Self-propelled Helical Nanobelt Robots for Biomedical Applications Gilgueng HWANG, Stéphane...

Preview:

Citation preview

Self-propelled Helical Nanobelt Robots for Biomedical Applications

Gilgueng HWANG, Stéphane REGNIER, Sinan HALIYO

Sinan.Haliyo@upmc.fr

http://www.isir.fr

In-vivo mobile nanorobots ?

1. Power source +2. Actuation/propulsion3. Sensing4. Controlled bio-

mechanical & chemical interactions +

5. External monitoring +6. Wireless communication7. Intelligence © Copyright 1996 by Scientific

American

Artificial bacteria flagella

Mag. bacteria

S. MarcescensBacteria

Catalytic propulsion

Molecular motor

Behkam et al., APL, 90, 2008

Noji et al., CELL, 93, 1998

Honda et al., IEEE Mag., 32, 1996

Zhang et al.,APL,94,2009

Mei et al., Adv. Mat., 20, 2008

Mei et al., IEEE Bio., 55, 2008

Flagella swimming

Actuation/propulsion

Magnetic swimmingAbbot et al.,IJRR,94,2009

Controlled bio-mechanical interactions Optical & Magnetic tweezers

Flaser Fviscosité

External manipulation of passive particles

Millimeter to micrometer range Piconewton force range Indirect force measurement:

Optical detection + Interaction models

In-vitro only

A new active tool: Helical NanobeltsBilayer Configuration

Strained Bilayer

Model by Atomic Lattice Mismatch

HNB design & fabrication

16

464

2121

42

1

2321

22

212

31

41

2

1

dddd

dE

Eddddddd

E

E

r

d1, d2: layer thickness. E: Young modulus

: mismatch between bilayer. : Poisson’s ratio of the bilayer

Self-scrolling principle

GaAs Substrate

MBE Deposition of GaAs/AlGaAs/InGaAs/GaAs

Positive Photolithography

Cr/Ni/Au Evaporation

Wet Etch ReleaseRIE

Negative Photolithography

Lift-Off

(a)

(c)

(b)

(g)

(f)

(e)

(d)

Metal connectors

Piezoresistive Force Sensing

10μm

Piezoresistance coefficient 249~890X higher than

boron doped P+ Si cantilever

Piezo. Coef.Πl

ρ[E-10Pa-1]

Si Bulk -1.7~-9.4

Bn-Si -4

SiNW -3.5~-355

CNT -400

HNB -399~-3560

Hwang et al., ACS Nano Lett., 9, 554, 2009

Compared to other piezoresistors

Biocompatible force-sensing

And They Swim !

Electro-osmotic Actuation

EH

v NRrtotal

3

2 0

Swimming performance

Electric vs magnetic field Electric field provides the power source and

the direction: the robot is self-propelled through elecro-osmosis

Single Flagellum Multiflagella

Bio-chemical interactions

www.golem-project.euDesign of DNA sequences for controllable micro-scale assembly

Nanoscale transport (coming soon)

Reconfigurable Assembly

Transport direction

Magnetic Resonance Imaging

Near Infrared Fluorescent Imaging

Altınolu et al. ©2008 ACS Nano

External monitoring

Actuation mechanismsApproach

Design parameters

Electrical Motor Optical Motor Mechanical motor

Remote Power Source

AC/DC electric field Pulse wave laser (near infrared laser)

Mechanical energy (oscillation, stress)

Energy Conversion mechanism

Electro-osmosisDielectrophoresis

Photoconductivity Piezoelectricity

Motions Gradient Pulling / Helical propellerElastic tail oscillation / Pumping by torsion motion

Geometry Single/multiflagella (for SWARM behavior)Single/dual chirality (linear to rotary conversion) helical structure

p-n junction (diode) or quantum well for rotating and pumping

Material InGaAs/GaAs (incorporation with ZnO or Al increases piezo effect)InGaAs/InP (different resonance frequencies)

Surface Chemistry

Hydrophobic surface functionalizationTarget specific biological functionalization

Potential applications ?

Treatment of thrombosis

Targeted drug delivery

In-vivo detection / lab-on-chip analysis

Neural probing

Recommended