Chapter 8. Lagrange MultipliersOCW...Chapter 8. Lagrange Multipliers (Solution) –Unconstrained...

Preview:

Citation preview

Min Soo KIM

Department of Mechanical and Aerospace EngineeringSeoul National University

Optimal Design of Energy Systems (M2794.003400)

Chapter 8. Lagrange Multipliers

Chapter 8. Lagrange Multipliers

8.1 Calculus Methods of optimization

- Differentiable function

- Equality constraints

Using calculus Using the other methods

2/18

- Inequaility constraints

- Not continuous function

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

3/18

Function : 𝑦 = 𝑦 π‘₯1, π‘₯2, β‹― , π‘₯𝑛

Constraints : πœ™1 π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

πœ™2 π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

πœ™π‘š π‘₯1, π‘₯2, β‹― , π‘₯𝑛 = 0

βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™

How to optimize the function subject to the constraints?

Chapter 8. Lagrange Multipliers

8.2 Lagrange Multiplier equations

4/18

For an optimized point function f(x,y) and g(x,y) are parallel, which meansgradient of f(x,y) is tangent to that of g(x,y)

Thus, for a certain constant Ξ», equation below is established

For multiple m constraints

𝛻𝑓 π‘₯, 𝑦 = πœ†π›»π‘” π‘₯, 𝑦

𝛻𝑓 =

π‘˜=1

π‘š

πœ†π‘šπ›»π‘”π‘š = 0

Chapter 8. Lagrange Multipliers

8.3 The gradient vector

Gradient of scalar

𝛻𝑦 =πœ•π‘¦

πœ•π‘₯1 𝑖1 +

πœ•π‘¦

πœ•π‘₯2 𝑖2 +β‹―+

πœ•π‘¦

πœ•π‘₯𝑛 𝑖𝑛

𝛻 = π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝑖 = 𝑒𝑛𝑖𝑑 π‘£π‘’π‘π‘‘π‘œπ‘Ÿ ∢ β„Žπ‘Žπ‘£π‘’ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›, 𝑒𝑛𝑖𝑑 π‘šπ‘Žπ‘”π‘›π‘–π‘‘π‘’π‘‘π‘’

( 𝑖1, 𝑖2 , 𝑖3 π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ 𝑒𝑛𝑖𝑑 π‘£π‘’π‘π‘‘π‘œπ‘Ÿ 𝑖𝑛 π‘‘β„Žπ‘’ π‘₯1, π‘₯2, π‘₯3 π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›)

5/18

* *

1 1,m nx x

at optimum point

unknowns

m

n

m n

m nif fixed values of x’s(no optimization)

Chapter 8. Lagrange Multipliers

8.4 Further explanation of Lagrange multiplier equations

n scalar equations

𝑖1:πœ•π‘¦

πœ•π‘₯1βˆ’ πœ†1

πœ•πœ™1

πœ•π‘₯1βˆ’ πœ†π‘š

πœ•πœ™π‘š

πœ•π‘₯1= 0

βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™βˆ™

𝑖𝑛:πœ•π‘¦

πœ•π‘₯π‘›βˆ’ πœ†1

πœ•πœ™1

πœ•π‘₯π‘›βˆ’ πœ†π‘š

πœ•πœ™π‘š

πœ•π‘₯𝑛= 0

+ m constraint equations m+n simultaneous equations

6/18

optimum point can be found

8.5 Unconstrained optimization

Chapter 8. Lagrange Multipliers

𝑦 = 𝑦 π‘₯1, π‘₯2,β‹― , π‘₯𝑛

β†’ 𝛻𝑦 = 0 no ϕ′𝑠 π‘œπ‘Ÿπœ•π‘¦

πœ•π‘₯1=

πœ•π‘¦

πœ•π‘₯2= β‹― =

πœ•π‘¦

πœ•π‘₯𝑛= 0

The state point where the derivatives are zero = critical point

β‡’may be max, min, saddle point, ridge, valley

7/18

From (1),

Example 8.1 :

Chapter 8. Lagrange Multipliers

Find minimum value of z for a given constraint

(Solution)

8/18

𝑧 = π‘₯2 + 𝑦2 1 = π‘₯2 + π‘₯𝑦 + 𝑦2

𝛻𝑓 π‘₯, 𝑦 = πœ†π›»π‘” π‘₯, 𝑦

2π‘₯ βˆ’ πœ† 2π‘₯ + 𝑦 = 0

𝑔 π‘₯, 𝑦 βˆ’ 1 = 0

Β·Β·Β·Β·Β·(1)

Β·Β·Β·Β·Β·(2)

2𝑦 βˆ’ πœ† 2𝑦 + π‘₯ = 0𝑦 = π‘₯ π‘œπ‘Ÿ 𝑦 = βˆ’π‘₯

Substituting (2) from the result

1 = 3π‘₯2 or 1 = π‘₯2

Thus, minimum value z is at π‘₯, 𝑦 =1

3,Β±

1

3

2

3

Chapter 8. Lagrange Multipliers

Example 8.2,3 : Constrained/Unconstrained optimization

A total length of 100 m of tubes must be installed in a shell-and-tube heat

exchanger.

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 + 1100𝐷2.5𝐿 + 320𝐷𝐿 (𝒂)

where L is the length of the heat exchanger and D is the diameter of the shell,

both in meters. 200 tubes will fit in a cross-sectional area of 1 m2 in the shell.

Determine the D and L of the heat exchanger for minimum first cost.

9/18

Chapter 8. Lagrange Multipliers

(Solution) – Unconstrained Optimization

Have to put 100m tubes in the shell

: πœ‹π·2

4m2 200 tubes/m2 βˆ— 𝐿 m = 100 m

β‡’ 50πœ‹π·2𝐿 = 100 𝒃

Substitute (b) into (a)

β‡’ π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 +2200

πœ‹π·0.5 +

640

πœ‹π·

𝑑(π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘)

𝑑(𝐷)=1100

πœ‹π·0.5βˆ’640

πœ‹π·2

π·βˆ— = 0.7 m, πΏβˆ— = 1.3 m, π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ— = $1777.45

10/18

Chapter 8. Lagrange Multipliers

(Solution) – Constrained Optimization

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘ = 900 + 1100𝐷2.5𝐿 + 320𝐷𝐿 (𝒂)

50πœ‹π·2𝐿 = 100 𝒃

𝛻y = 2.5 1100 𝐷1.5𝐿 + 320𝐿 𝑖1 + 1100𝐷2.5 + 320𝐷 𝑖2

π›»πœ™ = 100πœ‹π·πΏ 𝑖1 + 50πœ‹π·2 𝑖2

𝑖1: 2750𝐷1.5𝐿 + 320𝐿 βˆ’ πœ†100πœ‹π·πΏ = 0 (𝒄)

𝑖2: 1100𝐷2.5 + 320𝐷 βˆ’ πœ†50πœ‹π·2 = 0 𝒅

Using (b), (c), (d), find π·βˆ—, πΏβˆ—, πœ†

Result is the same as unconstrained optimization

11/18

2x

1x

3y y

2y y

1y y

1dx

2dx

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

- gradient vector is normal to contour line

𝑦 = 𝑦 π‘₯1, π‘₯2

𝑑𝑦 =πœ•π‘¦

πœ•π‘₯1𝑑π‘₯1 +

πœ•π‘¦

πœ•π‘₯2𝑑π‘₯2

Along the line of 𝑦 = π‘π‘œπ‘›π‘ π‘‘.

𝑑𝑦 = 0 β†’ 𝑑π‘₯1 = βˆ’π‘‘π‘₯2πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

Substitution into arbitrary unit vector

𝑑π‘₯1 𝑖 + 𝑑π‘₯2 𝑗

(𝑑π‘₯1)2 + (𝑑π‘₯2)

2

12/18

Tangent vector

Gradient vector

0T G

Chapter 8. Lagrange Multipliers

8.7 Gradient vector

𝑇 =𝑑π‘₯1 𝑖 + 𝑑π‘₯2 𝑗

(𝑑π‘₯1)2 + (𝑑π‘₯2)

2=

𝑖2 βˆ’πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

𝑖1

πœ•π‘¦/πœ•π‘₯2πœ•π‘¦/πœ•π‘₯1

2

+ 1

=βˆ’

πœ•π‘¦πœ•π‘₯2

𝑖1 +πœ•π‘¦πœ•π‘₯1

𝑖2

πœ•π‘¦πœ•π‘₯2

2

+πœ•π‘¦πœ•π‘₯1

2

𝐺 =𝛻𝑦

𝛻𝑦=

πœ•π‘¦/πœ•π‘₯1 𝑖1 + πœ•π‘¦/πœ•π‘₯2 𝑖2

πœ•π‘¦/πœ•π‘₯12 + πœ•π‘¦/πœ•π‘₯2

2

13/18

saddle pointridge & valley point

ridge

valley

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

decide whether the point is a maximum, minimum, saddle point, ridge, or valley

14/18

minimum

maximum

a1x2x

a

1x2x

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

π‘₯ = π‘Ž ∢ π‘‘β„Žπ‘’ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š 𝑖𝑠 𝑒π‘₯𝑝𝑒𝑐𝑑𝑒𝑑 π‘‘π‘œ π‘œπ‘π‘π‘’π‘Ÿ

𝑦 π‘₯ = 𝑦 π‘Ž +𝑑𝑦

𝑑π‘₯π‘₯ βˆ’ π‘Ž +

1

2

𝑑2𝑦

𝑑π‘₯2(π‘₯ βˆ’ π‘Ž)2 +β‹― Taylor series expansion near π‘₯ = π‘Ž

If 𝑑𝑦

𝑑π‘₯> 0 π‘œπ‘Ÿ

𝑑𝑦

𝑑π‘₯< 0 π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š

→𝑑𝑦

𝑑π‘₯= 0

If𝑑2𝑦

𝑑π‘₯2> 0

If𝑑2𝑦

𝑑π‘₯2< 0

𝑦 π‘₯1 > 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯1 > π‘Žπ‘¦ π‘₯2 > 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯2 < π‘Ž

𝑦 π‘₯1 < 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯1 > π‘Žπ‘¦ π‘₯2 < 𝑦 π‘Ž π‘€β„Žπ‘’π‘› π‘₯2 < π‘Ž

15/18

min

11 12

21 22

2

11 22 12

y yD

y y

y y y

max

Chapter 8. Lagrange Multipliers

8.9 Test for maximum or minimum

π‘Ž1, π‘Ž2 : π‘‘β„Žπ‘’ π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘œπ‘“ 𝑦 π‘₯1, π‘₯2 𝑖𝑠 𝑒π‘₯𝑝𝑒𝑐𝑑𝑒𝑑 π‘‘π‘œ π‘œπ‘π‘π‘’π‘Ÿ

𝑦 π‘₯1, π‘₯2 = 𝑦 π‘Ž1, π‘Ž2 +πœ•π‘¦

πœ•π‘₯1π‘₯1 βˆ’ π‘Ž1 +

πœ•π‘¦

πœ•π‘₯2π‘₯2 βˆ’ π‘Ž2 +

1

2𝑦11β€²β€² (π‘₯1 βˆ’ π‘Ž1)

2 +

𝑦12β€²β€² π‘₯1 βˆ’ π‘Ž1 π‘₯2 βˆ’ π‘Ž2 +

1

2𝑦22β€²β€² (π‘₯2 βˆ’ π‘Ž2)

2 +β‹―

𝐷 > 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² > 0 (𝑦22

β€²β€² > 0)

𝐷 > 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² < 0 (𝑦22

β€²β€² < 0)

𝐷 < 0 π‘Žπ‘›π‘‘ 𝑦11β€²β€² < 0 (𝑦22

β€²β€² < 0)

16/18

Chapter 8. Lagrange Multipliers

Example 8.4 : Test for maximum or minimum

Optimal values of π‘₯1 and π‘₯2, test max, min

𝑦 =π‘₯12

4+

2

π‘₯1π‘₯2+ 4π‘₯2

(Solution)

πœ•π‘¦

πœ•π‘₯1=π‘₯12βˆ’

2

π‘₯12π‘₯2

πœ•π‘¦

πœ•π‘₯2= βˆ’

2

π‘₯1π‘₯22 + 4

π‘₯1βˆ— = 2, π‘₯2

βˆ— =1

2

πœ•2𝑦

πœ•π‘₯12 =

3

2,πœ•2𝑦

πœ•π‘₯22 = 16,

πœ•2𝑦

πœ•π‘₯1πœ•π‘₯2= 2

At π‘₯1 and π‘₯2

β†’3

22

2 16> 0 π‘Žπ‘›π‘‘ 𝑦11

β€²β€² > 0 minimum

17/18

In example 8.3, if the total length of the tube increases from 100m torandom value β€˜H’, what would be the increase in minimum cost ?

Extra meter of tube for the heat exchanger would cost additional $8.78

Chapter 8. Lagrange Multipliers

8.10 Sensitivity coefficients

- represents the effect on the optimal value of slightlyrelaxing the constraints

- variation of optimized objective function π‘¦βˆ—

50πœ‹π·2𝐿 = 𝐻 β†’ π·βˆ— = 0.7π‘š, πΏβˆ— = 0.013𝐻

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ— = 900 + 1100π·βˆ—2.5πΏβˆ— + 320π·βˆ—πΏβˆ— = 900 + 8.78𝐻

𝑆𝐢 =πœ•(π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘œπ‘ π‘‘βˆ—)

πœ•π»= 8.78 = πœ†

18/18

Recommended