1 Chapter 5: Fourier Transform. FOURIER TRANSFORM: 2 Definition of the Fourier transforms Definition...

Preview:

Citation preview

1

Chapter 5: Chapter 5:

Fourier Fourier TransformTransform

FOURIER TRANSFORM:FOURIER TRANSFORM:

2

Definition of the Fourier transformsDefinition of the Fourier transformsRelationship between Laplace Transforms and

Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParseval’s theoremEnergy calculation in magnitude spectrum

Definition of Fourier Definition of Fourier TransformsTransforms

3

dtetf

tfFF

tj

)(

)()(

Fourier Transforms:

Inverse Fourier Transforms:

4

dteF

FFtf

tj

)(2

1

)()( 1

Example 1:Obtain the Fourier Transform for thefunction below:

0

1

f ( t)

t

ate

5

Solution:

Given function is:

00

0)(

t

tetf

at

6

Fourier Transforms:

7

ja

eja

dtedtee

dtetfF

tja

tjatjat

tj

1

1

)(

)()(

0

)(

0

)(

0

FOURIER TRANSFORM:FOURIER TRANSFORM:

8

Definition of the Fourier transformsRelationship between Laplace Transforms and Relationship between Laplace Transforms and

Fourier TransformsFourier TransformsFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParseval’s theoremEnergy calculation in magnitude spectrum

Relationship between Fourier Transforms and Laplace Transforms

9

There are 3 rules apply to the use of Laplace transforms to find Fourier Transforms of such functions.

Rule 1:If f(t)=0 for t<=0-

Replace s=jω

jstfLtfF )()(

10

Example:

11

0cos

00)(

tte

ttf

oat

Replace s=jω

12

22

22

)(

)()(

o

jso

aj

aj

as

astfF

Rule 2: Inverse negative function

13

jstfLtfF )()(

Example:

14

0cos

00)(

tte

ttf

oat

0cos

00)(

tte

ttf

oat

Negative

Fourier Transforms

15

22

22

)(

)(

)()(

o

jso

js

aj

aj

as

as

tfLtfF

Rule 3:Add the positive and negative function

16

0)()(

0)()(

ttftf

ttftf

)()()( tftftf

Thus,

17

jsjs tfLtfL

tfFtfFtfF

)()(

)()()(

Example 1:

18

at

at

etf

etf

)(

)(

as

tfL

astfL

1)(

1)(

Fourier transforms:

19

22

2

11

11)(

a

a

ajaj

asastfF

jsjs

Example 2:

Obtain the Fourier Transforms for the function below:

0sin

00)(

tte

ttf

oat

20

Solution:

21

22

22

)(

)(

)()(

o

o

jso

o

js

aj

as

sFF

Example 3:

22

0

00)(

tte

ttf

at

Solution:

23

2

2

)(

1

)(

1

)()(

aj

as

tfLF

js

js

Example 4:

24

0

0)(

tte

ttetf

at

at

Solution:

25

at

at

tetf

tetf

)(

)(

2

2

1)(

1)(

astfL

astfL

26

222

22

22

4

)(

1

)(

1

)(

1

)(

1)(

a

aj

jaaj

asastfF

jsjs

FOURIER TRANSFORM:FOURIER TRANSFORM:

27

Definition of the Fourier transformsRelationship between Laplace Transforms and

Fourier TransformsFourier transforms in the limitFourier transforms in the limitProperties of the Fourier TransformsCircuit applications using Fourier TransformsParseval’s theoremEnergy calculation in magnitude spectrum

Fourier Transforms in the limitFourier transform for signum function

(sgn(t))

1 .0

0

-1 .0

t

s g n ( t)

28

)()()sgn( tutut 0)()(lim)sgn(0

tuetuet tt

1 .0

0

-1 .0

t

f ( t)

)(tue t

)( tue t

29

30

22

2

11

11)(

j

jj

sstfF

jsjs

assume ε→0,

31

j

tF2

)sgn(

Fourier Transforms for step function:

)sgn(2

1

2

1)( ttu

j

tFFtuF

1

)sgn(2

1

2

1)(

32

Fourier Transforms for cosine function

tjetf 0)(

)(2 00 tjeF

33

22

2cos

00

00

0

tjtj

tjtj

ee

eet

34

Thus,

00

00

0

222

12

1cos 00

tjtj eFeFtF

35

FOURIER TRANSFORM:FOURIER TRANSFORM:

36

Definition of the Fourier transformsRelationship between Laplace Transforms and

Fourier TransformsFourier transforms in the limitProperties of the Fourier TransformsProperties of the Fourier TransformsCircuit applications using Fourier TransformsParseval’s theoremEnergy calculation in magnitude spectrum

Properties of Fourier Transforms

Multiplication by a constant

)()( FtfF

KFtKfF )(37

Addition and subtraction

33

22

11

)(

)(

)(

FtfF

FtfF

FtfF

)()()(

)()()(

321

321

FFF

tftftfF

38

Differentiation

Fjdt

tfdF

Fjdt

tdfF

nn

n

)(

)(

39

Integration

)0()(

)()(

Fj

FtgF

dxxftgt

40

Scaling

01

)(

aa

Fa

atfF

41

Time shift

)()( 0 FeatfF tj

42

Frequency shift

)()( 00 FtfeF tj

43

Modulation

00

0

2

1

2

1

)()cos(

FF

tftF

44

Convolution in time domain

)()()()( 2121 FFtftf

45

Convolution in frequency domain:

)()(2

1)()( 2121

FFtftf

46

Example 1:

Determine the inverse Fourier Transforms for the function below:

86)(

410)(

2

jj

jF

47

Solution:

48

24

)2)(4(

410

86)(

410)(

2

s

B

s

A

ss

s

ss

ssF

LAPLACELAPLACETRANSFORMSTRANSFORMS

A and B value: 818 BA

2

8

4

18

jjF

49

)()818()( 24 tueetf tt

Recommended