10
1 OPERATIONAL AMPLIFIERS (OP-AMPS) I LAB 4 INTRO: INTRODUCTION TO ONE OF TWO OF THE MOST USED OP-AMP CIRCUITS: NON-INVERTING AMPLIFIERS GOALS In this lab, you will characterize the gain and frequency dependence of op-amp circuits, one of the most useful components in electronics (unless you like using vacuum tubes). You will also measure input and output impedances of these circuits. The op-amp is the most important building block of analog electronics. Proficiency with new equipment: o Op-amps: Non-inverting amps with finite gain and unity gain (voltage follower) Proficiency with new analysis and plotting techniques: o Bode plots Modeling the physical system: o Frequency dependence of op-amp circuits o Input and output impedances of op-amp circuits DEFINITIONS Closed-loop gain, G – gain of the op-amp circuit at all frequencies with feedback applied Low frequency gain, G 0 – gain of the op-amp circuit at DC (f = 0 Hz) Open-loop gain, A – gain of the op-amp itself at all frequencies with no feedback applied DC gain, A 0 – gain of the op-amp itself at DC (f = 0 Hz) with no feedback applied f 0 – 3 dB frequency for an op-amp itself with no feedback f B – 3 dB frequency for an op-amp circuit with feedback applied f T – unity gain frequency, frequency where the open loop gain A is equal to one GENERAL PURPOSE OF OP-AMPS One of the main purposes of an amplifier is to increase the voltage level of a signal while preserving as accurately as possible the original waveform. In the physical sciences, transducers are used to convert basic physical quantities into electric signals, as shown in Figure 1. An amplifier is usually needed to raise the small transducer voltage (μV to mV) to a useful level (mV to V). Figure 1: Typical Laboratory Measurement System

OPERATIONAL AMPLIFIERS (OP-AMPS) I - Physics

Embed Size (px)

Citation preview

1

OPERATIONALAMPLIFIERS(OP-AMPS)ILAB4INTRO:INTRODUCTIONTOONEOFTWOOFTHEMOSTUSEDOP-AMPCIRCUITS:NON-INVERTINGAMPLIFIERS

GOALSInthislab,youwillcharacterizethegainandfrequencydependenceofop-ampcircuits,oneofthemostusefulcomponentsinelectronics(unlessyoulikeusingvacuumtubes).Youwillalsomeasureinputandoutputimpedancesofthesecircuits.Theop-ampisthemostimportantbuildingblockofanalogelectronics.

Proficiencywithnewequipment:

o Op-amps:Non-invertingampswithfinitegainandunitygain(voltagefollower)

Proficiencywithnewanalysisandplottingtechniques:

o Bodeplots

Modelingthephysicalsystem:

o Frequencydependenceofop-ampcircuitso Inputandoutputimpedancesofop-ampcircuits

DEFINITIONSClosed-loopgain,G–gainoftheop-ampcircuitatallfrequencieswithfeedbackappliedLowfrequencygain,G0–gainoftheop-ampcircuitatDC(f=0Hz)Open-loopgain,A–gainoftheop-ampitselfatallfrequencieswithnofeedbackappliedDCgain,A0–gainoftheop-ampitselfatDC(f=0Hz)withnofeedbackappliedf0–3dBfrequencyforanop-ampitselfwithnofeedbackfB–3dBfrequencyforanop-ampcircuitwithfeedbackappliedfT–unitygainfrequency,frequencywheretheopenloopgainAisequaltoone

GENERALPURPOSEOFOP-AMPS Oneofthemainpurposesofanamplifieristoincreasethevoltagelevelofasignalwhilepreservingasaccuratelyaspossibletheoriginalwaveform.Inthephysicalsciences,transducersareusedtoconvertbasicphysicalquantitiesintoelectricsignals,asshowninFigure1.Anamplifierisusuallyneededtoraisethesmalltransducervoltage(µVtomV)toausefullevel(mVtoV).

Figure1:TypicalLaboratoryMeasurementSystem

2

Measuringandrecordingequipmenttypicallyrequiresinputsignalsof10mVto10V.Tomeetsuchneeds,atypicallaboratoryamplifiermighthavethefollowingcharacteristics:1. Predictableandstablegain. Themagnitudeofthegain isequaltotheratiooftheoutputsignal

amplitudetotheinputsignalamplitude.2. Linearamplituderesponse,sothattheoutputsignalisdirectlyproportionaltotheinputsignal.3. Accordingtotheapplication,thefrequencydependenceofthegainmightbeaconstant

independentoffrequencyuptothehighestfrequencycomponentintheinputsignal(widebandamplifier),orasharplytunedresonanceresponseifaparticularfrequencymustbepickedout.

4. Highinputimpedanceandlowoutputimpedanceareusuallydesirable.Thesecharacteristicsminimizechangesofgainwhentheamplifierisconnectedtotheinputtransducerandtootherinstrumentsattheoutput.

5. Lownoiseisusuallyimportant.Everyamplifieraddssomerandomnoisetothesignalsitprocesses,andthisnoiseoftenlimitsthesensitivityofanexperiment.

Commerciallaboratoryamplifiersarereadilyavailable,butageneral-purposeamplifierisexpensive(>$1000),andmostofitsfeaturesmightbeunneededinagivenapplication.Often,itispreferabletodesignyourowncircuitusingacheap(<$1)op-ampchip.Op-ampshavemanyothercircuitapplications.Theycanbeusedtomakefilters,limiters,rectifiers,oscillators,integrators,andotherdevices(seeFC12.9–12.15).Wewillbuildsomeofthesecircuitsinthenextlab,Lab5.

OP-AMPBASICSThetwobasicop-ampcircuitconfigurationsareshowninFigs.2(a)and2(b).Bothcircuitsuse

negativefeedback,whichmeansthataportionoftheoutputsignalissentbacktothenegativeinputoftheop-amp.Theop-ampitselfhasveryhighgain,butrelativelypoorgainstabilityandlinearity.Whennegativefeedbackisused,thecircuitgainisgreatlyreduced,butitbecomesverystable.Atthesametime,linearityisimprovedandtheoutputimpedancedecreases.

Bothconfigurationsarewidelyusedbecausetheyhavedifferentadvantages.Besidesthefactthatthesecondcircuitinvertsthesignal,themaindifferencesarethatthefirstcircuithasmuchhigherinputimpedance,whilethesecondhaslowerdistortionbecausebothinputsremainveryclosetoground.Inthislab,wewillbefocusingonthefirst-type,non-inverting.Thegainortransferfunction,A,oftheop-ampaloneisgivenby

−+ −≡

inin

out

VVV

A

3

wherethedenominatoristhedifferencebetweenthevoltagesappliedtothe+and-inputs.WeusethesymbolGforthegainofthecompleteamplifierwithfeedback:G=Vout/Vin.Thisgaindependsontheresistordividerratio

𝐵 =𝑅

𝑅 + 𝑅%

IfweassumeanidealsituationwhereA=∞,thattheop-ampinputimpedanceisinfinite,andthattheoutputimpedanceiszero,thenthebehaviorofthesecircuitscanbeunderstoodusingthesimple“GoldenRules”:

I. Thevoltagedifferencebetweentheinputsiszero.(“voltagerule”)II. Nocurrentflowsinto(oroutof)eachinput.(“currentrule”)

The“GoldenRule”analysisisveryimportantandisalwaysthefirststepisdesigningop-ampcircuits,sobesureyouunderstanditbeforeyoureadthematerialbelow,whereweconsidertheeffectoffinitevaluesofA,mainlysothatthefrequencydependenceoftheclosedloopgainGcanbeunderstood. Non-invertingamplifierThebasicformulaforthelowfrequencygainofnon-invertingamplifiersisderivedinFC,Section12.5.UsingjusttheGoldenrules,whichassumesA>>1,thegainisgivenby

𝐺' =()*+(,-

= 1 + /0/

FormulasfortheinputandoutputimpedanceoftheentirecircuitarederivedinH&HSection4.26.Theresultsare

𝑅23 = 𝑅2 1 + 𝐴𝐵

𝑅53 = 𝑅5/ 1 + 𝐴𝐵

whereRiandRoaretheinputandoutputimpedancesoftheop-ampalone,whiletheprimedsymbolsrefertothewholeamplifierwithfeedback.Theseimpedanceswillbeimprovedfromthevaluesforthebareop-ampifA·Bislarge.TheaboveformulasarestillcorrectwhenAand/orBdependonfrequency.Bwillbefrequencyindependentifwehavearesistivefeedbacknetwork(inothercasesthatusecompleximpedanceitmaynotbe),butAalwaysvarieswithfrequency.Formostop-amps,includingtheLF356,theopenloopgainvarieswithfrequencylikeanRClow-passfilter:

A = A01+ j f

f0

(2)

The3dBfrequency,f0,isusuallyverylow,around10Hz.Datasheetsdonotusuallygivef0directly;

4

insteadtheygivethedcgain,A0,andtheunitygainfrequencyfT,whichisthefrequencywherethemagnitudeoftheopenloopgainAisequaltoone.TherelationbetweenA0,f0,andfTis

𝑓8 = 𝐴'𝑓'

ThefrequencydependenceoftheclosedloopgainGisthengivenby

G =G0

1+ j ffB

The frequency response of the amplifier with feedback is therefore also the same as for an RC low-pass filter. We can now derive an example of a very important general rule connecting the gain and bandwidth of feedback amplifiers. Multiplying the low frequency gain G0 by the 3 dB bandwidth fB gives

𝐴'𝑓' = 𝐺'𝑓9 = 𝑓8

In words, this very important formula says that the gain-bandwidth product G0fB equals the unity gain frequency fT. Thus if an op-amp has a unity gain frequency fT of 1 MHz, it can be used to make a non-

inverting amplifier with a gain of one and a bandwidth of 1 MHz, or with a gain of 10 and a bandwidth of 100 kHz, etc. We will consider what this means for the transfer function as a function of frequency on a Bode plot.

5

USEFULREADINGS1. FCSections12.2–12.15.Thebasicrulesofop-ampbehaviorandthemostimportantop-ampcircuits.

[NotewhileFCdiscussedbasiccharacteristicsofopampsin12.2itdoesnothavethe“GoldenRule”analysisthatwewilldiscussinclass.]Donotworryrightnowaboutthetransistorgutsofop-amps.WewilllearnabouttransistorsinExperiments7-8.

2. HorowitzandHill,Chapter4.

LABPREPACTIVITIES

AnswerthefollowingquestionsusingMathematicafortheplots.YoucanuseeitherMathematicafortherestthequestionsaswellordothembyhandinyourlabbook.Bringanelectroniccopyofyournotebooktolab,preferablyonyourownlaptop.Youwilluseittoplotyourdataduringthelabsession.

Question1

PropertiesofanOp-ampa. Thefirststepinusinganewcomponentistolookupitsbasiccharacteristics.Findthefollowingspecs

usingthedatasheetfortheop-ampyouwilluseinthelabfortherestofthesemester.DatafortheLF356op-amp(sameasLF156)aregivenattheNationalSemiconductorWebSite.(Thereisaalsoalinkfromthe3330webpageunderUsefulDocs).

a. Unitygainfrequency,fT (sameasGBWintables)b. DCvoltagegain,A0 (sameasAVOLintables)(Note:listedasV/mV,milli=10-3)c. Maximumoutputvoltage (sameasVOintables)d. Maximumoutputcurrent e. Inputresistance,Ri

Question2

Non-invertingamplifiera. Calculate the values of low frequency gain G0 and the bandwidth fB for the non-inverting

amplifierinFig.2(a)forthefollowingtwocircuitsyouwillbuildinlab.1)RF=10kΩ, R=100Ω2)RF=0,R=∞(thisisavoltagefollower)

b. Predicttheoutputvoltage,Vout,forthenon-invertingampwithRF=10kΩ andR=100Ωwhen1) Vin=1mVDC2) Vin=1VDC,Explainyourreasoning.

HINT:seeanswerforQuestion1partc.

c. Plot Bode plots for the open loop gain and the two closed loop gains frompart (a) on thesamegraphusingMathematica.

d. Estimatetheinputimpedanceofthecompleteamplifiercircuit(Ri’)withRF=10kΩandR=100Ωfor1kHzsinewaves.

e. Estimatetheoutput impedanceofthecompleteamplifiercircuit(Ro')withRF=10kOhmandR=100Ohm for1 kHz sinewaves. Thenominaloutput impedanceof the LF356alone is40Ohms.Toobtainthecircuitoutputimpedanceat1kHz,onecanusethisvalueanddetermineRo'usingtheformulagivenabove.Alternatively,onecanreadoffthevaluefromthetopleftplotonpage7ofthedatasheet.Thisshowstheoutputimpedanceforaninvertingamplifier(which has the same output impedance as a non-inverting amplifier) as a function offrequencyforgainsofAV=1,10,100.

6

Question3 Labactivitiesa. Readthroughallofthelabstepsandidentifythestep(orsub-step)thatyouthinkwillbethe

mostchallenging.b. Listatleastonequestionyouhaveaboutthelabactivity.

SETTINGUPABASICOP-AMPCIRCUT

Allop-ampcircuitsstartoutbymakingthebasicpowerconnections.Op-ampsareactivecomponents,whichmeanstheyneedexternalpowertofunctionunlikepassivecomponentssuchasresistors.

Figure3.LF356pin-outandschematic.

Figure4.Goodplacementofop-ampandbypasscapacitorsonproto-board.Noteshortwiresareusedforallconnections.Step1 Op-ampTips

a. Thisexperimentwilluseboth+15Vand-15VtopowertheLF356op-amp.Turnoffthepowerwhilewiringyourop-amp.Everyonemakesmistakesinwiring-upcircuits.Thus,it’sagoodideatocheckyourcircuitbeforeapplyingpower.Fig.3showsapin-outfortheLF356chip.Familiarizeyourselfwiththelayout.

Thefollowingprocedurewillhelpyouwireupacircuitaccurately:1. Drawacompleteschematicinyourlabbook,includingallgroundandpowerconnections,

andallICpinnumbers.Trytolayoutyourprototypesothepartsarearrangedinthesamewayasontheschematic,asfaraspossible.

2. Measureallresistorandcapacitorvaluesbeforeputtingtheminthecircuit.Becarewithunitprefixes.Itiseasytomistakea1nFcapacitorfora1µFone.(Youdon’tneedtoknowtheprecisevaluesofthebypasscapacitors,sothereisnoneedtomeasurethem.)

7

3. Adheretoacolorcodeforwires.Forexample: 0V(ground) Black +15V Red -15V Blue

b. Theop-ampchipsitsacrossagrooveintheprototypingboard(seeFig4).Beforeinsertingachip,gentlystraightenthepins.Afterinsertion,checkvisuallythatnopinisbrokenorbentunderthechip.Toremovethechip,useasmallscrewdriverinthegroovetopryitout.

c. Youwillhavelesstroublewithspontaneousoscillationsifthecircuitlayoutisneatandcompact,inparticularthefeedbackpathshouldbeasshortaspossibletoreducedunwantedcapacitivecouplingandleadinductance.(seeFig4).Hint:donotwireoverthechipbutaroundit.

d. Tohelppreventspontaneousoscillationsduetounintendedcouplingviathepowersupplies,usebypasscapacitorstofilterthesupplylines.Abypasscapacitorbetweeneachpowersupplyleadandgroundwillprovideaminiaturecurrent“reservoir”thatcanquicklysupplycurrentwhenneeded.Thiscapacitorisnormallyintherange1µF–10µF.Theexactvalueisusuallyunimportant.Compactcapacitorsinthisrangeareusuallyelectrolytic,tantalum,oraluminumandarepolarized,meaningthatoneterminalmustalwaysbepositiverelativetotheother.Thecapacitorsarelabeledwhichsideiswhich,buteachmanufactureusesdifferentmarkings.Ifyouputapolarizedcapacitorinbackwards,itwillburnout.Bypasscapacitorsshouldbeplacedascloseaspossibletotheop-amppins.(seeFig4).

Step2 Testingtheop-ampa. Youcansaveyourselfsomefrustrationbytestingyourop-ampchipstomakesurethey

arenotburnedout.Connecttheop-ampasavoltagefollowerwiththe(positive)inputgrounded(seeFig.5).Whatisthepredictedvoltageonpins2,3,4,6and7usingtheGoldenRulemodel?Measureandrecordthemeasuredvoltagesonthesepins.Ifyourpredictionsdonotmatchyourmeasurementscheckyourconnectionstothechiptofindtheproblem.Makesureyourpredictionsmatchyourmeasurementsbeforegoingon.

b. Ifyoufindyouhaveabadchip,throwitinthetrashtosaveanotherpersonfromhavingtodealwithit.(Incaseyouarewondering,theLF356costs$0.50)

Figure5.Schematicofavoltagefollowerwiththeinputgrounded.

Vin= 0V Vout

_

+

+15 V

-15 V

2

3 6

7

4

8

VOLTAGEFOLLOWERAvoltagefolloweristhesimplestversionofanon-invertingamplifier.Thevoltagefollowerhasnovoltagegain(G0=1),butitletsyouconvertasignalwithhighimpedance(i.e.verylittlecurrent)toamuchlowerimpedanceoutputfordrivingloads.Thevoltagefollowerisalsooftencalledaunitygainbuffer.

Figure6.VoltageFollowerStep3 Lowfrequencygainandfrequencydependenceofthegain.

a. Thevoltagefollowercircuitisnearlythesameasthetestcircuit,exceptthatnowasignalentersthepositiveinput(Fig.6).ThebasictestandmeasurementsetupisshowninFig.7.

b. Usethefunctiongeneratortomeasurethelowfrequencygain.Whatfrequencyshouldyouusetotestthelowfrequencygain(i.e.,whatfrequencyshouldthesignalbebelow)?Considerthegain-bandwidthproductforaunitygainamplifier.Whatisgain-bandwidthproductforthiscircuit?Howdidyoufindthevalue?Whatisthepredictedgainforthefrequencyyouchose?MeasurethelowfrequencygainG0bymeasuringVinandVoutusingthescope.Doyourmeasurementsagreewithyourpredictions?

c. Nowvarythefrequencyandlookfordeviationfromtheperformanceofanidealfollowermodel.ThemeasurementathighfrequencywilldependonmanydetailsofyoursetupandyouareunlikelytofindasimpleRCfiltertypefalloff.Usingthe10Xscope-probe,measurethegainateverydecadeinfrequencyfrom10MHzdownto10Hz,with(asusual)afewextrapointsanywherethingsarestartingtochange.Doyoufindanydeviationfromunitygain?HINT:BesurethattheoutputamplitudeisbelowthelevelaffectedbytheslewrateForhelp,seeH&Hp.192.PlotthelowandhighfrequencydataandpredictedbehavioronyourBodeplotfromyourlabprep.Doyoufindasimplefall-offassuggestedbythetheoryfortheidealfollower(fT=fB)?Ifso,findthe3dBfrequency.Howdoesyourmeasured3dBfrequencycomparetowhatisexpectedfromtheop-ampdatasheet?

d. Ifyouobservedidealbehavior,you'relucky!AtfrequenciesaboveafewMHz,thesimplemodelofthefrequencyresponseoftheop-ampisnotaccurate.Onceyouareinthisfrequencyrange,manyphysicaldetailsofyourcircuitandbreadboardcanhavelargeeffectsinthecircuit(seenotesinStep1(d)above).Youcouldmodeltheseeffects,butabetterproceduretofollowistomodifythephysicalsetup.Buildingreliablecircuitsatthesefrequenciestypicallyrequirescarefulattentiontogroundingandminimizationofcapacitiveandinductivecouplingbetweencircuitelementsandtoground.Printedcircuitboardsaremuchbetterforhigh-frequencyapplications.Atlowerfrequencies,ourmodelofthecircuitwillworkmuchbetter.

Vout

_

+

+15 V

-15 V

2

3 6

7

4 Vin

9

Function Generator

Circuit Board

V out V in

V in

Trigger

Trig. Out

Sig. Out

Oscilloscope

Channel 1

Channel 2

Channel 4 Trigger

DC Power Supply

0 +15 –15

Figure7.Testandmeasurementsetupforop-ampcircuits.

NON-INVERTINGAMPLIFIER

Figure8.Non-invertingAmplifier

Step4

FrequencyDependentGain a. ChangethenegativefeedbackloopinyourcircuittotheoneshowninFig.8.,with

RF=10kΩandR=100Ω.MeasureRandRFwiththeDMMbeforeinsertingthemintothecircuitboard.PredictG0andfBfromthesemeasuredvaluesandtheop-amp'svalueoffTfromthedatasheet.(Youshouldbeabletoreviewyourlab-prepworkheretoo!)

b. Usethefunctiongeneratortomeasurethelowfrequencygain.Whatfrequencyshouldyouusetotestthelowfrequencygain(i.e.,whatfrequencyshouldthesignalbebelow)?Considerthegain-bandwidthproductforaunitygainamplifier.Whatisgain-bandwidthproductforthiscircuit?Howdidyoufindthevalue?Whatisthepredictedgainforthefrequencyyouchose?MeasurethelowfrequencygainG0bymeasuringVinandVoutusingthescope.Doyourmeasurementsagreewithyourpredictions?

10

c. Measurethevoltagesaturationvaluesforyourcircuit.Varytheinputamplitudeuntilyou

observesaturationintheoutput.Whataretheoutputsaturationlevels,+Vsatand-Vsat?RecordhowyoudeterminedVsat.Cantheop-ampproducevoltagesfromthepositiverail(+15V)tothenegativerail(-15V)?Themodeloftheop-ampyouhavebeenworkingwithdoesnotincludesaturationeffects.Tomakesureyouareworkingwithintherangewhereyourmodelisvalid,alwaysmakesuretheoutputamplitudeisbelowhalfthesaturatedvalue.

e. Predictthe3dBfrequencyforyourcircuit.Includeyourcalculationsinyourlabbook.Now,determinethe3dBfrequencyexperimentally.DescribetheprocedureyoufollowedtodeterminethefB.Doesyourmeasurementagreewithyourprediction?Explicitlyrecordwhatcriteriayouusedtodeterminewhetherornotthemodelandmeasurementsagree.

d. Usingthegain-bandwidthrelationG0fB=fTandyourmeasurementsofG0andfB,determinethefTforyourop-amp.DoesyourmeasuredvalueoffTagreewiththeonefromthedatasheet?

e. Measurethefrequencydependenceofyourcircuit.Measurethegainateverydecadeinfrequencyfrom10MHzdownto10Hz,withextrapointsnearyourcutofffrequency.Shouldyouusea10Xprobeorcoaxcabletomakeyourmeasurements?Explainyourreasoning.Plotyourmeasurementsandpredictedgaincurveonthesameplot.Where,ifatall,isthesimplemodeloftheop-ampcircuitnotvalid?Suggestpossiblemodelrefinementsand/orphysicalsystemrefinementstogetbetteragreementbetweenthemodelpredictionsandmeasurements.

Step5

Input/OutputImpedancesandCurrentLimitoftheCircuit

a. Predicttheinputimpedanceofyournon-invertingamplifiercircuit,Ri’.(HINT:Youfoundtheinputimpedanceoftheop-ampaloneinyourprelab.)Explainhowyoudeterminedthisnumber.Ifyouweretoincreasetheinputimpedancebyplacinga1MΩresistorinserieswiththeinput,predicthowmuchtheoutputvoltagewillchange.HINT:considerthevoltagedropacrossthe1MΩresistortogetthevoltageatPin3.MeasureVoutwithandwithoutthe1MΩresistorinplace.Doyourmeasurementsagreewithyourmodelpredictions?

b. Predicttheoutputimpedanceofyourcircuit,Ro',atafrequencyof1kHz.(HINT:Seeprelab2e.)Predicttheoutputvoltagebasedonyourinputvoltagewhenyourcircuitisusedtodrivealoadof200Ωandaloadof8Ω separatly.(Modelasavoltagedividerwiththeoutputimpedanceandyourloadresistor.)Measuretheoutputvoltagesinallthreeconfigurations(noload,200Ωload,8Ωload).Dothemeasuredvaluesagreewithyourmodelprediction?Ifnot,canyoumakemodificationstoyourmodeltounderstandthediscrepancy? HINT:Considerthemaximumcurrentoutputoftheop-amp.