Tracking of Animals Using Airborne...

Preview:

Citation preview

Tracking of AnimalsUsing Airborne CamerasClas Veibäck

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 9

Target Tracking

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 16

Camera Sensor

z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Licentiate’s Presentation Clas Veibäck November 22, 2016 18

Dolphin - Camera Model z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 19

Bird - Camera Model z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 22

Constrained Motion Model

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

x =

(pp

)=

xyxy

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

w(x, n) =1

‖p− n‖2

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

Clockwise

or

Counterclockwise

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

N∑i=1

(βd + βa(p⊥ · li)

)wi(x)

l1lN

v1

v2

vN

©2015

IEEE

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Licentiate’s Presentation Clas Veibäck November 22, 2016 25

Potential Field

Licentiate’s Presentation Clas Veibäck November 22, 2016 26

Dolphin - Model Simulation

Licentiate’s Presentation Clas Veibäck November 22, 2016 27

Dolphin - Model Comparisons

Detection regionConstraint regionConstant Velocity modelCoordinated Turn modelConstrained Motion model

Licentiate’s Presentation Clas Veibäck November 22, 2016 28

Dolphin - Complete Framework

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 30

Uncertain Timestamp Model

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 33

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 33

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Licentiate’s Presentation Clas Veibäck November 22, 2016 36

Posterior Distributions - Time

p(τ |Y, z)maxX p(X , τ |Y, z)p(τ)

τ

0 0.5 1

Pro

babili

ty

×10-3

0

0.5

1

1.5

2

τ

0 0.2 0.4 0.6 0.8 1

Pro

ba

bili

ty

×10-3

0

2

4

6

8

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Licentiate’s Presentation Clas Veibäck November 22, 2016 38

Posterior Distributions - States

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Licentiate’s Presentation Clas Veibäck November 22, 2016 39

Estimators - Minimum Mean Squared Error

Yz

XMMSE |Y, z

XMMSE |Y

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Licentiate’s Presentation Clas Veibäck November 22, 2016 40

Orienteering - Results

• Adjusted trajectory

• Single control point

Licentiate’s Presentation Clas Veibäck November 22, 2016 40

Orienteering - Results

• Adjusted trajectory

• Single control point

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 42

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 48

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 48

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 1

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 4

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 2

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Time(s)

0 1000 2000 3000

Cage 1

Time(s)

0 1000 2000 3000

Cage 4

Time(s)

0 1000 2000 3000

Cage 2

Time(s)

0 1000 2000 3000

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Licentiate’s Presentation Clas Veibäck November 22, 2016 50

Bird - Complete Framework M1

M2

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Thank you for listening!www.liu.se

Recommended