikov?) Basin. - N Barents Sea region together with the Lomonosov Ridge was standing high during most of the Late Cretaceous. - The regional uplift sourced from the Alpha Ridge area.- The extension direction in the Podvodnikov Basin is assumed to be parallel to the Mendeleev Ridge.

    - The Eurasia Basin's breakup in the Paleocene preceded the opening of the Norwegian Sea, implying a connection to the Labrador Sea. - A short-lived lithosphere-scale shear zone has likely facilitated to the detachment of the Lomonosov Ridge microcontinent and the onset of seafloor spreading.

    The Cenozoic N Barents Sea passive margin is characterized by the narrow symmetric rift mode and magma-poor setting of the margin development.

    ARMR

    - Alpha Ridge - Mendeleev Ridge

    LR - Lomonosov RidgeMB - Makarov BasinCB - Canada BasinPB - Podvodnikov Basin

    LR - Lomonosov RidgeLS - Labrador SeaPB - Podvodnikov BasinMB - Makarov Basin

    LR - Lomonosov RidgeLS - Labrador SeaEB - Eurasia BasinNGS - Norwegian-Greenland Sea

    ~120 Ma

    ~60 Ma

    ~53 Ma

    MB

    MB

    PB

    PB

    CB

    AR

    AR

    MR

    MR

    OBSprofile

    OBSprofile

    OBSprofile

    O rBS p ofile

    B B

    ? ?

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    Dep

    th (k

    m)

    A BC

    C

    D

    DB

    A

    A BC

    C

    D

    DB

    A

    P-wave velocitymodel fromrefraction & reflectionseismic tomography

    Velocity anomaliesrelative to 1-D background model

    - Conservation of momentum - Conservation of energy

    - Kinematics

    - Rheology

    - Von Mises plasticity

    - In-compressibility

    - Lagrangian finite element method, thermomech. coupled- 9-node quadrilateral elements (Q P ) 2 -1- 3 dofs (u , u , T) per nodex y- P is found on the element level using static condensation- Iterative viscosity reducing to account for plasticity + Powell and Hestenes iterations - Re-meshing - 600 x 125 km model: asthenosphere, mantle lithosphere, crust, sedimentary and water layers.

    Boundary conditions- top surface is stress-free- bottom is free slip- velocity 3 cm/y applied to the right side

    o- T = 0, T = 1300 Ctop bot- Heat flux on the sides is zero

    Initial lithosphere structure derived from gravity inversionStrike-slip related shear strain rate: = 2e-14 [1/s]

    We model lithosphere extension accompanied by development of a shear zone. The problem is solved in 2-D in the plane normal to the strike-slip.

    u ,u ,Tx yP

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    00 100 200 400 500 600-250

    -200-150-100-50

    050

    100150200250300

    Pre-Cz sedimentsCz sediments

    Continental crust

    ? Oceanic crust

    Dpt

    ()

    eh

    kmvi

    yno

    m(

    alG

    rat

    aal

    y m

    G)

    Distance (km)

    Free-air gravity

    Mantle residual anomaly

    Observed

    Calculated

    3D inversionIsostasy

    Barents50

    S NPROFILE 1NW Barents Sea Nansen Basin

    (z) = exp(-z)0

    3 = 2850 kg/m

    (z) = (1-T)0T = T(, t, z)

    The inversion of the mantle residual gravity anomaly (MRA) was performed with the method of Oldenburg incorporating gravity effects of thermal lithosphere (Chappell & Kusznir, 2008) and sediments:

    b b

    1Mantle lithosphere

    Asthenosphere

    Crust5

    25

    45

    65

    85

    105

    125

    Dep

    th (k

    m)

    Distance(km)

    mG

    al

    FAIR

    MRA

    Shear zone

    3Mantle lithosphere

    Asthenosphere

    Crust5

    25

    45

    65

    85

    105

    125

    Dep

    th (k

    m)

    mG

    al

    Distance(km)

    FAIRMRA

    2

    mG

    al

    Mantle lithosphere

    Asthenosphere

    Crust5

    25

    45

    65

    85

    105

    125

    Dep

    th (k

    m)

    Distance(km)

    FAIR

    MRA

    25

    25

    25

    0

    0

    0

    75

    75

    75

    125

    125

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Distance (km)

    Distance (km)

    Distance (km)

    Effective viscosity

    oC

    log (Pa s)10

    3.8 m.y.

    125

    Temperature

    Dep

    th (k

    m)

    225

    25

    25

    0

    0

    0

    75

    75

    75

    125

    125

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    0 100 200 300 400 500 600 700

    Dep

    th (k

    m)

    Dep

    th (k

    m)

    Distance (km)

    Distance (km)

    Distance (km)

    Effective viscosity

    oC

    log (Pa s)10

    3.9 m.y.

    125

    Temperature

    Dep

    th (k

    m)

    2

    N FranzJosef Land

    N FranzJosef Land

    NW SevernayaZemlya

    C24n (53 Ma)

    C24n (53 Ma)

    C24n (53 Ma)

    C24n (53 Ma)

    LR

    LRLR

    Cenozoic sed.Cont. crust

    Pre-Cenozoic sed.

    Shear zone

    Shear zone

    KM

    W E

    400 80 120 160

    Synthetic waveforms (OBS 314)

    Observed waveforms (OBS 314)

    0

    5

    10

    time

    - offs

    et/8

    (s)

    11

    12

    9

    87

    6

    4

    3

    2

    1

    0

    5

    10

    time

    - offs

    et/8

    (s)

    11

    12

    9

    8

    7

    6

    4

    3

    2

    1

    0 20 40 60 80 100 120 140 km

    MCR

    Psed

    Pg

    PmP

    KM

    - Refraction & reflection travel-time tomography JIVE3D package (Hobro, 1999)- 2 layers (sediments, crust)- Layer-stripping approach- Roughness penalizing, no damping- 10 steps for the sedimentary layer- 20 steps for the crustal layer - 6 nonlinear iterations per step with constant regularization strength- Inversion stability criteria: --high and stable ray hits per cent --convergence within the step --small length of the model update vector - misfit: 55 ms (Psed) and 96 ms (Pg)- misfit: 35 ms (PgP) and 83 ms (PmP)

    BATHYMETRY

    BOUGUER GRAVITY

    S V

    A L

    B A

    R D

    sv FJL

    SV - SvalbardFJL - Franz Josef LandLR - Lomonosov Ridge

    -20-510

    304070100120140160190

    0

    mGalC24 (53 Ma)

    C24 (53 Ma)

    90-60 Ma

    90-60 Ma

    90-60 Ma

    GR

    AV

    ITY

    M

    OD

    ELI

    NG

    GE

    OD

    YN

    AM

    IC

    MO

    DE

    LIN

    GW

    IDE

    -AN

    GLE

    SE

    ISM

    IC

    Page 1