The central extended amygdala in fear and anxiety: Closing...

Preview:

Citation preview

Whenextreme, fear and anxiety can becomedebilitating [1].2. Anxiety disorders impose a staggering burden on public health; they are common, costly, and contribute to the etiology of depression and

substanceabuse[2–4].Existingtreatmentsareinconsistentlyeffectiveorassociatedwithsignificantadverseeffects[5,6],underscoringtheneedtodevelopadeeperunderstandingofthedistributedneuralcircuits

thatcontroltheexpressionoffearandanxiety.Converginglinesofphysiologicalandmechanisticevidenceindicatethatthecentralextendedamygdala—includingthecentralnucleusoftheamygdala(Ce)andbed

nucleusofthestriaterminalis(BST)—isakeyhubinthiscircuitryandmotivatesthehypothesisthatlocalalterationsinthecentralextendedamygdalacandrivechangesinremoteregionsofthebraininwaysthat

promotethedevelopmentandmaintenanceofanxiety,mood,andsubstanceusedisorders[7–13](Fig.1).

Reviewarticle

Thecentralextendedamygdalainfearandanxiety:Closingthegapbetweenmechanisticandneuroimagingresearch

AndrewS.Foxa,b,⁎⁎,1

dfox@ucdavis.edu

AlexanderJ.Shackmanc,d,e,⁎,1

shackman@umd.edu

aDepartmentofPsychologyandUniversityofCalifornia,Davis,CA95616,UnitedStates

bCaliforniaNationalPrimateResearchCenter,UniversityofCalifornia,Davis,CA95616,UnitedStates

cDepartmentofPsychology,UniversityofMaryland,CollegePark,MD20742,UnitedStates

dNeuroscienceandCognitiveScienceProgram,UniversityofMaryland,CollegePark,MD20742,UnitedStates

eMarylandNeuroimagingCenter,UniversityofMaryland,CollegePark,MD20742,UnitedStates

⁎Correspondingauthorsat:DepartmentofPsychology,UniversityofMaryland,CollegePark,MD20742,UnitedStates.

⁎⁎Correspondingauthorsat:DepartmentofPsychologyand,UniversityofCalifornia,Davis,CA95616,UnitedStates.

1TheseAuthorscontributedequallytothiswork;theorderofauthorswasdeterminedbyacoinflip.

Abstract

Anxietydisordersimposeastaggeringburdenonpublichealth,underscoringtheneedtodevelopadeeperunderstandingofthedistributedneuralcircuitsunderlyingextremefearandanxiety.Recentworkhighlights

theimportanceofthecentralextendedamygdala,includingthecentralnucleusoftheamygdala(Ce)andneighboringbednucleusofthestriaterminalis(BST).AnatomicaldataindicatethattheCeandBSTformatightly

interconnectedunit,wheredifferentkindsof threat-relevant informationcanbe integrated toassemble statesof fearandanxiety.Neuroimaging studies show that theCeandBSTareengagedbyabroad spectrumof

potentiallythreat-relevantcues.Likewise,mMechanisticworkdemonstratesthattheCeandBSTarecriticallyinvolvedinorganizingdefensiveresponsestoawiderangeofthreats.Studiesinrodentshavebeguntoreveal

thespecificmolecules,cells,andmicrocircuitswithinthecentralextendedamygdalathatunderliesignsoffearandanxiety,buttherelevanceofthesetantalizingdiscoveriestohumanexperienceanddiseaseremainsunclear.

Usinga combinationof focalperturbationsandwhole-brain imaging, anewgenerationofnonhumanprimate studies isbeginning to close thisgap.Thisworkopens thedoor todiscovering themechanismsunderlying

neuroimagingmeasures linked topathological fearandanxiety, tounderstandinghowtheCeandBST interactwithoneanotherandwithdistalbrain regions togoverndefensive responses to threat,and todeveloping

improvedinterventionstrategies.

Keywords:Affectiveneuroscience;Anxietydisorders;Bst/bnstBST/BNST (Theseareacronyms:Itshouldbe'BST/BNST');Emotion;Individualdifferences;Neuroimaging;Nonhumanprimate

Here,weprovideanupdatedmini-reviewofthecontributionsoftheCeandtheBSTtofearandanxiety,focusingmostheavilyonstudiesinofhumansandnonhumanprimates(forotherrecentreviews,see

[16,17,10,18,19]. This emphasis reflects the fact that anxietydisorders aredefinedanddiagnosedon thebasis of subjective symptomsandhuman studies are essential for understanding theneuralmechanisms

supportingtheexperienceoffearandanxiety (Pleaseaddthefollowing2references:Pine,D.S.,&LeDoux,J.E.(2017).Elevatingtheroleofsubjectiveexperienceintheclinic:ResponsetoFanselowandPennington.AmericanJournalofPsychiatry,

174,1121-1122.||Zoellner,L.A.,&Foa,E.B.(2016).ApplyingResearchDomainCriteria(RDoC)tothestudyoffearandanxiety:Acriticalcomment.Psychophysiology,53,332-335.).Humanstudiesarealsocrucialforidentifyingthefeaturesof

animalmodelsthatareconservedand,hence,mostrelevanttounderstandinghumandiseaseandtodevelopingimprovedinterventionsforhumansuffering('forwardtranslation;'[20,21].Finally,humanstudiesafford

importantopportunitiesfordevelopingobjectivebiomarkersofdiseaseordiseaserisk[22]—acceleratingthedevelopmentofnewdiagnosticandtreatmentstrategies[23–25]—andforgeneratingnovelhypothesesthat

canbemechanisticallyassessedinanimalmodels('reversetranslation;'[26].Workinmonkeyscanbeconceptualizedasabridge,onethatlinkstheprecisemechanisticstudiesthatcanmostreadilybeperformedin

rodentstothecomplexitiesofhumanfeelingsandhumandisease.Thebrainsofmonkeysandhumansaregenetically,anatomically,andfunctionallysimilar,reflectingthetwospeciesrelativelyrecentevolutionary

divergence(25millionyearsagoformonkeysvs.70millionyearsagoforrodents;[27–30].Homologousbiologicalsubstrates,includingawell-developedprefrontalcortex(PFC),endowmonkeysandhumanswitha

sharedrepertoireofcomplexsocio-emotionalresponsestopotentialthreat[7,31],increasingthelikelihoodofsuccessfultranslationtohumandisease[32,33].

1AnatomyoftheCentralExtendedAcentralextendedamygdalaTheextendedamygdalaencompassesaheterogeneouscollectionofsubcorticalnucleialongthebordersoftheamygdalaandtheventralstriatum.Classicalstudiesofstructuralconnectivityfirstsuggestedthatthecentral

divisionoftheextendedamygdala—includingtheCe,lateralBST(BSTL),andportionsofthesublenticularextendedamygdala(SLEA;aneuronalbridgenestledwithinthesubstantiainnominata)—representsanintegrativeunit[34].

Indeed,ithaslongbeenrecognizedthattheamygdalaisconnectedtotheBSTviatwomajorfiberbundles:theventralamygdalofugalpathway(VA;sometimestermedtheansapeduncularis)andthestriaterminalis(ST)[35](Fig.2a).

MorerecentstudiesinmonkeyshaveconfirmedthattheCeandBSTLarestructurallyinterconnectedviathesetwodirectpathways(primarilyCe→BSTL)andhaveidentifiedanovelindirectpathwaycenteredontheSLEA(Ce↔

SLEA↔BSTL)[40,41] (Pleaseadd:Fudge,J.L.,Kelly,E.A.,Pal,R.,Bedont,J.L.,Park,L.,&Ho,B.(2017).BeyondtheclassicVTA:ExtendedamygdalaprojectionstoDA-striatalpathsintheprimate.Neuropsychopharmacology,42,1563-1576.

).Inparallel,magneticresonanceimaging(MRI)studieshaverevealedevidenceofbothstructural[42–44]andfunctionalconnectivitybetweentheCeandBST[42,20];Gorkaetal.,inpress;[46,41,47,48],reinforcingthehypothesis

thattheyrepresentafunctionallymeaningfulcircuit[34,8].

Fig.1Thecentralextendedamygdalahelpsorganizedefensiveresponsestothreat.Simplifiedschematicofkeyinputsandoutputstothecentralextendedamygdala(magenta)inhumansandotherprimates.Thecentralextendedamygdalaencompassesthe

centralnucleusoftheamygdala(Ce),whichliesinthedorsalamygdala,andthebednucleusofthestriaterminalis(BST),whichwrapsaroundtheanteriorcommissure.Asshownbythetranslucentwhitearrowatthecenterofthefigure,muchofthesensory

(yellow),contextual(blue),andregulatory(green)inputstothecentralextendedamygdalaareindirect(i.e.,poly-synaptic),andoftenfirstpassthroughadjacentamygdalanucleibeforearrivingattheCeorBST.Inprimates,projectionslinkingtheCewith

theBSTarepredominantlyfromtheCetotheBST.TheCeandBSTarebothpoisedtoorchestrateortriggermomentarynegativeaffectviaprojectionstodownstreamtargetregions(orange),suchastheperiaqueductalgrey(PAG).Inset:Coronalslices

depictingtherelativelocationsoftheCeandtheBST(magenta).Portionsofthisfigurewereadaptedwithpermissionfrom[14].TheCeandBSTregionsdepictedintheinsetisaredescribedin[]and ([47]R.M.Tillman,M.D.Stockbridge,B.M.Nacewicz,S.

Torrisi,A.S.Fox,J.F.SmithandA.J.Shackman,Intrinsicfunctionalconnectivityofthecentralextendedamygdala,bioRxiv2017.)[15].,respectivelyTheCeregiondepictedintheinsetwaskindlyprovidedbyDr.BrendonNacewicz.Abbreviations:Basolateral(BL),

Basomedial(BM),Central(Ce),Lateral(La),andMedial(Me)nucleioftheamygdala;Bednucleusofthestriaterminalis(BST).

alt-text:Fig.1

Fromananatomicalperspective,thecentralextendedamygdalaispoisedtointegratepotentiallythreat-relevantinformationandassemblestatesoffearandanxiety.Invasivetracingstudiesinrodentsandmonkeysshowthat

theCeandtheBSTreceivedirectandindirectprojectionsfrombrainregionsthatencodesensory,contextual,andregulatoryinformation[49](Fig.1).Bothregionsarepoisedtotriggersomatomotorandneuroendocrinesignsoffear

andanxietyviadensemono-andpoly-synapticprojectionstobrainstemandsubcorticaleffectorregions[9,49] (pleaseadd:Fudge,J.L.,Kelly,E.A.,Pal,R.,Bedont,J.L.,Park,L.,&Ho,B.(2017).BeyondtheclassicVTA:ExtendedamygdalaprojectionstoDA-striatalpathsintheprimate.Neuropsychopharmacology,42,1563-1576.)(Fig.1).Leveragingtheincreasedanatomicalresolutionaffordedbyultra-highfieldstrengthfunctionalMRI(7Tesla),humanstudiesindicatethatmanyofthesedownstreamregionsshowrobustfunctionalconnectivitywiththeCe

andtheBSTGorkaetal.,inpress;[48].OtherworkshowsthattheCeandBSTcontaincellswithsimilararchitectonicandneurochemicalfeaturesandthatthetworegionsshowsimilarpatternsofgeneexpression(foradetailed

Fig.2Imagingthecentralextendedamydalainnonhumanprimatesandhumans.(A)Diffusiontensorimaging(DTI).DeterministicDTIrevealstheevolutionarilyconservedwhitematterpathways(yellow)thatlinktheCe(magenta)totheBST(magenta)in

monkeys(left)andhumans(right).ImageskindlyprovidedbyDoTromp.(B)Functionalneuroimagingoffearandanxiety.Inmonkeys(left),metabolicactivityintheCeandtheBST(magentaarrows)isassociatedwithheightenedbehavioralandneuroendocrine

responsesduringprolonged(30min)exposuretoapotentiallythreateninghumanintruder’sprofile(n=592).Likewise,anautomatedmetameta-analysisofhumanimagingstudies(right)revealsactivationintheBSTandtheCeduringstudiesof‘fear’and/or

‘anxiety.’Figuredepictstheminimumconjunction(logical‘AND’)ofthresholdedforward-inferencemaps(q<0.01)automaticallygeneratedusingNeurosynth[36]forstudiestaggedwiththekeywords‘fear’(298studies)and/or‘anxiety’(312studies).Given

thestrengthsandlimitationsofautomatedmetameta-an (metashouldnotbeitalicized)alysis; (pleaseinsertthefollowing3referencesjustpriortothesemi-colon:Muller,V.I.,Cieslik,E.C.,Laird,A.R.,Fox,P.T.,Radua,J.,Mataix-Cols,D.,...Eickhoff,S.B.(inpress).Tensimplerulesforneuroimagingmeta-analysis.NeuroscienceandBiobehavioralReviews.|||Salimi-Khorshidi,G.,Smith,S.M.,Keltner,J.R.,Wager,T.D.,&Nichols,T.E.(2009).Meta-analysisofneuroimagingdata:acomparisonofimage-basedandcoordinate-basedpoolingofstudies.Neuroimage,45,810-823.|||Wager,T.D.,Atlas,L.Y.,Botvinick,M.M.,Chang,L.J.,Coghill,R.C.,Davis,K.D.,...Yarkoni,T.(2016).PainintheACC?ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,113,E2474-2475.)thisfindingsimply

indicatesthattheseregionsareroutinelyrecruitedbyavarietyofpotentiallythreat-relevantcues.Itdoesnotindicatethattheseregionsareconsistentlyco-activatedinparticularstudiesanditdoesnotimplythattheseregionsaresimilarlyresponsiveto

particularkindsofthreat(e.g.;uncertainordiffusedanger).(C)TheCeandtheBSTshowphasicandsustainedresponsestopotentiallythreat-relatedcuesinhumanimagingstudies.Left:TheBSTandneighboringregions(whitering)showsustained(<118-s)

activationduringtheuncertainanticipationofaversiveimages.Middle:TheCeshowssustainedactivation(30-s)duringexposuretoavirtualrealitycontextpairedwithunpredictableelectricshock.Right:TheCeandtheBST(blackarrows)bothshowphasic

responsestovideoclipsofanapproachingtarantula(4-s).Portionsofthisfigurewereadaptedwithpermissionfrom[37,8,9,38,12,13,39].

alt-text:Fig.2

review,see[8] (thereshouldbeaparenthesisafterthereference:[8])).Collectively,theseanatomicalobservationssuggestthattheCeandtheBSTrepresentanevolutionarilyconserved,functionallycoherentcircuitthatispoisedtouse

informationaboutthreat,context,andinternalstatestoinitiatearangeofdefensiveresponses.

2PhysiologyoftheCentralExtendedAcentralextendedamygdalaStudiesofnonhumanprimatesaffordanimportantopportunitytoobtainconcurrentmeasuresofnaturalisticdefensivebehaviors,neuroendocrineactivity,andbrainmetabolisminresponsetoarangeofethologicallyrelevant

threats,includingexplicitcues(i.e.,anunfamiliarhumanintruder’sprofile)andmorediffusecontexts(i.e.,anoveltestingcage)[7,10,31].Usingacombinationof18-fluorodeoxyglucose-positronemissiontomography(FDG-PET)and

well-establishedbehavioralassays,wehavedemonstratedthattheCeandBSTareexquisitelysensitivetopotentialdanger.Instudiesincludingbetween238and592monkeys,elevatedlevelsofmetabolicactivityintheCeandBST

areassociatedwithheightenedsignsoffearandanxiety(e.g.,freezing,cortisol)duringsustained(30-min)exposuretointruderthreat[9,50](Fig.2b).HeightenedmetabolicactivityintheCeandBSTisalsoassociatedwithelevated

defensiveresponsesduringsustainedexposuretoanunfamiliartestingcage(i.e.,intheabsenceofintruderthreat;[51,52].

Consistentwithworkinmonkeys,imagingresearchinhumanssuggeststhattheCeandBSTarebothengagedbyabroadrangeofthreat-relatedcuesandcontexts.Theamygdalarespondstoavarietyofthreat-relatedstimuli

[53–57]3andworkusinghigh-resolutionfMRIindicatesthatthedorsalregionoftheamygdalainthevicinityregionoftheCeisparticularlysensitivetoaversivevisualstimuli[58].Increasedactivationinthedorsalamygdalais,inturn,

associatedwithelevatedsignsandsymptomsofarousalinresponsetoacutethreat(e.g.,Pavlovianthreatcues;[59–65].Likewise,multi-voxelclassifieranalysessuggestthatthedorsalamygdalaisanimportantcomponentofalarger

circuitthatunderliesnegativeaffectelicitedbyaversiveimages[66].

LiketheCe,theBSTisrecruitedbyavarietyofpotentiallythreat-relevantcuesinhumans,includingemotionalfacesSladkyetal., inpress).Infact,asshowninFig.2banddescribed inmoredetail intheaccompanying

caption,anautomatedmetameta ('meta'shouldNOTbecapitalized)-analysisgeneratedusingNeurosynth[36]revealsthatstudiestaggedwiththekeywords‘fear’and/or‘anxiety’consistentlyrevealactivationinthevicinityoftheCeand

theBST, although the latter region is rarely labeled as such for a variety of reasons (e.g., omission fromautomated anatomical labeling tools; [8,9,19] (There is an extra reference inserted here. The 2015PNASpaper shouldNOTbe

included).4.LiketheCe,BSTactivationandfunctionalconnectivityco-varywiththreat-elicitedchangesinperipheralphysiologyandself-reportedfearandanxiety[68–70,39].

Amongresearchersfocusedonhumans,itiswidelybelievedthattheCeandBSTarefunctionallydissociable(forcriticalreviews,see[19,13].Inspiredbyanearliergenerationoflesionandinactivationstudiesinrodents[71],

thishypothesissuggeststhattheCe,ortheamygdalamoregenerally,rapidlyassemblesphasicresponsestoclear-and-immediatethreats(e.g.,acueassociatedwiththeimminentdeliveryofshock),whereastheBSTcomeson-line

moreslowlyandisresponsiblefororchestratingsustainedresponsestodangersthatarediffuse,uncertain,orremote.Thishypothesishasbeenadoptedwithminormodificationsbymanyinvestigatorsandcommentatorsandhaseven

beenincorporatedintotheNationalInstituteofMentalHealth(NIMH)ResearchDomainCriteria(RDoC)asAcuteThreat(‘Fear’)andPotentialThreat(‘Anxiety’) (https://www.nimh.nih.gov/research-priorities/rdoc/constructs/acute-

threat-fear.shtml;https://www.nimh.nih.gov/research-priorities/rdoc/constructs/potential-threat-anxiety.shtml;https://www.nimh.nih.gov/research-priorities/rdoc/negative-valence-systems-workshop-proceedings.shtml). (spaces should beinsertedaftereachofthesemi-colons)

Consistentwiththe‘double-dissociation’or‘strict-segregation’model,severalhumanimagingstudieshavedemonstratedthattheBSTshowspersistenthemodynamicresponsesduringtheuncertainanticipationofnoxious

stimuli,suchasshockoraversiveimages,whereasthedorsalamygdalashowstransientresponsesthataretime-lockedtotheonsetofthethreat-anticipationperiodortheactualdeliveryofthenoxiousstimulus7[72–75];Klumperset

al.,inpress (Klumpers,F.,Kroes,M.C.W.,Baas,J.,&Fernandez,G.(2017).Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses.JournalofNeuroscience,37,9645-9656.);[70,39].Inoneofthemore

compellingexamples,Somervilleandcolleaguespresentedeitheraversiveorneutralimages(3-secs)inrelativelylongblocks(118-secs)wherethetimingofimagepresentationswaseithercertainoruncertain(Fig.2c).Theseunique

designfeaturesareimportantbecausetheyaffordacrucialopportunitytodouble-dissociatephasic(to3-secscertainthreat)fromsustained(i.e.,to118-secsuncertainthreat)responsesinthesameindividuals.Analysesrevealed

transientactivationintheamygdalainresponsetothenegativeimages.Incontrast,theBSTshowedpersistentactivationfornegative-vs.-neutralblocksandforuncertain-vs.-certainblocks.Moreover,thelevelofsustainedactivation

intheBSTcloselytrackedmeandifferencesinself-reportedfearandanxietyacrossthefourblockedconditions(i.e.,uncertain-negative>certain-negative>uncertain-neutral>certain-neutral).Despitesomeimportantlimitations

(e.g.,perceptualconfounds,failingtotesttheRegion×Conditioninteraction),theseresultsareoftentakenasstrongsupportforthe‘strict-segregation’model.

Ontheotherhand,agrowingnumberofimagingstudiesaredifficulttoreconcilewiththehypothesisofstrictfunctionalsegregationbasedonthreatuncertaintyorduration(Fig.2c).Severalstudieshavereportedincreased

amygdalaactivationduringtheanticipationofuncertainthreat,bothinchildren[77]andinadults[37,78].Forexample,Andreattaandcolleaguesobservedsustainedactivation—confirmedusingafiniteimpulseresponseapproach—in

theregionof therightCeduringexposuretoavirtual-realitycontext (30-secs)pairedwithunpredictableelectricshocks.Leveragingagame-like ‘virtualpredator’paradigm,Mobbsandcolleaguesobserved significantlygreater

activationinthedorsalamygdalawhenthepredatorwasfirstencounteredandpresentednoimmediatedanger,relativetoasubsequentperiodwhenshockdeliverywasimminentandsignsandsymptomsoffearandanxietywere

maximal[79],whichrunscounter to the idea that thattheamygdala isprimarilyresponsible fororganizing transientresponses to immediateacutedanger.Herryandcolleaguesobservedpersistentlyelevatedamygdalaactivity in

humans(60-s)andmice(120-s)exposedtoatemporallyunpredictable,anxiogenictrainofauditorystimuli[]. (Herry,C.,Bach,D.R.,Esposito,F.,DiSalle,F.,Perrig,W.J.,Scheffler,K.,...Seifritz,E.(2007).Processingoftemporalunpredictability

inhumanandanimalamygdala.JournalofNeuroscience,27,5958-5966.)Other (pleaseinsertanewparagraphbreakhere,justbeforetheword'Other')workhasrevealedphasicresponsesintheregionoftheBSTtobriefthreats,suchasa4-secsvideoclipofanapproachingtarantula[80,74,38,81].Likewise,

Brinkmann and colleagues very recently demonstrated that the CeBST and the BSTCe show statistically indistinguishable responses to briefly presented (800 ms) aversive images Brinkmann et al., under review/personal

communication7/20/2017 (Brinkmann,L.,Buff,C.,Feldker,K.,Neumeister,P.,Heitmann,C.Y.,Hofmann,D., . . .Straube,T. (2018). Inter-individualdifferences in traitanxietyshapethe functionalconnectivitybetweenthebednucleusof thestria

terminalisandtheamygdaladuringbriefthreatprocessing.Neuroimage,166,110-116.)).Thelatterresultisparticularlycompellinggiventherelativelylargesample(n=93)andformaltestoftheRegion×Conditioninteraction.Itimplies

that themagnitudeofregionaldifferences (i.e.,Cevs.BST) ismuchsmaller than impliedbythestrictsegregationhypothesis,conditionalonunknownmoderators,or issimplynon-existent,at least forbrieflypresentedaversive

images.Another,relativelylargeimagingstudy(n=168)reportedphasicactivationoftheBSTinresponseto4-secsshock-predictivecues[83],indicatingthattheBSTissensitivetocertainthreat.Otherrecentworksuggeststhatthe

BSTismaximallyengagedwhenshock-threat ispsychologically imminent [84].These imagingobservationsarebroadlyconsistentwithevidence fromrecordingand loss-of-functionstudies in rodents indicating thata substantial

proportionofBSTneuronsexhibitshort-latencyresponsesduringexposuretobothacutethreat(e.g.,foot-ortail-shock)anddiffuselythreateningenvironments[85,17,86].

Onbalance, thebrain imaging literaturesuggests that theCeandBST,whilecertainlynot interchangeable,aremorealike thandifferent. Inaddition to theanatomical similaritiesdescribed in theprevioussection (e.g.,

connectivity,geneexpression),bothregionsrespond toabroadspectrumof threat-relatedcuesandcontextsandbotharecorrelatedwithconcurrentchanges inphysiologyandsubjectiveexperience.Variation in thestrengthof

functionalconnectivitybetween the tworegionshasbeenassociatedwith individualdifferences indispositionalanxiety inhumans []andmonkeys [Fox,Oler,Birn,Shackman,Alexander&Kalin,unpublishedobservations]. (the 1streference[]is:Brinkmann,L.,Buff,C.,Feldker,K.,Neumeister,P.,Heitmann,C.Y.,Hofmann,D.,...Straube,T.(2018).Inter-individualdifferencesintraitanxietyshapethefunctionalconnectivitybetweenthebednucleusofthestriaterminalisandtheamygdaladuringbriefthreatprocessing.Neuroimage,166,110-116.)Inhumans,theCeandtheBSTbothshowtransientresponsestoclear-and-immediatethreatandsustainedactivationincontextsassociatedwithuncertain,longer-lastingthreat.Both

regionsshowheightenedactivationinpatientswithanxietydisordersandindividualsatriskfordevelopingsuchdisordersBrinkmannetal.,inpress; (Brinkmann,L.,Buff,C.,Feldker,K.,Tupak,S.V.,Becker,M.P. I.,Herrmann,M.J.,&

Straube,T.(2017).Distinctphasicandsustainedbrainresponsesandconnectivityofamygdalaandbednucleusofthestriaterminalisduringthreatanticipationinpanicdisorder.PsychologicalMedicine,47,2675-2688.)[73];Buffetal.,inpress (Buff,C.,Brinkmann,L.,Bruchmann,M.,Becker,M.P.I.,Tupaka,S.,Herrmann,M.J.,&Straube,T.(2017).ActivityalterationsinthebednucleusofthestriaterminalisandamygdaladuringthreatanticipationinGeneralizedAnxietyDisorder.SocialCognitiveandAffectiveNeuroscience, 12, 1766-1774.); [89,90,12,91–93], although the studies to date have been small in size, have frequently relied on data acquisition and processing techniques that are less than optimal for resolving subtle

differencesinregionalfunction(e.g.,linearspatialnormalizationalgorithms,largesmoothingkernels),andprospectivelongitudinaldataaremostlylacking.Inmonkeys,individualsexpressingmoreintensesignsoffearandanxiety

show increasedFDGmetabolism in theCe andBSTduring sustained exposure to novel contexts andpotential threat. AlthoughFDG-PET lacks the temporal resolution needed to cleanly dissociate phasic from sustainedneural

responses,workinmonkeyshintsatsomepotentialdifferencesbetweenthetworegions—activityintheBSTisassociatedwithheritableindividualdifferencesinfearandanxiety2[8,9]andtheBSTappearstobeinvolvedinorganizing

persistentlyelevatedsignsoffearandanxietyfollowingthreatexposure(i.e.,mood‘spillover;'[94].Nevertheless,thecriticaltestsofregionaldifferenceshaveyettobeperformedinmonkeys(e.g.,Region×Condition;Foxetal.,in

press (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureofemotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nd

ed.).NewYork:OxfordUniversityPress.);[19].Theupshotofthisworkisthattheavailableimagingliteratureprovides,atbest,mixedevidenceforclaims—includingthoseembodiedinRDoC—ofstrictfunctionalsegregationbetweenthe

CeandtheBSTonthebasisofthreatuncertaintyorduration(i.e.,‘theCemediatesphasicresponsestoclear-and-imminentdanger;theBSTmediatessustainedresponsestouncertainthreat’)—aconclusionthatechoesthatreached

byGungorandParéonthebasisofmechanisticworkinrodents[86].

Understandingtheneurobiologyofhumanfearandanxietyisimportant,bothconceptuallyandclinically.AsreviewedelsewhereFoxetal.,inpress (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureof

emotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nded.).NewYork:OxfordUniversityPress.);[8,9,19],drawingstronginferenceabout

theneuralcircuitssupportingphasicandsustainedresponsestodifferentdimensionsofthreatrequirestheuseofwell-matchedtasks.Parametricmanipulationsofthreatprobability(ifthreatwilloccur),imminence(whenorwhereit

willoccur),andduration(asin[96,84,79,97,38]wouldbeparticularlyuseful.Theuseofdynamicparametrictasks(e.g.,wherethreatimminenceorprobabilityissmoothlyandcontinuouslyvaried)wouldalsoaffordpowerfulnew

opportunitiesforunderstandingthekindsofuncertaintymostrelevanttofearandanxietyandforidentifyingcircuitsinvolvedintriggeringbehavioralandphysiological‘phasetransitions’(e.g.,fromvigilancetobehavioralinhibitionto

activedefense;[98];[99].PutativedoubledissociationsneedtoberigorouslyassessedusingtheappropriateRegion×Conditioninteraction(asin[73,100],preferablyinadequatelypoweredsamples[101–103].Absentthat,claimsof

anatomicaldissociationareunwarranted.Likewise,concludingthataparticularbrainregionis‘notinvolved’inacomplex,multidimensionalpsychologicalfunction,like‘fear’or‘anxiety,’basedonanullstatisticaltestorasingleassay

isunwarranted.Givenmountingevidencethatfearandanxiety,likeotheremotions,reflectwidelydistributedneuralcircuits(e.g (Theother'uncited'referenceissupposedtobeincludedinthisblockofreferences:Shackman,A.J.,Fox,A.S.,&

Seminowicz,D.A.(2015).Thecognitive-emotionalbrain:Opportunitiesandchallengesforunderstandingneuropsychiatricdisorders.BehavioralandBrainSciences,38,e86.).,[104];NummenmaaandSaarimakiinpress;[106];ShackmanandFox,

inpress (Shackman,A.J.,&Fox,A.S.(2018).Howareemotionsorganizedinthebrain?InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),Thenatureofemotion.Fundamentalquestions(2nded.).NewYork,NY:OxfordUniversityPress.);

[108],oneofthemostimportantchallengesforfutureresearchwillbetoextendmodelsoffearandanxietytoencompassinteractionsbetweenthecentralextendedamygdalaanddistalregionsofthebrain,apointthatwediscussin

moredetailinthefinalsection.

3MechanisticStudiesoftheCentralExtendedAstudiesofthecentralextendedamygdalaThere is ample evidence that that theCe and theBST are critical for assembling states of fear and anxiety. Summarizing the data available nearly a decade ago, just prior to thewidespread adoption of high-precision

optogeneticandchemogenetictechniques,Davisandcolleaguesoutlineda‘partial-dissociation’model,hypothesizingthattheCeplaysacriticalroleinorganizingbothimmediateandlonger-lastingresponsestothreat[85].Thismodel

suggeststhatphasicresponsesaremediatedbycircuitscoursingfromthebasolateralamygdala(BL)tothemedialdivisionoftheCe(CeM)andfromtheretodownstreameffectorregions.Incontrast,responsestomorepersistent

kindsofdanger—thosethatareuncertain,psychologicallydiffuse,orremoteintimeintimeorspace—werethoughttobemediatedbycircuitspassingfromthelateraldivisionoftheCe(CeL)tothelateraldivisionoftheBST(BSTL)

and,ultimately,toeffectorregions.

Morerecentworkinrodentmodelshasrefinedourunderstandingofthebrainbasesoffearandanxiety(e.g.,[109,110],whilehighlightingtheanatomicalandfunctionalcomplexityofthecentralextendedamygdala(e.g.,

[111,86,112,113]. Ithasbecomeabundantlyclear that theCeand theBST, likemanyotherbrain regions,harboravarietyofdistinctcell ‘types’—groupsofneurons that canbedistinguishedbasedonproteinexpression, firing

characteristics,connectivity,andotherfeatures—andthatdifferentcelltypeswithinthesameregionofthecentralextendedamygdala(e.g.,Ce)arefunctionallydissociable(e.g.,[112,113].Someoftheseneuronsareresponse-specific,

whileothersarethreat-specific.Forexample,PAG-projectingcellsintheCeMtriggerfreezing,whereasanindependent,butanatomicallyintermingled,setofmedulla-projectingneuronstriggerchangesincardiovascularactivity[113].

These response-specificneuronscanbeactivatedbydifferent threat-specificneurons.Forexample, serotonin receptor2a-expressingneurons in theCeLplayakey role in regulating thecompetitionbetween innateand learned

defensiveresponses:amplifyingfreezingelicitedbysustainedexposure(10-min)toinnatethreat(i.e.anodorderivedfromfoxfeces)andattenuatingfreezingtolearnedthreat(i.e.,aneutralodorassociatedwithfoot-shock)[114].

Thesekindsofobservationsunderscoretheconceptualimportanceofunderstandinghowdifferentcelltypesinthecentralextendedamygdalacontributetofearfulandanxietyousstatesandtraits.

Despitethiscomplexity,mechanisticworkinrodentsreinforcesthegeneralconclusionthatthemicrocircuitsresponsibleforassemblingphasicandsustainedresponsestothreatoverlapinthecentralextendedamygdala3

[115,86,116].Forexample,theCeandtheBSThavearebothbeenshowntobeimportantforassemblingsustainedresponsestodiffusethreat10(e.g.,[117–121,112];Mazzoneetal.,inpress;[123–125].ProjectionsfromtheBLtothe

Ceexertbi-directionalcontroloverdefensiveresponsestotheelevated-plusmaze(EPM)andopen-fieldtest,whichcanbeconsidereddiffuselythreateningcontexts[126];chemicalinactivationoftheCereducesdefensiveresponsesto

theelevated-plusmaze [127];andCRF-expressingneurons in theCemodulateconditioned freezing to threateningcontextsand longer-lasting (30-s) threatcuesAsoket al., inpress;[129].With regard to theBST, serotonergic

projectionsfromthedorsalraphetotheBSTmodulatetherecallofconditioneddefensiveresponsestobothcontextualandcuedthreats[130].Moreover,wWorkusingtemporallyunpredictableshockparadigmsdemonstratesthat

cannabinoidprojectionsfromtheBLandtheCetotheBSTarenecessaryforsustaineddefensiveresponsesinresponsetouncertaindanger[131].Thisobservation,whichharnessesataskadaptedfromthatofdevelopedbyDavis,

Walker,andcolleagues[132–134],providesimportantevidencethattheBL,Ce,andBSTallplayaroleinrespondingtouncertainordiffusethreat,consistentwithotherrecentwork(e.g.,[135–137].Whileourunderstandingremains

farfromcomplete,takentogether,theseobservationsshowthatspecificmicrocircuitswithinandbetweentheCeandtheBSTareimportantfororchestratingdefensiveresponsestoavarietyofthreats.

AlthoughthecausalcontributionoftheBSTtofearandanxietyhasyettobeexploredinhumansorotherprimates,monkeyswithfiber-sparingexcitotoxiclesionsoftheCeshowamarkedreductionindefensivebehaviorsand

endocrineactivityduringsustainedexposuretohumanintruderthreatandduringacuteexposuretoalivesnake[10,138,31].Likewise,humanswithamygdaladamageexhibitaprofoundlackoffearandanxietyinresponsetoboth

diffuselythreateningcontexts(e.g.,walkingthroughahauntedhouse,foraginginthepresenceofuncertainthreat)andacutethreat(e.g.,spiders,snakes,conditionedthreatcues)[139–141] (Areferenceismissingandshouldbeadded.

Thisisoneofthe'uncitedreferences'identifiedbythecopyeditor.Feinstein,J.S.,Adolphs,R.,&Tranel,D.(2016).AtaleofsurvivalfromtheworldofPatientS.M.InD.G.Amaral&R.Adolphs(Eds.),Livingwithoutanamygdala.NewYork:Guilford.).A

majorcaveatisthatsuchdeficitsmayreflectdamagetoaxonalfiberspassingthroughtheCeenroutetootherregions,suchastheBST,ormoresubtlekindsoflong-rangefunctionaldisconnection[142],apointthatwetakeupmore

fullyinthenextsection.

4ClosingtheGapbetweenMechanisticandImagingRgapbetweenmechanisticandimagingresearchTheCeandtheBSTareanatomicallycomplexandcanbepartitionedintomultiplesub-regions(Fig.1),eachcontainingavarietyofintermingledcelltypes[8,86].Althoughunfamiliartomanybrainimagers,recentlydeveloped

opto-andchemogenetictoolsprovidenumerousopportunitiesfordecipheringthiscomplexityandidentifyingthespecificcircuitcomponentsthatcontroldefensiveresponsestothreat[143–147].Developingabasicunderstandingof

thesemethods isakeysteptodissolvingartificialacademic ‘silos’anddevelopingmorethoughtfulhypothesesabouttheroleof thecentralextendedamygdala inhumanemotionandemotionaldisorders.Typically,aDNAvector

encodinga target ligandor receptor isengineered intoavirus.Thevirus is injected into thebrain, inducingexpressionof the targetprotein in the infectedregion (e.g.,BST).Regionalandcell-typespecificity isachievedusing

recombinase-dependentvirusesorcelltype-specificpromoterviruses.Forexample,aviruscontainingaCre-dependentvectorcanbeinjectedintotheCeoftransgenicmiceengineeredtoexpressCrerecombinaseinsomatostatin-

expressingneurons,resultinginselectiveexpressionofthetargetedreceptorproteininsomatostatin-expressingneuronsintheCe.Moresophisticatedapproachesenabletheinclusion(BooleanAND)orexclusion(BooleanNOT)of

cellswithspecificefferentorafferentprojections,specificbehavioralprofiles(e.g.,activatedbyrewardvs.punishment),orcombinationsofthesecriteria.Byoverexpressingreceptorsthatrespondtolight('optogenetics')ordesigner

drugswithminimallimitedoff-targeteffects('chemogenetics'),itispossibletoreversiblyactivateorsilencespecificcellpopulationsondemand.Theapplicationoftheseapproachestorodentmodelsoffearandanxietyhasrevealeda

levelofarchitecturalintricacyinthecentralextendedamygdalafarbeyondwhatcanberesolvedusingexistingneuroimagingtechniques,includingmutuallyinhibitorycircuitswithintheCethatcontrolfreezingandfleeing[111,114]

andneuronalpopulationswithintheBSTthatcanpromoteordampensignsoffearandanxietyGarcia-Garciaetal.inpress;[112].

Theseexcitingobservationsraisetwoveryimportantquestions.First,arethesemechanismsconservedinhumansandotherprimates?Ifso,thentheyarelikelytoberelevanttoourunderstandingofanxietydisordersand

couldguidethedevelopmentofimprovedtreatments[21].Second,whatroledotheseextendedamygdalamechanismsplayinthekindsoflarge-scalebraincircuitsthathavebeenlinkedtomaladaptivefearandanxietyinhumansand

monkeys?Whichmoleculesandmicro-circuitsunderlieheightenedactivationinthecentralextendedamygdalaandhowdotheyinfluencethefunction(i.e.,activity,functionalconnectivity)ofdistalregionsofthebrainimplicatedin

pathologicalfearandanxiety?Reconcilingthesetwolevelsofanalysis—oneglobal,theotherlocal—ismandatory,ifwearetodevelopacompleteandclinicallyusefulunderstandingoffearandanxiety.

Nonhumanprimateresearchprovidesapowerfulopportunitytocombinefocalperturbationtechniqueswithwhole-brainsurveysofbrainfunctionandhasbeguntoaddresssomeofthesefundamentalquestions.Forexample,

imagingstudiesinmonkeysdemonstratethatmetabolicactivityintheposteriororbitofrontalcortex(OFC)/anteriorinsulaisassociatedwithheightenedpassiveavoidanceofthreat(i.e.,freezing;[8].Althoughsurgicallesionsofthe

OFCmarkedlyreducethreat-elicitedfreezing,suggestingacausalrole[149,150],neuroimagingmeasurescollectedbeforeandaftersurgerysuggestthatthisanxiolyticeffectisproximallymediatedby‘downstream’alterationsinBST

metabolism[151](Fig.3a).ReducedBSTactivityhasalsobeenobservedinhumanswithOFCdamage[152],suggestingthatthiscircuitisconservedacrossprimatespecies(Fig.3b).Inmorerecentwork,Kalin,Fox,andcolleagues

haveextendedthisstrategytogain-of-functionstudies[153].Harnessingaviralvectorapproach,theydemonstratedthatoverexpressionofcorticotropin-releasinghormone(CRH)inthedorsalamygdalaincreasesdefensivebehaviors

duringsustainedexposuretopotentialthreat,consistentwithworkinrodentshighlightingtheimportanceoftheCeCRHsystemforrespondingtodiffuselythreateningcontexts,suchastheelevatedplus-maze[154].Thesebehavioral

changeswere associatedwith increasedmetabolism in the dorsal amygdala and posterior OFC aswell as enhanced functional connectivity between the two regions, highlighting the importance of a distributed brain network

underlyingfearandanxiety(Fig.4a).

Fig.3FocaldamagetotheventralPFCisassociatedwithdistalchangesinBSTfunction.(A)Monkeys.ExperimentallesionsoftheOFCreducethreat-elicitedfreezing(notdepicted)andBSTmetabolism(magentaarrow).Theorbitofrontalregionstargetedby

thesurgery(maroon)canbeseenfromthelateral(farleft)andbasalviews(middle).Bar-plotdepictsthesignificantGroup×TimeinteractionforBSTmetabolism.(B)Humans.DamagetotheventromedialPFC(vmPFC)isassociatedwithreducedperfusionin

theBST(magentaarrow).Theventromedialregionsshowingdamagecanbeseenfromthemid-sagittal(farleft)andbasalviews(middle).Bar-plotdepictsthesignificantreductioninrightBSTperfusioninthepatientgroup.Portionsofthisfigurewereadapted

withpermissionfrom[151,152].

alt-text:Fig.3

Otherrecentworkdemonstratesthefeasibilityofusingopto-andchemogeneticapproachesinnonhumanprimates(e.g.,[156–161]—includingcell-typespecificperturbationsinwild-type(i.e.,geneticallyunmodified)monkeys

[162]—andhighlightsthevalueofcombiningmechanisticinterventionsandcellularrecordingswithwhole-brainimagingtechniquesMazzoneetal.,inpress;[163];Parketal.,inpress (Park,S.H.,Russ,B.E.,McMahon,D.B.T.,Koyano,K.W.,Berman,R.A.,&Leopold,D.A.(2017).Functionalsubpopulationsofneuronsinamacaquefacepatchrevealedbysingle-unitfMRImapping.Neuron,95,971-981.);Shibaetal.,inpress (Shiba,Y.,Oikonomidis,L.,Sawiak,S.,Fryer,T.,Hong,Y.T.,Cockcroft,G.,...Roberts,A.C.(2017).Convergingprefronto-insula-amygdalapathwaysinnegativeemotionregulationinmarmosetmonkeys.BiologicalPsychiatry,82,895-903.)).Inalandmarkstudy,Graysonandcolleaguesshowedthattransientchemogeneticinactivationoftheamygdalaproduceswidespreadalterationsinintrinsicfunctionalconnectivity,includingdecreasedamygdala-BSTconnectivity,

decreased amygdala-OFC connectivity, and increases in corticocortical coupling [155] (Fig. 4b). This finding is consistent with work in rodents [26,166] and neurological patients [167–169] demonstrating that the behavioral

consequencesoffocalbraindamagecanemergefromphysiologicalalterationsindistalbrainregions(forarelatedperspective,see[106]. (aparenthesisshouldbeadded[106]).)Thesefindingshighlighttheimportanceofadistributed

circuitcenteredon,butnotlimitedto,thecentralextendedamygdalaandtheyunderscoretheaddedvalueofcombiningthefocalperturbationstrategiesthatarewidelyusedinrodentstudieswiththewhole-brainimagingtechniques

thatareroutinelyusedinbasicandclinicalresearchinhumans.

5ConclusionsThecentralextendedamygdalaplaysacrucialroleinevaluatingandrespondingtoabroadspectrumofthreat-relatedcuesandcontexts.Whiletheyarecertainlynotinterchangeable,theCeandtheBSTshowsimilarpatterns

ofconnectivity,cellularcomposition,neurochemistry,andgeneexpression.Botharesensitivetouncertainor temporallyremotethreat;bothco-varywiththreat-elicitedchanges inbehavior,physiology,andexperience;bothshow

phasic responses to acute threat; andboth showheightenedactivity during sustainedexposure todiffusely threatening contexts.Work in rodents indicates that both regionsplay a critical role in organizing sustaineddefensive

responsestoarangeofpotentiallythreateningcuesandcontexts.Moregenerally,studiesleveragingopto-andchemogenetictechniqueshavebeguntorevealthespecificmolecules,cells,andmicrocircuitswithinthecentralextended

Fig.4Nonhumanprimateresearchprovidesapowerfulnopportunitytocombinefocalmanipulationsoftheamygdalawithwhole-brainsurveysofbrainfunction.(A).Molecularactivation.UsingMRI-guidedinjectionsofaviralvector(upperleft),Kalin,Foxand

colleaguesoverexpressedcorticotropin-releasinghormone(CRH)inthedorsalamygdala.MRIimagedepictsthegadoliniumflume(white)inthetargetregion.PhotomicrographshowsCRH-expressingcellsinthesameregion(upperright).CRH

overexpressionintheamygdalaenhancedthreat-eliciteddefensiveresponses(notshown)andincreasedmetabolism(yellowclusters)inthedorsalamygdala(magentaarrow)andtheposteriorOFC(greenarrows).CRH-inducedincreasesindefensiveresponses

andmetabolismwerecorrelatedinbothregions(redclusters).(B)Chemogeneticinhibition.Leveragingachemogeneticapproach,GraysonandcolleaguesreversiblyinhibitedtheamygdalawhileusingfMRItoassessintrinsicfunctionalconnectivityacrossthe

brain.Aviralvectorencodinganinhibitorydesignerreceptorexclusivelyactivatedbyadesignerdrugwithminimaloff-targeteffects(DREADD)wasinjectedintotheamygdala(upperleft).Systemicadministrationofthedesignerdrugreversiblyinactivated

theamygdala(upperright).DREADDs-mediatedinhibitionoftheamygdalawasassociatedwithdecreasedamygdala-BSTconnectivity(magentaarrow),decreasedamygdala-OFCconnectivity,andincreasedcorticocorticalcoupling(lowerpanels).Inthecoronal

section,clusters(yellow)depicttheminimumconjunction(logical‘AND’)ofregionssignificantforfourdesigner-drugvs.vehiclecontraststhatweremadeavailablebyGraysonandcolleaguesonthepublisher’swebsite.Portionsofthisfigurewereadapted

withpermissionfrom[155,153].(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) (shouldthislastcommentbeaddedtotheothercolorimages???)

alt-text:Fig.4

amygdalathatsupportsignsoffearandanxietyinratsandmice.Amajorchallengeistounderstandtherelevanceofthesediscoveriestohumanexperienceandhumandisease.Recentworkinnonhumanprimatesprovidesabridgeto

addressingthisfundamentalissue.Usingacombinationoffocalperturbationsandwhole-brainimaging,thisnewgenerationofnonhumanprimateresearchsetsthestagefordiscoveringthemechanismswithinthecentralextended

amygdalathatunderlieneuroimagingmetricslinkedtoextremefearandanxietyinhumans;forunderstandinghowtheCeandBSTfunctionallyinteractwithoneanotherandwithremoteregionsofthebrain,suchastheOFC;and

ultimatelyforacceleratingthedevelopmentofimprovedstrategiesfordiagnosing,treating,andpreventingpathologicalfearandanxiety.

ConflictofinterestAuthorsdeclarenoconflictsofinterest.

Uncitedreferences[170]and[171].

AcknowledgementsWegratefullyacknowledgeassistancefromL.Brinkmann,L.Friedman,B.Nacewicz,andD.Tromp;criticalfeedbackfromJ.Blackford,L.Pessoa,S.Padmala,and3anonymousreviewers;andfinancialsupport

fromtheCaliforniaNationalPrimateCenter;NationalInstituteofMentalHealth (NationalInstitutesofHealth)(DA040717,MH107444);UniversityofCalifornia,Davis;andUniversityofMaryland,CollegePark.

References[1]J.A.Salomon,J.A.Haagsma,A.Davis,C.M.deNoordhout,S.Polinder,A.H.HavelaarandT.Vos,DisabilityweightsfortheGlobalBurdenofDglobalburdenofdisease2013study,LancetGlob.Health3,2015,e712–723.

[2]M.G.Craske,M.B.Stein,T.C.Eley,M.R.Milad,A.Holmes,R.M.RapeeandH.U.Wittchen,Anxietydisorders,NatRevDis.Rev.Dis.Primers3,2017,17024.

[3]M.DiLucaandJ.Olesen,Thecostofbraindiseases:aburdenorachallenge?,Neuron82,2014,1205–1208.

[4]H.A.Whiteford,L.Degenhardt,J.Rehm,A.J.Baxter,A.J.Ferrari,H.E.ErskineandT.Vos,Globalburdenofdiseaseattributabletomentalandsubstanceusedisorders:findingsfromtheGlobalBurdenofDiseaseStudy

2010,Lancet382,2013,1575–1586.

[5]A.Bystritsky,Treatment-resistantanxietydisorders,Molecular.Psychiatry11,2006,805–814.

[6]G.GriebelandA.Holmes,50yearsofhurdlesandhopeinanxiolyticdrugdiscovery,NatureReviews.DrugDiscovery.Rev.DrugDiscov.12,2013,667–687.

[7]A.S.FoxandN.H.Kalin,Atranslationalneuroscienceapproachtounderstandingthedevelopmentofsocialanxietydisorderanditspathophysiology,AmericanJournalof.J.Psychiatry171,2014,1162–1173.

[8]A.S.Fox,J.A.Oler,A.J.Shackman,S.E.Shelton,M.Raveendran,D.R.McKayandN.H.Kalin,Intergenerationalneuralmediatorsofearly-lifeanxioustemperament,ProceedingsoftheNationalAcademyofSciencesUSA.National

Acad.Sci.U.S.A.112,2015,9118–9122.

[9]A.S.Fox,J.A.Oler,D.P.Tromp,J.L.FudgeandN.H.Kalin,Extendingtheamygdalaintheoriesofthreatprocessing,TrendsinNeurosciencesNeurosci.38,2015,319–329.

[10]N.H.Kalin,Mechanismsunderlyingtheearlyrisktodevelopanxietyanddepression:AtranslationalapproachEuropeanNeuropsychopharmacologyatranslationalapproach,Eur.Neuropsychopharmacol.27,2017,543–553.

[11]G.F.KoobandB.J.Mason,Existingandfuturedrugsforthetreatmentofthedarksideofaddiction,AnnualReviewofPharmacologyandToxicology.Rev.Pharmacool.Toxicol.56,2016,299–322.

[12]A.J.Shackman,C.M.Kaplan,M.D.Stockbridge,R.M.Tillman,D.P.M.Tromp,A.S.FoxandM.Gamer,Theneurobiologyofanxietyandattentionalbiasestothreat:Iimplicationsforunderstandinganxietydisordersin

adultsandyouth,JournalofExperimentalPsychopathology.Exp.Psychopathol.7,2016,311–342.

[13]A.J.Shackman,D.P.M.Tromp,M.D.Stockbridge,C.M.Kaplan,R.M.TillmanandA.S.Fox,Dispositionalnegativity:Aanintegrativepsychologicalandneurobiologicalperspective,PsychologicalBulletin.Bull.142,2016,

1275–1314.

[14]J.K.Mai,G.PaxinosandT.Voss,AtlasofthehumanbHumanBrain,3rded.,2007,AcademicPress;SanDiego,CA.

[15]J.D.Theiss,C.Ridgewell,M.McHugo,S.HeckersandJ.U.Blackford,Manualsegmentationofthehumanbednucleusofthestriaterminalisusing3TMRI,Neuroimage146,2017,288–292.

[16]S.N.Avery,J.A.ClaussandJ.U.Blackford,ThehumanBNST:Ffunctionalroleinanxietyandaddiction,Neuropsychopharmacology41,2016,126–141.

[17]T.D.GoodeandS.Maren,Roleofthebednucleusofthestriaterminalisinaversivelearningandmemory,LearningandMemory.Mem.24,2017,480–491.

[18]M.A.LebowandA.Chen,Overshadowedbytheamygdala:thebednucleusofthestriaterminalisemergesaskeytopsychiatricdisorders,Molecular.Psychiatry21,2016,450–463.

[19]A.J.ShackmanandA.S.Fox,Contributionsofthecentralextendedamygdalatofearandanxiety,JournalofNeuroscience.Neurosci.36,2016,8050–8063.

[20]R.M.Birn,A.J.Shackman,J.A.Oler,L.E.Williams,D.R.McFarlin,G.M.RogersandN.H.Kalin,Evolutionarilyconserveddysfunctionofprefrontal-amygdalarconnectivityinearly-lifeanxiety,Molecular.Psychiatry19,2014

915–922.

[21]S.E.Hyman,Backtobasics:luringindustrybackintoneuroscience,NatureNeuroscience.Neurosci.19,2016,1383–1384.

[22]C.W.Woo,L.J.Chang,M.A.LindquistandT.D.Wager,Buildingbetterbiomarkers:brainmodelsintranslationalneuroimaging,NatureNeuroscience.Neurosci.20,2017,365–377.

[23]D.Borsook,L.BecerraandR.Hargreaves,AroleforfMRIinoptimizingCNSdrugdevelopment,NatureReviews.DrugDiscovery.Rev.DrugDiscov.5,2006,411–424.

[24]D.Borsook,L.BecerraandR.Hargreaves,Biomarkersforchronicpainandanalgesia.Part1:theneed,reality,challengesandsolutions,DiscoveryMedicine.Med.11,2011,197–207.

[25]T.D.WagerandC.-W.Woo,fMRIinanalgesicdrugdiscovery,SciTranslMed.Transl.Med.7,2015,274fs276.

[26]E.A.Ferenczi,K.A.Zalocusky,C.Liston,L.Grosenick,M.R.Warden,D.AmatyaandK.Deisseroth,Prefrontalcorticalregulationofbrainwidecircuitdynamicsandreward-relatedbehavior,Science351,2016,aac9698.

[27]R.A.Gibbs,J.Rogers,M.G.Katze,R.Bumgarner,G.M.Weinstock,E.R.MardisandA.S.Zwieg,Evolutionaryandbiomedicalinsightsfromtherhesusmacaquegenome,Science316,2007,222–234.

[28]T.M.Preuss,Doratshaveprefrontalcortex?:TheRose-Woolsey-Akertprogramreconsidered,JCogNeurosci.Cog.Neurosci.7,1995,1–24.

[29]T.M.Preuss,Primatebrainevolutioninphylogeneticcontext,In:J.H.KaasandT.M.Preuss,(Eds.),EvolutionofNervousSytems4,2007,Elsevier;NY,3–34.

[30]S.P.Wise,Forwardfrontalfields:phylogenyandfundamentalfunction,TrendsinNeurosciencesNeurosci.31,2008,599–608.

[31]J.A.Oler,A.S.Fox,A.J.ShackmanandN.H.Kalin,Thecentralnucleusoftheamygdalaisacriticalsubstrateforindividualdifferencesinanxiety,In:D.G.AmaralandR.Adolphs,(Eds.),LivingwithoutanaWithoutan

Amygdala,2016,Guilford;NY.

[32]C.G.Jennings,R.Landman,Y.Zhou,J.Sharma,J.Hyman,J.A.MovshonandG.Feng,Opportunitiesandchallengesinmodelinghumanbraindisordersintransgenicprimates,NatureNeuroscience.Neurosci.19,2016,

1123–1130.

[33]T.KaiserandG.Feng,Modelingpsychiatricdisordersfordevelopingeffectivetreatments,NatureMedicine.Med.21,2015,979–988.

[34]G.F.AlheidandL.Heimer,Newperspectivesinbasalforebrainorganizationofspecialrelevanceforneuropsychiatricdisorders:thestriatopallidal,amygdaloid,andcorticopetalcomponentsofsubstantiainnominata,Neuroscience27,1988,1–39.

[35]W.J.Nauta,Fibredegenerationfollowinglesionsoftheamygdaloidcomplexinthemonkey,JournalofAnatomy.Anat.95,1961,515–531.

[36]T.Yarkoni,R.A.Poldrack,T.E.Nichols,D.C.VanEssenandT.D.Wager,Large-scaleautomatedsynthesisofhumanfunctionalneuroimagingdata,Nat.Methods8,2011,665–670.

[37]M.Andreatta,E.Glotzbach-Schoon,A.Muhlberger,S.M.Schulz,J.WiemerandP.Pauli,Initialandsustainedbrainresponsestocontextualconditionedanxietyinhumans,Cortex63,2015,352–363.

[38]D.Mobbs,R.Yu,J.B.Rowe,H.Eich,O.FeldmanHallandT.Dalgleish,Neuralactivityassociatedwithmonitoringtheoscillatingthreatvalueofatarantula,ProceedingsoftheNationalAcadademyofSciencesUSA.NationalAcad.

Sci.U.S.A.107,2010,20582–20586.

[39]L.H.Somerville,D.D.Wagner,G.S.Wig,J.M.Moran,P.J.WhalenandW.M.Kelley,Interactionsbetweentransientandsustainedneuralsignalssupportthegenerationandregulationofanxiousemotion,Cerebral.Cortex

23,2013,49–60.

[40]D.M.deCampoandJ.L.Fudge,Amygdalaprojectionstothelateralbednucleusofthestriaterminalisinthemacaque:comparisonwithventralstriatalafferents,JournalofComparativeNeurology.Comp.Neurol.521,2013

3191–3216.

[41]J.A.Oler,D.P.Tromp,A.S.Fox,R.Kovner,R.J.Davidson,A.L.AlexanderandJ.L.Fudge,Connectivitybetweenthecentralnucleusoftheamygdalaandthebednucleusofthestriaterminalisinthenon-humanprimate:neuronaltracttracinganddevelopmentalneuroimagingstudies,BrainStructFunct.Funct.222,2017,21–39.

[42]S.N.Avery,J.A.Clauss,D.G.Winder,N.Woodward,S.HeckersandJ.U.Blackford,BNSTneurocircuitryinhumans,Neuroimage91,2014,311–323.

[43]A.Kamali,H.I.Sair,A.M.Blitz,R.F.Riascos,S.Mirbagheri,Z.KeserandK.M.Hasan,Revealingtheventralamygdalofugalpathwayofthehumanlimbicsystemusinghighspatialresolutiondiffusiontensor

tractography,BrainStructFunct.Funct.221,2016,3561–3569.

[44]A.Kamali,D.M.Yousem,D.D.Lin,H.I.Sair,S.P.Jasti,Z.KeserandK.M.Hasan,Mappingthetrajectoryofthestriaterminalisofthehumanlimbicsystemusinghighspatialresolutiondiffusiontensortractography,

NeuroscienceLetters.Lett.608,2015,45–50.

[45]A.X.Gorka,S.Torrisi,A.J.Shackman,C.GrillonandM.Ernst,Intrinsicfunctionalconnectivityofthecentralnucleusoftheamygdalaandbednucleusofthestriaterminalis,Neuroimage2017,(inpress).

[46]J.A.Oler,R.M.Birn,R.Patriat,A.S.Fox,S.E.Shelton,C.A.BurghyandN.H.Kalin,Evidenceforcoordinatedfunctionalactivitywithintheextendedamygdalaofnon-humanandhumanprimates,Neuroimage61,2012,

1059–1066.

[47]R.M.Tillman,M.D.Stockbridge,B.M.Nacewicz,S.Torrisi,A.S.Fox,J.F.SmithandA.J.Shackman,Intrinsicfunctionalconnectivityofthecentralextendedamygdala,bioRxiv2017.

[48]S.Torrisi,K.O'Connell,A.Davis,R.Reynolds,N.Balderston,J.L.FudgeandM.Ernst,Restingstateconnectivityofthebednucleusofthestriaterminalisatultra-highfield,HumanBrainMapping.BrainMapp.36,2015,

4076–4088.

[49]J.L.FreeseandD.G.Amaral,Neuroanatomyoftheprimateamygdala,In:P.J.WhalenandE.A.Phelps,(Eds.),ThehumanaHumanAmygdala,2009,Guilford;NY,3–42.

[50]A.J.Shackman,A.S.Fox,J.A.Oler,S.E.Shelton,R.J.DavidsonandN.H.Kalin,Neuralmechanismsunderlyingheterogeneityinthepresentationofanxioustemperament,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.NationalAcad.Sci.U.S.A.110,2013,6145–6150.

[51]A.S.Fox,S.E.Shelton,T.R.Oakes,R.J.DavidsonandN.H.Kalin,Trait-likebrainactivityduringadolescencepredictsanxioustemperamentinprimates,PLoSONEne3,2008,e2570.

[52]N.H.Kalin,S.E.Shelton,A.S.Fox,T.R.OakesandR.J.Davidson,Brainregionsassociatedwiththeexpressionandcontextualregulationofanxietyinprimates,Biological.Psychiatry58,2005,796–804.

[53]S.G.Costafreda,M.J.Brammer,A.S.DavidandC.H.Fu,Predictorsofamygdalaactivationduringtheprocessingofemotionalstimuli:ameta-analysisof385PETandfMRIstudies,BrainResearchReviews.Rev.58,2008,

57–70.

[54]P.Fusar-Poli,A.Placentino,F.Carletti,P.Landi,P.Allen,S.SurguladzeandP.Politi,Functionalatlasofemotionalfacesprocessing:avoxel-basedmeta-analysisof105functionalmagneticresonanceimagingstudies,JournalofPsychiatryandNeuroscience.PsychiatryNeurosci.34,2009,418–432.

[55]K.A.Lindquist,A.B.Satpute,T.D.Wager,J.WeberandL.F.Barrett,Thebrainbasisofpositiveandnegativeaffect:Eevidencefromameta-analysisofthehumanneuroimagingliterature,Cerebral.Cortex26,2016,

1910–1922.

[56]D.Sabatinelli,E.E.Fortune,Q.Li,A.Siddiqui,C.Krafft,W.T.OliverandJ.Jeffries,Emotionalperception:Mmeta-analysesoffaceandnaturalsceneprocessing,Neuroimage54,2011,2524–2533.

[57]K.Sergerie,C.ChocholandJ.L.Armony,Theroleoftheamygdalainemotionalprocessing:aquantitativemeta-analysisoffunctionalneuroimagingstudies,NeuroscienceandBiobehavioralReviews.Biobehav.Rev.32,2008

811–830.

[58]S.Hrybouski,A.Aghamohammadi-Sereshki,C.R.Madan,A.T.Shafer,C.A.Baron,P.SeresandN.V.Malykhin,Amygdalasubnucleiresponseandconnectivityduringemotionalprocessing,Neuroimage133,2016,98–110.

[59]D.T.Cheng,D.C.Knight,C.N.SmithandF.J.Helmstetter,Humanamygdalaactivityduringtheexpressionoffearresponses,BehavioralNeuroscience.Neurosci.120,2006,1187–1195.

[60]D.T.Cheng,J.RichardsandF.J.Helmstetter,Activityinthehumanamygdalacorrespondstoearly:ratherthanlateperiodautonomicresponsestoasignalforshock,Learning&Memory.Mem.14,2007,485–490.

[61]D.C.Knight,H.T.NguyenandP.A.Bandettini,Theroleofthehumanamygdalaintheproductionofconditionedfearresponses,Neuroimage26,2005,1193–1200.

[62]P.A.KragelandK.S.LaBar,Multivariateneuralbiomarkersofemotionalstatesarecategoricallydistinct,SocCognAffectNeurosci.Cogn.Affect.Neurosci.10,2015,1437–1448.

[63]K.S.LaBar,J.C.Gatenby,J.C.Gore,J.E.LeDouxandE.A.Phelps,Humanamygdalaactivationduringconditionedfearacquisitionandextinction:amixed-trialfMRIstudy,Neuron20,1998,937–945.

[64]S.vanWell,R.M.Visser,H.S.ScholteandM.Kindt,Neuralsubstratesofindividualdifferencesinhumanfearlearning:evidencefromconcurrentfMRI,fear-potentiatedstartle,andUS-expectancydata,CognAffect

BehavNeurosci.AffectBehav.Neurosci.12,2012,499–512.

[65]K.H.Wood,L.W.VerHoefandD.C.Knight,Theamygdalamediatestheemotionalmodulationofthreat-elicitedskinconductanceresponse,Emotion14,2014,693–700.

[66]L.J.Chang,P.J.Gianaros,S.B.Manuck,A.KrishnanandT.D.Wager,Asensitiveandspecificneuralsignatureforpicture-inducednegativeaffect,PLoSBiol.13,2015,e1002180.

[67]R.Sladky,N.Geissberger,D.M.Pfabigan,C.Kraus,M.Tik,M.WoletzandC.Windischberger,UnsmoothedfunctionalMRIofthehumanamygdalaandbednucleusofthestriaterminalisduringprocessingofemotional

faces,Neuroimage2017,inpress.

[68]R.P.Alvarez,N.Kirlic,M.Misaki,J.Bodurka,J.L.Rhudy,M.P.PaulusandW.C.Drevets,Increasedanteriorinsulaactivityinanxiousindividualsislinkedtodiminishedperceivedcontrol,Transl.Psychiatry5,2015,e591.

[69]L.Banihashemi,L.K.Sheu,A.J.MideiandP.J.Gianaros,Childhoodphysicalabusepredictsstressor-evokedactivitywithincentralvisceralcontrolregions,SocCognAffectNeurosci.Cogn.Affect.Neurosci.10,2015,474–485

[70]B.W.McMenamin,S.J.Langeslag,M.Sirbu,S.PadmalaandL.Pessoa,Networkorganizationunfoldsovertimeduringperiodsofanxiousanticipation,JournalofNeuroscience.Neurosci.34,2014,11261–11273.

[71]M.Davis,Neuralsystemsinvolvedinfearandanxietymeasuredwithfear-potentiatedstartle,AmericanPsychologist.Psychol.61,2006,741–756.

[72]R.P.Alvarez,G.Chen,J.Bodurka,R.KaplanandC.Grillon,Phasicandsustainedfearinhumanselicitsdistinctpatternsofbrainactivity,Neuroimage55,2011,389–400.

[73]L.Brinkmann,C.Buff,P.Neumeister,S.V.Tupak,M.P.Becker,M.J.HerrmannandT.Straube,Dissociationbetweenamygdalaandbednucleusofthestriaterminalisduringthreatanticipationinfemalepost-traumatic

stressdisorderpatients,HumanBrainMapping.BrainMapp.38,2017,2190–2205.

[74]D.W.Grupe,D.J.OathesandJ.B.Nitschke,Dissectingtheanticipationofaversionrevealsdissociableneuralnetworks,Cerebral.Cortex23,2013,1874–1883.

[75]M.J.Herrmann,S.Boehme,M.P.Becker,S.V.Tupak,A.Guhn,B.SchmidtandT.Straube,Phasicandsustainedbrainresponsesintheamygdalaandthebednucleusofthestriaterminalisduringthreatanticipation,

HumanBrainMapping.BrainMapp.37,2016,1091–1102.

[76]F.Klumpers,M.C.W.Kroes,J.BaasandG.Fernandez,Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses,JournalofNeuroscience.Neurosci.2017,(inpress).

[77]L.E.Williams,J.A.Oler,A.S.Fox,D.R.McFarlin,G.M.Rogers,M.A.JessonandN.H.Kalin,Fearoftheunknown:Uuncertainanticipationrevealsamygdalaalterationsinchildhoodanxietydisorders,

Neuropsychopharmacology40,2015,1428–1435.

[78]L.Lieberman,S.M.Gorka,S.A.ShankmanandK.L.Phan,Impactofpaniconpsychophysiologicalandneuralreactivitytounpredictablethreatindepressionandanxiety,ClinPsycholSci.Psychol.Sci.5(1),2017,52–63.

[79]D.Mobbs,J.L.Marchant,D.Hassabis,B.Seymour,G.Tan,M.GrayandC.D.Frith,Fromthreattofear:theneuralorganizationofdefensivefearsystemsinhumans,JournalofNeuroscience.Neurosci.29,2009,

12236–12243.

[80]J.M.Choi,S.PadmalaandL.Pessoa,Impactofstateanxietyontheinteractionbetweenthreatmonitoringandcognition,Neuroimage59,2012,1912–1923.

[81]W.S.Pedersen,N.L.Balderston,T.A.Miskovich,E.L.Belleau,F.J.HelmstetterandC.L.Larson,TheeffectsofstimulusnoveltyandnegativityonBOLDactivityintheamygdala,hippocampus:andbednucleusofthestria

terminalis,SocCognAffectNeurosci.Cogn.Affect.Neurosci.12,2017,748–757.

[82]L.Brinkmann,C.Buff,K.Feldker,P.Neumeister,C.Y.Heitmann,D.HofmannandT.Straube,(underreview/personalcommunication7/20/2017).Inter-individualdifferencesintraitanxietyshapethefunctionalconnectivitybetweenthebednucleusofthestriaterminalisandtheamygdaladuringbriefthreatprocessing,Neuroimage2017,(underreview/personalcommunication7/20/2017).

[83]F.Klumpers,M.C.Kroes,I.Heitland,D.Everaerd,S.E.Akkermans,R.S.OostingandJ.M.Baas,Dorsomedialprefrontalcortexmediatestheimpactofserotonintransporterlinkedpolymorphicregiongenotypeon

anticipatorythreatreactions,Biological.Psychiatry78,2015,582–589.

[84]C.H.Meyer,S.PadmalaandL.Pessoa,Trackingdynamicthreatimminence,bioRxiv2017.

[85]M.Davis,D.L.Walker,L.MilesandC.Grillon,Phasicvssustainedfearinratsandhumans:Rroleoftheextendedamygdalainfearvsanxiety,Neuropsychopharmacology35,2010,105–135.

[86]N.Z.GungorandD.Paré,Functionalheterogeneityinthebednucleusofthestriaterminalis,JournalofNeuroscience.Neurosci.36,2016,8038–8049.

[87]L.Brinkmann,C.Buff,K.Feldker,S.V.Tupak,M.P.I.Becker,M.J.HerrmannandT.Straube,Distinctphasicandsustainedbrainresponsesandconnectivityofamygdalaandbednucleusofthestriaterminalisduring

threatanticipationinpanicdisorder,PsychologicalMedicine.Med.2017,1–14,(inpress).

[88]C.Buff,L.Brinkmann,M.Bruchmann,M.P.I.Becker,S.Tupaka,M.J.HerrmannandT.Straube,ActivityalterationsinthebednucleusofthestriaterminalisandamygdaladuringthreatanticipationinGeneralized

AnxietyDisorder,SocialCognitiveandAffectiveNeuroscience.Cogn.Affect.Neurosci.2017,(inpress).

[89]A.N.Kaczkurkin,T.M.Moore,K.Ruparel,R.Ciric,M.E.Calkins,R.T.ShinoharaandT.D.Satterthwaite,Elevatedamygdalaperfusionmediatesdevelopmentalsexdifferencesintraitanxiety,Biological.Psychiatry80,2016,

775–785.

[90]A.L.Münsterkötter,S.Notzon,R.Redlich,D.Grotegerd,K.Dohm,V.AroltandU.Dannlowski,Spiderornospider?Neuralcorrelatesofsustainedandphasicfearinspiderphobia,Depressionand.Anxiety32,2015,

656–663.

[91]J.S.Stevens,Y.J.Kim,I.R.Galatzer-Levy,R.Reddy,T.D.Ely,C.B.NemeroffandK.J.Ressler,Amygdalareactivityandanteriorcingulatehabituationpredictposttraumaticstressdisordersymptommaintenanceafteracuteciviliantrauma,Biological.Psychiatry81,2017,1023–1029.

[92]T.Straube,H.J.MentzelandW.H.R.Miltner,Waitingforspiders:Bbrainactivationduringanticipatoryanxietyinspiderphobics,Neuroimage37,2007,1427–1436.

[93]M.A.Yassa,R.L.Hazlett,C.E.StarkandR.Hoehn-Saric,FunctionalMRIoftheamygdalaandbednucleusofthestriaterminalisduringconditionsofuncertaintyingeneralizedanxietydisorder,JournalofPsychiatric

Research.Psychiatr.Res.46,2012,1045–1052.

[94]A.J.Shackman,A.S.Fox,J.A.Oler,S.E.Shelton,T.R.Oakes,R.J.DavidsonandN.H.Kalin,Heightenedextendedamygdalametabolismfollowingthreatcharacterizestheearlyphenotypicrisktodevelopanxiety-relatedpsychopathology,Molecular.Psychiatry22,2017,724–732.

[95]A.S.Fox,R.C.Lapate,R.J.DavidsonandA.J.Shackman,Epilogue—Thenatureofemotion:Aaresearchagendaforthe21 stcentury,In:A.S.Fox,R.C.Lapate,A.J.ShackmanandR.J.Davidson,(Eds.),Thenatureofemotion.FundamentalqNatureofEmotion.FundamentalQuestions,2nded.,2017,OxfordUniversityPress;NewYork,(inpress)http://shackmanlab.org/wp-

content/uploads/2017/2007/fox_shackman_NoE_Epilogue_070917Final.pdf.

[96]D.E.Bradford,B.L.ShapiroandJ.J.Curtin,Howbadcoulditbe?:Alcoholdampensstressresponsestothreatofuncertainintensity,PsycholSci.Sci.24,2013,2541–2549.

[97]D.Mobbs,P.Petrovic,J.L.Marchant,D.Hassabis,N.Weiskopf,B.SeymourandC.D.Frith,Whenfearisnear:threatimminenceelicitsprefrontal-periaqueductalgrayshiftsinhumans,Science317,2007,1079–1083.

[98]D.Mobbs,C.C.Hagan,T.Dalgleish,B.SilstonandC.Prevost,Theecologyofhumanfear:survivaloptimizationandthenervoussystem,FrontNeurosci.Neurosci.9,2015,55.

[99]D.MobbsandJ.J.Kim,Neuroethologicalstudiesoffear,anxiety:andriskydecision-makinginrodentsandhumans,CurrentOpinioninBehavioralSciences.Opin.Behav.Sci.5,2015,8–15.

[100]L.H.Somerville,P.J.WhalenandW.M.Kelley,Humanbednucleusofthestriaterminalisindexeshypervigilantthreatmonitoring,Biological.Psychiatry68,2010,416–424.

[101]M.R.Munafò,B.A.Nosek,D.V.M.Bishop,K.S.Button,C.D.Chambers,N.P.duSertandJ.P.A.Ioannidis,Amanifestoforreproduciblescience,NatureHumanBehaviour.Hum.Behav.1,2017,21.

[102]R.A.Poldrack,C.I.Baker,J.Durnez,K.J.Gorgolewski,P.M.Matthews,M.R.MunafoandT.Yarkoni,Scanningthehorizon:towardstransparentandreproducibleneuroimagingresearch,NatureReviews.Neuroscience.Rev.

Neurosci.18,2017,115–126.

[103]D.SzucsandJ.P.Ioannidis,Empiricalassessmentofpublishedeffectsizesandpowerintherecentcognitiveneuroscienceandpsychologyliterature,PLoSBiol.15,2017,e2000797.

[104]P.A.Kragel,A.R.Knodt,A.R.HaririandK.S.LaBar,DecodingSpontaneousEmotionalStatesintheHumanBrainPLoSBiolspontaneousemotionalstatesinthehumanbrain,PLoSBiol.14,2016,e2000106.

[105]L.NummenmaaandH.Saarimaki,Emotionsasdiscretepatternsofsystemicactivity,NeuroscienceLetters,2017,(npress).

[106]L.Pessoa,Anetworkmodeloftheemotionalbrain,TrendsinCognitiveSciencesCogn.Sci.21,2017,357–371.

[107]A.J.ShackmanandA.S.Fox,Afterword:Hhowareemotionsorganizedinthebrain?,In:A.S.Fox,R.C.Lapate,A.J.ShackmanandR.J.Davidson,(Eds.),Thenatureofemotion.FundamentalqNatureofEmotion.FundamentalQuestions,2nded.,2017,OxfordUniversityPress;NewYork,NY.

[108]T.D.Wager,J.Kang,T.D.Johnson,T.E.Nichols,A.B.SatputeandL.F.Barrett,ABayesianmodelofcategory-specificemotionalbrainresponses,PLoSComputBiol.Biol.11,2015,e1004066.

[109]D.ParéandG.J.Quirk,Whenscientificparadigmsleadtotunnelvision:lessonsfromthestudyoffear,ScienceofLearning.Learn.2,2017,6.

[110]K.Yu,S.Ahrens,X.Zhang,H.Schiff,C.Ramakrishnan,L.FennoandB.Li,Thecentralamygdalacontrolslearninginthelateralamygdala,bioRxiv2017. (Yu,K.,Ahrens,S.,Zhang,X.,Schiff,H.,Ramakrishnan,C.,Fenno,L.,...Li,B.(2017).Thecentralamygdalacontrolslearninginthelateralamygdala.NatureNeuroscience,20,1680-1685.)

[111]J.P.Fadok,S.Krabbe,M.Markovic,J.Courtin,C.Xu,L.MassiandA.Luthi,Acompetitiveinhibitorycircuitforselectionofactiveandpassivefearresponses,Nature542,2017,96–100.

[112]S.Y.Kim,A.Adhikari,S.Y.Lee,J.H.Marshel,C.K.Kim,C.S.MalloryandK.Deisseroth,Divergingneuralpathwaysassembleabehaviouralstatefromseparablefeaturesinanxiety,Nature496,2013,219–223.

[113]D.Viviani,A.Charlet,E.vandenBurg,C.Robinet,N.Hurni,M.AbatisandR.Stoop,Oxytocinselectivelygatesfearresponsesthroughdistinctoutputsfromthecentralamygdala,Science333,2011,104–107.

[114]T.Isosaka,T.Matsuo,T.Yamaguchi,K.Funabiki,S.Nakanishi,R.KobayakawaandK.Kobayakawa,Htr2a-expressingcellsinthecentralamygdalacontrolthehierarchybetweeninnateandlearnedfear,Cell163,2015,

1153–1164.

[115]G.G.CalhoonandK.M.Tye,Resolvingtheneuralcircuitsofanxiety,NatureNeuroscience.Neurosci.18,2015,1394–1404.

[116]P.Tovote,J.P.FadokandA.Luthi,Neuronalcircuitsforfearandanxiety,NatureReviews.Neuroscience.Rev.Neurosci.16,2015,317–331.

[117]P.Botta,L.Demmou,Y.Kasugai,M.Markovic,C.Xu,J.P.FadokandA.Luthi,Regulatinganxietywithextrasynapticinhibition,NatureNeuroscience.Neurosci.18,2015,1493–1500.

[118]N.A.Crowley,D.W.Bloodgood,J.A.Hardaway,A.M.Kendra,J.G.McCall,R.Al-HasaniandT.L.Kash,Dynorphincontrolsthegainofanamygdalaranxietycircuit,CellRep.14,2016,2774–2783.

[119]S.Duvarci,E.P.BauerandD.Paré,Thebednucleusofthestriaterminalismediatesinter-individualvariationsinanxietyandfear,JournalofNeuroscience.Neurosci.29,2009,10357–10361.

[120]C.Glangetas,L.Massi,G.R.Fois,M.Jalabert,D.Girard,M.DianaandF.Georges,NMDA-receptor-dependentplasticityinthebednucleusofthestriaterminalistriggerslong-termanxiolysis,NatCommun.Commun.8,

2017,14456.

[121]J.H.Jennings,D.R.Sparta,A.M.Stamatakis,R.L.Ung,K.E.Pleil,T.L.KashandG.D.Stuber,Distinctextendedamygdalacircuitsfordivergentmotivationalstates,Nature496,2013,224–228.

[122]C.M.Mazzone,D.Pati,M.Michaelides,J.DiBerto,J.H.Fox,G.TiptonandT.L.Kash,AcuteengagementofGq-mediatedsignalinginthebednucleusofthestriaterminalisinducesanxiety-likebehavior,Molecular.

Psychiatry2017,inpress(inpress).

[123]C.Moller,L.Wiklund,W.Sommer,A.ThorsellandM.Heilig,Decreasedexperimentalanxietyandvoluntaryethanolconsumptioninratsfollowingcentralbutnotbasolateralamygdalalesions,BrainResearch.760,

1997,94–101.

[124]J.M.ZimmermanandS.Maren,Thebednucleusofthestriaterminalisisrequiredfortheexpressionofcontextualbutnotauditoryfreezinginratswithbasolateralamygdalalesions,NeurobiologyofLearningand

Memory.Learn.Mem.95,2011,199–205.

[125]J.M.Zimmerman,C.A.Rabinak,I.G.McLachlanandS.Maren,Thecentralnucleusoftheamygdalaisessentialforacquiringandexpressingconditionalfearafterovertraining,LearningandMemory.Mem.14,2007,

634–644.

[126]K.M.Tye,R.Prakash,S.Y.Kim,L.E.Fenno,L.Grosenick,H.ZarabiandK.Deisseroth,Amygdalacircuitrymediatingreversibleandbidirectionalcontrolofanxiety,Nature471,2011,358–362.

[127]C.M.Moreira,S.Masson,M.C.CarvalhoandM.L.Brandao,Exploratorybehaviorofratsintheelevatedplusmazeisdifferentiallysensitivetoinactivationofthebasolateralandcentralamygdaloidnuclei,Brain

ResearchBulletin.Bull.71,2007,466–474.

[128]A.Asok,A.Draper,A.F.Hoffman,J.Schulkin,C.R.LupicaandJ.B.Rosen,Optogeneticsilencingofacorticotropin-releasingfactorpathwayfromthecentralamygdalatothebednucleusofthestriaterminalisdisruptssustainedfear,Molecular.Psychiatry2017,(inpress).

[129]M.W.PittsandL.K.Takahashi,Thecentralamygdalanucleusviacorticotropin-releasingfactorisnecessaryfortime-limitedconsolidationprocessingbutnotstorageofcontextualfearmemory,Neurobiologyof

LearningandMemory.Learn.Mem.95,2011,86–91.

[130]C.A.Marcinkiewcz,C.M.Mazzone,G.D'Agostino,L.R.Halladay,J.A.Hardaway,J.F.DiBertoandT.L.Kash,Serotoninengagesananxietyandfear-promotingcircuitintheextendedamygdala,Nature537,2016,97–101.

[131]M.D.Lange,T.Daldrup,F.Remmers,H.J.Szkudlarek,J.Lesting,S.GuggenhuberandH.C.Pape,CannabinoidCB1receptorsindistinctcircuitsoftheextendedamygdaladeterminefearresponsivenesstounpredictable

threat,Molecular.Psychiatry22,2017,1422–1430.

[132]T.Daldrup,J.Remmes,J.Lesting,S.Gaburro,M.Fendt,P.MeuthandT.Seidenbecher,Expressionoffreezingandfear-potentiatedstartleduringsustainedfearinmice,GenesBrainBehav.14,2015,281–291.

[133]L.Miles,M.DavisandD.Walker,Phasicandsustainedfeararepharmacologicallydissociableinrats,Neuropsychopharmacology36,2011,1563–1574.

[134]D.L.WalkerandM.Davis,Roleoftheextendedamygdalainshort-durationversussustainedfear:atributetoDr.LennartHeimer,BrainStructFunct.Funct.213,2008,29–42.

[135]A.C.Felix-Ortiz,A.Beyeler,C.Seo,C.A.Leppla,C.P.WildesandK.M.Tye,BLAtovHPCinputsmodulateanxiety-relatedbehaviors,Neuron79,2013,658–664.

[136]A.C.Felix-Ortiz,A.Burgos-Robles,N.D.Bhagat,C.A.LepplaandK.M.Tye,Bidirectionalmodulationofanxiety-relatedandsocialbehaviorsbyamygdalaprojectionstothemedialprefrontalcortex,Neuroscience321,

2016,197–209.

[137]S.C.Lee,A.Amir,D.HauflerandD.Pare,Differentialrecruitmentofcompetingvalence-relatedamygdalanetworksduringanxiety,Neuron96,2017,81–88,e85(e85).

[138]N.H.Kalin,S.E.SheltonandR.J.Davidson,Theroleofthecentralnucleusoftheamygdalainmediatingfearandanxietyintheprimate,JournalofNeuroscience.Neurosci.24,2004,5506–5515.

[139]A.Bechara,D.Tranel,H.Damasio,R.Adolphs,C.RocklandandA.R.Damasio,Doubledissociationofconditioninganddeclarativeknowledgerelativetotheamygdalaandhippocampusinhumans,Science269,1995,

1115–1118.

[140]J.S.Feinstein,R.Adolphs,A.DamasioandD.Tranel,Thehumanamygdalaandtheinductionandexperienceoffear,CurrentBiology.Biol.21,2011,1–5.

[141]C.W.Korn,J.Vunder,J.Miró,L.Fuentemilla,R.HurlemannandD.R.Bach,Amygdalalesionsreduceanxiety-likebehaviorinahumanbenzodiazepine-sensitiveapproach-avoidanceconflicttest,Biological.Psychiatry82

2017,522–531.

[142]M.DavisandP.J.Whalen,Theamygdala:vigilanceandemotion,Molecular.Psychiatry6,2001,13–34.

[143]J.L.Gomez,J.Bonaventura,W.Lesniak,W.B.Mathews,P.Sysa-Shah,L.A.RodriguezandM.Michaelides,Chemogeneticsrevealed:DREADDoccupancyandactivationviaconvertedclozapine,Science357(6350),2017,

503–507.

[144]C.K.Kim,A.AdhikariandK.Deisseroth,Integrationofoptogeneticswithcomplementarymethodologiesinsystemsneuroscience,NatureReviewsNeuroscience.Rev.Neurosci.18,2017,222–235.

[145]B.L.Roth,DREADDsforNneuroscientists,Neuron89,2016,683–694.

[146]K.S.Smith,D.J.Bucci,B.W.LuikartandS.V.Mahler,DREADDs:Uuseandapplicationinbehavioralneuroscience,BehavioralNeuroscience.Neurosci.130,2016,137–155.

[147]J.S.Wiegert,M.Mahn,M.Prigge,Y.PrintzandO.Yizhar,Silencingneurons:Ttools,applicationsandexperimentalconstraints,Neuron95,2017,504–529.

[148]A.L.Garcia-Garcia,S.Canetta,J.M.Stujenske,N.S.Burghardt,M.S.Ansorge,A.DranovskyandE.D.Leonardo,SerotonininputstothedorsalBNSTmodulateanxietyina5-HAreceptor-dependentmanner,Molecular.

Psychiatry2017,(inpress).

[149]N.H.Kalin,S.E.SheltonandR.J.Davidson,Roleoftheprimateorbitofrontalcortexinmediatinganxioustemperament,Biological.Psychiatry62,2007,1134–1139.

[150]P.H.Rudebeck,R.C.Saunders,A.T.Prescott,L.S.ChauandE.A.Murray,Prefrontalmechanismsofbehavioralflexibility:emotionregulationandvalueupdating,NatureNeuroscience.Neurosci.16,2013,1140–1145.

[151]A.S.Fox,S.E.Shelton,T.R.Oakes,A.K.Converse,R.J.DavidsonandN.H.Kalin,Orbitofrontalcortexlesionsalteranxiety-relatedactivityintheprimatebednucleusofstriaterminalis,JournalofNeuroscience.Neurosci.30

2010,7023–7027.

[152]J.C.Motzkin,C.L.Philippi,J.A.Oler,N.H.Kalin,M.K.BaskayaandM.Koenigs,Ventromedialprefrontalcortexdamagealtersrestingbloodflowtothebednucleusofstriaterminalis,Cortex64,2015,281–288.

[153]N.H.Kalin,A.S.Fox,R.Kovner,M.K.Riedel,E.M.Fekete,P.H.RoseboomandJ.A.Oler,Overexpressingcorticotropin-releasinghormoneintheprimateamygdalaincreasesanxioustemperamentandaltersitsneural

circuit,Biological.Psychiatry80,2016,345–355.

[154]L.Regev,M.Tsoory,S.GilandA.Chen,Site-specificgeneticmanipulationofamygdalacorticotropin-releasingfactorrevealsitsimperativeroleinmediatingbehavioralresponsetochallenge,Biological.Psychiatry

71,2012,317–326.

[155]D.S.Grayson,E.Bliss-Moreau,C.J.Machado,J.Bennett,K.Shen,K.A.GrantandD.G.Amaral,Therhesusmonkeyconnectomepredictsdisruptedfunctionalnetworksresultingfrompharmacogeneticinactivationofthe

amygdala,Neuron91,2016,453–466.

[156]A.Afraz,E.S.BoydenandJ.J.DiCarlo,Optogeneticandpharmacologicalsuppressionofspatialclustersoffaceneuronsrevealtheircausalroleinfacegenderdiscrimination,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica.Natl.Acad.Sci.U.S.A.112,2015,6730–6735.

[157]M.A.Eldridge,W.Lerchner,R.C.Saunders,H.Kaneko,K.W.Krausz,F.J.GonzalezandB.J.Richmond,Chemogeneticdisconnectionofmonkeyorbitofrontalandrhinalcortexreversiblydisruptsrewardvalue?,Nature

Neuroscience.Neurosci.19(1),2016,37–39.

[158]A.Gerits,R.Farivar,B.R.Rosen,L.L.Wald,E.S.BoydenandW.Vanduffel,Optogeneticallyinducedbehavioralandfunctionalnetworkchangesinprimates,CurrentBiology.Biol.22,2012,1722–1726.

[159]M.Jazayeri,Z.Lindbloom-BrownandG.D.Horwitz,SaccadiceyemovementsevokedbyoptogeneticactivationofprimateV1,NatureNeuroscience.Neurosci.15,2012,1368–1370.

[160]Y.Nagai,E.Kikuchi,W.Lerchner,K.I.Inoue,B.Ji,M.A.EldridgeandT.Minamimoto,PETimaging-guidedchemogeneticsilencingrevealsacriticalroleofprimaterostromedialcaudateinrewardevaluation,

NatCommun.Commun.7,2016,13605.

[161]A.Yazdan-Shahmorad,C.Diaz-Botia,T.L.Hanson,V.Kharazia,P.Ledochowitsch,M.M.MaharbizandP.N.Sabes,Alarge-scaleinterfaceforoptogeneticstimulationandrecordinginnonhumanprimates,Neuron89,2016

927–939.

[162]W.R.Stauffer,A.Lak,A.Yang,M.Borel,O.Paulsen,E.S.BoydenandW.Schultz,Dopamineneuron-specificoptogeneticstimulationinrhesusmacaques,Cell166,2016,1564–1571,e1566(e1566).

[163]M.MichaelidesandY.L.Hurd,DREAMM:abiobehavioralimagingmethodologyfordynamicinvivowhole-brainmappingofcelltype-specificfunctionalnetworks,Neuropsychopharmacology40,2015,239–240.

[164]S.H.Park,B.E.Russ,D.B.T.McMahon,K.W.Koyano,R.A.BermanandD.A.Leopold,Functionalsubpopulationsofneuronsinamacaquefacepatchrevealedbysingle-unitfMRImapping,Neuron2017,(inpress).

[165]Y.Shiba,L.Oikonomidis,S.Sawiak,T.Fryer,Y.T.Hong,G.CockcroftandA.C.Roberts,Convergingprefronto-insula-amygdalapathwaysinnegativeemotionregulationinmarmosetmonkeys,Biological.Psychiatry2017,(inpress).

[166]T.M.Otchy,S.B.Wolff,J.Y.Rhee,C.Pehlevan,R.Kawai,A.KempfandB.P.Olveczky,Acuteoff-targeteffectsofneuralcircuitmanipulations,Nature528,2015,358–363.

[167]E.CarreraandG.Tononi,Diaschisis:past,presentfuture,Brain137,2014,2408–2422.

[168]M.Corbetta,M.J.Kincade,C.Lewis,A.Z.SnyderandA.Sapir,Neuralbasisandrecoveryofspatialattentiondeficitsinspatialneglect,NatureNeuroscience.Neurosci.8,2005,1603–1610.

[169]A.Fornito,A.ZaleskyandM.Breakspear,Theconnectomicsofbraindisorders,NatureReviews.Neuroscience.Rev.Neurosci.16,2015,159–172.

[170]J.S.Feinstein,R.AdolphsandD.Tranel,AtaleofsurvivalfromtheworldofPatientS.M,In:D.G.AmaralandR.Adolphs,(Eds.),LivingwithoutanaWithoutanAmygdala,2016,Guilford;NewYork.

[171]A.J.Shackman,A.S.FoxandD.A.Seminowicz,Thecognitive-emotionalbrain:Oopportunitiesandchallengesforunderstandingneuropsychiatricdisorders,BehavioralandBrainSciences.BrainSci.38,2015,e86.

[172]J.E.LeDoux,Anxious,UsingthebraintounderstandandtreatfearandaBraintoUnderstandandTreatFearandAnxiety,2015,Viking;NY.

[173]AmericanPsychiatricAssociation,DiagnosticandstatisticalmanualofmentaldStatisticalManualofMentalDisorders,5thed.),2013.

[174]J.Kagan,Brainandemotion,EmotionReview,2017,(inpress).

[175]D.Watson,K.StantonandL.A.Clark,Self-reportindicatorsofnegativevalenceconstructswithintheresearchdomaincriteria(RDoC):Aacriticalreview,JournalofAffectiveDisorders.Affect.Disord.216,2017,58–69.

[176]M.A.Fullana,B.J.Harrison,C.Soriano-Mas,B.Vervliet,N.Cardoner,A.Avila-ParcetandJ.Radua,Neuralsignaturesofhumanfearconditioning:anupdatedandextendedmeta-analysisoffMRIstudies,Molecular.

Psychiatry21,2016,500–508.

[177]M.L.Mechias,A.EtkinandR.Kalisch,Ameta-analysisofinstructedfearstudies:implicationsforconsciousappraisalofthreat,Neuroimage49,2010,1760–1768.

[178]E.A.Antoniadis,J.T.Winslow,M.DavisandD.G.Amaral,Roleoftheprimateamygdalainfear-potentiatedstartle:effectsofchroniclesionsintherhesusmonkey,JournalofNeuroscience.Neurosci.27(28),2007,

7386–7396.

[179]S.W.Derbyshire,A.K.Jones,F.Gyulai,S.Clark,D.TownsendandL.L.Firestone,Painprocessingduringthreelevelsofnoxiousstimulationproducesdifferentialpatternsofcentralactivity,Pain73,1997,431–445.

[180]D.W.Grupe,J.Wielgosz,R.J.DavidsonandJ.B.Nitschke,Neurobiologicalcorrelatesofdistinctpost-traumaticstressdisordersymptomprofilesduringthreatanticipationincombatveterans,PsychologicalMedicine.

Med.46,2016,1885–1895.

[181]P.Petrovic,K.Carlsson,K.M.Petersson,P.HanssonandM.Ingvar,Context-dependentdeactivationoftheamygdaladuringpain,JournalofCognitiveNeuroscience.Cogn.Neurosci.16,2004,1289–1301.

[182]J.C.Pruessner,K.Dedovic,N.Khalili-Mahani,V.Engert,M.Pruessner,C.BussandS.Lupien,Deactivationofthelimbicsystemduringacutepsychosocialstress:evidencefrompositronemissiontomographyand

functionalmagneticresonanceimagingstudies,Biological.Psychiatry63,2008,234–240.

[183]T.D.Wager,C.E.Waugh,M.Lindquist,D.C.Noll,B.L.FredricksonandS.F.Taylor,Brainmediatorsofcardiovascularresponsestosocialthreat:partI:Reciprocaldorsalandventralsub-regionsofthemedialprefrontal

cortexandheart-ratereactivity,Neuroimage47,2009,821–835.

Footnotes2Ithasbecomeincreasinglycommontodrawadistinctionbetween‘fear’and‘anxiety’(e.g.,[172].Yetlaypeople,scholarsinotherareas,theAmericanPsychiatricAssociation’sDiagnosticandStatisticalManual[173],andevendomain

expertsoftenusethesetermsininterchangeable,inconsistent,oroverlyinclusivewaysKagan,inpress;[12,13,175].Toavoidmisunderstanding,wehaveadoptedtheundifferentiatedterm‘fearandanxiety’(foramoredetailed

discussionofnomenclature,seeFoxetal.,inpress; (Fox,A.S.,Lapate,R.C.,Davidson,R.J.,&Shackman,A.J.(2018).Thenatureofemotion:Aresearchagendaforthe21stcentury.InA.S.Fox,R.C.Lapate,A.J.Shackman,&R.J.Davidson(Eds.),The

natureofemotion.Fundamentalquestions(2nded.).NewYork:OxfordUniversityPress.)[19].UnderstandingtheneurobiologyoffearandanxietyisboththeoreticallyandclinicallyimportantandrequiresthatwedeterminehowtheCe,the

BST,andotherbrainregionsworktogethertoevaluateandrespondtodifferentkindsofthreat.Weurgeotherresearcherstoeschewpotentiallyproblematicredefinitionsofeverydaylanguageand,instead,focusonthespecific

parametersofthethreat,thecontextinwhichitoccurs(e.g.,prospectsforescape),andtheneurobehavioralresponse(e.g.,timecourse),includingsubjectiveexperience.

3Interestingly,theamygdalaisnotconsistentlyrecruitedbyconditionedthreatcuesinhumanfMRIstudies[176,177],contrarytoelectrophysiologicalandmechanisticworkinrodents,monkeys,andhumans[178,139,116].Inaddition,

QueriesandAnswersQuery:Theauthornameshavebeentaggedasgivennamesandsurnames(surnamesarehighlightedintealcolor).Pleaseconfirmiftheyhavebeenidentifiedcorrectly.Answer:Yes

Query:Pleasecheckthepresentationofauthorfootnoteandcorrectifnecessary.Answer:OKas-is

Query:PleasenotethatthereferencestylehasbeenchangedfromaName–DatestyletoaNumberedstyleasperthejournalspecifications.Answer:OK

Query:“YourarticleisregisteredasbelongingtotheSpecialIssue/Collectionentitled“NSL”.IfthisisNOTcorrectandyourarticleisaregularitemorbelongstoadifferentSpecialIssuepleasecontactm.saravanan2@elsevier.comimmediatelypriortoreturningyourcorrections.”Answer:Isentanemail.Thisreviewshouldbeassignedtothespecialissueco-editedbyTorWagerandAlexShackman

Query:Pleasecheckthehierarchyofthesectionheadingsandcorrectifnecessary.Answer:Willdo

Query:Thissectioncomprisesreferencesthatoccurinthereferencelistbutnotinthebodyofthetext.Pleaseciteeachreferenceinthetextor,alternatively,deleteit.Answer:Seemyearliercommentsandnotes

Query:Oneormoresponsornamesandthesponsorcountryidentifiermayhavebeeneditedtoastandardformatthatenablesbettersearchingandidentificationofyourarticle.Pleasecheckandcorrectifnecessary.Answer:NationalInstitutesofHealth

Query:PleaseupdateRefs."[67],[122],[45],[76],[82],[87],[88],[95],[105],[128],[148],[164],[165],[174]"Answer:Allofthereferencesthathavechangedarenotedinmyothercomments

severalgroupshavereported‘de-activation’oftheamygdalainavarietyofaversiveparadigms[80,179,180,70,84,79,181–183].Themechanismsunderlyingtheseeffectsremainenigmatic.

4AlthoughautomatedanatomicallabelingtoolsdonotyetincludetheBST,probabilisticmasksarenowavailableforthesupracapsularportion[15,48],asshowninFig.1.ItcanalsobehelpfultoassesswhetherprovisionalBSTclusters

lieoutsideofneighboringregionsincorporatedinprobabilisticatlases(aBooleanNOTwithnucleusaccumbens,pallidum,caudate,putamen,thalamus,andventricles)(Klumpers,Kroes,Baas,&Fernandez,inpress (Klumpers,F.,Kroes,M.C.W.,Baas,J.,&Fernandez,G.(2017).Howhumanamygdalaandbednucleusofthestriaterminalismaydrivedistinctdefensiveresponses.JournalofNeuroscience,37,9645-9656.);[19].

Highlights

• Centralextendedamygdala(EAc)encompassesCeandBST.

• EAcisengagedbyarangeofthreat-relevantcues.

• Optogenetic/chemogeneticstudiesrevealkeymoleculesandmicrocircuits.

• Next-generationnonhumanprimatestudies….

• …bridgethegapbetweenmechanisticworkinrodentsandimagingstudiesinhumans.

Recommended