22
A PRESENTATION ON “A Wideband Low Noise Amplifier Using Pseudomorphic High Electron Mobility Transistor.” By : Suman Sharma Roll No: 069/MSI/619 1

Low_Noise_Amplifier_2_to_4GHz

Embed Size (px)

Citation preview

Page 1: Low_Noise_Amplifier_2_to_4GHz

A

PRESENTATION

ON

“A Wideband Low Noise Amplifier Using

Pseudomorphic High Electron Mobility Transistor.”

By : Suman Sharma

Roll No: 069/MSI/619

1

Page 2: Low_Noise_Amplifier_2_to_4GHz

Introduction

Low Noise Amplifier.

Radio Frequency.

Noise Figure.

Gain.

Stability.

2

Page 3: Low_Noise_Amplifier_2_to_4GHz

ObjectivesDesign a low noise amplifier with a minimum

noise figure and high gain for a desired

frequency band.

3

Page 4: Low_Noise_Amplifier_2_to_4GHz

Block Diagram Of LNA

From

Antenna

Input

Matching

Network

Output

Matching

Network

To

Subsequent

Stages

Gain

Figure: Functional Block Diagram of LNA

4

Page 5: Low_Noise_Amplifier_2_to_4GHz

Application Of LNA

Reference: A book in “Satellite Communication” by Dharma Raj Cheruku

BPF

Low Noise

Amplifier

(LNA)

Microwave

Generator

Mixer BPF Demodulator

From Satellite

RF

RF IFBaseband

Out

Figure: Low Noise Amplifier application

Down-Convertor

5

Page 6: Low_Noise_Amplifier_2_to_4GHz

Methodology

Design of biasing networks (DC Biasing).

Designing LNA with ideal component.

Designing LNA with real component.

Input and Output Matching Network.

6

Page 7: Low_Noise_Amplifier_2_to_4GHz

Simulation Results:

Figure: DC tracing with FET Biasing and its curve versus bias.7

Page 8: Low_Noise_Amplifier_2_to_4GHz

Designing LNA with ideal component

Figure: LNA with ideal component, input and output reflection coefficient with

Stability and Gain measurement.8

Page 9: Low_Noise_Amplifier_2_to_4GHz

Designing LNA with real component

Figure: Low Noise Amplifier with real component

9

Page 10: Low_Noise_Amplifier_2_to_4GHz

Comparison when L= 1 and 0.3 nH

Figure: Stability and Gain when L=1 nH and 0.3 nH respectively 10

Page 11: Low_Noise_Amplifier_2_to_4GHz

Input and Output Matching Network

Figure: Input and Output Matching Network

11

Page 12: Low_Noise_Amplifier_2_to_4GHz

Overall Block of Low Noise Amplifier

Figure: LNA with input and output matching network

12

Page 13: Low_Noise_Amplifier_2_to_4GHz

Noise and Gain Circle

Figure: Noise and Gain Circle 13

Page 14: Low_Noise_Amplifier_2_to_4GHz

Stability of LNA

Figure: Stability measurement in entire range of LNA14

Page 15: Low_Noise_Amplifier_2_to_4GHz

Noise Figure

Figure: Noise Figure15

Page 16: Low_Noise_Amplifier_2_to_4GHz

Gain

Figure: showing maximum and minimum gain

16

Page 17: Low_Noise_Amplifier_2_to_4GHz

Return Loss

Figure: Input and Output Return Loss17

Page 18: Low_Noise_Amplifier_2_to_4GHz

Figure: Stability Region for 2 GHz frequency 18

Page 19: Low_Noise_Amplifier_2_to_4GHz

Review of Previous ResultAuthor Year Noise Figure(dB) Gain(dB) Power (mW) Frequency (GHz)

Rofougaran Et Al[3] 1996 3.5 22 27 0.9

K.S. and Thomas[3] 1997 3.5 22 30 1.5

F.B. Eric A.M kim[4] 2004 Above 3 13.5 below 25 1.6

J.B. Seo. J H Kim[5] 2008 14 1.8 3.1-10.6

K.E. Art nd AH[7] 2009 3.6-4.9 10 21 over 16

E.A. Sobhy[2] 2011 1.85-2 23 2.8 1.77

Table: Previous Result of LNA parameters

19

Page 20: Low_Noise_Amplifier_2_to_4GHz

Conclusion

There were three main goals:

Obtaining the correct S-parameters of the Agilent ATF-

54143 pHEMT over a wide frequency range.

Calculating the noise parameters of ATF-54143 at 1 GHz

to 3 GHz.

Improving the LNA design for better noise performance

and high gain.

Minimum Noise Figure is 0.7 dB and gain is 14 dB at 2.46

GHz frequency.

20

Page 21: Low_Noise_Amplifier_2_to_4GHz

References1. M. E. Nozahi, A. A. Helmy, E. S. Sinencio, and K. Entesari, “An inductor-less noise-cancelling broadband low noise amplifier with

composite transistor pair in 90 nm CMOS technology,” IEEE, May 2011.

2. E. A. Sobhy, A. A. Helmy, K. Entesari, and E. S. Sinencio, “A 2.8-mW Sub-2-dB Noise Figure Inductorless Wideband CMOS LNA

Employing Multiple Feedback,” IEEE , August 2011.

3. D. K. Shaeffer, and Thomas,” A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE, May 1997.

4. F. Bruccoleri, E. A. Klumperink, and B. Nauta,”Wide-band CMOS low noise amplifier exploiting thermal noise canceling,” IEEE,

February 2004.

5. J. B. Seo, J. H. Kim, H. Sun, and T. Y. Yun, “A Low-Power and Hign-Gain Mixer for UWB Systems,” IEEE, December 2008.

6. C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “ A 10-40 GHz Broadband Subharmonic Monolithic Mixer in 0.18 µm

CMOS Technology,” IEEE, February 2009.

7. K. Entesari, A. R. Tavakoli, and A. A. Helmy, “CMOS Distributed Amplifier with Extended Flat Bandwidth and Improved Input

Matching Using Gate Line with Coupled Inductors,” IEEE, December 2009.

8. M. Lashsaini, L. Zenhouar, and S. Bri, “Design of Broadband Low Noise Amplifier Based on HEMT Transistor in the X-Band,” IJET,

Feb-Mar 2013.

9. S. E. Shin, W. R. Deal, D. M. Yamauchi, W. E. Sutton, W. B. Luo, Y. Chen, L. P. Smorchkova, B. Heying, M. Wojtowicz, and M.

Siddiqui, “Design and Analysis of Ultra Wideband GaN Dual-Gate HEMT Low-Noise Amplifiers,” IEEE, December 2009.

21

Page 22: Low_Noise_Amplifier_2_to_4GHz

Thank You.

22