Yu. Shitov, Imperial College, London

Preview:

DESCRIPTION

SuperNEMO: next generation project to search for neutrinoless double beta decay. Yu. Shitov, Imperial College, London. From NEMO-3 to SuperNEMO Choice of nucleus for measurments Calorimeter R&D Low background R&D Tracker R&D Sensitivity simulations Location choice Schedule - PowerPoint PPT Presentation

Citation preview

Yu. Shitov, Imperial College, London

From NEMO-3 to SuperNEMOChoice of nucleus for measurmentsCalorimeter R&DLow background R&DTracker R&DSensitivity simulationsLocation choiceScheduleCurrent status and roadmap of -projectsConclusion

SuperNEMO: next generation project to search for neutrinoless double beta decay

1/25

Neutrino Ettore Majorana Observatory

NEMO-3/SuperNEMO collaboration

~ 80 physicists, 12 countries, 27 laboratories. R&D Program for 02/2006-07/2009 is being carring out. Major contributors: UK, France, Spain. Smaller but vital contributions from US, Russia, Czech Republic, Japan.

USAMHCINL

U Texas

JapanU SagaU Osaka

FranceCEN BordeauxIReS Strasbourg

LAL ORSAYLPC Caen

LSCE Gif/Yvette

UKUCL

U ManchesterImperial College

FinlandU Jyvaskyla

RussiaJINR Dubna

ITEP MoscowKurchatov Institute

UkraineINR Kiev

ISMA Kharkov

Czech RepublicCharles U Praha

IEAP CTU Praha

MoroccoFes U

Slovakia(U. Bratislava)Spain

U ValenciaU SaragossaU Barcelona

PolandU Warsaw

(Neutrino Experiment on MOlybdenum – historical name)

2/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

NEMO-3 SuperNEMO

T1/2() > 2. 1024 y<m> < 0.3 – 1.3 eV

T1/2() > 2. 1026 y<m> < 40 – 100 meV

Sensitivity

7 kg 100MoT1/2() = 7. 1018 y

100-200 kg 82Se||150NdT1/2() = 1020 || 1019 y

Mass of isotope

Energy resolution(FWHM of the ray)

FWHM ~ 12% at 3 MeV(dominated by calorimeter ~ 8%)

Total: FWHM ≤7 % at 1 MeVCalorimeter: ≤4 % at 3 MeV

Efficiency() = 18 % () ~ 30 %

Internal contaminations in the source foils in 208Tl and 214Bi

214Bi < 300 Bq/kg208Tl < Bq/kg

(If 82Se) 214Bi < 10 Bq/kg208Tl < Bq/kg

Background ~ 2 cts / 7 kg / y

(208Tl, 214Bi) ~ 0.5 cnts/7 kg/y=1, 208Tl =0.5

214Bi=0.5 cnts/100 kg/y

From NEMO to SuperNEMO

T1/2 () > ln 2 M e Tobs

N90

NA

A

NEMO-3 successful experience shows us that technique can be extrapolated for larger mass next generation detector to reach new sensitivity level.

3/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Plane geometry

Top view Side view

Source (40 mg/cm2) 12m2, tracking volume (~3000 channels) and calorimeter (~1000 PMT)

Modular (~5 kg of enriched isotope/module)

5 m

1 m

4 m

100 kg: 20 modules ~ 60 000 channels for drift chamber ~ 12 000/20 000 channels for 5’’/8’’ PMT

SuperNEMO basic design

4 m

4/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Shell Model: Caurier et al. (2004)&private com.

QRPA Simkovic et al. (1999)Stoica et al. (2001)Suhonen et al. (1998 and 2003)Rodin, Simkovic (2005)

Recent calculations:

Uncertainties in nuclear matrix elements (NME) theoretical calculations – essential problem

Nucleus choice depends on: enrichment possibilities experimental techniques NME value (not very strong due to calculation uncertainties) Q values (phase space factor, background) high life-time

Choise of nucleus for measurements

5/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

202722200102/1 ||~/||),()( v

ev MZQmmMZQGT

a) Compilation of QRPA & Shell model (MEDEX'07 workshop)

b) Shell model onlyc) Deformation is not taken into account

Nucleus Q(keV) T1/2(), y G, 10-14 y-1 √G/G76Ge

Ma) Abundance(%)

48Ca 4272 4.2·1019 6.43 3.19 0.76 b) 0.187

76Ge 2039 1.74·1021 0.63 1 2.58-6.36 7.4

82Se 2996 9.2·1019 2.73 2.08 2.49-4.60 9.2

96Zr 3350 2·1019 5.7 3.00 1.12-4.32 2.8

100Mo 3034 7.11·1018 4.58 2.70 2.78-4.85 9.6

116Cd 2805 3.1·1019 4.68 2.73 1.96-4.93 7.5

128Te 867 2.5·1024 (geo) 0.17 0.52 2.54-5.84 32

130Te 2529 7.6·1020 4.14 2.56 2.34-5.44 34.5

136Xe 2468 - 4.37 2.63 1.26-3.72 9

150Nd 3367 9·1018 13.4 4.61 4.16-4.74 c) 5.6

Choise of nucleus for measurements

Two main options: 82Se and 150Nd. 82Se obtained by centrifugation. Impossible for 150Nd, only laserenrichment

6/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Chemical purification at INL (US)

Purification Goal: 208Tl < 2 Bq/kg 214Bi < 10 Bq/kg

- 600 g of natSe done

-1 kg 82Se doneAll funded by ILIAS

Collaboration with INL(chemical method)

Installation of NEMO3 foils (LSM)

Source foils productionGoal: 250 m2 of 82Se foils of 40 mg/cm2

NEMO3: ITEP (Moscow) powder + glue (60mg/cm2)=>Extrapolation 100 kg possible if very clean conditions. Or new technique is in test in LAL

Enrichment Goal: To be able to produce 100 kg of 82Se

- 30 kg of 76Ge for GERDA- 100 kg of 82Se possible in 3 years- Distillation of 82Se (for purification) possible Distillation of 116Cd tested with NEMO-3- 3.5 kg of 82Se funded by ILIAS(*) (2005-2007)

Facilities exist in Russia

-1 kg (ITEP, done&checked) + 2 kg of natSe done

ITEP; Collaboration with Kurchatov and Nizhnij-Novgorod institutes (distillation)

R&D for 82Se sources

ECP (Electro-Chemical Plant, Svetlana) Zelenogorsk (Siberia)

7/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

technically it is potencially possible to enrich Nd (MENPHIS/CEA), strongly supported by the international double beta decay community

150Nd advantages- no constraint for Radon and 214Bi- constraint less severe for 208Tl- phase space: 100 kg 150Nd 1 700 kg of 76Ge 400 kg of 82Se or 130Te 4000 kg of 136Xe- nuclear matrix element : could be good but ?- if SUSY is a mediator : very good for Nd- search to -transition to excited state level very promising too

Nd is the candidate for SuperNEMO (2 electrons search) and for SNO++ (pure calorimeter)

R&D for 150Nd

8/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

EvaporatorDye laser chainYag laserCopper vapor laser

• Production of 200 kg of enriched U at 2.5 % in few days

• Results in agreement with simulation expectation

Design : 2001Building : 20021st test : early 20031st full scale exp. : june 2003

MENPHIS simulation shows that enrichment of 150Nd is doable (ton scale), ~ 100 kg

48Ca enrichment is theoriticaly doable. Studies must be done

Expression of Interest of SuperNEMO, SNO++to keep MENPHYS for Nd enrichment

150Nd R&D: MENPHIS facility support

Based on AVLIS (Atomic Vapor Laser Isotope Separation) method of enrichement

9/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Calorimeter R&D• Energy resolution is a combination of energy losses in foil and

calorimeter E/E

• Goal: 7-8%/√E 4% at 3 MeV (82Se Q)

• Studies:

– Material: organic plastic (PS) or

liquid (LS) scintillators

– Geometry and shape (block, bar)

– Size

– Reflective coating

– PMT• High QE

• Ultra-low background

Factor of 2 compared to NEMO3!

BC404 PS in teflon

Hamamatsu high-QE

PMT

207Bisource

DDE/E = 6.5% E/E = 6.5% at 1 MeVat 1 MeV

3.8% at 3 MeV3.8% at 3 MeV

Required resolution achieved for small ~5-6 cm samples for both LS and PS scintillators. Bicron is best so far but other manufacturers competing (ISM, Kharkov, Dubna)

Real challenge starts from scintillators with ~10 x 10 cm surface size.

Cuvette with LS

10/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Calorimeter R&D

• Focus on large block studies (~20cm, 8” PMT)

• Four routes pursued– 8” PMT + plastic block

– 8” PMT + liquid scintillator

– 8” PMT + hybrid (liquid + plastic) scintillator

– 2m scint. bar with 3” or 5” PMTs

• PMTs– Working closely with manufacturers: Hamamatsu, Photonis, ETL

– Real breakthrough in high-QE PMTs from Hamamatsu and Photonis: 43% QE

– First large (8”) high-QE Hamamatsu PMT is under test

– Deep involvement in ultra-low background PMT development (especially Photonis)

• Enhanced reflectors available. 98% reflectivity instead of usual 93%

• First tests with high-QE 8’’ PMT are encouraging: 8%-8/5% for LS/PS with 15-20 cm. Further intensive tests are in progress.

• Plan B: 3”/5” high QE PMTs and larger number of channels.

• Decision on calorimeter design in December 2008.

8” High-QE Hamamatsu PMT

11/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

SC bars double sided with PM. Only ~ 3000 relatively cheap (3’’||5’’) PM (~12000 8’’ PM in basic design). More compact, less background from PM, but worse resolution (~10-11%). Simulations are in progress.

Alternative SuperNEMO sandwich bar design

12 m

11 m

12/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

R&D for bar scintillators

11-12% resolution has been obtained without optimizationNew tests with improved setup are in progress.

13/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Tracking (wire chamber)

Shield radon, neutron,

Source foil (40 mg/cm2)

Scintillator + PMT

2 modules 23 m2 → 12 m2

Background < 1 event / month

(164 s)

(300 ns)

232Th

212Bi(60.5 mn)

208Tl(3.1 mn)

212Po

208Pb(stable)36

%

238U

214Bi(19.9 mn)

210Tl(1.3 mn)

214Po

210Pb22.3 y0.

021%

Bi-Po Process

Q (212Bi) = 2.2 MeV

e

e prompt

T1/2 ~ 300 ns Edeposited ~ 1 MeV

Delay

Low background measurement R&D: BiPo detection method

• To measure contaminations of 208Tl and 214Bi in source foils before installation in SuperNEMO

• Goal: ~5kg of foil (12m2 , 40mg/cm2) in one month with a sensitivity of– 208Tl < 2 Bq/kg– 214Bi < 10Bq/kg

(e.g. sensitivity limit of “standard” 400cm3 HPGe detector 60 Bq/kg in 208Tl and 200 Bq/kg in 214Bi for 1 month)

14/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

BiPo-1capsule

BiPo-1: 10 capsules in operation since 12/2007, current sensitivity < 7.5 µBq/10m2 x 40 mg foilBiPo-2 and Phoswhich: started in 04/2008: results expected in the end of 2008

BiPo-2

Low background measurement R&D: BiPo prototypes

BiPo-1capsule

Set of BiPo-1 capsules

15/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Drift cell worked in Geiger mode

Goal: tracker performance optimization • sizes of wires and cell (3-5 cm) • wire material, gas mixture, readout• simulation for optimal tracker desing • desing of automatic wiring equipment

R&D for tracker

• 9-cell prototype (in photo) has been built and tested with cosmics in Manchester University:- perfomances are ok, optimized for autowiring; - different configurations (8-12 cathod wires per cell) have been tested. • 3cm, 4.4 cm and 5cm cells have been tested with different setups using laser. Preliminary results show the close performances.• 90-cell prototype (below) is in production and will be ready this summer.• final choise of SuperNEMO tracker: 12/2008.

- Transverse position from electron drift times- Longitudinal position from plasma propagation times

Revised 90-cell prototype

16/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

R&D for wiring robot

17/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

82Se 150Nd

“Con

serv

ativ

e” s

cena

rio

82Se:T1/2(0n) =1-1.5 1026 y depending on final mass, background and efficiency<m> 0.06 – 0.1 eV (includes uncertainty in T1/2) – MEDEX’07 NME150Nd:T1/2(0n) =0.5 1026 y <mn> 0.045 eV (but deformation not taken into account)

Sensitivity

Simulations

18/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Possible SuperNEMO location cites

Main HallMain Hall40 x 15 m (h=11 m)

RAILWAY TUNNEL

ROAD TUNNEL Ultra-Low

backgroundFacility

15 x 10 m (h=8 m)

Old Laboratory

20 x 5 m(h=4.5 m)

installations, clean rooms

& offices

Access gallery

Characteristic of the

new LSC

Depth 900 m (2450 mwe)

Main experimental hall

600 m2 (oriented to CERN)

Low background lab

150 m2

Clean room 45 m2 (100/1000 type)

General services

135 m2

Offices 80 m2

-BiPo-SuperNEMO-- Dark matter-- ….

New LSC Canfranc laboratory

20/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Could be available for 2012

Future extension of LSM laboratory

21/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

SuperNEMO SuperNEMO Design Design StudyStudy

Schedule Summary2007 2008 2009 2010 2011 2012 2013

NEMO3 Running NEMO3 Running

Running full detector in 2014Running full detector in 2014

Target sensitivity (0.05-0.1 eV) in 2016Target sensitivity (0.05-0.1 eV) in 2016

construction of construction of 20 modules 20 modules

SuperNEMO modules SuperNEMO modules installation at new LSM installation at new LSM

Preparation of new Preparation of new LSM siteLSM site

BiPoBiPoinstallatioinstallatio

nn

BiPo1BiPo1Canfranc/LSMCanfranc/LSM

BiPoBiPoconstructionconstruction

BiPo BiPo running @ Canfrancrunning @ Canfranc

1-5 SuperNEMO modules1-5 SuperNEMO modules running at Canfrancrunning at Canfranc

SuperNEMO 1SuperNEMO 1stst module module

constructionconstruction

2014

SuperNEMO schedule summary

22/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Experiment Isotope kg T1/2 yr, 90% CL m*, meV Start-up timescale

Status

HM 76Ge 15 >1.9 1025 230-560 1990 finished

KDHK claim 76Ge 15 (0.7-4.2) 1025 (3) 150-920 1990 finished

NEMO 3 100Mo 7 2 1024 (expect. 2009) 340-590 2003 running

CUORICINO 130Te 11 >3 1024 (current) 260-610 2002 running

CUORE 130Te 210 1.3 1026 40-92 2011 approved

GERDA, Phase I 76Ge 15 3 1025 180-440 2009 approved

Phase II 76Ge ~31 2 1026 70-170 2011 approved

EXO 200 136Xe 160 6.4 1025 270-380 2008 approved

EXO 1t 136Xe 800 2 1027 50-68 2015 R&D

SuperNEMO 82Se/150Nd 100+ (1-2) 1026 45-100 2011 R&D

COBRA 116Cd 151 1.5 1026 38-96 ? R&D

MOON II 100Mo 120 3.5 1026 26-45 ? R&D

* Matrix elements from MEDEX’07 or provided by experiments

0nbb experiments overviewWorld-wide double beta-decay projects

23/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

HM Claim

NEMO 3CUORICINO,EXO-200

GERDASuperNEMOCUORE,EXO

2015-2020, 1t experiments (1 or 2)

>2020, >10t experiment

Roadmap for double beta-decay projects

24/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

- The 0decay is a test of physics beyond the Standard Model by the search of the leptonic number violation and would determine the nature of the neutrino (Majorana), absolute neutrino mass scale and neutrino hierarchy.

- Several experiments are needed to measure different sources with several techniques.

- NEMO-3 technique can be extrapolated at ~100 kg to be sensitive to 2.1026 y Only tracko-calo (SuperNEMO) and gas TPC can directly register -decay. In the case of discovery only direct methods will allow to determine the process leading to : light neutrino exchange, right-handed current, supersymmetry, etc.

- 3-year SuperNEMO R&D program is carrying out and it is in good shape. Key challenges are calorimeter resolution, isotope choice, and radio purity. Based on design study results full proposal for 100+ kg detector in 2009. “Last minute” isotope change possible. E.g. CUORE sees the signal in 130Te.

-First module 2010/11-All 20 modules ~2013

Target sensitivity: 50-100 meV by 2016, which is competitive with the other next generation -experiments.

- The next generation of bb(0n) detectors will improve by a factor of 100/10 the sensitivity to T1/2 / <m> respectively.

Conclusion

25/25XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Recommended