Status of DA F NE upgrade project

Preview:

DESCRIPTION

Status of DA F NE upgrade project. C. Biscari for the DA F NE team. Napoli -19 september 2005. DA F NE today. 16 September. L peak = 1.53 cm -2 sec -1. Integrated luminosity = 9.4 pbarn -1. 430 nbarn -1 /hour -> 10 pbarn -1 per day. KLOE. FINUDA. SRFF ?. SIDDHARTA. TODAY. 2008?. - PowerPoint PPT Presentation

Citation preview

Status of DANE upgrade project

C. Biscari for the DANE team

Napoli -19 september 2005

DANE today

Lpeak = 1.53 cm-2 sec-1

Integrated luminosity = 9.4 pbarn-1

16 September

430 nbarn-1/hour -> 10 pbarn-1 per day

KLOE

FINUDA

SIDDHARTA

SRFF ?

TODAY 2008?

Starting point for the accelerator

Energy (cm) (GeV) 1.02 2.4

Integrated Luminosity per year (ftbarn-1) 8

Total integrated luminosity 20 3

Peak luminosity > (cm-1sec-2) 8 1032 1032

Collider e+ e-

• It is not possible to meet all the requirements of the collider with present DANE hardware

• 3 to 4 years from To (project approval) needed for R&D, designing, constructing, testing, installing new components

• 1 year commissioning at low luminosity

2006 To - Design

2007 Design + Construction

2008 Construction + Delivery

2009 Delivery + Decommissioning + Installation

2010 First beam

2011 First beam to 1st experiment

Do we need to modify completely DANE?

Even if the possibility to run also at the Φ-energy is taken into account, optimizing the performance in the low energy range is not considered

July 2005

Possibility of upgrading the energy in DANE up to 2.4 GeV

• IR• Dipoles• Splitters• Vacuum chamber• Control system• Diagnostics• Ancillary systems

(Injection at 510 MeV keeping the present injection chain)

Minimum modifications needed for energy upgrade

Different considerations with respect to G-63are necessary

to increase luminosity at – energyof one order of magnitude

* *4coll

x y

f N NL

coll b of N f

* * * *x y x x y

Total current

Rf frequencyCrossing angle

x

y

Damping time

Bunch length

coll b of N f

* * * *x y x x y

Total current

Rf frequencyCrossing angle

Bunch length

Now New

Frf (MHz) 368 500

Bunch spacing (cm) 84 60

Bunch spacing (nsec) 2.5 1.8

h 120 165

Nb 110 150

Itot (A) 1.3+ 1.8 - 2.5

Vmax (MV) 0.25 1.5

c max 0.04 0.08

I Boussard (mA) 1 15

l (cm) @ 15 mA 2-3 1Lower impedance, higher E/E, higher c

* *4coll

x y

f N NL

* * * *x y x x y x

y

Damping time

2 2

2

e e

e

xx

xx x y

y yy x

xy x y

r rN N

r N

Beam-beam tune shift

Now New

N (1010 ) 2.4 – 3.3 3.4 - 3.4

I (A) 1.3 – 1.8 2.5 - 2.5

x ( rad) 0.4 0.3

x ( m ) 1.8 1

y ( cm ) 1.8 1

L (cm) 2 - 3 1

(% ) 1.5 1

d ( msec ) 37 12

I2 ( m-1 ) 10 30

Uo ( keV ) 9 27

P ( kW ) 9 x 5A 27 x 2.5A

New IR, shorter bunch length, new RF,Lower impedance (e-)

Shorter damping time, shielded pc, new IR

New wigglers

4

232

2

3e

o

r EU I

mc

New vacuum system

New rf system, higher c, new lattice

How all these parameters fit in a single machine

• One IR• Same detector for all experiments• Flexibility of lattice, all independent quads• New normal conducting dipoles (as in G63)• New sc wigglers• New sc rf system• New layout and vacuum chamber• Upgraded injection system

Future upgrades

•Strong rf focusing – L, y in the mm range.

•Ring layout not preventing the possibility of installing harmonic and powerful cavity – test can be done in DANE in 2007-2008

(http://www.lnf.infn.it/conference/sbsr05/)

•Increase by a factor 4 the luminosity with the same current

IR design

KLOE detector for all experiments

Energy (GeV) 0.51 1.2

Bdet (T) 0.4 0.2

BL (Tm) 1.68 0.84

rot (°) 28.3 6.0

Transverse plane rotation:Quadrupole rotation different

for different energies and/or Bdet

Use of SC low beta quads with skew windings

No need of mechanical rotation

Technology already used in HERA, BEPC, CESR

Strong R&D for ILC

10°

Q1

Q2

IR design parameters

Energy (GeV) 0.51 0.51 1.2 1.2 Quadrupole Q1 Q2 Q1 Q2 Magnetic length (m) 0.40 0.40 0.40 0.40 Distance from IP (m) 0.60 1.20 0.60 1.20 K1 (m

-1) 7.6 3.6 7.7 3.7 G (T/m) 12.92 6.12 30.80 14.80 Alfa rot (°) 4.04 8.1 0.86 1.8 Ksk (m

-1) 1.07 1.00 0.23 0.23 Gsk (T/m) 1.82 1.70 0.92 0.93 Bending angle (mrad) 1.6 8 0 3.2 Bdip (gauss) 70 344 0 324

IR optical functions

E = 0.51 GeVx* = 1 my* = 1 cmcross = 15 mrad

E = 1.2 GeVx* = 1 my* = 2 cmcross = 12 mrad

Parasitic crossing Beam – Beam tune shift

E = 0.51 GeVBunch spacing 60 cm

In the first 1.5 m : 5 pc (every 30 cm)

E = 1.2 GeVBunch spacing 3 mFirst pc after 1.5 m

2

2

2

2

pc e xx

ypc ey

Nr

x

Nr

x

0.051

0.051x

y

0.010

0.012x

y

Synchrotron radiation integrals

2 2

3 3

4 3

22

5 3

1 2

' ' / 2

dsI

dsI

n DI ds

D D DI ds

Emittance - I2, I4, I5Damping time - I2Energy spread - I3, I4Natural bunch length - I3, I4Emitted power - I2

Choice of lattice, dipoles, wigglers

4

232

2

3e

o

r EU I

mc

Damping time and radiation emission

4

232

2

3e

o

r EU I

mc

32

1

x

CE I

C

Energy emitted per turn

Damping time

In DAFNE now: I2 = 9.5 m-1 , Uo = 9 keV, x = 37 msec

I2 = 4.5 dipoles + 5 wigglers

1.8 T Dipole Magnet, POISSON simulation

DIPOLES

Dipoles per ring 12

B (T) 0.77 – 1.8

(m) 2.22

Gap (cm) 3

Angle (°) 26.6(5) 33.3(5) 37.3(1) 22.6(1)

Magnetic length (m) 1.03 (5) 1.29 (5) 1.45 (1) 0.88 (1)

Current (A) 150, 430

Choice of normal conducting dipoles

Maximum field: 1.8 T @1.2 GeV

I2 = 2.8 m-1

Wigglers are needed to increase radiation and make beam stronger against instabilities

by decreasing damping time

Once decided the damping time, I2 is defined:

In our case:

x (@510 MeV) = 13 msec : I2 = 26 m-1 Lw = 6.5 @ B = 4 T

With same wigglers and scaled dipoles @1.2GeV: x =5 msec I2 = 6.5 m-1

2

2

1

2 w

Bi L

B

Why wigglers are important?

• To achieve the short damping times and ultra-low beam emittances needed in LC Damping Rings

• To increase the wavelength and/or brightness of emitted radiation in synchrotron light sources

• To increase radiation damping and control emittance in colliders

E. Levichev

Recent progress in wiggler technology

Operating experiences:CESRc, ELETTRA, CAMD

R&D in progress:ILC, ATF, PETRA3, …

Emittance2

52

2 4

55

32 3x

IE

mc mc I I

Dispersion

I5

W W

D D D

Wigglers in dispersive zones increase I5 and emittance depending on and D functions.

Wigglers in non-dispersive zones increase I2 and lower emittance

Wigglers influence beam parameters and dynamics:

Change the radiation integrals

Non-linear effects: affecting dynamic aperture, lifetime, beam-beam behavior

The non linear effects are enhanced if the bunch has large transverse dimensions : Large beta functions and dispersion.

Placing wigglers in a non-dispersive zone with low betas minimizes non linear kicks.

Good field region centered around wiggler axis

Trajectory centered on wiggler axis, independently of E and B

Trajectory position with respect to wiggler axis, depends on E and B

Usual wiggler design: odd # poles CESRc design: even # poles

E = 0.51 GeV

E = 1.2 GeV

B = 4 T B = 4 T

Choice of wiggler shape

Choice of pole length, w

Once defined Ltotal and Bmax

Radiation, emittance, energy spread are determined

Transverse non-linearities:

increase with w

Longitudinal non-linearities:

decrease with w

Energy spread – bunch length – rf system

2 22 3

2 42qE

q

CIC

E I I

2c cE EL

s o

c Ec

E heV E

More radiation –larger energy spread – longer bunch

Bunch length can be shortenedby increasing h, V

Natural bunch length and energy spread at low current are definedby the magnetic lattice, the momentum compaction and the rf system

Short bunch length at high current:• Low impedance

• High c

• High voltage

1

1,5

2

2,5

3

3,5

4

4,5

50 100 150 200 250 300

FWHM/2.35 (1.5 mA)

FWHM/2.35 (9 mA)

FWHM/2.35 (19 mA)

V [kV]

FWHM/2.3548 [cm]

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50

Measurements 2000Simulation 1998Measurements 2004

I [mA]

FWHM/2.3548 [cm]

2/2

/c E l

th

E e EI

Z n

Above the microwave instability current thresholdL increases with the current, not depending on c

MEASUREMENTS ON DANE

RF system

A possible candidate cavity

500 MHz SC cavity operating at KEKB

Higher frequencies – lower acceptanceLower frequencies – higher voltage

R&D on SC cavities with SRFF experiment in DAFNE

10

100

1000

0 0.5 1 1.5 2 2.5 3

tau (sec) @0.51tau (sec) @1.2

tau (sec)

V (MV)

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

sigs (mm)@0.51sigs (mm)@1.2

L

(mm)

V (MV)

Touschek beam lifetime and natural bunch lengthas a function of rf voltage (energy acceptance)

E (GeV) 0.51 1.2

E/E (10-4) 6.1 8.4

c 0.08 0.04

High currents

NOW: I- = 1.8 A I+ = 1.3 A routinelyMaximum stored current: I- = 2.4 A I+ = 1.5 A

Experience in Feedbacks Going to 2.5 A – no expected difficulties for e-While e-cloud limiting e+ R&D in progress, simulations, possible cures, possibility of Ti coating DANE vacuum chamber

Maximum e- currentStored in any accelerator

N-NEnergy per beam E GeV 0.51 1.2

Circumference C m 100 100

Luminosity L cm-2 sec-1 8 1032 1032

Current per beam I A 2.5 0.5

N of bunches Nb 150 30

Particles per bunch N 1010 3.1 3.4

Emittance mm mrad 0.3 0.6

Horizontal beta* x m 1 1

Vertical beta* y cm 1 2

Bunch length L cm 1 2

Coupling % 1 1

Energy lost per turn Uo (keV) 25 189

H damping time x (msec) 13 5

Beam Power Pw (kW) 62 (55w + 7d) 94.6 (42w + 53d)

Power per meter Pw/m (kW/m) 8.6w + 0.5d 8.4w + 3.8d

Two ringsOne IR

SKETCH OF NEW LAYOUT

DAFNE HALL

KLOE

Rf cavitieswigglers

Optical functions at - energy

IP

Wigglers

injection tuning

IR + section for background minimization

DIPOLE 180° Phase advance between last dipole and QF in IR .

Particles produced inthe dipole will pass near the axis in the quadrupole, and wontbe lost

Scrapers along the ring to stop particles produced elsewhere

Beam direction

Optical functions at 1.2 GeV

Cryogenic system

• KLOE solenoid

• Two compensators

• 4 low beta quads

• 6 wigglers

• 2 rf cavities

Injection system

•Linac + Accumulatore OK •Doubling transfer lines for optimizing <L>•New kickers (R&D in progress)•Ramping for high energy option

To be studied the possibility of using on – energy injection for the HE and compatibility with SPARXINO

The High Luminosity option needs continuous injection

STUDIES FOR NEW DAFNE INJECTION KICKERSSTUDIES FOR NEW DAFNE INJECTION KICKERS

present pulse length ~150nst t

VT VT

Schematic of the present injection kicker system and kicker structure

2 kickers for each ring ~ 10mradBeam pipe radius = 44 mmKicker length = 1m

aimed FWHM pulse length ~5.4 ns

E=510 Mev# of bunches=120(max)Stored current=1.5-2.0A

K

K

K

K

Courtesy ofD. AlesiniF. Marcellini

Lf - 2L=LB=4z inj140mm

Lr+Lf=2DB 1.6m

Let’s assume: Lr/c=300ps

L 680mmLf/c = 5ns

GENERATOR REQUIREMENTS ((ΘΘnormnorm=0.69mrad.MeV/cm/kV)=0.69mrad.MeV/cm/kV)

t

VIN

Lf /c

Lr /c

Generator pulse shape

Lr /c

Beam energy 510 MeV

Angle of deflection 6 mrad

Stripline length 68 cm

Stripline radius (optimized covarage angle) 30 mm

Required voltage from pulse generator ~65 kV

Average power (max rep. rate 50Hz) 24.5 W

Pulser output current 1400A

t(2L+Lr)/c

(Lf-2L)/c=LB/c

Deflect

ing

volt

ag

e V

T

(2L+Lr)/c

2DB

EVALUATION OF THE KICKER LENGTH (L) EVALUATION OF THE KICKER LENGTH (L) AND THE PULSE SHAPE (Lf , Lr)AND THE PULSE SHAPE (Lf , Lr)

Lf - 2L=LB=0L 750mmLf/c = 5ns

Stripline length 75 cm

Required voltage from pulse generator

~45 kV

Neglecting the bunch length...Neglecting the bunch length...

Courtesy ofD. AlesiniF. Marcellini

Injection systemupgrade

• The proposed

transfer lines pass

in existing

controlled area

• Additional

shielding needed

in the area

between the

accumulator and

DAFNE buildings

new e- line

new e+ line

Use of DAFNE2 as Synchrotron light source

Energy (GeV) 0.51 1.2

Current (A) 2.5 0.5

B dipoles (T) 0.77 1.8

B wigglers (T) 4. 4.

New scenarios

Tentative costs:

41 M euroincluding IVA

+ 10% contingency

40868800

The option foronly energy upgrade:About 22 M eurodifference due toWigglers, rf, cryogenics

Tentative schedule

• To -> Project approval (2006)• To + 1 year -> TDR

call for tender• To + 2 years -> construction • To + 3 years -> construction and delivery,

DAFNE decommissioning• To + 4 years -> installation and commissioning• To + 5 years -> 1st beam for 1st experiment (2011)

Different experiments must be planned in temporal sequencesince they use the same IR

manpower

• Richiesta di personale in vista dei programmi futuri• Servizio Elettronica e Diagnostica• N. 1 Fisico o Ingegnere Elettronico• N. 1 Diplomato in Elettronica• Servizio Impianti a Fluido• N. 2 Diplomati Impiantisti• Servizio Impianti Criogenici• -• Servizio Impianti di Potenza e Magneti• N. 2 Ingegneri • N. 2 Diplomati Elettrotecnica-Elettronica• Servizio Impianti Elettrici• N. 1 Diplomato Elettrotecnico• Servizio Ingegneria Meccanica• N. 1 Ingegnere Meccanico• N. 2 Diplomati Progettisti Meccanici• Sevizio Linac e Sicurezze• N. 1 Fisico o Ingegnere Elettronico RF• N. 2 Diplomati Elettrotecnica-Elettronica• Servizio Radiofrequenza• -• Servizio Sistema di Controllo• N. 2 Fisici o Ingegneri Informatici• N. 1 Diplomato Informatica• Servizio Vuoto• N. 1 Fisico o Ingegnere dei Materiali• N. 1 Diplomato Impiantista• Per il gruppo di fisica di macchina è inoltre necessario un

rinforzo di almeno un paio di giovani fisici.

D.A.+

10 Physicists – Engineers12 Technicians