148
Tracking of Animals Using Airborne Cameras Clas Veibäck

Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Tracking of AnimalsUsing Airborne CamerasClas Veibäck

Page 2: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 3: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 4: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Page 5: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Page 6: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Page 7: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 3

Introduction

• Tracking of animals

• Overhead cameras

• Contributions

• Applications

Page 8: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 9: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 10: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 4

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 11: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 12: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 13: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 14: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 5

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 15: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Page 16: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Page 17: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Page 18: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 6

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

• Stationary and flight modes

Page 19: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 20: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 21: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 7

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 22: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 23: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 9

Target Tracking

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 24: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 25: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 26: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 10

Pre-processing

• Raw Sensor Data

• Signal and Image Processing

• Detections

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 27: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 28: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 29: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 30: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 31: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 32: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 11

Association

• Targets

• Detections

• False and Missed Detections

• Tracks

• Hypothesis

• Multiple Hypotheses

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 33: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 34: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 35: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 12

Track Management

• New track

• Confirmed track

• Dead track

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 36: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 37: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 38: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 13

Estimation

• Given association hypothesis

• Properties of each target

• Over time using model

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 39: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 40: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 41: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 42: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 43: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 44: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 45: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 14

Estimation

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0∼ N (x0,P0).

Posterior distribution

p(xk|x0,y1, . . . ,yk)

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 46: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 47: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 16

Camera Sensor

z

yx

p

xr

xc

yx

f

Page 48: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 49: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 50: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 51: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 52: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 17

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 53: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 18

Dolphin - Camera Model z

yx

p

xr

xc

yx

f

Page 54: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 19

Bird - Camera Model z

yx

p

xr

xc

yx

f

Page 55: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Page 56: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Page 57: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Page 58: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 20

Foreground Segmentation

C D

A B

© 2015 IEEE

• Gaussian-mixture

background model

• Handles changing light

conditions

• Handles reflections

• Degree of confidence

z

yx

p

xr

xc

yx

f

Page 59: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 60: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 22

Constrained Motion Model

Page 61: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 62: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 63: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 23

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 64: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 65: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

x =

(pp

)=

xyxy

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 66: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

w(x, n) =1

‖p− n‖2

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 67: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 68: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 69: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 70: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

Clockwise

or

Counterclockwise

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 71: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 24

Turning Model

ω(x) = dr(x)

N∑i=1

(βd + βa(p⊥ · li)

)wi(x)

l1lN

v1

v2

vN

©2015

IEEE

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Integrate along edge

• Preferred direction

• Polygon region

Page 72: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 25

Potential Field

Page 73: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 26

Dolphin - Model Simulation

Page 74: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 27

Dolphin - Model Comparisons

Detection regionConstraint regionConstant Velocity modelCoordinated Turn modelConstrained Motion model

Page 75: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 28

Dolphin - Complete Framework

Page 76: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 77: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 30

Uncertain Timestamp Model

Page 78: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Page 79: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Page 80: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Page 81: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 31

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

Page 82: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

Page 83: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 84: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 85: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 86: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 87: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 32

Uncertain Timestamp Model

Consider a linear Gaussian state space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 88: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 33

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Page 89: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 33

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Page 90: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Page 91: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Page 92: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 34

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Page 93: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Page 94: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Page 95: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 35

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z)︸ ︷︷ ︸Posterior

∝ p(τ)︸︷︷︸Prior

N (z| zτ , Sτ )︸ ︷︷ ︸Likelihood

.

Page 96: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 36

Posterior Distributions - Time

p(τ |Y, z)maxX p(X , τ |Y, z)p(τ)

τ

0 0.5 1

Pro

babili

ty

×10-3

0

0.5

1

1.5

2

τ

0 0.2 0.4 0.6 0.8 1

Pro

ba

bili

ty

×10-3

0

2

4

6

8

Page 97: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Page 98: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Page 99: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Page 100: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 37

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Page 101: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 38

Posterior Distributions - States

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Page 102: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 39

Estimators - Minimum Mean Squared Error

Yz

XMMSE |Y, z

XMMSE |Y

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Page 103: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 40

Orienteering - Results

• Adjusted trajectory

• Single control point

Page 104: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 40

Orienteering - Results

• Adjusted trajectory

• Single control point

Page 105: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 106: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 42

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 107: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 108: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 109: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 110: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 43

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 111: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Page 112: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Page 113: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Page 114: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 44

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zi ∼ p(zi | δi).

M1

M2

Page 115: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Page 116: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Page 117: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Page 118: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Page 119: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 45

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik︸︷︷︸

NewWeight

∝ wik−1︸ ︷︷ ︸Old

Weight

·Πδik,δik−1

k︸ ︷︷ ︸TransitionProbability

Matrix

· N (yk | yik, S

ik)︸ ︷︷ ︸

Likelihood

·p(zk | δik).︸ ︷︷ ︸Mode

ObservationPDF

M1

M2

Page 120: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 121: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 122: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 123: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 124: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 46

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | Y1:k,Z1:k) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 125: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

M1

M2

Page 126: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

M1

M2

Page 127: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 128: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 129: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 130: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 131: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 47

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 132: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 48

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Page 133: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 48

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Page 134: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 1

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 4

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 2

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 135: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Time(s)

0 1000 2000 3000

Cage 1

Time(s)

0 1000 2000 3000

Cage 4

Time(s)

0 1000 2000 3000

Cage 2

Time(s)

0 1000 2000 3000

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 136: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 137: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 49

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 138: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 50

Bird - Complete Framework M1

M2

Page 139: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

1 Introduction2 Target Tracking3 Camera Sensor4 Constrained Motion Model5 Uncertain Timestamp Model6 Mode Observations7 Conclusions

Page 140: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Page 141: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Page 142: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Page 143: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 52

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• direct mode observations

Demonstration through various applications

Page 144: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Page 145: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Page 146: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Page 147: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Licentiate’s Presentation Clas Veibäck November 22, 2016 53

Future Work

Possible future work is

• multiple observations with uncertain timestamps

• tracking using non-stationary cameras

• motion models tailored to other types of targets

• more advanced tracking algorithms

Page 148: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/en/rt/clave42/presentations/presentation_lic2016.pdf · Licentiate’sPresentation ClasVeibäck November22,2016 3 Introduction

Thank you for listening!www.liu.se