23/05/2014 Phase change materials C. Völker

Preview:

DESCRIPTION

Présentation sur les matériaux à changement de phase par Prof. C. Völker TU Kaiserslautern

Citation preview

www.bauphysik-kl.de

Department of Civil Engineering

Simulations and measurements of

Phase Change Materials (PCM)

in buildings

Jun.-Prof. Dr.-Ing. Conrad Völker

Modelling in Building Physics

Civil Engineering

www.bauphysik-kl.de

Department of Civil Engineering

Motivation §  overheating in summer due to

§  climate change

§  glass façades

§  light-weight construction

§  Phase Change Material increase heat capacity

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 2

www.bauphysik-kl.de

Department of Civil Engineering

Phase Change Materials

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 3

www.bauphysik-kl.de

Department of Civil Engineering

Phase Change Materials §  salt hydrates

§  low material costs §  high storage density

§  paraffin §  chemical stability §  no supercooling

§  alcohols

§  fatty acids

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 4

www.bauphysik-kl.de

Department of Civil Engineering

Phase Change Materials §  specific heat capacity with ΔT=20°C

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 5

www.bauphysik-kl.de

Department of Civil Engineering

Gypsum plaster with PCM §  PCM

§  micro-encapsulated paraffin §  BASF micronal §  plastic capsule (5 - 20 µm) §  θmelt = 25°C - 28°C (90%)

18°C - 28°C (100%) §  gypsum plaster

§  maxit clima 26 §  20 % paraffin §  1 cm layer ~80 kg in test room §  latent heat = 16.5 kJ/kg

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 6

Microscope (ESEM)

Gypsum plaster

www.bauphysik-kl.de

Department of Civil Engineering

Gypsum plaster with PCM §  Differential scanning calorimetry

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 7

www.bauphysik-kl.de

Department of Civil Engineering

Salt mixture §  composition

§  96,5 % CaCl2·6H2O §  2 % KCl §  0,5 % NaCl §  1 % Ba(OH)2·8H2O

§  θmelt = 30°C

§  disadvantage §  phase separation §  hygroscopic

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 8

www.bauphysik-kl.de

Department of Civil Engineering

Measurements

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 9

Picture: Franke

www.bauphysik-kl.de

Department of Civil Engineering

Measurements

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 10

www.bauphysik-kl.de

Department of Civil Engineering

Measurements

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 11

www.bauphysik-kl.de

Department of Civil Engineering

Measurements

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 12

www.bauphysik-kl.de

Department of Civil Engineering

Measurements

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 13

www.bauphysik-kl.de

Department of Civil Engineering

∑Φ=Θρ kiRLL Vc !

[ ])t()t(AhV)(c WiPCM,WiWWWWW Θ−Θ=ΘΘρ !

[ ])t()t(AU iAAWAW Θ−Θ=

[ ])t()t(AU iAFF Θ−Θ+

)t(lzAgr F ⋅⋅⋅⋅+

[ ])t()t(nVc iARLL Θ−Θρ+

)t(iΦ+

[ ])t()t(Ah WiPCM,Wi Θ−Θ−

indoor air

exterior wall

window

solar

ventilation

internal gains

PCM

Simulation – Simplified model

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 14

www.bauphysik-kl.de

Department of Civil Engineering

Simulation – Simplified model

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 15

0

5

10

15

20

25

30

35

40

18/09 19/09 20/09 21/09 22/09 23/09 24/09 25/09 date

θ [°C]

0

5

10

15

20

25

30

35

40

18/09 19/09 20/09 21/09 22/09 23/09 24/09 25/09 date

θ [°C]

simulation vs. measurement

www.bauphysik-kl.de

Department of Civil Engineering

Simulation – Simplified model

Reasons for differences:

§  simplified model

§  simplified walls: §  adiabatic

§  heat capacity of walls

§  temperature gradient in wall

§  solar reflection as a constant

§  …

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 16

www.bauphysik-kl.de

Department of Civil Engineering

Simulation – ESP-r

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 17

10121416182022242628303234363840

14.9. 16.9. 18.9. 20.9. 22.9. 24.9. 26.9.10121416182022242628303234363840

14.9. 16.9. 18.9. 20.9. 22.9. 24.9. 26.9.

θ

[°C]

measurement simulation

www.bauphysik-kl.de

Department of Civil Engineering

Simulation – ESP-r §  Optimization of θmelt

§  Optimum means minimal overheating

100

200

300

400

500

600

22 23 24 25 26 27 28 29 30

100

200

300

400

500

600

22 23 24 25 26 27 28 29 30

θlimit = 25°C θlimit = 26°C θlimit = 27°C θlimit = 28°C

over

heat

ing

[h]

θmelt [°C]

1 cm

3 cm

θmelt [°C] 23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 18

www.bauphysik-kl.de

Department of Civil Engineering

§  Optimization of layer thickness

§  For l = 16.5 kJ/kg: layer thickness up to 3 cm useful

1 cm

ohn

e P

CM

1 cm

PC

M2

cm P

CM

3 cm

PC

M4

cm P

CM

5 cm

PC

M

0

100

200

300

400

500

600

θlimit

over

heat

ing

[h]

25°C 26°C 27°C 28°C

1 cm

with

out P

CM

Simulation – ESP-r

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 19

www.bauphysik-kl.de

Department of Civil Engineering

Simulation – ESP-r §  Optimization of heat conductivity

22

24

26

28

30

32

3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6

wal

l tem

pera

ture

[

°C]

d = 2 cm

λ = 0.21 W/mK

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 20

www.bauphysik-kl.de

Department of Civil Engineering

wal

l tem

pera

ture

[

°C]

§  Optimization of heat conductivity §  d ≤ 3 cm and l = 16.5 kJ/kg no impact

22

24

26

28

30

32

3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6

d = 2 cm

λ = 0.42 W/mK

Simulation – ESP-r

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 21

www.bauphysik-kl.de

Department of Civil Engineering

§  Optimization of heat conductivity §  d ≤ 3 cm and l = 16.5 kJ/kg no impact

22

24

26

28

30

32

3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6

λ = 0.63 W/mK

d = 2 cm

Simulation – ESP-r

wal

l tem

pera

ture

[

°C]

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 22

www.bauphysik-kl.de

Department of Civil Engineering

§  Optimization of heat conductivity §  d ≤ 3 cm and l = 16.5 kJ/kg no impact §  thicker layers: higher λ neccessary

22

24

26

28

30

32

3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.622

24

26

28

30

32

3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6

d = 2 cm d = 6 cm

Simulation – ESP-r

wal

l tem

pera

ture

[

°C]

date date 23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 23

www.bauphysik-kl.de

Department of Civil Engineering

Conclusion §  Within experimental measurements a reduction of

room temperatures of 2 K - 5 K was found

§  numerical models were developed & validated

§  phase change temperature range between 23°C and 26°C is recommended

§  For the investigated PCM-plaster, s ≤ 3 cm is recommended

23/05/14 Jun.-Prof. Dr.-Ing. Conrad Voelker 24

Recommended