272
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA [RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR] 2014 Proyecto Final de Carrera Ingeniero en Automática y Electrónica Industrial Autor: Diego Aragón Rodríguez Tutor: Luis Fernando Castaño Castaño

PFC - Retrofit de un Sistema de Seguimiento Solar

Embed Size (px)

Citation preview

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

[RETROFIT DE UN SISTEMA FOTOVOLTAICO

DE SEGUIMIENTO SOLAR]

2014

Proyecto Final de Carrera

Ingeniero en Automática y Electrónica

Industrial

Autor: Diego Aragón Rodríguez

Tutor: Luis Fernando Castaño Castaño

0 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Índice

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

1

Resumen del proyecto. ............................................................................................. 3

Objetivo del proyecto. .............................................................................................. 5

1. Estudio previo ................................................................................................... 8

1.1. Estado del arte de seguidores solares de dos grados de libertad. .................. 8

1.1.1. Introducción. ......................................................................................................... 8

1.1.2. Energía solar fotovoltaica. ..................................................................................... 9

1.1.3. Tipos de instalaciones comerciales. .................................................................... 16

1.1.4. Métodos de seguimientos. .................................................................................. 20

1.2. Estudio de los dispositivos de seguimiento existente en el departamento. 21

1.2.1. “Simulador de sistema de control para seguimiento solar de dos ejes” ............ 21

1.2.2. “Sistema de control de precisión para seguimiento solar en dos ejes” .............. 21

2. Fase de actuación sobre la estructura mecánica ............................................... 23

3. Fase de actuación sobre los paneles solares e inversor ..................................... 31

4. Fase de actuación sobre la unidad de control ................................................... 38

4.1. PLC OMRON ..................................................................................................... 52

4.1.1. PLC CJ1M ............................................................................................................. 53

4.1.2. Instalación CX-Programmer V5.0. ....................................................................... 61

4.1.3. Cables para conexión .......................................................................................... 61

4.1.4. Crear nuevo proyecto con CX-Programmer. ....................................................... 63

4.1.5. Definiendo Tabla de E/S. ..................................................................................... 66

4.1.6. Definiendo el bastidor principal. ......................................................................... 66

4.1.7. Compilando y conectando. .................................................................................. 67

4.1.8. Transfiriendo información desde el PC al PLC. .................................................... 67

4.1.9. Monitorizando y modos de funcionamiento....................................................... 69

4.1.10. Conexión Ethernet. .............................................................................................. 70

4.1.11. IP del PC. .............................................................................................................. 70

4.1.12. Enviar y recibir datos a través del puerto RS-232C. ............................................ 71

4.1.13. Hyperterminal. .................................................................................................... 72

4.1.14. @TXD & @RXD. ................................................................................................... 72

4.1.15. LabView. .............................................................................................................. 75

4.2. PLC SCHNEIDER ELECTRIC M238 ..................................................................... 87

5. Fase de actuación sobre elementos auxiliares .................................................. 91

5.1. Sensor solar ISS-AX (Analógico) ...................................................................... 93

2 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

5.2. Sensor solar ISS-DX (Digital) ........................................................................... 95

5.3. Sensor solar ISS-CYPA (Cilindro Parabólico) ................................................... 97

5.4. Sensor solar NANO-ISS60 (NANO) .................................................................. 98

6. Conclusiones ................................................................................................. 102

7. Bibliografía y Programas utilizados ................................................................ 103

8. Anexos .......................................................................................................... 104

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

3

Resumen del proyecto.

Este proyecto se plantea con el objetivo de hacer un estudio detallado de una instalación de seguidor solar existente con el fin de actualizarla.

La instalación inicialmente fue diseñada como planta experimental donde se

han llevado a cabo ensayos de controladores y ha estado operativa durante un tiempo.

Sin embargo, los últimos intentos de puesta en funcionamiento han dado resultados

negativos. Descartados fallos menores como fallos en los conectores, fusibles y fuentes

de alimentación, etc., se constata la necesidad de hacer un análisis más detallado de

todos los equipos implicados y se decide hacer un retrofit de la instalación completa,

tanto de la parte mecánica como de la parte de control.

Teniendo en cuenta que las averías podrían provenir tanto de los equipos

eléctricos y electrónicos como en los equipos mecánicos, se ha procedido a analizar el

estado de cada uno de éstos de forma separada y en el caso de detectar fallo, estudiar

la posibilidad de reparación o proponer equipos nuevos que los sustituyan.

El proyecto se ha estructurado de la siguiente forma:

1- Se ha realizado una presentación inicial del estado del arte de este tipo de

instalaciones, para que en caso de hacer alguna propuesta de modificación de

alguna parte se dispusiera de una información actualizada.

2- Se ha estudiado la documentación disponible, principalmente los trabajos

publicados sobre la instalación, concretamente proyectos fin de carrera y

manuales.

3- Se hizo una búsqueda adicional de información a través de otros medios,

(internet, empresas suministradoras, etc.). Clasificándola y presentándola de

forma fácilmente accesible como anexos del proyecto.

4- Se evaluó la parte mecánica del seguidor. Se constató que no funcionaba en

elevación. Después de desmontar y engrasar se comprobó su buen

funcionamiento, por lo que se propuso conservar este elemento.

5- Se evaluó la parte eléctrica (paneles e inversor) comprobando su buen

funcionamiento por lo que se propuso mantener estos elementos.

6- Se evaluó el bloque controlador, constatando que la parte de potencia

(amplificadores de motores) puede seguir usándose, sin embargo la electrónica

asociada a los accionadores presentan deficiencias importantes. Se concluye

sustituir esta electrónica específica por una de propósito general basada en

PLC.

7- Se probó experimentalmente la viabilidad de uso de un PLC sin tarjetas de

contaje rápido. Se presentaron las limitaciones de esta opción. Se propuso la

4 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

compra de un autómata nuevo con entradas rápidas adaptadas a la lectura de

encoder.

8- Se evaluó los sensores auxiliares de irradiancia, comprobando que están

operativos, por lo que también se propuso utilizar este dispositivo.

9- Se propusieron completar la información sensorial con nuevos sensores de

orientación que enriquezcan la planta de investigación.

10- También se propusieron reemplazar los módulos fotovoltaicos existentes por

módulos de alta concentración CPV dotando a nuestro sistema de mayor

captación solar. Se propuso incluir un anemómetro en nuestro sistema para

evitar posibles roturas causadas por la fuerza del viento.

11- Se generó nueva documentación que carecía la instalación actual (cableado y

esquemas eléctricos) así como se saneó cableado existente.

12- Se comprobó la correcta comunicación entre PLC y PC vía serie.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

5

Objetivo del proyecto.

El título del proyecto “RETROFIT DE UN SISTEMA FOTOVOLTAICO DE

SEGUIMIENTO SOLAR” describe de forma muy general el contenido del mismo, por lo

que conviene especificar y concretar más los objetivos marcados.

En primer lugar este tipo de proyecto se encuadra dentro de los denominados

“retrofit”, que podría definirse da la siguiente manera, Retrofit: es una técnica de

renovación de instalaciones, equipos, maquinaria basada en la actualización de

componentes o accesorios más modernos o eficaces que los disponibles, o donde estos

no existían. Se utiliza especialmente en algunos sectores industriales donde la

renovación completa de máquinas, sistemas y equipos tiene costes muy elevados. Se

reemplazan equipos ya obsoletos y se conserva la parte mecánica en buen estado como

es la estructura propia.

En el caso del presente proyecto se parte de una instalación fotovoltaica

formada por un seguidor solar que dispone de una serie de equipos auxiliares de

control y supervisión. Esta instalación en su día fue diseñada como planta

experimental donde poder llevar a cabo ensayos de controladores. Inicialmente se

disponía de un ordenador desde donde se podía supervisar la instalación mediante la

conexión con Labview a través de un puerto serie.

La instalación sirvió en su momento como plataforma en proyectos de

investigación y la realización de proyectos fin de carrera. Pero con el paso del tiempo y

tras un periodo de inactividad, se constató que presentaba fallos de funcionamiento al

tratar de ponerla de nuevo operativa. Por otra parte, la falta de documentación de

algunos de sus equipos o componentes hacía muy costosos los intentos de puesta en

marcha.

En este punto se decide proponer este proyecto, que consiste en hacer primero

un estudio detallado de la planta existente, evaluando los equipos y el software. En

base a la información recabada se propone las modificaciones necesarias a realizar

para que la planta vuelva a estar operativa, proponiendo mejoras tecnológicas que

renueven la instalación.

Para todo ello se intentará aprovechar al máximo todos los componentes de

que se dispone y se decidirá en el momento que se determine en la compra de nuevos

componentes necesarios para tal finalidad o por el contrario el arreglo de lo que se

necesite.

Otro de los objetivos principales del proyecto es dejar bien argumentado y

documentado todo lo observado así como todos los cambios aplicados para que

cualquiera que quiera retomarlo, con tan sólo una lectura de este documento, pueda

6 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

conocer en qué estado se encuentra todas sus partes y como proceder para poder

emprender su nueva aplicación. También podrá disponer a modo de consulta los

anexos de este proyecto donde podrá encontrar datasheets que facilitarán en su

mayor medida la consulta deseada.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

7

Para llevar una coherencia con el proceso seguido primero se ha realizado un

estudio previo, encontrando dos partes bien diferenciadas dentro de este estudio, una

primera parte denominada estado del arte donde se ha realizado una presentación de

instalaciones similares a la nuestra para poder tener información actualizada en el caso

de realizar alguna propuesta, y una segunda parte donde se ha estudiado la

documentación de la que se dispone de nuestra instalación en cuestión.

Se ha continuado con diferentes fases de actuaciones, en concreto de cuatro,

donde se detallan las diferentes intervenciones en las distintas partes de nuestro

seguidor donde se observará el estado de cada parte, y si se procede a reutilizarla o se

descarta así como posibles sustituciones por otros equipos.

- Fase de actuación sobre la estructura mecánica: se describe las distintas partes

de la que consta la estructura mecánica, así como las diferentes pruebas

realizadas para determinar el estado de todas las partes que la componen y

poder concluir si se siguen utilizando.

- Fase de actuación sobre los paneles solares e inversor: en esta fase al igual que

la anterior se hace una presentación de los equipos, en este caso del panel

solar utilizado así como del inversor de cc/ca evaluando cada uno de ellos. En

esta fase se propone la sustitución de los actuales paneles por otros de

concentración solar. Y al igual que en la anterior fase se concluye la posible

reutilización de los mismos.

- Fase de actuación sobre la unidad de control: esta fase constituye el corazón de

nuestra instalación, la que controlará la forma y modo de movimiento de todas

las demás partes. Se detalla y evalúa las distintas partes que la conforman y se

toma la decisión de reemplazar o no el actual sistema de control.

- Fase de actuación sobre elementos auxiliares: en esta última fase se describe y

se evalúa el sensor de irradiancia del que dispone nuestra instalación sus

características así como su propuesta de sustitución por unos sensores solares

más actuales. También se propone la utilización de un anemómetro. Se

concluye con la posibilidad o no de la utilización del sensor de irradiancia.

Una vez que se termina las distintas fases se concluye con una estructura de los

elementos que se utilizan finalmente y los que se descartan así como las propuestas de

sustitución a modo de resumen. Más adelante se dispone de la bibliografía utilizada así

como los softwares con sus versiones utilizadas. Y para terminar se puede observar un

anexo donde se encontrará información más detallada de cada uno de los elementos

utilizados.

8 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

1. Estudio previo

En este estudio previo se va a realizar una presentación del estado del arte de

este tipo de instalaciones para que en caso de hacer alguna propuesta de modificación

de alguna parte se dispusiera de una información actualizada. A continuación del

estudio previo se dispondrá un estudio de la documentación de la que se dispone de

nuestra instalación en cuestión.

1.1. Estado del arte de seguidores solares de dos grados de libertad.

Se describirá las distintas maneras o formas que actualmente se puede

encontrar un sistema fotovoltaico de seguimiento solar ya sea fijo, de 1 ó 2 grados de

libertad.

1.1.1. Introducción.

El modelo actual de desarrollo se ha basado históricamente en el uso y

explotación de los recursos energéticos de origen fósil. Estos combustibles han

suministrado las fuentes energéticas del desarrollo económico del planeta, de manera

intensiva desde el nacimiento de la Revolución Industrial hasta nuestros días.

Este acelerado desarrollo, sin embargo, también ha generado voces de alerta

sobre impactos ambientales que genera la explotación de los recursos que, por su

lenta velocidad de regeneración respecto de su explotación, son clasificados como no

renovables. Los impactos ambientales que estos combustibles generan (cambio

climático, lluvia ácida, capa de ozono), ha obligado a la comunidad internacional a

buscar un nuevo modelo de desarrollo (Desarrollo Sostenible), sin comprometer las

necesidades de las futuras generaciones.

A lo anterior se suma la creciente incertidumbre respecto del suministro de

combustibles fósiles, por el constante clima de tensión en los países productores de

petróleo, y a nivel local, la necesidad de una diversificación de la matriz energética en

la región y en el país, que permita sobrellevar de mejor manera los problemas

coyunturales.

En este ámbito, los países desarrollados, en especial, la Unión Europea han sido

los pioneros en la búsqueda de nuevas alternativas de suministro energético.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

9

1.1.2. Energía solar fotovoltaica.

La energía solar fotovoltaica consiste en la obtención de electricidad

directamente a partir de la radiación solar mediante un dispositivo semiconductor

denominado célula fotovoltaica, o una deposición de metales sobre un sustrato

llamada célula solar de película fina.

La célula fotovoltaica es un dispositivo semiconductor capaz de convertir los

fotones procedentes de sol en electricidad de una forma directa e inmediata, es decir,

es el dispositivo responsable del efecto fotovoltaico. Cuando incide la luz sobre una

célula, se produce un efecto caótico en la unión P-N del semiconductor que libera

electrones, dando lugar a una corriente eléctrica.

Existen diferentes tipos de radiación tal como se puede apreciar en las

siguientes imágenes:

Imagen 3. Tipos de radiación.

- Radiación solar directa: es la radiación que llega directamente del Sol sin haber

sufrido cambio alguno en su dirección. Este tipo de radiación se caracteriza por

proyectar una sombra definida de los objetos opacos que la interceptan.

Imagen 1. Célula fotovoltaica. Imagen 2. Efecto fotovoltaico

10 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Radiación solar difusa: una parte de la radiación que atraviesa la atmósfera es

reflejada por las nubes o absorbida por éstas. Esta radiación, llamada difusa, va

en todas direcciones, efecto producido por las reflexiones y absorciones, no

sólo de las nubes sino de las partículas de polvo atmosférico, montaña, árboles,

edificios, el propio suelo, etc. Este tipo de radiación se caracteriza por no

producir sombra alguna respecto a los objetos opacos interpuestos. Las

superficies horizontales son las que más radiación difusa reciben, ya que ven

toda la bóveda celeste, mientras que las verticales reciben menos porque sólo

ven la mitad.

- Radiación solar reflejada: Este tipo de radiación solar es la que refleja la

superficie terrestre. La cantidad de radiación depende del coeficiente de

reflexión de la superficie, también llamado albedo. Las superficies horizontales

no reciben ninguna radiación reflejada, porque no ven ninguna superficie

terrestre y las superficies verticales son las que más radiación reflejada reciben.

- Radiación solar global: La radiación solar global es la radiación total. Esta

constituye la suma de las tres radiaciones anteriormente nombradas.

En un día despejado, la radiación directa es preponderante sobre la radiación

difusa. Por el contrario, en un día nublado no hay radiación directa y la

totalidad de la radiación que incide es difusa.

En la fig. 4 se observa la relación de la radiación solar a nivel de superficie

terrestre.

Imagen 4. Radiación solar que llega a la superficie terrestre.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

11

Este tipo de energía se usa para alimentar innumerables aparatos autónomos.

Debido a la creciente demanda de energías renovables, la fabricación de células

solares e instalaciones fotovoltaicas ha avanzado considerablemente en los últimos

años. A continuación, en la fig. 5, se puede observar la radiación solar que llega a

Europa:

Los rendimientos típicos de una célula fotovoltaica de silicio policristalino oscilan

entre el 14%-20%. Para células de silicio monocristalino, los valores oscilan entre el

15%-21%. En la siguiente imagen se puede apreciar los dos tipos mencionados:

Los paneles solares fotovoltaicos no producen calor que se pueda reaprovechar.

Para incentivar el desarrollo de la tecnología con miras a alcanzar la paridad de red –

igualar el precio de obtención de la energía al de otras fuentes más económicas en la

Imagen 5. Radiación solar que llega a Europa.

Imagen 6. Monocristalino Vs Policristalino

12 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

actualidad-, existen primas a la producción, que garantizan un precio fijo de compra

por parte de la red eléctrica, es el caso de Alemania, Italia o España. Según un estudio

publicado en 2007 por el World Energy Council, para el año 2100 el 70% de la energía

consumida será de origen solar según informes de Greenpeace, la fotovoltaica podrá

suministrar electricidad a dos tercios de la población mundial en 2030. España es uno

de los países con unas condiciones excepcionales como se puede observar en la fig. 7,

en lo que a condiciones de radiación solar se refiere:

Se puede distinguir los siguientes tipos de instalaciones fotovoltaicas:

- Instalación solar fotovoltaica fija:

Se denomina de esta forma a las plantas fotovoltaicas cuyos paneles

permanecen en la misma posición a lo largo del tiempo, como se puede

apreciar en la fig. 8.

Imagen 7. Radiación solar que llega a España

Imagen 8. Instalación solar fotovoltaica fija.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

13

- Instalación solar fotovoltaica 1 eje.

Se utiliza el concepto de seguidor solar: máquina con una parte fija y otra móvil

que dispone una superficie de captación solar lo más perpendicular al sol

posible a lo largo del día y dentro de sus rangos de movimiento.

Se denomina seguidor a un eje a seguidores que sólo gozan de un grado de

libertad en su movimiento. En la fig. 9 se observa lo comentado.

Imagen 9. Instalación solar fotovoltaica 1 eje.

Este tipo de sistemas es el más usado, debido a que la máxima variación entre

sol y panel ocurre en azimut, la variación en elevación se desprecia por considerarse de

poca repercusión en términos de energía y porque se encarecen los costos de

desarrollo. Sin embargo, la elevación se realiza de forma manual cada 6 meses, para

temporada invernal y estival, o bien se puede fijar en la mitad, para ambas estaciones.

- Instalación solar fotovoltaica 2 ejes.

Se trata de seguidores con dos grados de libertad, capaces de hacer un

seguimiento solar más preciso.

Imagen 10. Instalación solar fotovoltaica 2 ejes.

14 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Este tipo de sistemas es un poco menos común aunque cada vez se pueden

encontrar más, estos siguen el sol tanto en dirección como en elevación, lo que implica

tener dos actuadores, para variar la inclinación del panel en forma horizontal y vertical.

En la fig. 10 se puede observar este tipo de instalación, en concreto la que nos atañe

para este proyecto.

Al orientar los paneles fotovoltaicos de forma perpendicular al sol se

incrementa la energía recibida. En la siguiente imagen se muestra una gráfica

comparativa entre los tres tipos de instalaciones tratados, observando la productividad

de cada uno de ellos:

Comparación entre seguidores de un eje y seguidores de dos ejes:

Ventajas Inconvenientes

Un Eje -Menor coste -Seguimiento solar impreciso -Simplicidad -Menor energía captada -Posibilidad de adaptación a cubiertas

Dos ejes -Seguimiento solar más preciso -Mayor coste -Incrementos de la producción en torno al 35% con

respecto a una planta fija

-Generalmente dificultan el robo de paneles FV

Anteriormente se ha comentado orientaciones en elevación y en azimut, a

continuación se muestra una imagen donde se puede observar ambas posiciones:

Imagen 11. Comparativa tipos de instalación

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

15

Imagen 12. Elevación y Acimut

La variación de la elevación del sol se produce por la inclinación del eje de

rotación terrestre, de 23,5⁰ aproximadamente con respecto al plano de la órbita que

describe alrededor del sol y da origen a las estaciones del año, tal como se puede

apreciar en la fig. 13.

Imagen 13. Variación de la elevación del sol.

16 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

1.1.3. Tipos de instalaciones comerciales.

En este punto se recogen una serie de instalaciones comerciales basadas todas

ellas en sistemas de seguimientos en dos ejes y con diferentes métodos de control.

• SUNTRACK 5: Es un sistema basado en micro controlador, que ha sido diseñado

para seguimiento en dos eje con alta precisión. El módulo de control es

adaptable para sistemas hidráulicos y eléctricos. Este sistema trabaja

calculando la posición del sol (programación astronómica), tanto en Azimut

como en Elevación, con una precisión de 0.01⁰.

Dimensiones: 105x103x30mm.

Alimentación: 24 V (± 20%),

10 A /+10%).

Entradas digitales: 4.

Salidas digitales: 4.

Entrada analógica: 1 (0 a 10 V).

Salidas analógicas: 2 (0 a 10 V).

Entradas encoders: 6 entradas digitales (24 V/30 mA). Precisión: > 0.015⁰

Ver fig. 14.

• SDK TRACKER-KIT: SDK ha adaptado el modelo de seguidor solar a dos ejes

TRACKER-KIT para ser utilizado como estructura de seguimiento para paneles

solares de concentración (CPV), con una precisión en el seguimiento de 0.1⁰, la

cual busca garantizar la captación solar óptima en la tecnología de

concentración.

Potencia del seguidor: 15 kW.

Movimiento en 2 ejes: 2 actuadores lineales y 1 motor reductor planetario (2

motores eléctricos).

Rotación en eje horizontal (Elevación): de 0⁰ a 70⁰.

Rotación en eje vertical (Azimut): de 0⁰ a 240⁰.

Altura (máxima): 4.50 m.

Ancho (máximo): 14.50 m.

Imagen 14. Suntrack 5.

Ver fig. 15.

Imagen 15. SDK Tracker-Kit.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

17

• Mecasolar MS-2 Tracker 10: Es un equipo electromecánico que en su parte

superior lleva fijados los módulos fotovoltaicos y que consigue que la insolación

sobre los mismos sea máxima; toda esta estructura se mueve de Este a Oeste

sobre un eje que puede girar 240⁰ (seguimiento acimutal) y un segundo eje con

movimiento de inclinación desde los 60⁰ hasta la posición horizontal.

Ejes de seguimiento: 2 ejes: horizontal y vertical.

Potencia admitida en seguidor: hasta 12 kW.

Ángulo giro: Eje vertical: 240⁰ (-120⁰ a +120⁰).

Eje horizontal: 60⁰.

Altura: 3.3 m.

Tecnología de seguimiento: Programación astronómica del PLC.

Ver fig. 16.

Imagen 16. Mecasolar MS-2 Tracker 10.

• BIO-SOL BIO 1: Seguidor solar de 2 ejes, fácil de programar y cambiar los

parámetros. Robusto, sencillo y de fácil manejo e instalación. El seguidor

también lleva control del viento mediante un anemómetro que es controlado

por el propio autómata.

Eje de seguimiento: 2 ejes: horizontal y vertical.

Potencia admitida en seguidor: hasta 1.56 kW.

Altura: 3m.

Tecnología de seguimiento: programación astronómica.

Ver fig. 17.

Imagen 17. Bio-Sol Bio 1.

18 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

• LORENTZ ETATRACK ACTIVE 1500-A: Los sistemas de seguimiento activos

LORENTZ ETATRACK proporcionan aumentos de rendimiento de hasta un 40 %

de los módulos fotovoltaicos. Los sistemas ETATRACK siguen al sol durante el

día, lo que supone un aumento del tiempo con mayores niveles de potencia útil

entregada y la obtención de potencia pico máxima.

Ejes de seguimiento: 1 eje único.

Potencia admitida en seguidor: hasta 2.9 kW.

Segundo eje de regulación manual para a paso: 0 - 45⁰.

Seguimiento de ángulo de Este – Oeste: 90⁰.

Tecnología de seguimiento: Programación astronómica.

Ver fig. 18.

Imagen 18. LORENTZ ETATRACK ACTIVE 1500-A

• DEGERconecter: el módulo de control DEGERconecter, desarrollado por

DEGERenergie, tiene una influencia decisiva en el funcionamiento de los

seguidores. Este equipo mide en continuo la intensidad y el ángulo de

incidencia de los rayos solares, orientando a los módulos solares de acuerdo

con las medidas tomadas. Tiene en cuenta, además de la radicación directa, la

luz reflejada, por ejemplo, en la nieve, el agua, o las rocas, e incluso la radiación

difusa, que penetra entre las nubes. Ver fig. 19.

Imagen 19. DEGERconecter.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

19

• SR29: seguidor solar 2 ejes modelo S29, diseñados y analizados por elementos

finitos con las cargas y coeficientes especializados en el eurocódigo, altas

prestaciones: incremento de la producción de los módulos fotovoltaicos de

hasta un 35% en comparación con una instalación fija, innovador freno

azimutal patentado.

Material estructura: acero galvanizado mediante inmersión en caliente (según

norma ISO 1461).

Campo de giro Azimutal: 270⁰ (de -135⁰ a +135⁰).

Campo de giro Cenital: de 0⁰ a 50⁰.

Velocidad viento: hasta 40 hm/h en modo trabajo. Hasta 120 km/h en modo

descanso y seguridad.

Ver fig. 20.

Para desarrollar un seguidor solar hay que tener en cuenta que:

- Se trata de un sistema que ha de trabajar durante más de 30 años.

- Ha de estar preparado para soportar fuertes vientos en repetidas ocasiones.

- Debe trabajar correctamente en márgenes de temperatura de -15 a 50⁰C.

- Debe ser una máquina autónoma con el mínimo mantenimiento posible.

- Todo el sistema ha de estar preparado para soportar lluvia, nieve y pedrisco.

- Hay que diseñar un sistema capaz de soportar la corrosión incluso en

ambientes marinos.

Imagen 20. SR29.

20 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Utilizando el seguimiento, la energía total recibida en un día puede ser del orden

de un 35% mayor que para el mismo colector estático.

1.1.4. Métodos de seguimientos.

El seguimiento se puede realizar por distintos métodos, como son:

• Seguimiento por sensores: es el que permite la detección o medida que falta en

el correcto ángulo entre la radiación solar y la superficie del panel solar, el cual

debe ser de 90⁰ para una mejor captación.

• Seguimiento por reloj solar: este tipo está sujeto a la unidad de tiempo de 24

horas, variando su posición respecto al ciclo de esta unidad, con un

seguimiento efectivo de 12 horas, sin considerar cambios de condiciones

climáticas repentinas debido a que no se apega a un estudio preliminar del

clima.

Imagen 21. Hora Solar

Esta gráfica nos indica la cantidad de minutos de diferencia de la hora solar con

el reloj civil a las 12 horas. Para poder interpretarla mejor:

- La hora civil es la hora oficial que rige en una determinada zona de cada país.

- La hora solar es la que marca la posición relativa del sol respecto de cada lugar.

Para obtener la hora civil, se le suma a la hora solar el tiempo que marca la

gráfica de la ecuación del tiempo (imagen 21). Desde noviembre a febrero como el

sol se retrasa con respecto a la hora civil hay que sumas más tiempo y la curva es

creciente. De febrero a mayo como el sol se va adelantando hay que sumar menos

tiempo y la curva es decreciente. De mayo a julio el sol vuelve a retrasarse y de

julio a noviembre el sol se adelanta de nuevo a la hora civil y por eso hay que

sumarle menos tiempo y, por eso, la gráfica es decreciente.

• Seguimiento por coordenadas calculadas: este tipo de seguimiento sigue la

trayectoria del sol entre cada posición mediante el cálculo de sus coordenadas

astronómicas, no precisa de la presencia de radiación, los sistemas

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

21

coordenados son inmunes a los días nublados y otro tipo de circunstancia que

puede producir errores; como por ejemplo los destellos.

1.2. Estudio de los dispositivos de seguimiento existente en el

departamento.

Para la segunda parte del estudio previo, se ha estudiado la documentación

disponible, principalmente los trabajos publicados sobre la instalación concretamente

proyectos finales de carrera y manuales.

Los dos proyectos finales de carrera objetos de estudio son:

- “Simulador de sistema de control para seguimiento solar de dos ejes”, realizado

por: Joshua Alonso de Arcos.

- “Sistema de control de precisión para seguimiento solar en dos ejes”, realizado

por: Óscar Pereles Ligero.

1.2.1. “Simulador de sistema de control para seguimiento solar de dos

ejes”

El proyecto denominado “Simulador de sistema de control para seguimiento solar

de dos ejes”, trata de desarrollar el control del seguimiento solar por parte de las

células colectoras. Este proyecto realiza un modelo del pedestal y a partir de él lleva a

cabo un control sobre el mismo que realiza el seguimiento solar necesario y adecuado

por parte del pedestal según las restricciones que este imponga.

La finalidad que también persigue es disponer de una herramienta informática

que permita efectuar simulaciones necesarias en el modelo definido y así tener la

posibilidad de efectuar las simulaciones necesarias, primero en el ordenador y una vez

comprobado el correcto funcionamiento en la simulación, se podrán acometer en el

sistema real.

1.2.2. “Sistema de control de precisión para seguimiento solar en dos

ejes”

Para el otro proyecto denominado “Sistema de control de precisión para

seguimiento solar en dos ejes”, se puede concluir que se trata de una

continuación/modificación de nuevas propuestas y nuevas herramientas informáticas

en cuanto al desarrollo del control del seguimiento solar se refiere. La finalidad del

mismo no es otra que la implementación del método de control en un sistema real.

El anterior proyecto con respecto a este fue el punto de partida, pero al trasladar el

método de control al sistema real se comportaba de manera inesperada en sus

movimientos por lo que se decidió desarrollar un nuevo simulador.

22 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Este seguidor llevará montado un sistema concentrador por lo que la

concentración solar necesita mayor precisión de seguimiento del sol que los paneles

fotovoltaicos convencionales.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

23

2. Fase de actuación sobre la estructura mecánica

En esta primera fase de actuación se evalúa el estado de cada una de las partes

mecánicas de nuestro seguidor solar.

Antes de nada se muestran unas fotos de la instalación (cuadro eléctrico + paneles

+ seguidor):

Imagen 22. Cuadro eléctrico

24 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

En la siguiente imagen se puede ver las distintas partes en la que consta la estructura mecánica:

Imagen 24. Paneles solares

Imagen 23. Seguidor

Cuña de elevación

Rotor EPSR-203 mod.

Portapaneles

Conector mecánico del

mástil y el rotor.

Módulo fotovoltaico I-106/12

Imagen 25. Estructura mecánica

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

25

- Cuña de elevación: Pieza de corrección angular de 23º para posicionador solar.

- Portapaneles: Adaptador de

conexión universal entre el

panel y la cabeza del rotor.

Galvanizado en caliente,

tubo cuadrado de acero

(50x30x2mm), longitud 1m.

Imagen 26. Portapaneles

Imagen 27. Cuña de elevación

26 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Rotor EPSR-203 mod:

Imagen 28. Rotor EPSR-203 mod.

- Atributos especiales: 2 motores separados para

movimientos de acimut y elevación.

- Tensión del motor: 24 Vcc.

- Consumo de energía de suministro: máx. 20 W.

- Cable de control de dispositivos a rotor:

o 10 x 0. 6mm2 blindado

o 4 x 1.0 mm2 (para alimentación motor)

- Tipo de control: ejes de actuación y dientes de

engranajes.

- Rango máximo de giro en azimuth: 360°.

- Rango máximo en elevación: 90°.

- Precisión de retorno: 0.3°.

- Resolución del seguimiento: > 0.2°.

- Velocidad:

Azimuth: aprox. 4° /sec.

Elevación: aprox. 2° /sec.

- Carga útil: aprox. 50 –máx. 85 kg.

- Caja: aluminio, caja a presión, resistente al

exterior.

- Dimensiones:

Diámetro: aprox. 318 mm.

Altura: aprox. 625 mm.

- Peso: 27 – 33 kg.

- Máx. velocidad del viento: 62 km/h en operación,

hasta 160 km/h en posición estática.

- Límites de temperaturas:

Operación: -20 °C a +65 °C

Almacenaje: -30 °C a +65 °C

Imagen 29. Cabeza del rotor

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

27

Método de elementos finitos para resistencia de materiales:

Imagen 30. Método de elementos finitos

- Conector mecánico del mástil y el rotor:

Esta construcción permite girar la unidad en el

mástil. Tiene 6 tornillos de nivelación además de

fijación del sistema.

Imagen 31. Conector mástil-rotor

28 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Para poder evaluar el estado de la estructura mecánica nos apoyamos en un

elemento auxiliar denominado SolarTracker EPS-103 mod. Solar permitiendo realizar

una de las pruebas que consistió en la determinación de los terminales en el propio

seguidor de los encoder así la determinación de la tensión y frecuencia que se

disponía. Para esta prueba se realizó una búsqueda de información del fabricante del

SolarTracker, obteniendo conexionado, fotografías aclaratorias, manual del

funcionamiento del mismo. Para más información visitar el siguiente enlace:

http://www.egis.org/track_us.html#abb_g

Después de realizar varios intentos de movimientos en ambos ejes se pudo llegar a

la conclusión que el motor de elevación no funcionaba correctamente, como si

estuviera bloqueado, por lo que se procedió a desmontar los módulos fotovoltaicos así

como la cabeza del robot donde se encuentra los motores para engrasar los engranajes

y saber si solamente era por falta de mantenimiento del sistema.

A continuación se muestran algunas imágenes de los componentes mecánicos del

robot posicionador que se tomaron en su desmontaje:

Imagen 32. Piezas de engranaje dentro de la carcasa del rotor

Imagen 33. Caja de bornas del rotor

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

29

Cuando se procedió al desmontaje, se necesitó ayuda de varias personas del

departamento, se observó todos los componentes que se aprecian en las imágenes

anteriores y se pudo llegar a la conclusión que era un agarrotamiento del propio eje de

elevación. Después de desmontarlo y engrasarlo (el cilindro que da al exterior) y con el

movimiento manual del mismo, al montarlo todo y aplicando de nuevo tensión a los

motores se observó que ya sí se movía en ambos ejes, en azimut y elevación.

En el desmontaje también se pudo observar que sólo se tiene un final de carrera

por eje, es decir el de elevación sólo detecta el final de carrera cuando el eje está al

máximo (panel en vertical) mientras que el otro extremo no tiene nada, se

sobreentiende que más que un final de carrera es una posición de referencia o (home).

A continuación se muestran varias imágenes de la parte exterior de la estructura

mecánica:

Imagen 34. Robot Posicionador (Model: EPSR-203)

30 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Se puede concluir de esta fase de actuación que estos equipos funcionan y se

conservarán.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

31

3. Fase de actuación sobre los paneles solares e inversor

En esta fase se evalúa ambos dispositivos, se describen sus características y se

acompañan algunas fotos.

- Módulo fotovoltaico I-106/12:

Imagen 35. Módulo fotovoltaico I-106/12

Características:

Físicas

- Dimensiones: 1310 x 654 x 39.5 mm

- Peso: 11.5 kg

- Núm. de células en serie: 36

- Núm. de células en paralelo: 2

- TONC (800 W/m2, 20ºC, AM 1.5, 1m/s):

47ºC.

Eléctricas (1000 W/m2, 25ºC célula, AM 1.5):

- Tensión nominal (Vn): 12 V

- Potencia máx. (Pmax): 106 Wp ± 5 %

- Corriente de cortocircuito (Isc): 6.54 A

- Tensión de circuito abierto (Voc): 21.6V

- Corriente de máx. potencia (Imax): 6.1A

- Tensión de máx. potencia (Vmax): 17.4V

Constructivas

- Células: Si monocristalino, texturadas y

con capa antirreflexiva.

- Contactos: Contactos redundantes,

múltiples, en cada célula.

- Laminado: EVA (Etilen-vinil acetato)

- Cara frontal: Vidrio templado de alta

transmisividad.

- Cara posterior: Protegida con Tedlar de

varias capas.

- Marco: Aluminio anodizado.

- Cajas de conexión: IP65 con diodos de

bypass

- Toma de tierra: Si.

- Especificaciones: IEC 61215 y Clase II

mediante certificado TÜV.

- Sección del cable: 4-10 mm2

- Terminal de conexión: Bornera

atornillable con posibilidad de soldadura

/ Multicontacto opcional

32 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Sunny Boy 700: El Sunny Boy es un inversor solar que transforma la corriente

continua del generador fotovoltaico en corriente alterna y la inyecta a la red

pública.

Imagen 36.Esquema de una instalación fotovoltaica a la red con Sunny Boy

Imagen 37. Sunny Boy Exterior e Interior

Los estados de funcionamiento se muestran con 3 diodos luminosos (LED) en la tapa

de la carcasa del inversor:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

33

Se puede utilizar el inversor para obtener la lectura de la potencia aportada por las placas. Distintas formas de conectar el Sunny Boy con el PC:

- Conexión RS-232: 15m máximo entre inversor y PC.

Imagen 39. Detalle conexión RS-232

Imagen 38. Detalle 3 leds en la tapa del inversor

34 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Conexión RS-485: 1200m máximo entre inversor y PC.

Imagen 40. Detalle conexión RS-485

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

35

Imagen 41. Detalle interior armario (Inversor: Sunny Boy 700)

A continuación se muestra el pineado para el adaptador DB9/DB25:

Imagen 42. Adaptador DB9-DB25

36 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Existe un software gráfico para observar los datos del inversor (Sunny Data):

Este inversor se podrá conectar vía RS-232 o nos podrá servir para lecturas

directas a través de un sensor de tensión y otro de intensidad para determina la

potencia generada.

Se puede concluir de esta fase que estos equipos funcionan y se conservarán.

En este punto se realiza la propuesta de sustitución de los actuales paneles

solares fotovoltaicos por paneles solares de alta concentración (CPV). Este otro tipo de

paneles usan un sistema óptico para concentrar la luz que reciben las células solares,

empleando lentes y/o espejos de tecnología accesible y económica. Al usar una óptica,

la tecnología de CPV solamente puede provechar la radiación solar directa. Este hecho

obliga al uso de seguidores solares de alta precisión. El rendimiento óptimo de esta

tecnología se alcanza en zonas de media y alta radiación.

Antes de proceder a la sustitución habrá que estudiar la carga de este nuevo

panel para comprobar que nuestra estructura es capaz de soportarla. A continuación

se muestra una foto del panel descrito.

Imagen 43. Sunny Data

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

37

Imagen 44. Panel solar de alta concentración (CPV)

38 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

4. Fase de actuación sobre la unidad de control

Como se ha comentado anteriormente al adquirir el posicionador este venía en

conjunto con su parte controladora “solar tracker”, al estar interesado en esta parte

se desechó la parte de control comercial y se trabajó en la creación e implementación

de una unidad de control nueva objeto de otro proyecto fin de carrera. A continuación

se muestran algunas vistas de la unidad de control:

Imagen 45. Vistas de la Unidad de Control

Puerto

RS-232 Puerto

RS-485

Puerto de control

del posicionador

Vista frontal Vista lateral derecha

Vista lateral izquierda

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

39

En un primer intento de conectar todos los elementos se observó que no

funcionaba; las variables de los posibles errores eran múltiples. Por lo que se decidió

comenzar a depurarla, saber de qué constaba y se realizó un seguimiento exhaustivo

del cableado interno para saber en qué pin del conector DB 25-pines se tenía que

aplicar tensión para mover los motores del robot posicionador. Se recopiló

información de todos los datasheet de los componentes de las diferentes placas

electrónicas que conforman la unidad de control así como fuente de alimentación

interna y demás (aplicando lo que se puede conocer como ingeniería inversa), para así

poder intentar entender su funcionamiento y poder ir descartando posibles fallos para

llegar al punto de decidir si seguir hacia adelante con la posible reparación u optar por

otra solución.

Para ir teniendo una idea más concreta de lo que constaban las diferentes

partes de la unidad de control se procedió a describir cada una de ellas dividiéndolas

en dos partes, una de control y otra de potencia. Para la parte de control se tiene:

- Tarjeta amplificadora de potencia.

- Tarjeta de aislamiento eléctrico.

- Tarjeta de lectura de encoders.

- Microcontrolador.

40 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Tarjeta de amplificación de potencia: esta tarjeta se encarga de adaptar las

señales de referencia de los motores que genera el módulo del controlador a

través de los convertidores D/A.

Imagen 46. Placa de adaptación del PK2100 a los servos

Entradas Salidas

Condensador

100 nF Puerta Lógica

SN7400N Relés

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

41

- Tarjeta de aislamiento eléctrico: se encarga de aislar eléctricamente el módulo

del microcontrolador del sistema de periféricos externos, también permite

generar la alimentación de las secciones lógicas de todos los componentes.

Dependiendo del tipo de señal el aislamiento eléctrico se realiza de dos formas,

para las señales digitales se emplean acopladores ópticos y para las señales

analógicas se emplean amplificadores de aislamiento.

Imagen 47. Placa Aisladora

Entradas Salidas

Fotoacoplador

PC837

SHARP

Condensadores

220 microF

Convertidor

DC-DC 1W

Aislado

Fotoacoplador

PC827

SHARP

Convertidor

DC-DC 1W

Aislado

Amplificador

de Aislamiento

ISO124P

Regulador de tensión

MC7805CT

42 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Tarjeta de lectura de encoders: tarjeta diseñada para contar los pulsos

generados por encoders diferenciales con salida a colector abierto. Las señales

generadas por los encoders no está conectada directamente a esta tarjeta sino

a través de la tarjeta de aislamiento eléctrico mediante optoacopladores.

Imagen 48. Tarjeta de Encoders

Oscilador

IQX0-350C

Demultiplexor

74HC138N

Decodificdor

Contador

cuadratura

HCTL2020

Comparador 8-bits

SN74LS688N

Demultiplexor

74HC138N

Octal transparent latch

SN74LS374N

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

43

- Microcontrolador PK2100: Sistema donde se basa la unidad de control

completamente programable. Está dotado de varios periféricos, siendo los

principales:

o Puerto de entradas digitales: 7 entradas digitales protegidas.

o Puerto de salidas digitales: 10 salidas de alta intensidad (500 mA, por canal).

o Convertidores D/A: 2 convertidores D/A con resolución de 10 bits y con rango

de 0-120 V.

o Convertidor A/D: convertidor A/D diferencial de alta sensibilidad y 10 bits de

resolución.

o Bus de expansión PCLBus para conexión de dispositivos externos.

o Puerto serie RS-485 y puerto serie RS-232 con líneas RTS/CTS para protocolo

Handshake.

A continuación se muestras diferentes imágenes de la situación actual del

microcontrolador:

Imagen 49. Módulo PK-2100

Vista exterior

44 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 50. Microcontrolador PK-2100

Para la parte de potencia se tiene:

- PWM (Pulse Width Modulation) Modulación de anchura de pulsos: Se utilizan sobre las

señales generadas por el módulo del microcontrolador, de esta forma se transforman

las señales continuas en trenes de pulsos cuyo período es inferior al tiempo

característico de los motores.

Imagen 51. PWM Servo Azimut y Elevación

Vista interior

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

45

En la siguiente imagen que se muestra se puede observar todos los elementos

mencionados anteriormente dentro de su carcasa metálica:

Imagen 52. PWM Ref. Advanced Motion Control 25A8

Imagen 53. Vista general interior Unidad de Control

46 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

También se muestra de manera gráfica el esquema de los componentes de la

unidad de control:

Imagen 54. Esquema componentes de la Unidad de Control

Se pudo aclarar mucho más el funcionamiento de la unidad de control y de las

distintas partes de las que consta. En este punto se llegó a la conclusión de que se

debía de realizar un plano de cableado para saber sobre todo que patillas del DB 25

pines se debería de alimentar para intentar mover el robot posicionador (seguidor

solar).

Se anotó las referencias del cableado, el cual debe coincidir con el conector de

la unidad de control.

A continuación se representa el plano del diagrama de conexionado:

47 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 55. Detalle Conexionado Unidad de Control

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR 48

Una vez creado el esquema de conexionado de la unidad de control se pudo ver las

conexiones de las distintas placas, así como las correspondientes al pineado del motor,

que era lo que más nos interesaba. Se pudo contar con un cable conectado a un

terminal DB 25 pines hembra para conectarlo con el DB 25 pines macho situado en el

armario. De este cable se utilizó los hilos pertenecientes a la alimentación del motor,

que previamente se pudo determinar con el plano creado.

Estos cables son:

• Azul-Gris (Motor 1);

• Negro-Marrón (Motor 2).

Y con una fuente de alimentación portátil se aplicó 10 V, a la misma vez que se

movía se iba observando con un voltímetro los valores de tensión e intensidad. En el

eje de elevación eran excesivos y se dejó de aplicar, por lo que se pudo observar que el

robot posicionador (seguidor solar) podía moverse, aunque sólo se pudo mover en el

eje azimut y no en el eje de elevación.

También se pudo aprovechar para determinar los terminales en el propio seguidor

correspondiente a los motores. De las 14 conexiones se determinó que:

• 4 – 5: Motor elevación;

• 6 – 7: Motor Azimut.

A estas mismas bornas se conectaron las de la cabeza del Robot Posicionador,

en las siguientes imágenes se puede observar un detalle de la conexión:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

49

Imagen 56. Bornas de cabeza Robot Posicionador

A continuación se muestra cómo quedaría la conexión entre ambas partes,

apoyándonos en el elemento auxiliar comercial suntracker.

50 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 57. Conexiones entre bornas cabeza robot y suntracker

Por lo que se puede verificar que las pruebas que se realizaron con la f.a.

portátil eran correctas (4 y 5 Elevación) – (6 y 7 Azimut).

Otra de las pruebas que se realizó fue con el suntracker conectado, lo que hace

el robot posicionador es buscar su posición original (ORG) y una vez posicionado seguir

un programa establecido. En unas primeras comprobaciones se observó que no

funcionaba con normalidad y se pudo determinar que uno de los cables en concreto el

que conecta en la borna 1 como COMÚN no estaba bien conectado en uno de sus

extremos por lo que se volvió a conectar correctamente. Con esta forma de actuar se

pudo recoger los datos necesarios.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

51

Al observar la unidad no se apreció que tuviera ningún fusible en mal estado ni

ningún cable mal conectado así como sus distintos bloques que lo conforman, lo que

se apreció es que al conectarla a la red no se encendía el display del microcontrolador

por lo que lo más probable era que el microcontrolador estuviera en mal estado, y

tenía toda la pinta que hubiera sufrido las consecuencias de altas temperaturas.

La primera sensación que se aprecia al abrir la unidad de control, ver imagen

53, es mucha electrónica apilada en un mismo espacio pequeño, con una ventilación

insuficiente tanto por altas temperaturas como por bajas teniéndose que evitar

posibles condensaciones, todo tan perjudicial para la electrónica que se maneja. Se

observó, al disponer de un espacio tan reducido la dificultad de acceder a los distintos

bloques por la cantidad de cable que se trataba para interconectarlos. La estructura

metálica que recubre toda esta electrónica se apreciaba que le dotaba de poca

estanqueidad con las consiguientes posibles entradas de polvo y a lo sumo de agua, ya

que hay que contar que este tipo de instalación se considera semi-industrial.

Antes de tomar ninguna decisión se realizó una comparativa a grandes rasgos

entre el comprar un nuevo microcontrolador, con todo lo que conlleva no solo a

comprar este dispositivo que podría ser una opción bastante económica sino el hecho

que supone el adquirir su herramienta de programación, coste de programación en

cuanto a tiempo de autoaprendizaje del propio lenguaje que maneja y creación del

código desde cero, y con todo ello en el caso que se pudiera llegar a buen término se

seguiría teniendo posibles fuentes de averías en los demás bloques ya que se tratan de

placas de montaje creadas en el departamento. Incluso se tendría que adaptar una

estructura más grande para albergar toda la electrónica con su ventilación adecuada.

Por todo ello se tomó la determinación de utilizar un PLC, ofreciéndonos las

siguientes mejoras a nuestra instalación:

- Mayor fiabilidad/robustez.

- Equipo de propósito general. (Lenguaje que cumple normativa).

- Menor tiempo de desarrollo en el lenguaje (por bloques) en las distintas

modificaciones.

- Menor electrónica asociada en cuanto a las lecturas. Con los diferentes

módulos de entradas, salidas, lecturas rápidas se puede acometer todo lo

necesario para nuestro sistema seguidor.

- Protocolos de comunicaciones con sus estándares.

- Se dota de una unidad de control con mayor IP. Aunque en la instalación que

nos acontece va ubicado en el interior del armario eléctrico este tipo de

instalaciones comerciales van situados a pie de seguidor solar, evitando tiradas

52 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

grandes de cableado de los distintos sensores y aguantando condiciones

climatológicas adversas.

Se puede concluir que hay que cambiar la parte de control por otro equipo de

control en concreto un autómata programable y para la parte de potencia

(amplificadores de los motores, estos equipos funcionan y sí se conservan.

4.1. PLC OMRON

Se optó por decidir utilizar un PLC para gobernar la parte de control del sistema.

Como primera elección se decidió utilizar un PLC de OMRON, ya que se

aprovecharía el autómata usado por otro proyecto (también de posicionamiento).

Como ventaja se puede decir que se podría “reutilizar” parte del programa que ya se

usó en el otro proyecto, pero como desventaja se puede nombrar que no tiene

entradas digitales rápidas, aunque se tendría que comprobar si las que tiene permite la

lectura de los encoders, no tiene salidas analógicas, aunque puede que no hagan falta

teniendo en cuenta que los motores llevan reductoras. A continuación se muestra una

imagen del PLC de OMRON a utilizar.

Imagen 58. PLC serie CJ1M de OMRON.

Entre sus características destaca su configuración rápida y sencilla así como su

diseño muy compacto (96x65mm).

Se continuó las pruebas con el plc de Omron:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

53

- Se instaló el software denominado “CX-Programmer”.

- Se procedió a la lectura de varios proyectos “Dimecosol: Diseño e

implementación de Estrategia de Control para Seguidor Solar”.

- Se procedió a la realización de un cable de comunicaciones RS-232 para

comunicarse con el autómata y a continuación otro cable para comunicarse vía

Ethernet.

- Una vez que se manejó el programa se probó la posibilidad de contar los pulsos

con la tarjeta actual para llegar a la determinación de comprar o no la tarjeta

adecuada para el contaje de lectura rápida en base a las medidas tomadas.

Se procede a detallar con más detenimiento lo anteriormente comentado.

4.1.1. PLC CJ1M

A continuación se muestran las distintas partes de la que consta el PLC utilizado.

• CJ1M-PA202: fuente de alimentación interna del autómata.

• CJ1M-CPU13ETH: CPU del autómata.

• CJ1W-ID211: tarjeta de 16 entradas digitales.

• CJ1W-OC201: tarjeta de 8 salidas digitales.

• CJ1W-AD041-V1: tarjeta de entradas analógicas.

Imagen 59. Partes del PLC

CJ1M-PA202 CJ1M-CPU13ETH CJ1W-ID211 CJ1W-OC201 CJ1W-AD041-V1

54 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

CJM-PA202: fuente de alimentación.

- Rango de entrada: 85 a 264 Vca / 47 a 63 Hz

- Consumo: 50 VA máx.

- Capacidad de salida a 5 Vcc: 2.8 A

- Capacidad de salida a 24 Vcc: 0.4 A

- Potencia máx. de salida: 14 W

Interface

Imagen 60. Interface externa CJM-PA202

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

55

Dimensiones

Imagen 61. Dimensiones CJM-PA202

CJ1M-CPU13ETH: modelo de la CPU del autómata.

- Máximo de puntos de E/S digitales: 640

- Capacidad de programa: 20 k

- Capacidad de memoria de datos: 32 k

- Velocidad de ejecución: 100 ns

- Máx. nº de unidades de E/S: 19

- Consumo de 5V: 950 mA

- Funciones incorporadas: Puerto Ethernet 100 Base-Tx

Interface

Imagen 62. Interface externo CJ1M-CPU13ETH

56 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Dimensiones

Imagen 63. Dimensiones CJ1M-CPU13ETH

CJ1W-ID211: tarjeta de 16 entradas digitales.

- Puntos: 16

- Tipo: Entrada de c.c.

- Tensión nominal: 24 V.c.c.

- Corriente nominal: 7mA

- Tipo de conexión: M3

Conexión externa

Imagen 65. Conexión externa CJ1W-ID211

Imagen 64. Terminales M3

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

57

Interface

Imagen 66. Interface externo CJ1W-ID211

Dimensiones

Imagen 67. Dimensiones CJ1W-ID211

58 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

CJ1W-OC201: tarjeta de 8 salidas digitales.

- Puntos: 8

- Tipo: Salida de relé.

- Tensión nominal: 250 Vca.

- Corriente nominal: 2 A.

- Tipo de conexión: M3

Conexión externa

Imagen 68. Conexión externa CJ1W-OC201

Interface

Imagen 69. Interface externa CJ1W-OC201

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

59

Dimensiones

Imagen 70. Dimensiones CJ1W-OC201

CJ1W-AD041-V1: tarjeta de entradas analógicas.

- Puntos: 4

- Tipo: Entrada analógica

- Rangos: 0-5V / 0-10V / -10-10V / 1-5V / 4-20mA

- Resolución: 1/8.000

- Precisión: V: 0.2% / I: 0.4%

- Tiempo de conversión: 250 µ/punto

- Observaciones: Ajuste de offset/ganancia, retención del valor de pico, media

móvil, alarmas.

- Tipo de conexión: M3.

60 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Disposición de los terminales

Imagen 71. Disposición de los terminales CJ1W-AD041-V1

Componentes

Imagen 72. Componentes CJ1W-AD041-V1

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

61

Dimensiones

Imagen 73. Dimensiones CJ1W-AD041-V1

4.1.2. Instalación CX-Programmer V5.0.

Se procedió a instalar el software CX-Programmer V5.0, también nos puede valer

una versión superior. En el propio proceso de instalación se procede también a instalar

las librerías y el CX-Server necesario para las comunicaciones, se recomienda instalar

todo.

Imagen 74. Logo CX-Programmer al iniciar.

4.1.3. Cables para conexión

En este paso se procede a explicar la construcción del cable para los distintos

protocolos de conexión, uno para conexión RS-232C (SYSMAC WAY) y otro para

conexión ETHERNET 10/100 MBits.

Cable serie RS-232C

o 1 ud conector DB9-pines macho.

o 1 ud conector DB9-pines hembra.

o 1-2 m cable 5-6 hilos.

62 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 75. DB9-Pines macho.

Imagen 76. DB9-Pines hembra.

En la siguiente imagen se puede observar perfectamente las conexiones a

realizar entre ambos entremos.

Imagen 77. Conexión cableada entre PLC-PC.

Cable ETHERNET:

o 2 uds RJ-45.

o 2-3 m cable UTP 4 pares Cat 5-5e.

En este caso ambos extremos se corresponden con conectores RJ-45 y el

conexionado entre ambos extremos tiene que corresponderse como se observa en la

imagen 88 referente a la conexión de cable cruzado.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

63

Imagen 78. Conexión cable cruzado.

Imagen 79. Unidad de RJ-45.

4.1.4. Crear nuevo proyecto con CX-Programmer.

Una vez que se tiene instalado el CX-Programmer y los cables para las conexiones

SYSMAC WAY y ETHERNET 10/100 Mbits, se realizó un programa básico en ladder, con

el fin de probar que se ha realizado bien las conexiones del pineado y se puede

transferir al PLC la programación realizada, para ello:

- Doble click en el icono del programa donde se encuentre

instalado.

- Se crea proyecto proyecto nuevo.

Imagen 80. Detalle icono nuevo proyecto.

64 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

- Se nombra el proyecto nuevo y se elige nuestra CPU y el tipo de

comunicaciones a establecer.

Imagen 81. Definiendo parámetros.

- Se define el tipo de CPU dentro del tipo de dispositivo en configurar.

Imagen 82. Detalle icono configurar tipo de dispositivo.

Imagen 83. Pasos para definir tipo de CPU.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

65

- Se define las propiedades de tipo de red en configurar (puerto, velocidad en

baudios, bits de datos, paridad, datos de parada (COMX, 9600, 7, Par, 2).

Imagen 84. Detalle icono configurar tipo de red.

Imagen 85. Configurando parámetros de conexión.

- Esos mismos datos tiene que coincidir en los parámetros del PC; para Windows

7:

Inicio -> Botón derecho en Equipo -> Propiedades -> Administrador de dispositivos

-> Puertos -> Doble click puerto elegido -> Configuración del puerto -> (9600, 7,

Par, 2, Ninguno).

Imagen 86. Pasos a seguir para definir los parámetros de conexión del PC.

66 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

4.1.5. Definiendo Tabla de E/S.

Una vez realizado todo lo anterior se vuelve al programa CX-Programmer.

Doble click en Tabla de E/S -> Desplegar +Bastidor Principal -> Botón derecho en 00

[0000] Hueco Vacio -> Unidad SIO CPU CS/CJ -> Unidad Ethernet (ET).

Imagen 87. Agregando módulos a la tabla de E/S.

4.1.6. Definiendo el bastidor principal.

Así hasta completar todos los módulo/tarjetas que componen nuestro PLC.

Imagen 88. Detalle bastidor principal con los módulos insertados.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

67

4.1.7. Compilando y conectando.

A continuación se compila , y se observa los posibles errores de código

así como las advertencias posibles, una vez subsanadas, se presiona Trabajar Online

.

(Conectar ambos lados del cable serie PC-PLC).

Imagen 89. Detalle de pantallazo para confirmar la conexión entre PLC-PC.

4.1.8. Transfiriendo información desde el PC al PLC.

Botón derecho en el nombre el PLC (lado izquierdo del CX-Programmer) ->

Transferir -> A PLC.

Imagen 90. Pasos a seguir para transferir datos al PLC.

Es aconsejable la primera vez que se haga una transferencia al PLC de marcar todas

las opciones y ya para las siguientes sólo las que nos convengan o hayan sufrido

cambios posteriores.

68 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 91. Detalle de marcado a incluir en la 1ª transferencia hacia el PLC.

Imagen 93. Detalle pantallazo antes de transferir.

Imagen 94. Detalle transferencia finalizada.

Imagen 92. .Detalle pantallazo cambio de modo de fto. necesario para transferir

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

69

Imagen 95. Detalle % uso de memoria tras la transferencia de datos.

Imagen 96. Detalle cambio modo funcionamiento al que tenía antes de la transferencia.

4.1.9. Monitorizando y modos de funcionamiento.

Una vez que se le ha transferido toda la configuración preestablecida así como la

programación realizada, se debería de observar el gráfico de una apariencia

aproximada como la que se aprecia en la imagen siguiente, aparece en la parte

izquierda Registro de error, el cual nos dirá si hay algún error que subsanar. Después se

aplica Alternar monitorización de PLC , aparecerá unas líneas verdes donde se

deduce el seguimiento de la monitorización del propio programa. Hay 3 maneras de

funcionamiento: Modo RUN , Modo Monitor o Modo Programa , se puede

optar de una opción a otra dependiendo si se quiere realizar algún cambio en modo

Online, o si quiere cargar o no de nuevo alguna modificación al PLC.

Imagen 97. Detalle pasos a seguir para monitorización y modos de funcionamiento.

70 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

4.1.10. Conexión Ethernet.

Llegado a este punto, necesario para ahora poder establecer conexión Ethernet, el

cual se consigue ganar sobre todo velocidad así como una conexión mucho más

estable.

En modo offline -> Doble click en el nombre el PLC (lado izquierdo del CX-Programmer)

-> Tipo de Red Ethernet -> Configurar -> Controlador -> Dirección IP (por ej.:

172.16.99.1).

Como puede verse en el paso número 7 de la imagen, en este caso “15”, se va a

corresponder a la terminación de la dirección IP que se tiene que configurar, a

continuación en Conexión de área local del PC (por ej.: 172.16.99.15, 255.255.255.0).

4.1.11. IP del PC.

En Windows7, Inicio -> Panel de control -> Redes e Internet -> Centro de Redes y

recursos compartidos -> Cambiar configuración del adaptador -> Botón derecho

Conexión de área local -> Propiedades ->Doble click Protocolo de internet versión 4

(TCP/IPv4) -> Propiedades -> Usar la siguiente dirección IP -> Aceptar.

Imagen 98. Detalle configuración Ethernet en PLC.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

71

Imagen 99. Detalle configuración Ethernet en PC.

Una vez realizados los pasos 9 y 10 se puede volver al paso 7.

4.1.12. Enviar y recibir datos a través del puerto RS-232C.

Para realizar esta prueba se tiene que tener todo lo anterior verificado que

funciona y como se va a proceder a probar en el mismo PC, se debe de tener ambas

conexiones (SYSMAC WAY y ETHERNET) a la vez.

Se van a utilizar las funciones @TXD (función transmitir) y @RXD (función recibir).

Antes de nada se tiene que configurar el puerto de la CPU ya que es con el que se va a

tratar la lectura y escritura de la memoria interna.

Se ha creado un programa básico denominado “Transmitir y Recibir.cxp”, de donde

se va a realizar la siguiente explicación.

Se abre el programa “Transmitir y Recibir.cxp” o también se puede generar uno

nuevo desde el principio, con los pasos anteriores, pero se realiza la conexión con el

autómata con Ethernet.

En modo offline, doble click en Selecciones -> Puerto de Host link -> Modo ->

RS232C.

72 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 100. Pasos a seguir para poder establecer conexión RS232C con CPU del PLC

4.1.13. Hyperterminal.

Se usará el programa Hyperterminal para poder enviar desde él y recibir el PLC y al

contrario también. Se conectará vía Ethernet PC-PLC y vía serie al hyperterminal (PC)-

PLC, quedando una conexión como sigue:

Imagen 101. Detalle gráfico de conexión PLC-PC y PC-PLC con Hyperterminal

4.1.14. @TXD & @RXD.

Se utiliza la función @TXD para transmitir información por el puerto RS232C, se

tiene que escribir en la dirección de memoria asignada para que se pueda enviar así

como definir la cantidad de bits máximos. Pasa lo mismo con @RXD, se recibe, en este

caso, desde el hyperterminal, y se almacenará en la dirección de memoria

preestablecida, así como la cantidad de bits a recibir.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

73

Imagen 102. Detalle ejemplo para transmitir y recibir desde CX-Programmer

En este caso concreto se podrá transmitir hasta un máximo de 20 bits de

información empezando desde la dirección D1000, y se podrá recibir también 20 bits

máximos empezando en la posición de la memoria D1600.

Al ser un ejemplo básico se tendrá que ir forzando a ON los contactos I0.00 e

I0.01, en el caso que se requiera para ir enviando o recibiendo en cada activación, por

ejemplo:

- Me voy al espacio de memoria D1000 y escribo: “Envio de trama de datos”,

fuerzo a ON I0.00 (botón derecho encima del contacto I0.00 -> Forzar -> ON) y

aparece lo escrito en el Hyperterminal. Fuerzo a OFF I0.00 (botón derecho

encima del contacto I0.00 -> Forzar -> OFF).

Imagen 103. Detalle para forzar el contacto a ON necesario para transferir datos desde la memoria de la CPU del PLC al hyperterminal

74 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

I0.00 Forzado a ON:

Imagen 104. Detalle gráfico de cómo queda el entorno al forzar

Accediendo a la memoria de datos:

Doble click en 1 Memoria -> 2 Poner texto en formato ASCII -> 3 Monitorizar -> 4

Indicar la dirección inicial -> 5 Escribir los datos a transmitir.

Imagen 105. Pasos a seguir para preparar el envío de datos

Imagen 106. Vista del envío y resultado de la recepción desde el hyperterminal

- Ahora desde el Hyperterminal escribo, por ejemplo: “diego aragon”, fuerzo a

ON el I0.01 y aparece en la dirección D1600 lo escrito. Fuerzo a OFF I0.01.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

75

Imagen 107. Vista ahora del envío desde hyperterminal y recepción en memoria CPU

*Se puede obtener mucha más información acerca de estas instrucciones así como

muchas más en los manuales anexados.

4.1.15. LabView.

También se realizaron pruebas de emisión y recepción con el programa de

visualización LabView.

En este caso se instaló la versión 2010.

Imagen 108. Pantalla de inicio de LabView 2010

76 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Se utilizó un programa básico que trae el propio programa de Labview como

ejemplo, denominado “Serial Write and Read”, que como su propio nombre indica

sirve para leer y escribir desde el puerto serie.

A continuación se muestra una imagen de la apariencia del programa:

Imagen 109. Programa Serial Write and Read

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

77

Este caso sería similar al estudiado anteriormente lo único que se sustituirá el

hyperterminal por el programa LabView para establecer comunicación vía serie y

Ethernet, que es el objetivo final.

Imagen 110. Detalle gráfico de conexión PLC-PC y PC-PLC con LabView

Se utilizan las mismas funciones y los mismos registros de memorias, así como las

misas órdenes para realizar las pruebas correctas de transferencia de datos pero en

este caso desde el PLC al programa LabView2010.

Imagen 111. Envío de datos desde el PLC al PC (LabView)

78 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 112. Envío de datos desde el PC (LabView) al PLC

Una vez desarrollados todos los pasos descritos anteriormente se está en

disposición de realizar las pruebas pertinentes para el conteo de los pulsos con la

tarjeta actual y así saber si nos sirve o no.

Se realizaron distintas pruebas para poder determinar la frecuencia de los pulsos

de los encoder del seguidor, llegando a la conclusión que el módulo de entrada digital

(CJ1W-ID211) es a 45 Hz y a 1.9 V cuando puede apreciarse un conteo razonable. Se

realizaron dos esquemas tipos para leer la fase A de azimut, uno sin divisor de tensión

y otro con divisor donde a través de una resistencia variable se pudo ajustar a 1.9 V

una lectura de frecuencia más aceptable para el módulo de entrada digital. La tarjeta

digital no admite una frecuencia alta, si la plataforma se debe mover más rápido para

alcanzar una posición de defensa o simplemente para hacer un posicionamiento por

no estar orientada bien, se perderían pulsos del encoder y la posicíón.

Para poder desarrollar estas pruebas también se tuvo que realizar una búsqueda

de información del tipo de encoder que dispone nuestro posicionador. Primero se

observó el tipo de conector que tiene el suntracker en su parte trasera:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

79

Open Collector (O.C.) NPN

Circuito de salida Driver ULN 2003 o equivalente

Capacidad de carga 40 mA por canal

Longitud de cable admisible 50 m (Vcc = 24 Vdc)

Resistencia de carga aconsejable RL = 1,8K (Vcc = 24 Vdc)

Nivel de señal "Low" VOL < 2V (Vcc = 24 Vdc)

Nivel de señal "High" VOH > 22V (Vcc = 24 Vdc)

Alimentación 11....30 Vdc

Ondulación máxima 300 m V Vcc

Protección contra cortocircuito No permanente

Frecuencia máx. standard 50 kHz - 100 kHz

Imagen 113. Detalle conector tipo M12 8P denominado MOTOR/PULS

Imagen 114. Encoder NPN Open Collector

Imagen 115. Esquema típico Encoder NPN O.C.

80 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Se muestra a continuación la correspondencia de colores de los cables con los

pines de cada conector (Suntracker, DB-9, DB-25):

Imagen 116. Correspondencia colores cables – pines

Seguidamente se procede a mostrar esquemáticamente las conexiones de los

distintos elementos que intervienen para realizar las pruebas de lectura de los pulsos

del encoder para determinar si la tarjeta del PLC lee correctamente las entradas

rápidas.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

81

- Prueba sin divisor:

Imagen 117. Esquema de la prueba sin divisor de tensión

- Prueba con divisor:

Imagen 118. Esquema de la prueba con divisor de tensión

En la imagen siguiente se recoge en una tabla origen y destino, así como color,

de cada cable utilizados en cada una de las pruebas anteriores:

82 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Herramientas y equipos utilizados:

Imagen 120. Polímetro

Imagen 121. Fuente de alimentación 24 Vac

Imagen 123. Fuente alimentación variable

Imagen 119. Pruebas Azimut y Elevación

Imagen 122. Encoder para realizar pruebas manuales de incrto. y decrto. de pulsos

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

83

En estas dos imágenes siguientes se puede apreciar los equipos cableados para

las distintas pruebas:

En el CX-Programmer se utilizó un temporizador de alta velocidad TIMH donde

iba a estar contando cada segundo, seguidamente con un contador reversible CNTR,

para poder observar el incremento de la lectura (de 0 hacia arriba), se le programa una

entrada que es la propia de los pulsos de la Fase A (cable verde) en la entrada In0.2, y

se le programa un reseteo del temporizador creado anteriormente, por lo que cada

segundo se resetea nuestro contador y así se puede ver los pulsos que se genera cada

segundo. A continuación se observa una captura de pantalla:

Imagen 125. Temporizador de alta velocidad (TIMH) con contador reversible (CNTR)

Imagen 124. Diferentes imágenes de las conexiones para las pruebas

84 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Llegado a este punto se observó la necesidad de disponer de un módulo de

contaje para lectura rápida. Se preguntó precio para adquirir uno de la serie OMRON

siendo el coste de este:

Código Descripción Cantidad Precio/Und Importe

315605 Módulo contador alta velocidad.2 Ent.500KHz CJ1W-CT021

1,00 542,50€ 542,50€

Y también se preguntó precio a Schneider Electric por un autómata nuevo con

lectura rápida:

Referencia Descripción/Contenido Importe

CMDM238AVAS

Autómata Programable Modicon M238 compacto, alimentado a 24 Vcc, 10 entradas digitales (4fast), 4 salidas digitales a transistor y 6 a relé, 4 entradas analógicas (V-I), 2 salidas analógicas (V-I) puerto de comunicación Modbus y CANOpen, cable de programación USB y software SOMachine.

540,00€

Se puede observar sale más económico el adquirir el M238 ya que se adquiere

un PLC completo, CPU más actual, módulos de entras y salidas, cable software y sin en

cambio por el mismo precio se adquiría sólo un módulo de contaje rápido teniendo

una CPU más antigua.

En esta misma fase de actuación se describen también los trabajos realizados

en cuanto al saneado y aprovechamiento del cableado existente.

A continuación se muestra en modo esquemático el cableado que se dispone

en el laboratorio y se muestra algunas imágenes del estado actual del propio cableado:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

85

Imagen 126. Esquema de cableado laboratorio-armario-campo

Imagen 127. Conversor RS485 – RS232

86 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 128. Cableado actual en laboratorio.

De todo el cableado y componentes existentes se aprovecha parte de él

quedando un resultado final como se muestra en el detalle del pineado del cable para

poder enviar y recibir datos desde el PLC, situado en el armario, hasta el PC, ubicado

en el laboratorio, se aprovecha tanto los convertidores RS485-RS232, así como el cable

existente, a continuación el detalle:

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

87

Imagen 129. Detalle cableado PLC - PC

Se comprueba en la prueba final (PLC en el armario) y desde el laboratorio que

enviaba y recibía perfectamente.

Se concluye que los conversores RS232/RS-485 con sus fuentes de alimentación

también se prueban y se conservan.

4.2. PLC SCHNEIDER ELECTRIC M238

Se procedió a la instalación del software ‘SoMachine 3.1.’ y a la construcción

del cable para poder realizar el envío y recepción de datos entre PLC y PC. En la

siguiente imagen se puede observar el logo del software utilizado de Schneider

Electric.

88 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 130. Logo software SoMachine V.3.1

En la siguiente imagen se puede apreciar la conexión que se tiene que realizar

para fabricarnos el cable necesario para el correcto envío y la correcta recepción de

datos, también se tiene la opción de adquirir el cable ya construido, el cual se muestra

en la otra imagen, y cuya referencia comercial es “TCSMCN3M4F3C2”:

Imagen 131. Cable RJ45-RS232 para PLC-PC

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

89

Se dispone del PLC montado en un carril DIN con los siguientes elementos:

- Fuente 24V

- CPU M238

- Tarjeta analógica 4 entradas / 2 salidas

- Enchufe de red

- Cable USB

- Fusible de 1 A.

- Documentos de la CPU y de la tarjeta analógica

La tarjeta analógica, la CPU y los negativos de las entradas digitales se han dejado

conectados en alimentación.

Imagen 132. Elementos del M238 de Schneider Electric

90 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

A continuación se muestra un esquema del sistema completo utilizado en la

instalación:

Imagen 133. Esquema del sistema completo utilizado

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

91

5. Fase de actuación sobre elementos auxiliares

En esta fase se evaluó los sensores auxiliares de irradiancia, se describen sus

propiedades:

- Sensor de irradiancia Pyranometer (LI200 PY-31396): sensor que le sirve al

controlador de ir tomando los valores de irradiancia e ir posicionándose a

través de ellos. Este sensor se encuentra a escasos metros del robot

posicionador, en el armario se encuentra su conversor para poder obtener los

valores digitales.

Imagen 134. Sensor de irradiancia

92 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

En el armario también se puede observar un transmisor básico de aislamiento

para las señales unipolares mA / V que se recogen del sensor de irradiancia. Este

dispositivo consta con selección de rango para su calibrado, en concreto se ha utilizado

el IsoPAQ-30P.

Imagen 135. IsoPAQ-30P

Imagen 136. Sensor de Irradiancia. Pyranometer (LI200 PY-31396)

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

93

Se puede concluir que estos equipos funcionan y se conservarán.

Para esta última fase se realizó una propuesta de mejora que consiste en un nuevo

sensor solar que existe en el mercado a sustituir con el sensor nuestro de irradiancia

actual. Este sensor está desarrollado por la empresa SOLAR MEMS Technologies, que

ya se ha utilizado en aplicaciones comerciales reales así como en otros proyectos

finales de carreras de otros compañeros.

Este sensor solar se basa en la tecnología MEMS (Micro-electro-mechanical-

system). Solar MEMS dispone de cuatro familias de sensores para su uso en diferentes

sistemas de seguimiento solar como fotovoltaico, CPV, HCPV, cilindro parabólico,

Stirling…y en cualquier sistema de seguimiento de 1 ó 2 ejes. Estos sensores solares

son de alta precisión y son ideales para sistemas de seguimiento solar.

A continuación se observan las cuatro familias disponibles:

5.1. Sensor solar ISS-AX (Analógico)

El sensor solar ISS-AX proporciona la medida del vector solar incidente. Este sensor

ha sido diseñado con tecnología MEMS para lograr la máxima integración y el menos

coste. El sensor proporciona la medida del ángulo incidente del sol mediante 4 señales

analógicas y un cálculo matemático. En la fig. 137 se puede ver una imagen del sensor

solar. La alta precisión alcanzada es debido a la geometría y diseño del mismo. Sus

características lo hacen ideal para su uso en sistemas de seguimiento de precisión en

dos ejes.

Imagen 137. Sensor Solar ISS-AX

94 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Versiones del sensor solar ISS-AX:

Características ISS-A60 ISS-A25 ISS-A15

Campo de visión 120x120 50x50 30x30

Precisión sin calibración <3 <2 <1

Precisión calibrado a 0° <0,1 <0,07 <0,04

Ver fig. 138.

Imagen 138. Vistas Sensor solar ISS-AX

Características técnicas:

Tipo de sensor: 2 ejes.

Alimentación: 5÷12 V.

Consumo: 11 mA (corriente).

Salidas analógicas: 4 señales 0-4.5 V. Voltaje de cada cuadrante. 4-cuadrante

microsensor.

Temperatura: de -40° a 85°.

Protección: Polaridad inversa.

IP65.

La precisión puede ser incrementada, en más de un orden, mediante la

calibración de la posición del cero después de la instalación.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

95

5.2. Sensor solar ISS-DX (Digital)

El sensor solar ISS-DX proporciona la posición del sol con una alta precisión. Ha sido

diseñado con tecnología MEMS, lo que permite obtener un sensor altamente

integrado con un bajo coste. El sensor ISS-DX mide el ángulo de incidencia de un rayo

solar en dos ejes ortogonales y la radiación del sol. La alta sensibilidad alcanzada se

basa en el diseño de la geometría y en el proceso de calibración final. Las

características de este sensor lo hace una herramienta imprescindible para su uso en

sistemas de seguimiento de alta precisión. En la siguiente fig. 139 se observa el sensor

solar DX.

Imagen 139. Sensor Solar DX

Versiones del sensor solar ISS-DX:

Características ISS-D60 ISS-D25 ISS-D15 ISS-D5

Campo de visión 120x120 50x50 30x30 10x10

Precisión campo de visión <0,4 <0,3 <0,2 <0.1

Precisión sobre 0° <0,06 <0,04 <0,02 <0,005

Ver fig. 140.

96 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 140. Vistas Sensor Solar ISS-DX

Características técnicas:

Tipo de sensor: 2 ejes.

Alimentación: 5÷12 V.

Consumo: 33 mA (corriente).

Comunicación: RS-485

Máximo 15 sensores/bus

0,05 s de respuesta.

Salida de datos: Ángulos X-Y (filtro incluido)

Radiación solar directa

Temperatura: de -40° a 85°.

Protección: Polaridad inversa.

IP65.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

97

5.3. Sensor solar ISS-CYPA (Cilindro Parabólico)

El sensor solar ISS-CYPA permite ISS-CYPA permite la medición del ángulo de

incidencia de un rayo solar, proporcionando sus ángulos de proyección en los dos ejes

ortogonales de referencia, lo que lo hace ideal para su uso en sistemas de seguimiento

de 1 eje. El sensor ISS-CYPA proporciona la medida del ángulo incidente del sol en dos

ejes, pero con una elevada precisión en un eje, ideal para su aplicación en sistemas

cilindro parabólico y sistemas de seguimiento de 1 eje. En la fig. 141 se puede apreciar

una imagen del dispositivo y en la fig. 142 se puede ver las características técnicas. La

alta precisión está basada en el diseño geométrico y en la calibración final del sensor.

Imagen 141. Sensor Solar ISS-CYPA

Características técnicas:

Tipo de sensor: 2 ejes.

Campo de visión: 80x20° (ejes cypa)

Precisión campo de visión: <0,4°

Precisión en eje-cypa : <0,02°

Alimentación: 5÷12 V.

Consumo: 33 mA (corriente).

Comunicación: RS-485

Máximo 15 sensores/bus

0,05 s de respuesta.

Salida de datos: Ángulos X-Y (filtro incluido)

Radiación solar directa

Temperatura: de -40° a 85°.

Protección: Polaridad inversa.

IP65.

98 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Imagen 142. Vistas Sensor Solar ISS-CYPA

5.4. Sensor solar NANO-ISS60 (NANO)

El sensor NANO-ISS60 permite la medida de la proyección del vector solar

incidente, proporcionando sus ángulos de proyección en los dos ejes ortogonales

de referencia, aplicando simples cálculos matemáticos. La fóvea es función de la

geometría del sensor. En la fig. 143 se aprecia el sensor solar. Su diseño compacto,

fácil integración y reducido consumo, lo hacen ideal para sistemas de seguimiento

en energía renovable o sistemas que precisen conocer la posición del sol a un bajo

coste. El sensor NANO-ISS60 puede ser suministrado con dos formatos: uno sobre

PCB y otro sobre PCB con conector (NANO-ISS60-c). En la fig. 144 se observa las

características técnicas del sensor.

Imagen 143. Sensor Solar NANO-ISS60

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

99

Características técnicas:

Tipo de sensor: 2 ejes.

Campo de visión: 120x120°

Precisión: <3°

Alimentación: 3.3÷12 V.

Salidas analógicas: 4 señales

Voltaje de cada cuadrante

4-cuadrantes microsensor

Temperatura: de -40° a 85°.

La precisión puede ser incrementada, en más de un orden, mediante la

calibración de la posición del cero después de la instalación.

Imagen 144. Vistas Sensor Solar NANO-ISS60

100 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

Para determinar qué tipo de sensor se necesita hay que basarse sobre todo en el

tipo de precisión que se necesita, si las necesidades de precisión son elevadas sería

necesario el uso de sensores ISS-D5 o ISS-D15 al ser los más precisos en seguimiento

directo.

Las condiciones del medio ambiente afecta a la precisión: efecto de las nubes o el

propio suelo que puede introducir efecto albedo. Por lo tanto, si se necesita una alta

precisión se debe elegir un sensor con un estrecho campo de visión.

Si por el contrario las necesidades de precisión son inferiores, pueden utilizarse los

sensores ISS-D60 o ISS-A60. Estos sensores permiten tener un mayor campo de visión,

lo que reduce los requerimientos sobre el sistema de control.

Ejemplos:

Seguidor solar para sistemas fotovoltaicos: ISS-D25, ISS-D60, ISS-A25 o ISS-A60.

Seguidor solar para sistema de concentración fotovoltaica CPV o HCPV: ISS-A15 o ISS-

D5.

Otra de las cuestiones a tener en cuenta es si se necesita un sensor solar tipo

analógico o digital.

El sensor solar analógico (ISS-AX) tiene un fácil interface con 4 señales

analógicas y solo se precisa una simple calibración una vez instalado en el sistema de

seguimiento para definir el cero grados.

El sensor digital (ISS-DX) no necesita calibración posterior, porque se calibra

durante el proceso de fabricación, proporcionando la radiación directa y la medida de

los ángulos mediante un interface de comunicaciones. Además, es posible conectar

hasta 15 ISS-DX al mismo bus RS-485 y tener comunicaciones a larga distancia.

Si por el contrario se requiere un sistema de seguimiento de 1 eje el sensor ISS-

CYPA es un sensor con una elevada precisión en uno de los ejes, debido al diseño y a la

calibración realizada en el sensor, lo que le permite tener un campo de visión 80x20

grados y por tanto ser ideal para su uso en sistemas de seguimiento de 1 eje. Se logran

precisiones de 0, 02 grados.

Si lo que se necesita es un sensor de dimensiones reducidas, el NANO-ISS60

está diseñado para aplicaciones que requieren una alta integración.

Se contactó directamente con la empresa SolarMems, la cual nos facilitó el

precio del modelo ISS-D60, el cual se consideraba el que mejor se adapta en las

condiciones y elementos de los que consta nuestra instalación no quitando un nuevo

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

101

estudio de estos sensores en el momento que se decida adquirirlos con los cambios

que hay adquirido la instalación en ese momento, como puede ser el cambio a paneles

tipo CPV.

Producto/Unidad 1-5 unidades

ISS-D60 228,20€

Otra propuesta de mejora para esta fase es la utilización de un anemómetro.

Con este sensor se podrá detectar la velocidad del viento a la que es sometido nuestro

sistema y actuar convenientemente para determinados valores establecidos. Por

ejemplo a determinado valor límite ponerse en posición noche.

Imagen 145. Anemómetro.

*Todos los datasheets, programas y demás documentación asociada y

comentada se dispondrán de ella en los anexos del proyecto.

102 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

6. Conclusiones

Se concluirá con un esquema mostrando los diferentes elementos que se

conservan y los que se anulan así como los que se podrán sustituir.

Elementos de los que se disponía inicialmente:

- Posicionador.

- Módulos fotovoltaicos.

- Unidad de control con microcontrolador.

- Amplificador de potencia (PWMs).

- Sensor de irradiancia.

- Inversor de CC/CA.

- PC con labview

Elementos que se van a disponer finalmente:

- Posicionador

- Módulos fotovoltaicos se propone sustituir por CPVs, paneles solares de alta

concentración.

- PLC M238 de Schneider Electric con módulo de lectura rápida.

- Amplificador de potencia (PWMs).

- PC con labview.

- Sensor de irradiancia se propone sustituir por sensores solares con mayor

precisión.

- Conversores RS232/RS485 con F.A. para poder establecer la correcta

comunicación entre el PLC (ubicado en el armario eléctrico) y el PC (ubicado en

el laboratorio).

- Se propone incluir un anemómetro para determinar un determinado control

sobre el seguidor solar en caso de alta velocidad del viento pudiendo poner en

peligro la instalación.

Como trabajo futuro se propone estudiar con más detenimiento y haciendo una

elección acertada de las propuestas de mejoras, así como realizar una programación

en el autómata más innovadora ya que actualmente sólo se dispone de la

programación de las ecuaciones solares.

Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

103

7. Bibliografía y Programas utilizados

Bibliografía

- [1]http://es.wikipedia.org/wiki/Energ%C3%ADa_solar

- [2]http://www.ecorresponsabilidad.es/pdfs/ecoinnovacion/HISPANOTRACKER_seguid

ores_solares.pdf

- [3]http://www.mecasolar.com/_bin/caracteristicas_2_eje.php

- [4] http://www.bio-sol.net/productos/seguidor_solar.htm

- [5] http://www.lorentz.de/en/products/solar-tracking-systems/etatrack.html

- [6] http://www.rdenergysolutions.ca/docs/Deger-Specifications.pdf

- [7]http://www.grupoclavijo.net/DonwloadService.php?fl=solar/es/SR292E.pdf

- [8] http://www.construmatica.com/construpedia/Radiaci%C3%B3n_Solar

- [9]http://energias-renovables-y-limpias.blogspot.com.es/2013/04/que-panel-

comprar-monocristalino-o-policristalino.html

- [10] http://www.solomantenimiento.com/articulos/retrofit-retrofitting.htm

- [11] http://www.sma-iberica.com/es.html

- [12] http://www.egis.org/track_us.html#abb_g

- [13] http://www.enfsolar.com/directory/component/tracker?lang=es%20|

- [14] http://www.inor.com/

Programas utilizados:

- [1] CX-Programmer 5.1

- [2] LabView 2010

- [3] So Machine 5.0

- [4] Hyperterminal

104 Proyecto Final de Carrera

RETROFIT DE UN SISTEMA FOTOVOLTAICO DE SEGUIMIENTO SOLAR

8. Anexos

- Anexo I: PWM (Amplificadores de motores)

- Anexo II: Robot posicionador. Detalle de tipo de encoder.

- Anexo III: Inversor (Sunny Boy 700). Software y datsheets del inversor de cc/ca.

- Anexo IV: Plano cableado UC. Formato A3 del plano de cableado de la unidad de

control para un mayor detalle.

- Anexo V: Paneles solares

o Panel fotovoltaico: ficha técnica del panel fotovoltaico utilizado.

o Panel solar de alta concentración: catálogo de paneles solares de alta

concentración.

- Anexo VI: Sensores

o Sensor de irradiancia: datasheet del sensor utilizado Pyranometer LI200.

o Sensores solares ISS Solar mens: datasheet de sensores solares para propuesta

de mejora.

- Anexo VII: Conversor RS485-RS232. Datasheet del conversor

- Anexo VIII: PLCs

o OMRON: Datasheet de los distintos módulos del PLC.

o SCHNEIDER ELECTRIC: Datasheet PLC M238.

ANEXO I

Analog Servo Drive 25A8

Description Power Range

Peak Current 25 A

Continuous Current 12.5 A

Supply Voltage 20 - 80 VDC

The 25A8 PWM servo drive is designed to drive brush type DC motors at a high switching frequency. A single red/green LED indicates operating status. The drive is fully protected against over-voltage, under voltage, over-current, over-heating and short-circuits across motor, ground and power leads. Furthermore, the drive can interface with digital controllers or be used stand-alone and requires only a single unregulated DC power supply. Loop gain, current limit, input gain and offset can be adjusted using 14-turn potentiometers. The offset adjusting potentiometer can also be used as an on-board input signal for testing purposes.

See Part Numbering Information on last page of datasheet for additional ordering options.

Features

Four Quadrant Regenerative Operation

DIP Switch Selectable Modes

Adjustable Current Limits

High Switching Frequency

Differential Input Command

Digital Fault Output Monitor

On-Board Test Potentiometer

Offset Adjustment Potentiometer

Adjustable Input Gain

Drive Status LED

Current Monitor Output

Directional Inhibit Inputs for Limit Switches

MODES OF OPERATION Current Voltage IR Compensation Velocity

COMMAND SOURCE ±10 V Analog

FEEDBACK SUPPORTED Tachometer (±60 VDC) ±10 VDC Position

COMPLIANCES & AGENCY APPROVALS UL cUL CE Class A (LVD) CE Class A (EMC) RoHS

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 1 of 9

Analog Servo Drive 25A8

BLOCK DIAGRAM

Information on Approvals and Compliances

US and Canadian safety compliance with UL 508c, the industrial standard for power conversion electronics. UL registered under file number E140173. Note that machine components compliant with UL are considered UL registered as opposed to UL listed as would be the case for commercial products.

Compliant with European CE for both the Class A EMC Directive 2004/108/EC on Electromagnetic Compatibility (specifically EN 61000-6-4:2007 and EN 61000-6-2:2005) and LVD requirements of directive 2006/95/EC (specifically EN 60204-1:2006), a low voltage directive to protect users from electrical shock.

RoHS (Reduction of Hazardous Substances) is intended to prevent hazardous substances such as lead from being manufactured in electrical and electronic equipment.

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 2 of 9

Analog Servo Drive 25A8

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 3 of 9

SPECIFICATIONS

Power Specifications Description Units Value

DC Supply Voltage Range VDC 20 - 80 DC Bus Over Voltage Limit VDC 86 Maximum Peak Output Current1 A 25 Maximum Continuous Output Current A 12.5 Maximum Continuous Output Power W 950 Maximum Power Dissipation at Continuous Current W 50 Minimum Load Inductance (Line-To-Line)2 µH 200 Low Voltage Supply Outputs - ±5 VDC (3 mA) Switching Frequency kHz 22

Control Specifications Description Units Value

Command Sources - ±10 V Analog Feedback Supported - ±10 VDC Position, Tachometer (±60 VDC) Commutation Methods - Brush Type Modes of Operation - Current, IR Compensation, Velocity, Voltage Motors Supported - Single Phase (Brushed, Voice Coil, Inductive Load) Hardware Protection - Over Current, Over Temperature, Over Voltage, Short Circuit (Phase-Phase & Phase-Ground) Primary I/O Logic Level - 5V TTL

Mechanical Specifications Description Units Value

Agency Approvals - CE Class A (EMC), CE Class A (LVD), cUL, RoHS, UL Size (H x W x D) mm (in) 129.3 x 75.8 x 25.1 (5.1 x 3 x 1) Weight g (oz) 280 (9.9) Heatsink (Base) Temperature Range3 °C (°F) 0 - 65 (32 - 149) Storage Temperature Range °C (°F) -40 - 85 (-40 - 185) Form Factor - Panel Mount P1 Connector - 16-pin, 2.54 mm spaced, friction lock header P2 Connector - 5-port, 5.08 mm spaced, screw terminal

Notes

1. Maximum duration of peak current is ~2 seconds. Peak RMS value must not exceed continuous current rating of the drive. 2. Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements. 3. Additional cooling and/or heatsink may be required to achieve rated performance.

Analog Servo Drive 25A8

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 4 of 9

PIN FUNCTIONS

P1 - Signal Connector

Pin Name Description / Notes I/O 1 +5V 3mA OUT O 2 SIGNAL GND GND 3 -5V 3mA OUT

±5 V @ 3 mA low power supply for customer use. Short circuit protected. Reference ground common with signal ground.

O 4 +REF IN I 5 -REF IN

Differential Reference Input (±10 V Operating Range, ±15 V Maximum Input) I

6 -TACH IN Negative Tachometer Input (Maximum ±60 V). Use signal ground for positive input. I 7 +TACH / GND Positive Tachometer Input and Signal Ground GND

8 CURRENT MONITOR Current Monitor. Analog output signal proportional to the actual current output. Scaling is 4.4 A/V. Measure relative to signal ground. O

9 CURR REF OUT Measures the command signal to the internal current-loop. This pin has a maximum output of ±7.25 V when the drive outputs maximum peak current. Measure relative to signal ground.

O

10 CONT CURRENT LIMIT Can be used to reduce the factory-preset maximum continuous current limit without affecting the peak current limit by attaching an external current limiting resistor between this pin and signal ground. See pin details for resistor values.

I

11 INHIBIT IN TTL level (+5 V) inhibit/enable input. Leave open to enable drive. Pull to ground to inhibit drive. Inhibit turns off all power devices. I

12 +INHIBIT IN Positive Direction Inhibit (Does Not Cause A Fault Condition) I 13 -INHIBIT IN Negative Direction Inhibit (Does Not Cause A Fault Condition) I

14 FAULT OUT TTL level (+5 V) output becomes high when power devices are disabled due to at least one of the following conditions: inhibit, output short circuit, over voltage, over temperature, power-up reset.

O

15 NC Not Connected (Reserved) - 16 NC Not Connected (Reserved) -

P2 - Power Connector

Pin Name Description / Notes I/O 1 -MOT Negative Motor Output O 2 +MOT Positive Motor Output O 3 POWER GND PGND 4 POWER GND

Power Ground (Common With Signal Ground) PGND

5 HIGH VOLTAGE DC Power Input I

Pin Details

CONT CURRENT LIMIT (P1-10)

This pin can be used to reduce the continuous current limit without affecting the peak current limit by connecting an external current limiting resistor between this pin and signal ground. See table below. Current Limit Resistor 15 kΩ 6.6 kΩ 3.4 kΩ 2.1 kΩ 1.2 kΩ 810Ω 500 Ω 250 Ω 0 kΩ Continuous Current Limit 90% 80% 70% 60% 50% 40% 30% 20% 10% Note: These values are secondary to the continuous/peak ratio set by the DIP switches.

Analog Servo Drive 25A8

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 5 of 9

HARDWARE SETTINGS

Switch Functions

Setting Switch Description

On Off

1 Voltage feedback. Mode dependent (see mode selection table below). On Off

2 Current loop integral gain. Activates or deactivates integration. OFF by default. Inactive Active

3 Outer loop integration. Activates or deactivates integration. ON, by default, for current mode and OFF for other modes. Inactive Active

4 Test/Offset. Switches the function of the Test/Offset pot between an on-board command input for testing or a command offset adjustment. OFF by default.

Test Offset

Mode Selection Table

Mode SW1 SW3

CURRENT OFF ON VOLTAGE ON OFF IR COMPENSATION ON OFF TACHOMETER VELOCITY OFF OFF

Potentiometer Functions

Potentiometer Description Turning CW

1 Loop gain adjustment for voltage/velocity modes. Turn this pot fully CCW in current mode. Increases gain

2 Current limit. It adjusts both continuous and peak current limit while maintaining their ratio. Increases limit

3 Reference gain. Adjusts the ratio between input signal and output variables (voltage, current, or velocity). Increases gain

4 Offset / Test. Used to adjust any imbalance in the input signal or in the amplifier. Can also be used as an on-board signal source for testing purposes.

Adjusts offset in negative direction

Note: Potentiometers are approximately linear and have 12 active turns with 1 inactive turn on each end.

Analog Servo Drive 25A8

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 6 of 9

Through-hole Components†

Location Description

C10* Current Loop Integrator. Through-hole capacitor that can be added for more precise current loop tuning. See section below on Tuning with Through-hole components for more details.

C5* Velocity Loop Integrator. Through-hole capacitor that can be added for more precise velocity loop tuning. See section below on Tuning with Through-hole components for more details.

R13* Tachometer Input Scaling. Through-hole resistor that can be added to change the gain of the tachometer input. See section below on Tachometer Gain for more details.

R30* Current Loop Proportional Gain. Through-hole resistor that can be added for more precise current loop tuning. See section below on Tuning with Through-hole components for more details.

R8* IR Compensation Scaling. Through-hole resistor that must be added to configure the amplifier for IR Compensation mode. See section below on IR Compensation Notes for more details.

Tachometer Gain

Some applications may require an increase in the gain of the tachometer input signal. This occurrence will be most common in designs where the tachometer input has a low voltage to RPM scaling ratio. The drive offers a through-hole location listed in the above table where a resistor can be added to increase the tachometer gain. Use the drive’s block diagram to determine an appropriate resistor value.

Tuning With Through-hole Components

In general, the drive will not need to be further tuned with through-hole components. However, for applications requiring more precise tuning than what is offered by the potentiometers and dipswitches, the drive can be manually modified with through-hole resistors and capacitors as denoted in the above table. By default, the through-hole locations are not populated when the drive is shipped. Before attempting to add through-hole components to the board, consult the section on loop tuning in the installation notes on the manufacturer’s website. Some general rules of thumb to follow when adding through-hole components are:

• A larger resistor value will increase the proportional gain, and therefore create a faster response time. • A larger capacitor value will increase the integration time, and therefore create a slower response time.

Proper tuning using the through-hole components will require careful observation of the loop response on a digital oscilloscope to find the optimal through-hole component values for the specific application.

IR Compensation Notes

For applications that will use IR Compensation mode, a resistor must be added to the location named in the table above. The combination of the added resistor and correct dipswitch settings will configure the amplifier for IR Compensation mode. While in IR Compensation mode, the amplifier will adjust the duty cycle to compensate for changes in the output current. Consult the amplifier’s functional block diagram and the manufacturer’s website for more information. †Note: Damage done to the drive while performing these modifications will void the warranty.

Analog Servo Drive 25A8

MECHANICAL INFORMATION

P1 - Signal Connector

Connector Information 16-pin, 2.54 mm spaced, friction lock header Details Molex: P/N 22-01-3167 (connector) and P/N 08-50-0114 (insert terminals)

Mating Connector Included with Drive Yes

+5V 3mA OUT1

SIGNAL GND2

-5V 3mA OUT3

+REF IN4

-REF IN5

-TACH IN6

+TACH / GND7

CURRENT MONITOR8

CURR REF OUT9

CONT CURRENT LIMIT10

INHIBIT IN11

+INHIBIT IN12FAULT OUT14

NC16

-INHIBIT IN13NC15

P2 - Power Connector

Connector Information 5-port, 5.08 mm spaced, screw terminal Details Not applicable

Mating Connector Included with Drive Not applicable

-MOT1+MOT2

POWER GND3POWER GND4

HIGH VOLTAGE5

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 7 of 9

Analog Servo Drive 25A8

MOUNTING DIMENSIONS

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 8 of 9

Analog Servo Drive 25A8

PART NUMBERING INFORMATION

A

Peak Voltage

Peak Current

8 -Additional Options*

Maximum peak current rating in Amps.

Peak voltage rating scaled 1:10 in Volts.

Power Supply: DC Power Supply

RevisionAssigned a letter (A through Z) by manufacturer.

AC: AC Power Supply

I: Optical IsolationIsolation Option**

25

Command: Analog Command

DD: PWM Command

-ANP: Analog Position Loop-INV: Inverted Inhibit-QD: Quick Disconnect

-QDI: Quick Disconnect w/ Inverted Inhibit

* Options available for orders with sufficient volume. Contact ADVANCED Motion Controls for more information.** Isolation comes standard on all AC supply drives and most DC supply drives 200V and above. Consult selection tables of the website or the drive datasheet block diagram to see if isolation is included.

ADVANCED Motion Controls analog series of servo drives are available in many configurations. Note that not all possible part number combinations are offered as standard drives. All models listed in the selection tables of the website are readily available, standard product offerings. ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quick-turn customs capabilities, ADVANCED Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability.

Examples of Modifications and Customized Products Integration of Drive into Motor Housing Integrate OEM Circuitry onto Drive PCB Mount OEM PCB onto Drive Without Cables Custom Control Loop Tuned to Motor Characteristics Multi-axis Configuration for Compact System Custom I/O Interface for System Compatibility Custom PCB and Baseplate for Optimized Footprint Preset Switches and Pots to Reduce User Setup RTV/Epoxy Components for High Vibration Optimized Switching Frequency OEM Specified Connectors for Instant Compatibility Ramped Velocity Command for Smooth Acceleration OEM Specified Silkscreen for Custom Appearance Remove Unused Features to Reduce OEM Cost Increased Thermal Limits for High Temp. Operation Application Specific Current and Voltage Limits

Feel free to contact Applications Engineering for further information and details.

Available Accessories ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system.

Visit www.a-m-c.com to see which accessories will assist with your application design and implementation.

Power Supplies

Shunt Regulators

Filter Cards

Drive(s)

To Motor

All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.

Release Date: 11/30/2011

Revision: 2.01

ADVANCED Motion Controls · 3805 Calle Tecate, Camarillo, CA, 93012 ph# 805-389-1935 · fx# 805-389-1165· www.a-m-c.com

Page 9 of 9

ANEXO II

ANEXO III

Sunny Boy SB 700El inversor String

Inversor profesional adecuadotambién para instalacionespequeñas

3 rangos distintos de tensiónde entrada

SMA grid guard® 2:Conmutador de desconexiónautomático

Diagnóstico y comunicación a través de la red o por radio-transmisión, así como por cable(RS232 o RS485)

Rango de temperatura ampliado de –25 °C a +60 °C

Indicado tanto para montaje interior como exterior

La tecnología String desarrollada por SMA representa en la actualidad lo másavanzado en materia de instalaciones fotovoltaicas. La separación del generadorsolar en varios Strings de módulos independientes, asignados a un inversor cadauno, facilita enormemente la instalación y reduce notablemente los costes.La posibilidad de configurar el rango de la tensión de entrada permite adaptar elSB 700 a las necesidades particulares de cada instalación con unas pocas modi-ficaciones. Eso permite la realización incluso de instalaciones pequeñas conformeal estado actual de la técnica. La tecnología innovadora que emplea el SB 700garantiza un rendimiento energético óptimo de toda la instalación fotovoltaica.

SB70

0-12

:BS2

906

· Sun

ny B

oy y

SM

A s

on m

arca

s re

gistr

adas

de

SMA

Tec

hnol

ogie

AG

S

ujet

o a

mod

ifica

cion

es y

mej

oras

técn

icas

Im

pres

o en

pap

el b

lanq

uead

o sin

clo

ro

Representación esquemática del Sunny Boy SB 700

Datos Técnicos

SB 700(73 a 150 V)

510 W250 V

73 V – 150 V7 A

< 10 %2

Conectorsísí

Diodo de cortocircuito

460 W460 W< 3 %

220 V – 240 V50 Hz / 60 Hz

1sí, regulación de corriente

Conector de CA

93,4 %92 %

IP65

322 / 290 / 18016 kg

SB 700(96 a 200 V)

670 W250 V

96 V – 200 V7 A

< 10 %2

Conectorsísí

Diodo de cortocircuito

600 W600 W< 3 %

220 V – 240 V50 Hz / 60 Hz

1sí, regulación de corriente

Conector de CA

93,4 %92 %

IP65

322 / 290 / 18016 kg

Parámetros de entradaPotencia máx. de CC (PCC, max) Tensión máxima de CC (UCC, max) Rango de tensión fotovoltaica, MPPT (UFV) Corriente máx. de entrada (IFV, max) Factor de distorsión de CC (UPP) Número máx. de Strings (en paralelo)Dispositivo separador de CCVaristores con control térmicoMonitorización de toma a tierraProtección contra polarización inversa

Parámetros de salida Potencia máx. de CA (PCA, max)Potencia nominal de CA (PCA, nom)Coeficiente de distorsión harmónica (THD)Tensión nominal de CA (UCA, nom)Frecuencia nominal de CA (fCA, nom)Ángulo de desplazamiento de fase (cos ϕ)Resistencia al cortocircuitoConexión a red

Coeficiente de rendimientoCoeficiente de rendimiento máx.Rendimiento europeo

Grado de protecciónsegún DIN EN 60529

Parámetros mecánicos Ancho / alto / fondo (mm)Peso

SB 700(119 a 250 V)

780 W250 V

119 V – 250 V7 A

< 10 %2

Conectorsísí

Diodo de cortocircuito

700 W700 W< 3 %

220 V – 240 V50 Hz / 60 Hz

1sí, regulación de corriente

Conector de CA

93,4 %92 %

IP65

322 / 290 / 18016 kg

www.SMA-Iberica.comFreecall 00800 SUNNYBOYFreecall 00800 78669269

Innovaciones en la técnica de sistemaspara el éxito de la fotovoltaica

ANEXO IV

1312

1110

98

76

54

32

125

2423

2221

2019

1817

1615

14

1EPA2EPA3EPA4EPA5EPA6EPA7EPA8EPA

1SPA2SPA3SPA4SPA5SPA6SPA7SPA8SPA

1EPAISL2EPAISL3EPAISL4EPAISL5EPAISL6EPAISL7EPAISL8EPAISL9EPAISL10EPAISL11EPAISL12EPAISL13EPAISL14EPAISL15EPAISL16EPAISL

1SPAISL2SPAISL3SPAISL4SPAISL5SPAISL6SPAISL7SPAISL8SPAISL9SPAISL

10SPAISL11SPAISL12SPAISL13SPAISL14SPAISL15SPAISL16SPAISL

1ETA2ETA3ETA4ETA5ETA6ETA7ETA8ETA

1AZ2AZ

3AZ4AZ

7AZ8AZ

9AZ

10AZ11AZ

1EL2EL

3EL4EL

7EL8EL

9EL

10EL11EL

5AZ

6AZ

5EL

6EL

F.A.

Negro

Azul

F.A.

Suelto

1 NC (SETA)

2 NC (SETA)

F.A.

1

4

2

5

3

6CONECTOR

TRANSFORMADOR 1 2 3

Chasis

PLAKITA

1E

2E

1S

2S

3S

4S

6E03 (PK210)

7E04 (PK210)

4E01 (PK210)

5E02 (PK210)

Placa deAdaptación del PK210 a los servos (PA)

Tarjeta de Encoder (TA)

Servo Elevación

Servo Azimut

PK210

PK210

1 NC (SETA)

2 NC (SETA)

Parte TraseraNegro

Azul

F.A.

Placa Aisladora (PAISL)

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25

Encoder

Verde

Rojo

Rojo

Rojo Rojo

Tarjeta AmplificadorSensor Potencia

LM324N

7815C

11 12 13

14

Azul - Gris

Negro - (Negro-Marrón)

Multihilo

+ -

F.A.

+ -

Azimut

Elevación

DB-25 pines

12/05/2013DARPRIMERA_REVISIÓN0A

Nombre

Diseñado

Revisado

Fecha

AutoCAD Formato Medidas en Escala de:

Rev.:

Hoja:Aprovado

FechaNombreRevisión Descripción

DAR 12/05/2013

DAR 12/05/2013

DAR 12/05/2013

2004 A3 NA NA

CABLEADO_UNIDAD_DE_CONTROL

PROYECTO_FINAL_DE_CARRERA

01

1

1

0A

Detalle cableado que conecta a launidad de control

Detalle cableado unidad de controlServos Azimut Elevación

Loop gain 1AZ 1EL2AZ 2EL3AZ 3EL4AZ 4EL5AZ 5EL6AZ 6EL7AZ 7EL8AZ 8EL9AZ10AZ 10EL

9EL

11AZ 11EL

Curr limitREF IN gainTest /OFFSet+ REF IN- REF IN

+ Motor

Power GNDHigh Voltage

Power GND

- Motor

Tarjeta de encoder

1ETA CH A2ETA3ETA4ETA5ETA6ETA7ETA8ETA

CH BHome 1

GNDCH ACH B

Home 2GND

Entradas

Los pines 11, 12, 13, 14 corresponden a los motores

Azul --> AzimutRojo --> Elevación

Prueba conexión motor azimut

ANEXO V

I-106 Módulo fotovoltaico

CARACTERÍSTICAS I-106/12 I-106/24 FÍSICAS Dimensiones 1310 x 654 x 39,5 mm Peso 11,5 kg Número de células en serie 36 72 Número de células en paralelo 2 1 TONC (800 W/m2, 20 ºC, AM 1.5, 1m/s) 47 ºC ELÉCTRICAS (1000 W/m2, 25 ºC célula, AM 1.5) Tensión nominal (Vn) 12 V 24 V Potencia máxima (Pmax) 106 WP ± 5 % Corriente de cortocircuito (Isc) 6,54 A 3,27 A Tensión de circuito abierto (Voc) 21,6 V 43,2 V Corriente de máxima potencia (Imax) 6,1 A 3,05 A Tensión de máxima potencia (Vmax) 17,4 V 34,8 V CONSTRUCTIVAS Células Si monocristalino, texturadas y con capa antirreflexiva Contactos Contactos redundantes, múltiples, en cada célula Laminado EVA (etilen-vinil acetato) Cara frontal Vidrio templado de alta transmisividad Cara posterior Protegida con Tedlar de varias capas Marco Aluminio anodizado Cajas de conexión IP 65 con diodos de bypass Toma de tierra Si Especificaciones IEC 61215 y Clase II mediante certificado TÜV Sección de cable 4-10 mm2

Terminal de conexión Bornera atornillable con posibilidad de soldadura/ Multicontacto opcional6a Ed

. 02/

2000

PERFIL

VISTA POSTERIOR I-106/24VISTA POSTERIOR I-106/12

2

El principio de funcionamiento de los sistemas fotovoltaicos de concentración (CPV) se basa en el uso de sistemas ópticos para concentrar la luz que reciben las células solares, empleando lentes y/o espejos de tecnología accesible y económica.

El objetivo final de los sistemas CPV es reducir el coste de electricidad generada mediante la reducción de la superficie de los materiales activos. Las células que forman parte de un sistema de concentración fotovoltaica son muy pequeñas, desde 1mm2 hasta 1 cm2, y son de muy alta eficiencia, utilizando, en la mayoría de las ocasiones, células multiunión de tecnología III-V.

A finales de 2011, las células de concentración han llegado a alcanzar una eficiencia máxima de laboratorio del 43.5%, mientras que las células comerciales de concentración obtienen eficiencias del 39% y los sistemas ópticos están en torno al 85% de eficiencia. Con todo ello, se están fabricando módulos de concentración con eficiencias superiores al 27% y los resultados de las mediciones realizadas en los sistemas CPV instalados, obtienen valores que duplican las eficiencias de los sistemas de panel plano.

Al usar una óptica, la tecnología de CPV solamente puede aprovechar la radiación solar directa. Este hecho obliga al uso de seguidores solares de alta precisión. Por todo esto, el rendimiento óptimo de esta tecnología se alcanza en zonas de media y alta radiación.

¿Por qué escoger la Concentración Fotovoltaica (CPV)?

Funcionamiento y ventajas

3

Concentration Photovoltaic (CPV) Systems performance relies on its Optic Systems, which concentrate light onto the solar cells through affordable lenses and/or mirrors.

CPV Systems main goal is to cut down the expenditures over the generated power by reducing the active material area. They use mostly III-V multi-junction cells, very small ones from 1 mm2 to 1 cm2, with very high efficiency.

On 3Q 2011, CPV cells have already reached a maximum efficiency of 43.5%, while commercial concentration cells have obtained an efficiency up to 39%; moreover, Optic Systems obtained an efficiency around 85%. Thus, CPV modules which are manufactured nowadays perform an efficiency higher than 27%. On the other hand, measures over installed CPV systems have shown values that double flat panel efficiency rates.

As CPV technology uses an optic system, it can only profit from the direct solar radiation. Therefore, high-precision sun trackers are mandatory. CPV optimum performance is achieved in medium and high radiation areas.

Choose Concentration Photovoltaics (CPV)Performance and advantages

Cortesía de SoitecCourtesy of Soitec

4

Somos ISFOC

Referente mundial en Sistemas Fotovoltaicos de Concentración

ISFOC, Instituto de Sistemas Fotovoltaicos de Concentración, filial del Instituto de Finanzas de Castilla-La Mancha, es una empresa moderna y puntera creada para impulsar la tecnología fotovoltaica de concentración (CPV).

La iniciativa de la puesta en marcha de ISFOC fue promovida por la Junta de Comunidades de Castilla-La Mancha, junto con el Instituto de Energía Solar de la Universidad Politécnica de Madrid, que redactó el programa de I+D+i que marca las directrices del Instituto. El Ministerio de Ciencia e Innovación proporcionó los fondos para su funcionamiento a través de un convenio con la Junta de Comunidades de Castilla-La Mancha.

En el año 2006, nació ISFOC cuya sede se localiza en Puertollano, Ciudad Real. Entonces se contrató el equipo humano que comenzaría a hacer realidad la implantación de la CPV, empezando por la adquisición de distintas plantas por medio de dos licitaciones abiertas a nivel mundial, donde se eligieron 7 tecnologías diferentes que serían instaladas en campos de demostración. A su vez se adquirieron los medios para evaluar el comportamiento de las plantas.

Hoy en día, ISFOC opera y mantiene estas plantas que aportan una valiosa información a fabricantes de toda la cadena de valor de la CPV, a inversores y al mundo científico en general. Además, sus instalaciones se componen de laboratorios completamente equipados para testear los distintos componentes de las plantas.

Asimismo, es de suma importancia resaltar que todo el equipo humano, formado por cerca de 30 profesionales, ha desarrollado unos conocimientos que junto a las instalaciones y plantas de demostración, hacen que ISFOC sea actualmente la referencia mundial de mayor prestigio en el estudio de la CPV y que sus resultados se publiquen con gran notoriedad a nivel nacional e internacional.

5

ISFOC, Instituto de Sistemas Fotovoltaicos de Concentración, subsidiary of the Instituto de Finanzas de Castilla-La Mancha, is a modern and leading company created for boosting the Concentration Photovoltaic (CPV) technology.

ISFOC starting-up idea came up from the Castilla-La Mancha Region Government, together with the Solar Energy Institute (IES) of the Polytechnic University of Madrid. The R&D programme leading the ISFOC guidelines was drawn up by the Solar Energy Institute (IES). The project was funded by the Spanish Ministry of Science and Innovation (MICINN) through an agreement with the Regional Government.

ISFOC was born in 2006, whose headquarters located in Puertollano, Ciudad Real (Spain). Then, the human team, starting the CPV implementation process, was hired. One of its first steps was to purchase different CPV plants to be installed at demo fields, as well as the equipments required for the plants performance evaluation. That implementation was held launching two international Call for Tenders through which 7 technologies from around the world were selected.

Nowadays, ISFOC operates and maintains various demo plants from different technologies that contribute with valuable information to the whole CPV value chain, to investors and to the scientific community in general. Moreover, at ISFOC there are full-equipped laboratories to test different plant components.

Nevertheless, it is important to highlight that the human team, of more than 30 professionals, has developed a great know-how that, together with the installations and demo plants, make ISFOC to stand as the most prestigious worldwide reference for the CPV study, being its results notoriously published to national and international levels.

We are ISFOC Worldwide reference for CPV Systems

INSTALACIONES TÉCNICAS CABAÑERO, S. L .

Climatización I Energía solar térmica I Fontanería I Gas I PCI

Polígono Industrial “SEPES” Parcela 305 · 13500, Puertollano (Ciudad Real) · Tel 926 412 084 / 926 432 456 / 610 449 770 · Fax: 926 412 084 / 926 432 456

Alta capacitación y compromiso

Los valores de nuestro equipo humano

ISFOC, Instituto de Sistemas Fotovoltaicos de Concentración, se ha distinguido desde sus inicios por llevar a cabo una gestión eficiente basada en el perfecto engranaje de sus modernas instalaciones y su equipo humano.

La plantilla de profesionales que trabajan día a día en los diversos proyectos está conformada por ingenieros, técnicos, científicos y expertos altamente capacitados y preparados para ofrecer respuestas acertadas a cada requerimiento.

Durante la trayectoria de ISFOC, la visión innovadora de su personal de investigación ha sido el estandarte que le ha permitido consolidarse y ofrecer la mejor formación asociada a la CPV tanto en España como en el resto del mundo.

El abanico de actividades de capacitación y/o formación es muy amplio y contempla entre otros aspectos:

Sin duda alguna, la experiencia acumulada ha permitido a ISFOC convertirse en una entidad catalizadora que traspasa las fronteras del conocimiento y la investigación.

6

• Colaboración con Institutos locales, regionales y nacionales.

• Desarrollo profesional de estudiantes universitarios a través de la supervisión de prácticas en las instalaciones de ISFOC.

• Programas de formación dirigidos tanto a empresas privadas como a entidades públicas, con contenidos adaptados a las necesidades de los asistentes.

• Participación activa en ferias, congresos y presentaciones del sector.

• Jornadas informativas para medios de comunicación.

• Jornadas de puertas abiertas a visitantes.

Skilled, trained, compromised.

Our human team’s values

ISFOC, Instituto de Sistemas Fotovoltaicos de Concentración, distinguished itself from the beginning due to its efficient management based on a perfect symbiosis between its installations and its human team.

Staff daily devoted to the different projects is made up of engineers, technicians, scientifics and high-skilled experts to offer appropriate answers to each requirement.

Along ISFOC’s succesful career, the innovative vision of its researchers has become the supporting pillar for its consolidation, offering ISFOC the best CPV-associated training in Spain and internationally.

The range of training activities is very wide, including:

By no means, cumulated know-how has supported ISFOC to become a catalyst which trespasses the knowledge and research borders.

7

• Collaboration with local, regional or national Institutes.

• Professional development of undergraduates through supervised practicals at ISFOC’s installations.

• Training programmes to private companies as well as to public bodies, including contents adapted to the attendants’ needs.

• Active presence in fairs, congresses and sectorial events.

• Informational conferences for media.

• Open days for visitors.

Nuestras instalaciones

Tecnología e innovaciónEl objetivo principal de ISFOC, Instituto de Sistemas Fotovoltaicos de Concentración, es trabajar para poder ofrecer un servicio completo relacionado con la investigación y desarrollo de la CPV.

Es por ello por lo que las instalaciones de esta entidad pública de gran renombre han sido especialmente diseñadas para garantizar que, teniendo en cuenta el gran conjunto de sus líneas de actuación, sea capaz de cerrar el ciclo completo de la tecnología, ya que se dispone entre otros de:

• Laboratorios de medida indoor.

• Laboratorios de medida outdoor.

• Laboratorios climáticos.

• Planta fotovoltaica para observar el comportamiento general de los procesos.

• Estación para el estudio detallado de la meteorología.

La cadena de procesos y ensayos realizados en estas instalaciones conlleva, finalmente, a la recogida de la información en una base de datos en sala de control.

Con todos los datos obtenidos, ISFOC, consigue cerrar el ciclo de conocimiento, que le hace capaz de definir los modelos de predicción de producción de la CPV.

8

Our facilities

Technology and Innovation

ISFOC’s, Instituto de Sistemas Fotovoltai-cos de Concentración, main goals are to

continue working hard and to offer a who-le service with regards to CPV research and

development.

Therefore, the installations and facilities of this well-known public entity are specially designed to assure that, taking into account the great set of ISFOC approaches, it will be able to cover the full circle of technology. ISFOC main facilities are listed below:

• Indoor Characterization Labs.

• Outdoor Characterization Labs.

• Climatic Labs.

• CPV plants to study processes and performance.

• Weather station.

Processes and tests held on these facilities lead to the collection of data into a database located in a Control area. By using and analysing those collected data, ISFOC ranges all the knowledge areas that enable it to define CPV predictive production models.

9

Climatic Chambers for Solar Photovoltaic Panel TestingCámaras Climáticas para Ensayos de Paneles Solares Fotovoltaicos

Aralab is one of the most innovative companies in creating adequate solutions for the overall environment simulation. We offer a wide variety of environmental test chambers and custom solutions to meet all your testing requirements. Our equipment is designed to guarantee long lasting top quality performance.

Aralab es una de las empresas más innovadoras en la creación de soluciones adecuadas para simulación ambiental. Ofrecemos una amplia variedad de cámaras climáticas y proyectos a medida para satisfacer sus necesidades de ensayos. Nuestro equipo está diseñado para garantizar un rendimiento de alta calidad y durabilidad.

Av. de Santa Isabel, nº 7Albarraque, 2635-047 Rio de MouroPortugal

Tel.: +351 219 154 960Fax: +351 219 154 [email protected]

300 ECP 45

3000 ECP 45

TestsEnsayos

IEC 61215 / IEC 61646 / IEC 62108 EN12975-1 / EN12975-2EN

10

11

Nuestras instalaciones

Tecnología e innovación

Our facilities

Technology and Innovation

I+D+i / ProyectosHerramienta clave de nuestro éxito

A pesar de su juventud, ISFOC participa en gran cantidad de proyectos regionales, nacionales, europeos e internacionales, desempeñando diversas funciones tanto como coordinador como colaborador.

Los proyectos más destacados son:

12

PrOyECtO Singular EStratégiCO “SigmaSOlES”:

Financiado por el MICINN, ha contado con la participación de 17 entidades, con ISFOC como coordinador. Se han desarrollado diferentes células, ópticas, módulos, seguidores y sistemas auxiliares, a la vez que procedimientos de caracterización y evaluación y modelos de producción.

PrOyECtOS innPaCtO:

El éxito del proyecto Sigmasoles ha sido tal, que el MICINN ha vuelto a financiar el proyecto durante tres años más, mediante 4 proyectos Innpacto (Sigmamódulos, Sigmaequipos, Sigmatrackers y Sigmaplantas) coordinados técnicamente por el ISFOC y con la participación de más de 20 entidades.

PrOyECtO dEl Vii PrOgrama marCO EurOPEO (FP7), naCir:

Financiado por la Unión Europea, coordinado por el IES-UPM y con la participación de entidades de Alemania, Marruecos, Egipto y España, con instalaciones en Marruecos y Egipto que son evaluadas por ISFOC.

PrOyECtO maSdar En abu dhabi:

Con la instalación de una planta de demostración con 8 fabricantes diferentes, coordinado por el ISFOC.

PlataFOrma FOtOVOltaiCa:

ISFOC es co-líder del proyecto de formación de una plataforma fotovoltaica en España.

R&D/ ProjectsA tool key for success

Despite of being a young entity, ISFOC takes part in a great number of regional, national, European and International projects, holding a collaborative role or even a coordinator one.

Most important projects are listed below:

13

Singular-StratEgiC PrOjECt “SigmaSOlES”:

This is a national Project funded by the Spanish Ministry of Science and Innovation. 17 entities have participated on this project, holding ISFOC the coordinator role. Different cells, optic, modules, trackers and auxiliary facilities have been developed, as well as characterization and evaluation procedures and production models.

innPaCtO PrOjECtS:

Sigmasoles project has been so successful that the Spa-nish Ministry of Science and Innovation has decided to continue funding 4 new spin-off projects (Sigmamódulos, Sigmaequipos, Sigmatrackers y Sigmaplantas) over three more years. It is important to highlight that ISFOC holds a technical coordinator role on those, being more than 20 entities implied on them.

Vii EurOPEan FramEwOrk PrOgramE PrOjECt (FP7), naCir:

Funded by the European Union and coordinated by the Spanish Solar Energy Institute (IES-UPM). This Project integrates entities from Germany, Morocco, Egypt and Spain, whose installations in Morocco and Egypt are evaluated by ISFOC.

maSdar PrOjECt in abu dhabi (uaE):

A demo plant integrating 8 different Technologies to be installed in Abu Dhabi. This project is also coordinated by ISFOC.

SPaniSh PhOtOVOltaiC tEChnOlOgiCal PlatFOrm:

ISFOC holds a co-leading role of this Project consisting in the creation of a Spanish Photovoltaic Technological Platform.

ServiciosExpandiendo horizontes

14

Debido al conocimiento adquirido y desarrollado por ISFOC durante sus labores de Investigación y Desarrollo sobre los sistemas de Concentración fotovoltaica, la entidad ofrece los siguientes servicios:

FaSE dE dESarrOllO

• Revisión de diseño, AMFE, etc.

FaSE dE CaraCtErizaCión

• Medidas en potencia y caracterización en interior y exterior, en el Simulador Solar y en el laboratorio de exterior de ISFOC.

• Estudio de prestaciones y mejoras en exterior.

FaSE dE ValidaCión

• Ensayos de validación y pre-certificación en el laboratorio climático de ISFOC.

• Ensayos de certificación (propios o a través de centro acreditado).

FaSE dE Planta dE dEmOStraCión

• Estudio de recurso solar y meteorología.

• Estudio de producción.

• Lanzamiento de licitaciones y realización de contratos.

• Ingeniería de la planta.

• Evaluación y medida de la planta.

• Aplicación Software de análisis de datos y gestión de plantas (GoCPV).

mail: [email protected]: www.soldadurasavanzadas.com

Tlf: +34 91 748 13 30Fax: +34 91 747 62 65

SOLAR SIMULATORS FOR CPVAccurate Measurements High Throughput Controlled Operational Costs

ServicesExpanding Horizons

15

Due to ISFOC’s know-how, acquired thanks to its R&D tasks held on CPV Systems, ISFOC offers several services, listed as follows:

dEVElOPmEnt StagE

• Design review, FMEA, etc.

CharaCtErizatiOn StagE

• Power measures and Indoor & outdoor characterization (Indoor: Solar Simulator; outdoor: ISFOC off-lab).

• Performance and improvement study at outdoor laboratories.

ValidatiOn StagE

• Validation and pre-certification tests to be held into ISFOC Climatic Lab.

• Certification Tests (held by ISFOC or by other certified centre).

dEmO Plant StagE

• Study on solar resource and weather conditions.

• Production study and analysis.

• Legal assessment on International Call for Tenders and contracts.

• Plant Engineering.

• Plant evaluation and measures.

• Software APP for data analysis and plant management (GoCPV).

Pol. Ind. La nava III - C/ Francia, 7 - Apdo. 8213500 - Puertollano, Ciudad RealEspaña / SpainTel.: +34 926 44 16 73Fax: +34 926 42 91 42E-mail: [email protected]

www.isfoc.com

ANEXO VI

Provides research grade data•

LI-190 measures PAR

LI-200 measures global solar radiation

Flying lead or BNC cable termination

Quick iSIC system integration

An industry standard for more than 30 years, LI-COR radiation sensors provide research grade data at an economical cost. The

LI-COR 190 Quantum Sensor measures photosynthetically active

radiation (PAR), and the LI-COR 200 Pyranometer measures global solar radiation, suitable for measuring global sun plus sky radiation.

The 2003S Mounting and Leveling Fixture is recommended for each

sensor to ensure proper mounting. The M-ARM mounting arm is a 3’ aluminum unistrut kit which includes a U-Bolt for mounting to poles less than 2 3/8” in diameter as well as a stainless steel bracket that

allows for the 2003S leveling fixture to screw directly onto the arm.

Type SZ sensors end in bare wires and deliver a microamp current

output; type SA sensors require a millivolt adapter for connection

with NexSens iSIC data loggers. Data collection options include direct-connect, landline phone, cellular, radio, Ethernet, WI-FI, and

satellite telemetry. NexSens iChart Software is a Windows-based program for interfacing both locally (direct-connect) and remotely (through telemetry) to a NexSens data logger or network of data loggers.

Solar RadiationLI-190 & LI-200

937.426.2703 8am to 7pm EST, Monday-Friday

937.426.1125 24 hours a day, every day

NexSens Technology, Inc. PO Box 151 Alpha, OH 45301-0151

[email protected]

nexsens.com

Part # Description LI-190SZ PAR sensor, 10 ft. cable, cable ends in bare leadsLI-190SZ-50 PAR sensor, 50 ft. cable, cable ends in bare leadsLI-190SA PAR sensor, 10 ft. cable, cable ends in BNC connectorLI-190SA-50 PAR sensor, 50 ft. cable, cable ends in BNC connector2290 Millivolt adapter, for use with LI-190SA sensorLI-200SZ Pyranometer for wideband energy & heat load, 10 ft. cable, ends in bare leadsLI-200SZ-50 Pyranometer for wideband energy & heat load, 50 ft. cable, ends in bare leadsLI-200SA Pyranometer for wideband energy & heat load, 10 ft. cable, ends in BNC connectorLI-200SA-50 Pyranometer for wideband energy & heat load, 50 ft. cable, ends in BNC connector2220 Millivolt adapter, for use with LI-200SA sensor2003S Mounting & leveling fixtureM-ARM LI-COR radiation sensor mounting arm, 3 ft.3100-MAST Mast-mounted 3100-iSIC data logging system with cellular modem telemetry4100-MAST Mast-mounted 4100-iSIC data logging system with spread spectrum radio telemetry6100-MAST Mast-mounted 6100-iSIC data logging system with Iridium satellite telemetry1001 iChart Software for Windows-based computers

parts list

Solar RadiationLI-190 & LI-200

specificationsLI-190

LI-200

General

Calibration

Sensitivity

Linearity

Calibration

Sensitivity

Linearity

Stability

Response Time

Temperature Dependance

Cosine Correction

Azimuth

Tilt

Operating Temperature

Relatitive Humidity

Detector

Sensor Housing

Size

Weight

± 5% in air traceable to National Institute of Standards and Technology (NIST)

Typically 5 μA per 1000 μmol s-1 m-2

Maximum deviation of 1% up to 10,000 μmol s-1 m-2

Calibrated against an Eppley Precision Spectral Pyranometer (PSP) under natural daylight conditions. Absolute error under these conditions is 5% maximum, typically 3%

Typically 90 μA per 1000 W m-2

Maximum deviation of 1% up to 3000 W m-2

Typically < ± 2% change over a 1 year period

10 μs

± 0.15% per °C maximum

Cosine corrected up to 80° angle of incidence

< ± 1% error over 360° at 45° elevation

No error induced from orientation

-40 to 65 °C

0 to 100%

High stability silicon photovoltaic detector (blue enhanced)

Weatherproof anodized aluminum case, acrylic diffuser, & stainless steel hardware

2.38cm Diameter x 2.54cm Height (0.94” x 1.00”)

28g (1 oz)

5252

IsoPAQ-30P

• Calibrated range selection InputandoutputrangeinmAorVcanbesetbyusingDIPswitches withoutanyfurtheradjustments

• Universal power supply for 20 to 253 VAC/DC Applicableworld-wideforallcommonsupplyvoltages

• 3-port isolation Protectionagainsterroneousmeasurementsduetoparasitic voltagesorgroundloops

• High-density DIN-rail mounting 12.5mm(0.5”)housingcombinedwithverylowselfheatingallows forhighdensitymounting

• Plug-in screw terminals Simplifiesinstallationandmaintenance

• Excellent reliability Lowselfheatingthankstopatentedhigh-efficiencypowersupply provideslong-termreliabilityandstability

Basic Isolation Transmitterfor Unipolar mA/V Signalswith Calibrated Range Selection

The Isolation Transmitter IsoPAQ-30P is a low-cost transmitter used for basic isolation and conversion of 0-20 mA, 4-20 mA and 0-10 V unipolar signals.

Due to the calibrated range selection of the input/output signals and the universal power supply, IsoPAQ-30P provides excellent flexibility and low storage and installation costs.

The high reliability ensures a safe system operation and low maintenance costs.

SPECIALISTSININDUSTRIALTEMPERATUREMEASUREMENT

5353

IsoPAQ-30P

mm/inch

Dimensions

Specifications: IsoPAQ-30P

InputInputsignal 0-20 mA1)4-20mA 0-10V Terminal/switchselectableInputresistance Currentinput 22Ω Voltageinput 1MΩOverload Currentinput ≤200mA Voltageinput Voltagelimitationvia30VZ-Diode,max.continuouscurrent30mAOutputOutputsignal 0-20 mA1)4-20mA 0-10V SwitchselectableLoad Currentoutput ≤500Ω Voltageoutput ≥1kΩOffset 20µA/10mV Ripple <0.2%ofendvalue,~150kHzGeneral dataTransmissionerror ±0.3%ofmeasuredvalueTemperaturecoefficient2) ±0.015%/KofendvalueCut-offfrequency(-3dB) Approx.1kHz Testvoltage 2.5kV,50Hz InputagainstoutputagainstpowersupplyWorkingvoltage3)(BasicInsulation) 600VAC/DCforovervoltagecategoryIIandpollutiondegree2 acc.toEN61010part1betweenallcircuits.Ambienttemperature Operation -10to+60°C(+14to+140°F) Transportandstorage -20to+80°C(-4to+176°F)Powersupply 20to253VAC/DC AC48to62Hz,approx.3VA DCapprox.1.5WEMC4) EN61326-1Construction 12.5mm(0.5”)housing,protectionclass:IP20Connection ≤2.5mm2,AWG14Weight Approx.100g

1) Factory setting2) AverageTCinspecifiedoperatingtemperaturerange3) Asfarasrelevantthestandardsandrulesmentionedaboveareconsideredbydevelopmentandproductionofourdevices.Inadditionrelevantassemblyrulesaretobeconsidered byinstallationofourdevicesinotherequipments.Forapplicationswithhighworkingvoltages,takemeasurestopreventaccidentalcontactandmakesurethatthereissufficient distanceorinsulationbetweenadjacentsituateddevices.4) Minordeviationspossibleduringinterference

Block diagram/Connections Ordering informationProduct Input/Output PartNo.IsoPAQ-30P Calibratedrangeselection 70ISP30001

SPECIALISTSININDUSTRIALTEMPERATUREMEASUREMENT

ANEXO VII

ANEXO VIII

CSM_CJ1M-CPU_DS_E_5_1

1

SYSMAC CJ-series CJ1M CPU Units

CJ1M-CPU1@• Small! Fast! Flexible!

These machine controllers provide flexible control for all kinds of applications.

Features• Compact 90 × 65 mm (H × D) dimensions are first class in the industry.• Provides excellent high-speed control performance, with high-speed processing of 0.1 μs for LD instructions and 13.3 μs for floating-point

calculations.• Other models are available with special functions such as the CJ1M-CPU2@, which provides positioning functions and built-in I/O, and the

CJ1G-CPU4@P. • High-capacity Memory Cards up to 128 MB can be installed, and used to backup the program and system settings, or log customer data.• The large instruction set can support diverse applications. Four types of programming are supported (ladder, structured text, sequential function

charts, and instruction lists), with approximately 400 instructions and 800 instruction variations.• These CJ-series CPU Units support structured programming using function blocks, which can improve the customer's program development

resources.• The various protection functions provide improved security to protect valuable software resources and property.• The CPU Units are compatible with the CX-One Integrated Tool Package. Information for each component can be linked, and the system's data

can be integrated into one database. The software can provide total support from PLC settings to network startup.

Ordering InformationInternational Standards• The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus,

UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.• Contact your OMRON representative for further details and applicable conditions for these standards.

Note: These values include the current consumption of a Programming Console. When using an NT-AL001 RS-232C/RS-422A Adapter, add 0.15A/ per Adapter.When using a CJ1W-CIF11 RS-422A Adapter, add 0.04A per Adapter.

AccessoriesThe following accessories come with CPU Unit:

CJ1M-CPU12

Name

Specifications Current consumption(A)

Model number International standardsMaximum number of I/O

points and mountable Units (No. of Expansion Racks)

Program capacity

Data area memory capacity

LD execution

time

5 V system

24 V system

CJ1MCPU Units

640 I/O points and 20 Units max. (1 Expansion Rack max.) 20K steps

32K wordsDM: 32K wordsEM: None

0.1 μs0.58 (See note.)

CJ1M-CPU13

UC1, CE, N, L

320 I/O points and 10 Units max. (No Expansion Racks) 10K steps CJ1M-CPU12

160 I/O points and 10 Units max. (No Expansion Racks) 5K steps CJ1M-CPU11

Item Specification

Battery CJ1M: CJ1W-BAT01

End Cover CJ1W-TER01 (necessary to be mounted at the right end of CPU Rack)

End Plate PFP-M (2 pcs)

Serial Port (RS-232C) Connector Connector set for serial port connection (D-SUB 9-pin male connector)

2

CJ1M-CPU1@

Specifications

Common SpecificationsItem Specifications

Control method Stored program

I/O control method Cyclic scan and immediate processing are both possible.

Programming LD (Ladder), SFC (Sequential Function Chart), ST (Structured Text), Mnemonic

CPU processing mode CJ1M CPU Units: Normal Mode or Peripheral Servicing Priority Mode

Instruction length 1 to 7 steps per instruction

Ladder instructions Approx. 400 (3-digit function codes)

Execution time

• CJ1M CPU Units (CPU12/13/22/23):Basic instructions: 0.10 μs min.Special instructions: 0.15 μs min.

• CJ1M CPU Units (CPU11/21):Basic instructions: 0.10 μs min.Special instructions: 0.15 μs min.

Overhead time • CJ1M CPU Units (CPU12/13/22/23): 0.5 ms min.• CJ1M CPU Units (CPU11/21): 0.7 ms min.

Unit connection method No Backplane: Units connected directly to each other.

Mounting method DIN Track (screw mounting not possible)

Maximum number of connectable Units

CJ1M CPU Units:Total of 20 Units in the System, including 10 Units on CPU Rack and 10 Units on one Expansion Rack.

Maximum number of Expansion Racks

• CJ1M CPU Units (CPU 13/23 only):1 max. (An I/O Control Unit is required on the CPU Rack and an I/O Interface Unit is required on the Expansion Rack.)

• CJ1M CPU Units (CPU11/12/21/22):Expansion is not possible.

Number of tasks

288 (cyclic tasks: 32, interrupt tasks: 256)With CJ1M CPU Units, interrupt tasks can be defined as cyclic tasks called "extra cyclic tasks." Including these, up to 288 cyclic tasks can be used.Note: 1. Cyclic tasks are executed each cycle and are controlled with TKON(820) and TKOF(821) instructions.

2. The following 4 types of interrupt tasks are supported.Power OFF interrupt tasks: 1 max.Scheduled interrupt tasks: 2 max.I/O interrupt tasks: 32 max.External interrupt tasks: 256 max.

Interrupt types

Scheduled Interrupts:Interrupts generated at a time scheduled by the CPU Unit's built-in timer. (See note. 1)I/O Interrupts: Interrupts from Interrupt Input Units.Power OFF Interrupts (See note 2.): Interrupts executed when the CPU Unit's power is turned OFF.External I/O Interrupts: Interrupts from the Special I/O Units or CPU Bus Units.Note: 1. CJ1M CPU Units: Scheduled interrupt time interval is 0.5 ms to 999.9 ms (in increments of 0.1 ms), 1 ms to 9,999 ms

(in increments of 1 ms), or 10 ms to 99,990 ms (in increments of 10 ms)2. Not supported when the CJ1W-PD022 Power Supply Unit is mounted.

Function blocks (CPU Unit with unit version 3.0 or later only) Languages in function block definitions: ladder programming, structured text

CIO(Core I/O)Area

I/O Area

1,280: CIO 000000 to CIO 007915 (80 words from CIO 0000 to CIO 0079)The setting of the first word can be changed from the default (CIO 0000) so that CIO 0000 to CIO 0999 can be used.I/O bits are allocated to Basic I/O Units.

The CIO Area can be used as work bits if the bits are not used as shown here.

Link Area 3,200 (200 words): CIO 10000 to CIO 119915 (words CIO 1000 to CIO 1199)Link bits are used for data links and are allocated to Units in Controller Link Systems.

CPU Bus Unit Area6,400 (400 words): CIO 150000 to CIO 189915 (words CIO 1500 to CIO 1899)CPU Bus Unit bits store the operating status of CPU Bus Units.(25 words per Unit, 16 Units max.)

Special I/O Unit Area

15,360 (960 words): CIO 200000 to CIO 295915 (words CIO 2000 to CIO 2959)Special I/O Unit bits are allocated to Special I/O Units. (10 words per Unit, 96 Units max.)Note: Special I/O Units are I/O Units that belong to a special group called "Special I/O Units."

Example:CJ1W-AD081 Analog Input Unit

Serial PLC Link Area (CJ1M CPU Units only) 1,440 (90 words): CIO 310000 to CIO 318915 (words CIO 3100 to CIO 3189)

DeviceNet Area

9,600 (600 words): CIO 320000 to CIO 379915 (words CIO 3200 to CIO 3799)DeviceNet bits are allocated to Slaves for DeviceNet Unit remote I/O communications when the Master function is used with fixed allocations.

The following words are allocated to the Master function even when the DeviceNet Unit is used as a Slave.

Fixed allocationsetting 1

Outputs: CIO 3200 to CIO 3263Inputs: CIO 3300 to CIO 3363

Fixed allocationsetting 2

Outputs: CIO 3400 to CIO 3463Inputs: CIO 3500 to CIO 3563

Fixed allocationsetting 3

Outputs: CIO 3600 to CIO 3663Inputs: CIO 3700 to CIO 3763

Fixed allocationsetting 1

Outputs: CIO 3370 (Slave to Master)Inputs: CIO 3270 (Master to Slave)

Fixed allocationsetting 2

Outputs: CIO 3570 (Slave to Master)Inputs: CIO 3470 (Master to Slave)

Fixed allocationsetting 3

Outputs: CIO 3770 (Slave to Master)Inputs: CIO 3670 (Master to Slave)

CJ1M-CPU1@

3

Function Specifications

CIO(Core I/O)Area

Internal I/O Area

4,800 (300 words): CIO 120000 to CIO 149915 (words CIO 1200 to CIO 1499)37,504 (2,344 words): CIO 380000 to CIO 614315 (words CIO 3800 to CIO 6143)These bits in the CIO Area are used as work bits in programming to control program execution. They cannot be used for external I/O.

Work Area8,192 bits (512 words): W00000 to W51115 (W000 to W511)Controls the programs only. (I/O from external I/O terminals is not possible.)Note: When using work bits in programming, use the bits in the Work Area first before using bits from other areas.

Holding Area

8,192 bits (512 words): H00000 to H51115 (H000 to H511)Holding bits are used to control the execution of the program, and maintain their ON/OFF status when the PLC is turned OFF or theoperating mode is changed.Note: The Function Block Holding Area words are allocated from H512 to H1535. These words can be used only for the

function block instance area (internally allocated variable area).

Auxiliary AreaRead only: 7,168 bits (448 words): A00000 to A44715 (words A000 to A447)Read/write: 8,192 bits (512 words): A44800 to A95915 (words A448 to A959)Auxiliary bits are allocated specific functions.

Temporary Area 16 bits (TR0 to TR15)Temporary bits are used to temporarily store the ON/OFF execution conditions at program branches.

Timer Area 4,096: T0000 to T4095 (used for timers only)

Counter Area 4,096: C0000 to C4095 (used for counters only)

DM Area

32 Kwords: D00000 to D32767Used as a general-purpose data area for reading and writing data in word units (16 bits). Words in the DM Area maintain their status when the PLC is turned OFF or the operating mode is changed. Internal Special I/O Unit DM Area: D20000 to D29599 (100 words × 96 Units)Used to set parameters for Special I/O Units.CPU Bus Unit DM Area: D30000 to D31599 (100 words × 16 Units)Used to set parameters for CPU Bus Units.

Index Registers

IR0 to IR15Store PLC memory addresses for indirect addressing. Index registers can be used independently in each task. One register is 32 bits (2words).• CJ1M CPU Units: Setting to use index registers either independently in each task or to share them between tasks.

Task Flag Area32 (TK0000 to TK0031)Task Flags are read-only flags that are ON when the corresponding cyclic task is executable and OFF when the corresponding task is not executable or in standby status.

Trace Memory 4,000 words (trace data: 31 bits, 6 words)

File Memory Memory Cards: Compact flash memory cards can be used (MS-DOS format).

Item Specifications

Constant cycle time 1 to 32,000 ms (Unit: 1 ms)

Cycle time monitoring Possible (Unit stops operating if the cycle is too long): 10 to 40,000 ms (Unit: 10 ms)

I/O refreshing

Cyclic refreshing, immediate refreshing, refreshing by IORF(097).IORF(097) refreshes I/O bits allocated to Basic I/O Units and Special I/O Units.With the CJ1M CPU Units, the CPU BUS UNIT I/O REFRESH (DLNK(226)) instruction can be used to refresh bits allocated to CPU Bus Units in the CIO and DM Areas whenever required.

Timing of special refreshing for CPU Bus Units

Data links for Controller Link Units and SYSMAC LINK Units, remote I/O for DeviceNet Units, and other special refreshing for CPU Bus Units is performed at the following times:• CJ1M CPU Units: I/O refresh period and when the CPU BUS UNIT I/O REFRESH (DLNK(226)) instruction is executed.

I/O memory holding when changing operating modes Depends on the ON/OFF status of the IOM Hold Bit in the Auxiliary Area.

Load OFF All outputs on Output Units can be turned OFF when the CPU Unit is operating in RUN, MONITOR, or PROGRAM mode.

Timer/Counter PV refresh method CJ1M CPU Units: BCD or binary (CX-Programmer Ver. 3.0 or higher).

Input response time setting Time constants can be set for inputs from Basic I/O Units. The time constant can be increased to reduce the influence of noise and chattering or it can be decreased to detect shorter pulses on the inputs.

Mode setting at power-up Possible (By default, the CPU Unit will start in RUN mode if a Programming Console is not connected.)

Flash memory (CJ1M CPU Units only)

The user program and parameter area data (e.g., PLC Setup) are always backed up automatically in flash memory. (automatic backup and restore.)• CPU Units with unit version 3.0 or later only:

When downloading projects from CX-Programmer Ver. 5.0 or higher, symbol table files (including CX-Programmer symbol names, I/O comments), comment files (CX-Programmer rung comments, other comments), and program index files (CX-Programmer section names, section comments, or program comments) are stored in comment memory within the flash memory.

Memory Card functions

Automatically reading programs (autoboot) from the Memory Card when the power is turned ON. Possible

Program replacement during PLC operation Possible

Format in which data is stored in Memory Card

User program: Program file format PLC Setup and other parameters: Data file formatI/O memory: Data file format (binary format), text format, or CSV format

Functions for which Memory Card read/write is supportedUser program instructions, Programming Devices (including CX-Programmer and Programming Consoles), Host Link computers, AR Area control bits, easy backup operation

Filing Memory Card data and the EM (Extended Data Memory) Area can be handled as files.

Debugging Control set/reset, differential monitoring, data tracing (scheduled, each cycle, or when instruction is executed), instruction error tracing, storing location generating error when a program error occurs.

Item Specifications

4

CJ1M-CPU1@

Unit Versions

Online editing

When the CPU Unit is in MONITOR or PROGRAM mode, multiple program sections ("circuits") of the user program can be edited together. This function is not supported for block programming areas. (With the CX-Programmer is used, multiple program sections of the user program can be edited together. When a Programming Console is used, the program can be edited in mnemonics only.)

Program protection Overwrite protection: Set using DIP switch.Copy protection: Password set using CX-Programmer or Programming Consoles.

Error checkUser-defined errors (i.e., user can define fatal errors and non-fatal errors)The FPD(269) instruction can be used to check the execution time and logic of each programming block.FAL and FALS instructions can be used with the CJ1M CPU Units to simulate errors.

Error log Up to 20 errors are stored in the error log. Information includes the error code, error details, and the time the error occurred.A CJ1M CPU Unit can be set so that user-defined FAL errors are not stored in the error log.

Serial communications

Built-in peripheral port: Programming Device (including Programming Console) connections, Host Links, NT Links Built-in RS-232C port: Programming Device (excluding Programming Console) connections, Host Links, no-protocol communications, NT Links, Serial Gateway (Compoway/F master)

Serial Communications Unit (sold separately): Protocol macros, Host Links, NT Links, Modbus-RTU slave, No-protocol, Serial Gateway (Compoway/F master, Modbus master)

Clock

Provided on all models.Accuracy: Ambient temperature Monthly error

55°C −3.5 min to +0.5 min25°C −1.5 min to +1.5 min 0°C −3 min to +1 min

Note: Used to store the time when power is turned ON and when errors occur.

Power OFF detection time AC Power Supply Unit: 10 to 25 ms (not fixed)DC Power Supply Unit PD025: 2 to 5 ms; PD022: 2 to 10 ms

Power OFF detection delay time 0 to 10 ms (user-defined, default: 0 ms)Note: Not supported when the CJ1W-PD022 Power Supply Unit is mounted.

Memory protection

Held Areas: Holding bits, contents of Data Memory and Extended Data Memory, and status of the counter Completion Flags and present values.Note: If the IOM Hold Bit in the Auxiliary Area is turned ON, and the PLC Setup is set to maintain the IOM Hold Bit status when

power to the PLC is turned ON, the contents of the CIO Area, the Work Area, part of the Auxiliary Area, timer Completion Flag and PVs, Index Registers, and the Data Registers will be saved for up to 20 days.

Sending commands to a Host Link computer

FINS commands can be sent to a computer connected via the Host Link System by executing Network Communications Instructions from the PLC.

Remote programming and monitoring

Host Link communications can be used for remote programming and remote monitoring through a Controller Link, Ethernet, DeviceNet, or SYSMAC LINK network.

Communicating across network levels

Remote programming and monitoring from Support Software and FINS message communications can be performed across different network levels, even for different types of network.Pre-Ver. 2.0: Three levelsVersion 2.0 or later: Eight levels for Controller Link and Ethernetnetworks (See note.), three levels for other networks.Note: To communicate across eight levels, the CX-Integrator or the CX-Net in CX-Programmer version 4.0 or higher must be

used to set the routing tables.

Storing comments in CPU UnitI/O comments can be stored as symbol table files in the Memory Card, EM file memory, or comment memory (see note).Note: Comment memory is supported for CX-Programmer version 5.0 or higher and CS/CJ-series CPU Units with unit version

3.0 or later only.

Program check Program checks are performed at the beginning of operation for items such as no END instruction and instruction errors. CX-Programmer can also be used to check programs.

Control output signals RUN output: The internal contacts will turn ON (close) while the CPU Unit is operating (CJ1W-PA205R).

Battery life Battery Set for CJ1M CPU Units: CJ1W-BAT01

Self-diagnostics CPU errors (watchdog timer), I/O bus errors, memory errors, and battery errors.

Other functions Storage of number of times power has been interrupted.(Stored in A514.)

Units Models Unit version

CJ1M CPU Units

CJ1M-CPU12/13CJ1M-CPU22/23

Unit version 4.0

Unit version 3.0

Unit version 2.0

Pre-Ver. 2.0

CJ1M-CPU11/21

Unit version 4.0

Unit version 3.0

Unit version 2.0

Item Specifications

CJ1M-CPU1@

5

Function Support by Unit Version

Functions Supported for Unit Version 4.0 or LaterCX-Programmer 7.0 or higher must be used to enable using the functions added for unit version 4.0.Additional functions are supported if CX-Programmer version 7.2 or higher is used.

CJ1M CPU Units

User programs that contain functions supported only by CPU Units with unit version 4.0 or later cannot be used on CS/CJ-series CPU Units with unit version 3.0 or earlier. An error message will be displayed if an attempt is made to download programs containing unit version 4.0 functions to a CPU Unit with a unit version of 3.0 or earlier, and the download will not be possible. If an object program file (.OBJ) using these functions is transferred to a CPU Unit with a unit version of 3.0 or earlier, a program error will occur when operation is started or when the unit version 4.0 function is executed, and CPU Unit operation will stop.

Functions Supported for Unit Version 3.0 or LaterCX-Programmer 5.0 or higher must be used to enable using the functions added for unit version 3.0.

CJ1M CPU Units

User programs that contain functions supported only by CPU Units with unit version 3.0 or later cannot be used on CS/CJ-series CPU Units with unit version 2.0 or earlier. An error message will be displayed if an attempt is made to download programs containing unit version 3.0 functions to a CPU Unit with a unit version of 2.0 or earlier, and the download will not be possible. If an object program file (.OBJ) using these functions is transferred to a CPU Unit with a unit version of 2.0 or earlier, a program error will occur when operation is started or when the unit version 3.0 function is executed, and CPU Unit operation will stop.

FunctionCJ1M-CPU@@

Unit version 4.0 orlater Other unit versions

Online editing of function blocksNote: This function cannot be used for simulations on the CX-Simulator. OK −

Input-output variables in function blocks OK −

Text strings in function blocks OK −

New application instructions

Number-Text String Conversion Instructions:NUM4, NUM8, NUM16, STR4, STR8, and STR16 OK −

TEXT FILE WRITE (TWRIT) OK −

ST programming in task programs OK with CX-Programmer version 7.2 or higher −

SFC programming in task programs OK with CX-Programmer version 7.2 or higher −

FunctionCJ1M-CPU@@

Unit version 3.0 orlater Other unit versions

Function blocks OK −

Serial Gateway (converting FINS commands to CompoWay/F commands at the built-in serial port) OK −

Comment memory (in internal flash memory) OK −

Expanded simple backup data OK −

New application instructions

TXDU(256), RXDU(255) (support no-protocol communications with Serial Communications Units with unit version 1.2 or later)

OK −

Model conversion instructions: XFERC(565), DISTC(566), COLLC(567), MOVBC(568), BCNTC(621)

OK −

Special function block instructions: GETID(286) OK −

Additional instruction functions

PRV(881) and PRV2(883) instructions: Added high-frequency calculation methods for calculating pulse frequency. (CJ1M CPU Units only)

OK −

6

CJ1M-CPU1@

Functions Supported for Unit Version 2.0 or LaterCX-Programmer 4.0 or higher must be used to enable using the functions added for unit version 2.0.

CJ1M CPU Units

User programs that contain functions supported only by CPU Units with unit version 2.0 or later cannot be used on CS/CJ-series Pre-Ver. 2.0 CPU Units. An error message will be displayed if an attempt is made to download programs containing unit version s.0 functions to a Pre-Ver. 2.0 CPU Unit, and the download will not be possible. If an object program file (.OBJ) using these functions is transferred to a Pre- Ver. 2.0 CPU Unit, a program error will occur when operation is started or when the unit version 2.0 function is executed, and CPU Unit operation will stop.

Function

CJ1M CPU Units

CJ1M-CPU12/13/22/23 CJ1M-CPU11/21

Unit version 2.0 or later Other unit versions Unit version 2.0 or later

Downloading and Uploading Individual Tasks OK − OK

Improved Read Protection Using Passwords OK − OK

Write Protection from FINS Commands Sent to CPU Units via Networks OK − OK

Online Network Connections without I/O Tables OK

− (Supported if I/O tables are automatically generated at startup.)

OK

Communications through a Maximum of 8 Network Levels OK − OK

Connecting Online to PLCs via NS-series PTs OKOK from lot number 030201 OK

Setting First Slot Words OK for up to 64 groups OK for up to 8 groups OK for up to 64 groups

Automatic Transfers at Power ON without a Parameter File OK − OK

Automatic Detection of I/O Allocation Method for Automatic Transfer at Power ON OK − OK

Operation Start/End Times OK − OK

New Application Instructions

MILH, MILR, MILC OK − OK

=DT, <>DT, <DT, <=DT, >DT, >=DT OK − OK

BCMP2 OK OK OK

GRY OK OK from lot number 030201 OK

TPO OK − OK

DSW, TKY, HKY, MTR, 7SEG OK − OK

EXPLT, EGATR, ESATR, ECHRD, ECHWR OK − OK

Reading/Writing CPU Bus Units with IORD/IOWR OK − OK

PRV2 OK, but only for CPU Units with built-in I/O − OK, but only for CPU

Units with built-in I/O

CJ1M-CPU1@

7

Unit Versions and Programming DevicesThe following tables show the relationship between unit versions and CX-Programmer versions.

Unit Versions and Programming Devices

Note: 1. As shown above, there is no need to upgrade to CX-Programmer version as long as the functions added for unit versions are not used.2. CX-Programmer version 7.0 or higher is required to use the functional improvements made for unit version 4.0 of the CS/CJ-series CPU

Units. With CX-Programmer version 7.2 or higher, you can use even more expanded functionality.

Device Type SettingThe unit version does not affect the setting made for the device type on the CX-Programmer. Select the device type as shown in the following table regardless of the unit version of the CPU Unit.

CPU Unit Functions (See note 1.)CX-Programmer

Programming ConsoleVer. 3.3 Ver. 4.0 Ver. 5.0

Ver. 6.0Ver. 7.0

or higher

CS/CJ-series unit Ver. 4.0

Functions added for unit version 4.0

Using new functions − − − OK

(See note 2.)

Norestrictions

Not using new functions OK OK OK OK

CS/CJ-series unit Ver. 3.0

Functions added for unit version 3.0

Using new functions − − OK OK

Not using new functions OK OK OK OK

CS/CJ-series unit Ver. 2.0

Functions added for unit version 2.0

Using new functions − OK OK OK

Not using new functions OK OK OK OK

Series CPU Unit group CPU Unit model Device type setting on CX-Programmer Ver. 4.0 or higher

CJ Series CJ1M CPU Units CJ1M-CPU@@ CJ1M

8

CJ1M-CPU1@

External InterfaceA CJ1-series CPU Unit provides two communications ports for external interfaces: a peripheral port and an RS-232C port.

Peripheral portThe peripheral port is used to connect a Programming Device (including a Programming Console) or a host computer. It can also be used as an RS-232C port by connecting a suitable cable, such as the CS1W-CN118 or CS1W-CN@26. The connector pin arrangement when using a connecting cable for an RS-232C port is shown below.

Pin No. Signal Name Direction

1 − − −

2 SD (TXD) Send data Output

3 RD (RXD) Receive data Input

4 RS (RTS) Request to send Output

5 CS (CTS) Clear to send Input

6 Reserved None −

7 − − −

8 − − −

9 SG (0V) Signal ground −

Connector hood FG Protection earth −

LED Indicators

DIP Switch(Inside the battery compartment)Used for initial settings.

Peripheral PortConnected to Programming Devices,such as a Programming Console or host computers.

Memory Card ConnectorConnects the Memory Card to the CPU Unit.

RS-232C PortConnected to Programming Devices(excluding Programming Consoles),Host Computers, general-purpose externaldevices, Programmable Terminals, and otherdevices.

Memory Card Eject ButtonPress the eject button to remove teMemory Card from the CPU Unit.

Memory Card IndicatorsMCPWR (green): Lit when power issupplied to Memory Card.BUSY (orange): Lit when MemoryCard is being accessed.

Battery Compartment

Memory Card Power Supply SwitchPress the power supply switch to disconnect power before removing the Memory Card. Also, press the Memory Card Power Supply Switch to perform an easy backup operation.

5

1

9

6

CS1W-CN118

CJ1M-CPU1@

9

RS-232C Port

Note: Baud rates for the RS-232C are specified only up to 19.2 kbps. The CJ Series supports serial communications from 38.4 kbps to 115.2 kbps, but some computers cannot support these speeds. Lower the baud rate if necessary.

Note: Do not use the 5-V power from pin 6 of the RS-232C port for anything but the NT-AL001-E Link Adapter. Using this power supply for any other external device may damage the CPU Unit or the external device.

Item Specification

Communications method Half duplex

Synchronization Start-stop

Baud rate 0.3/0.6/1.2/2.4/4.8/9.6/19.2/38.4/57.6/115.2 kbps(See note.)

Transmission distance 15 m max.

Interface EIA RS-232C

Protocol Host Link, NT Link, 1:N, No-protocol, or Peripheral Bus

Pin No. Signal Name Direction

1 FG Protection earth −

2 SD (TXD) Send data Output

3 RD (RXD) Receive data Input

4 RS (RTS) Request to send Output

5 CS (CTS) Clear to send Input

6 5V Power supply −

7 DR (DSR) Data set ready Input

8 ER (DTR) Data terminal ready Output

9 SG (0V) Signal ground −

Connector hood FG Protection earth −

5

1

9

6

10

CJ1M-CPU1@

Dimensions (Unit : mm)

CJ1M CPU Units

6573.9

902.

72.

7

31

CJ1M-CPU1@

11

About Manuals

Name Cat. No. Contents

SYSMAC CJ/NSJ SeriesCJ1H-CPU@@H-R, CJ1G-CPU@@, CJ1M-CPU@@, CJ1G-CPU@@P, CJ1G/H-CPU@@H Programmable Controllers Operation Manual

W393 Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.

SYSMAC CS/CJ/NSJ SeriesCS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CS1D-CPU@@H, CS1D-CPU@@S, CJ1H-CPU@@H-R, CJ1G-CPU@@, CJ1M-CPU@@, CJ1G-CPU@@P, CJ1G/H-CPU@@H, NSJ@-@@@@(B)-G5D, NSJ@-@@@@(B)-M3DProgrammable Controllers Programming Manual

W394 This manual describes programming and other methods to use the functions of the CS/CJ-series and NSJ-series PLCs.

SYSMAC CS/CJ/NSJ SeriesCS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CS1D-CPU@@H, CS1D-CPU@@S, CJ1H-CPU@@H-R, CJ1G-CPU@@, CJ1M-CPU@@, CJ1G-CPU@@P, CJ1G/H-CPU@@H, NSJ@-@@@@(B)-G5D, NSJ@-@@@@(B)-M3DProgrammable Controllers Instructions Reference Manual

W340 Describes the ladder diagram programming instructions supported by CS/CJ-series and NSJ-series PLCs

SYSMAC CS/CJ SeriesCQM1H-PRO01-E, C200H-PRO27-E, CQM1-PRO01-EProgramming Consoles Operation Manual

W341 Provides information on how to program and operate CS/CJ-series PLCs using a Programming Console.

SYSMAC CS/CJ/NSJ SeriesCS1G/H-CPU@@-EV1, CS1G/H-CPU@@H, CS1D-CPU@@H, CS1D-CPU@@S, CJ1G-CPU@@, CJ1M-CPU@@, CJ1G-CPU@@P, CJ1G/H-CPU@@H, CS1W-SCB@@-V1, CS1W-SCU@@-V1, CJ1W-SCU@@-V1, CP1H-X@@@@-@, CP1H-XA@@@@-@, CP1H-Y@@@@-@, NSJ@-@@@@(B)-G5D, NSJ@-@@@@(B)-M3D Communications Commands Reference Manual

W342 Describes the C-series (Host Link) and FINS communications commands used with CS/CJ-series PLCs.

SYSMAC WS02-CX@@-V@CX-Programmer Operation Manual W446 Provides information on how to use the CX-Programmer for all

functionality except for function blocks.

SYSMAC WS02-CX@@-V@CX-Programmer Operation ManualFunction Blocks (CS1G-CPU@@H, CS1H-CPU@@H, CJ1G-CPU@@H, CJ1H-CPU@@H, CJ1M-CPU@@, CP1H-X@@@@-@, CP1H-XA@@@@-@, CP1H-Y@@@@-@ CPU Units)

W447

Describes the functionality unique to the CX-Programmer Ver. 7.0 and CP-series CPU Units or CS/CJ-series CPU Units with unit version 3.0 or later based on function blocks. Functionality that is the same as that of the CX-Programmer is described in W446 (enclosed).

CXONE-AL@@C-V@/ CXONE-AL@@D-V@ CX-Integrator Operation Manual W464 Describes operating procedures for the CX-Integrator Network

Configuration Tool for CS-, CJ-, CP-, and NSJ-series Controllers.

CXONE-AL@@C-V@/AL@@D-V@ CX-One FA Integrated Tool Package Setup Manual W463 Installation and overview of CX-One FA Integrated Tool Package.

Read and Understand This Catalog Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability WARRANTY OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. LIMITATIONS OF LIABILITY OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY. In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted. IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations SUITABILITY FOR USE OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products. At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use. The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog. Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles,

safety equipment, and installations subject to separate industry or government regulations. Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products. NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. PROGRAMMABLE PRODUCTS OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers CHANGE IN SPECIFICATIONS Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products. DIMENSIONS AND WEIGHTS Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown. PERFORMANCE DATA Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON’s test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability. ERRORS AND OMISSIONS The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

2012.4

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2012 All Right Reserved.

CSM_CJ1W-PA_PD_DS_E_5_1

1

CJ-series Power Supply Unit

CJ1W-PA/PDEquipped with the RUN output for checking the operation status, as well as the replacement notification function for easy maintenance.Lineup of five models including the AC power supply (25W).

• Stable power supply is available from the CJ-series CPU Unit to each I/O Units via the dedicated bus. The most suitable Power Supply Unit can be selected among various I/O specifications and/or options.

Features• The replacement notification function can prevent an overflow of the system due to the power lifetime. (CJ1W-PA205C only)• Power Supply Unit provides wide variations according to the system scale up to maximum 25 W.• Power Supply Unit provides wide variations according to the power supply (100 to 240 V AC/ 24 V DC) status.• The output contact during operation enables you to check the CPU operation. (CJ1W-PA205R only)• Conforming to the SEMI-F47 Standard. *

* AC input type, 200 V min. input.

CJ1W-PA202CJ1W-PA205C

2

CJ1W-PA/PD

Ordering InformationInternational Standards• The standards are abbreviated as follows: U: UL, U1: UL(Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus

(Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.• Contact your OMRON representative for further details and applicable conditions for these standards.

Power Supply Units

Note: This unit cannot be used with the Machine Automation Controller NJ-series.

AccessoriesThere is no accessory for the CJ series Power Supply Unit.

Product name Power supply voltage

Output capacity Options

Model Standards5-VDC output

capacity

24-VDC output

capacity

Total power consumption

24-VDC service power supply

RUN output

Maintenance forecast monitor

AC Power Supply Unit

100 to 240 VAC

5 A 0.8 A 25 W

No

No Yes CJ1W-PA205C

UC1, N, L, CE

Yes No CJ1W-PA205R

2.8 A 0.4 A 14 W No No CJ1W-PA202

DC Power Supply Unit

24 VDC

5A 0.8 A 25 W No No CJ1W-PD025

2 A 0.4 A 19.6 W No No CJ1W-PD022 UC1, CE

CJ1W-PA/PD

3

Specifications

Item Specifications

Model CJ1W-PA205R CJ1W-PA205C CJ1W-PA202 CJ1W-PD025 CJ1W-PD022

Supply voltage 100 to 240 V AC (wide-range), 50/60 Hz 24 VDC

Operating voltage and frequency ranges

85 to 264 V AC, 47 to 63 Hz 19.2 to 28.8 V DC 21.6 to 26.4 V DC

Power consumption 100 VA max. 50 VA max. 50 W max. 35 W max.

Inrush current *1

At 100 to 120 V AC:15 A/8 ms max. for cold start at room temperatureAt 200 to 240 V AC:30 A/8 ms max. for cold start at room temperature

At 100 to 120 V AC:20 A/8 ms max. for cold start at room temperatureAt 200 to 240 V AC:40 A/8 ms max. for cold start at room temperature

At 24 V DC:30 A/20 ms max. for cold start

Output capacity *7

5.0 A, 5 V DC (including supply to CPU Unit)2.8 A, 5 V DC(including supply to CPU Unit)

5.0 A, 5 V DC(including supply to CPU Unit)

2.0 A, 5 V DC(including supply to CPU Unit)

0.8 A, 24 V DC 0.4 A, 24 V DC 0.8 A, 24 V DC 0.4 A, 24 V DC

Total: 25 W max. Total: 14 W max. Total: 25 W max. Total: 19.6 W max.

Output terminal (service supply) Not provided.

RUN output *2

Contact configuration:SPST-NOSwitch capacity:250 V AC, 2 A (resistive load)120 V AC, 0.5 A(inductive load), 24 V DC, 2A (resistive load)24 V DC, 2 A (inductive load)

Not provided.

Replacement notification function Not provided.

With Alarm output (open-collector output)30 V DC max., 50 mA max.

Not provided.

Insulation resistance

20 MΩ min. (at 500 V DC) between AC external and GR terminals*3

• 20 MΩ min. (at 500 V DC) between all external terminals and GR terminal *3, and between all alarm output terminals.

• 20 MΩ 1 min. (at 250 V DC) between all alarm output terminals and GR terminal *3.

20 MΩ min. (at 500 V DC) between AC external and GR terminals*3

20 MΩ min. (at 500 V DC) between DC external and GR terminals *3

−*6

Dielectric strength *4

2,300 V AC 50/60 Hzfor 1 min between AC external and GR terminals *3Leakage current: 10 mA max.

• 2,300 VAC, 50/60 Hz for 1 min between all external terminals and GR terminal *3 and between all alarm output terminals with a leakage current of 10 mA max.

• 1,000 V AC, 50/60 Hz for 1 min between all alarm output terminals and GR terminal *3 with a leakage current of 10 mA max.

2,300 V AC 50/60 Hzfor 1 min between AC external and GR terminals *3Leakage current: 10 mA max.

1,000 V AC, 50/60 Hz for 1 min between DC external and GR terminals *3Leakage current: 10 mA max.

−*6

1,000 V AC, 50/60 Hz for 1 minute between DC external and GR terminals *3Leakage current: 10 mA max.

Noise immunity 2 kV on power supply line (conforming to IEC61000-4-4)

Vibration resistanceConforms to IEC60068-2-65 to 8.4 Hz with 3.5-mm amplitude, 8.4 to 150 HzAcceleration of 9.8 m/s2 for 100 min in X, Y, and Z directions (10 sweeps of 10 min each = 100 min)

Shock resistance Conforms to IEC60068-2-27147 m/s2, 3 times in X, Y, and Z directions (100 m/s2 for Relay Output Units)

Ambient operating temperature 0 to 55°C

Ambient operating humidity

10% to 90% (with no condensation)

10% to 90% (with no condensation)*5

10% to 90% (with no condensation)

Atmosphere Must be free from corrosive gases.

Ambient storage temperature

−20 to 70°C (excluding battery)

−20 to 75°C *5 −20 to 75°C (excluding battery)

Grounding Less than 100 Ω

Enclosure Mounted in a panel.

Weight All models are each 5 kg max.

4

CJ1W-PA/PD

*1. Disconnect the Power Supply Units LG terminal from the GR terminal when testing insulation and dielectric strength. Testing the insulation and dielectric strength with the LG terminal and the GR terminals connected will damage internal circuits in the CPU Unit.

*2. Supported only when mounted to CPU Rack.*3. The inrush current is given for a cold start at room temperature. The inrush control circuit uses a thermistor element with a low-temperature

current control characteristic. If the ambient temperature is high or the PLC is hot-started, the thermistor will not be sufficiently cool, and the inrush currents given in the table may be exceeded by up to twice the given values. When selecting fuses or breakers for external circuits, allow sufficient margin in shut-off performance.

*4. Maintain an ambient storage temperature of −25 to 30°C and relative humidity of 25% to 70% when storing the Unit for longer than 3 months to keep the replacement notification function in optimum working condition.

*5. Change the applied voltage gradually using the adjuster on the Tester. If the full dielectric strength voltage is applied or turned OFF using the switch on the Tester, the generated impulse voltage may damage the Power Supply Unit.

*6. CJ1W-PD022 is not insulated between the primary DC power and secondary DC power.*7. Internal components in the Power Supply Unit will deteriorate or be damaged if the Power Supply Unit is used for an extended period of time

exceeding the power supply output capacity or if the outputs are shorted.

External Interface

CJ1W-PA205R

CJ1W-PA205C

CPU Rack dimensions

90.7 to 466.7 × 90 × 65 mm (W × H × D) (not including cables)Note: W = a + b + 20 × n + 31 × m + 14.7

a: Power Supply Unit: PA205R and PA205C = 80; PA202 = 45; PD025 = 60; PD022=27b: CPU Unit: CJ1-H or CJ1 = 62; CJ1M-CPU1@ = 31; CJ1M-CPU2@ = 49The total width is given by the following: W = 156.7 + n × 20 + m × 31, where n is the number of 32-point I/O Units or I/O Control Units and m is the number of other Units.

Safety measures Conforms to cULus and EC Directives.

Item Specifications

Model CJ1W-PA205R CJ1W-PA205C CJ1W-PA202 CJ1W-PD025 CJ1W-PD022

POWER

PA205R

DC24VAC240V

OUTPUTRUN

INPUTAC100-240V

L2/N

L1

POWER IndicatorLit when 5 V are being output from the Power Supply Unit.

AC input

LG

GR

RUN output

External connection terminals

POWER

Years

CJ1W-PA205C

TEST

NC

NC

AC100-240VINPUT

L2/N

L1

L+

ALARMOUTPUTDC30V,50mA

NORMAL:ONALARM :OFF

Replacement notification display

POWER indicatorLit: 5-V output from Power Supply Unit.

TEST switchThe TEST switch can be used totemporarily turn OFF the alarm outputthat notifies when replacement isneeded.

Alarm output(replacement notification output)

LG

AC input

Terminalsexternal connect

GR

CJ1W-PA/PD

5

CJ1W-PA202

CJ1W-PD025

CJ1W-PD022

POWER

PA202

INPUT

NC

NC

AC100-240V

L2/N

L1

POWER IndicatorLit when 5 V are being output from the Power Supply Unit.

AC input

LG

GR

External connection terminals

POWER

PD025

DC24V+INPUT

NC

NC

POWER IndicatorLit when 5 V are being output from the Power Supply Unit.

DC input

LG

GR

External connection terminals

POWER

PD022

DC24VINPUT

+

POWER IndicatorLit when 5 V are being output from the Power Supply Unit.

NC

DC input

Externalconnectionterminals

GR

6

CJ1W-PA/PD

AC InputSupply 100 to 240 V AC (allowable: 85 to 264 V AC). (Voltage selection is not required.)

DC InputSupply 24 V DC.

LGGround to a resistance of 100 Ω or less to increase noise resistance and avoid electric shock.

GRGround to a resistance of 100 Ω or less to avoid electric shock.

RUN Output (CJ1W-PA205R Only)The internal contact turns ON when the CPU Unit is operating (RUN or MONITOR mode). The Power Supply Unit must be in the CPU Rack to use this output.

Alarm Output (CJ1W-PA205C Only)The alarm output is used to notify when Power Supply Unit replacement is required. The output is normally ON. The output turns OFF when the time until replacement is 6 months or less.

WiringWireFor AC/DC power supply

For grounding wire

For alarm output

Model Allowable power supply voltage fluctuation range

CJ1W-PD025 19.2 to 28.8 VDC (±20%)

CJ1W-PD022 21.6 to 26.4 VDC (±10%)

Recommended wire size AWG14 to 20(0.517 to 2.08mm2)

Recommended wire size 2 mm2 min.

Recommended wire size Use Pushing strength (clamping operation)

Pulling strength (holding force)

Length of stripped section

AWG 22 to 18 (0.32 to 0.82 mm2) Connecting to PLC terminal block models

30 N max.30 N min.

7 to 10 mmAWG 28 to 24 (0.08 to 0.2 mm2) Connecting to PLC connector models 10 N min.

CJ1W-PA/PD

7

Crimp TerminalsThe terminals on the Power Supply Unit are M4, self-raising terminals with screws. Use crimp terminals for wiring.

Crimp terminal for the AC power supply

Crimp terminal for the DC power supply

Crimp terminal for the grounding wire

The crimp terminal is not required for the alarm output.

Checking Current Consumption and Power ConsumptionAfter selecting a Power Supply Unit based on considerations such as the power supply voltage, calculate the current and power requirements for each Rack.

Condition 1: Current RequirementsThere are two voltage groups for internal power consumption: 5 V and 24 V.Current consumption at 5 V (internal logic power supply) Current consumption at 24 V (relay driving power supply)

Condition 2: Power RequirementsFor each Rack, the upper limits are determined for the current and power that can be provided to the mounted Units. Design the system so that the total current consumption for all the mounted Units does not exceed the maximum total power or the maximum current supplied for the voltage groups shown in the following tables. The maximum current and total power supplied for CPU Racks and Expansion Racks according to the Power Supply Unit model are shown below.Note: 1. For CPU Racks, include the CPU Unit current and power consumption in the calculations. When expanding, also include the current and

power consumption of the I/O Control Unit in the calculations.2. For Expansion Racks, include the I/O Interface Unit current and power consumption in the calculations.

Conditions 1 and 2 below must be satisfied.Condition 1: Maximum Current

(1) Total Unit current consumption at 5 V ≤ (A) value (2) Total Unit current consumption at 24 V ≤ (B) value

Condition 2: Maximum Power(1) × 5 V + (2) × 24 V ≤ (C) value

Power Supply UnitsMax. current supplied

Max. total power supplied5 V 24 V (relay driving current)

CJ1W-PA205R 5.0 A 0.8 A 25 W

CJ1W-PA205C 5.0 A 0.8 A 25 W

CJ1W-PA202 2.8 A 0.4 A 14 W

CJ1W-PD025 5.0 A 0.8 A 25 W

CJ1W-PD022 2.0 A 0.4 A 19.6 W

7mm max.

7mm max. 7mm max.

7mm max. 7mm max.

8

CJ1W-PA/PD

Example: Calculating Total Current and Power ConsumptionExample: When the Following Units are Mounted to a CJ-series CPU Rack Using a CJ1W-PA202 Power Supply Unit

Note: For details on Unit current consumption, refer to Ordering Information.

Using the CX-Programer to Display Current Consumption and WidthCPU Rack and Expansion Rack current consumption and width can be displayed by selecting Current Consumption and Width from the Options Menu in the CS/CJ/CP Table Window. (The width can be displayed for the CJ/CP Series only.) If the capacity of the Power Supply Unit is exceeded, it will be displayed in red characters. For details, refer to the CX-Programmer Operation Manual (Cat. No. W446).

Example:

Unit type Model QuantityVoltage group

5 V 24 V

CPU Unit CJ1M-CPU13 1 0.580 A −

I/O Control Unit CJ1W-IC101 1 0.020 A −

Basic I/O Units (Input Units)

CJ1W-ID211 2 0.080 A −

CJ1W-ID231 2 0.090 A −

Basic I/O Units (Output Units) CJ1W-OC201 2 0.090 A 0.048 A

Special I/O Unit CJ1W-DA041 1 0.120 A −

CPU Bus Unit CJ1W-CLK23 1 0.350 A −

Current consumptionTotal 0.580 + 0.020 + 0.080 × 2 + 0.090 ×

2 + 0.090 × 2 + 0.120 + 0.350 0.048 A × 2

Result 1.59 A (≤ 2.8 A) 0.096 A (≤ 0.4 A)

Power consumptionTotal 1.59 × 5 V = 7.95 W 0.096 A × 24 V = 2.304 W

Result 7.95 + 2.304 = 10.254 W (≤ 14 W)

WidthPower Supply Unit model

Current consumption at 5 V

Currentconsumption at 26 V/24 V

Total current consumption

Long-distance expansion

CJ1W-PA/PD

9

Dimension (Unit: mm)

CJ1W-PA205R

CJ1W-PA205C

CJ1W-PA202

POWER

PA205R

DC24VAC240V

OUTPUTRUN

INPUTAC100-240V

L2/N

L1

658081.6

90

Years

POWERCJ1W-PA205C

TEST

NC

NC

AC100-240VINPUT

L2/N

L1

L+

ALARMOUTPUTDC30V,50mA

NORMAL:ONALARM :OFF

658081.6

90

POWER

PA202

INPUT

NC

NC

AC100-240V

L2/N

L1

654581.6

90

10

CJ1W-PA/PD

CJ1W-PD025

CJ1W-PD022

Related Manuals

Cat. No. Name Contents

W393

SYSMAC CJ Series CJ1H-CPU@@H-R, CJ1G/H-CPU@@H, CJ1G-CPU@@P, CJ1G-CPU@@, CJ1M-CPU@@Programmable Controllers Operation Manual

Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.

POWER

PD025

DC24V+INPUT

NC

NC

656081.6

90

POWER

PD022

652781.6

90

Read and Understand This Catalog Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability WARRANTY OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. LIMITATIONS OF LIABILITY OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY. In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted. IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations SUITABILITY FOR USE OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products. At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use. The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog. Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles,

safety equipment, and installations subject to separate industry or government regulations. Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products. NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. PROGRAMMABLE PRODUCTS OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers CHANGE IN SPECIFICATIONS Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products. DIMENSIONS AND WEIGHTS Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown. PERFORMANCE DATA Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON’s test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability. ERRORS AND OMISSIONS The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

2012.4

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2012 All Right Reserved.

CSM_CJ1W-AD_DA_MAD_DS_E_4_1

1

CJ-Series Analog I/O Unit

CJ1W-AD/DA/MADConsistent Microsecond Throughput:Models with Direct Conversion Join the Lineup

• Analog Input Units for converting analog input signals into binary data

• Analog Output Units for converting binary data into analog output signals

FeaturesAnalog Input Units• Input up to eight analog signals with one Unit.• Functions include line disconnection detection, averaging, peak value holding, offset/gain adjustment, and scaling.

(Offset/gain adjustment is not supported by the CJ1W-AD042. Scaling is supported only by the CJ1W-AD042.)• High-speed A/D conversion in 20 μs/point with direct conversion function * (CJ1W-AD042 only).

Analog Output Units• Output up to eight analog signals with one Unit. • Functions include output holding, offset/gain adjustment, and scaling. (Offset/gain adjustment is not supported by the CJ1W-DA042V. Scaling

is supported only by the CJ1W-DA08V/DA08C/DA042V.)• High-speed D/A conversion in 20 μs/point with direct conversion function * (CJ1W-DA042V only).

Analog I/O Units• Input up to four analog signals and output up to two analog signals with one Unit. • Functions include line disconnection detection, input averaging, scaling, input peak value holding, output holding, ratio conversion, and offset/

gain adjustment.* Direct Conversion Instructions for High-speed type can be used to create a consistent response time from input through data processing and

output. With the Machine Automation Controller NJ-series, the direct conversion function cannot be used. This function is supported only by the CJ-series CPU Unit.

System Configuration

Note: The above diagram is an installation example for the CJ1W-AD081-V1 Analog Input Units and CJ1W-DA041 Analog Output Units.

CJ1W-DA042VCJ1W-AD042

SYSMACCJ1G-CPU44PROGRAMMABLECONTROLLER

RUNERR/ALM

INHPRPHLCOMM

OPEN

PERIHERAL

PORT

MCPWR

BUSY

AD081-V1

B1 A1

MACHNo.x10 1

x10 0

RUNERCERHADJ

MODE

12

DA041

B1 A1

MACHNo.x10 1

x10 0

RUNERCERHADJ

MODE

12

M

M

Analog Output UnitCPU Unit Analog Input Unit

Regulator(Temperature control)

(Position control)

(Speed control)

Servo-controller

Variable speed controller

Preamp

Chart recorder

Transducer

Sensor

SensorTemperature Pressure Speed Flow rate

VoltageCurrentPowerPower factor

M

M

2

CJ1W-AD/DA/MAD

Ordering InformationInternational Standards• The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus,

UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.• Contact your OMRON representative for further details and applicable conditions for these standards.

Analog Input Units

*1 With the Machine Automation Controller NJ-series, the direct conversion function using the AIDC instruction cannot be used.*2 The resolution and conversion speed cannot be set independently. If the resolution is set to 1/4,000, then the conversion speed will be 1 ms/

point.*3 At 23 ±2°C

Analog Output Units

*1 With the Machine Automation Controller NJ-series, the direct conversion function using the AIDC instruction cannot be used.*2 The resolution and conversion speed cannot be set independently. If the resolution is set to 1/4,000, the conversion speed will be 1 ms/point. *3 This is for an external power supply, and not for internal current consumption.

Unit type Product name

I/O points

Signal range

selection

Signal range Resolution Conversion

period

Accuracy at ambient

temperature of 25°C

External connection

No. of unit

numbers allocated

Current consumption

(A) Model Standards

5 V 24 V

CJ1 Special I/O Units

Analog Input Unit

4 inputs

Set separately for each input

1 to 5 V (1/10,000), 0 to 10 V (1/20,000), -5 to 5 V (1/20,000), -10 to 10 V (1/40,000), and 4 to 20 mA (1/10,000)

20 μs/1 point, 25 μs/2 points, 30 μs/3 points, 35 μs/4 pointsThe Direct conversion is provided.*1

Voltage:±0.2% of F.S.Current:±0.4% of F.S.

Removable terminal block

1

0.52 --- CJ1W-AD042 UC1, CE

Analog Input Units

8 inputs 1 to 5 V,

0 to 5 V, 0 to 10 V, -10 to 10 V,4 to 20 mA

1/4,000 (Settable to 1/8,000) *2

1 ms/point (250 μs/point can also be set.)*2

Voltage:±0.2% of F.S.Current:±0.4% of F.S.*3

0.42 ---

CJ1W-AD081-V1

UC1, N, L, CE

4 inputs CJ1W-AD041-V1

Unit type Product name

I/O points

Signal range

selection

Signal range Resolution Conversion

period

Accuracy at ambient

temperature of 25°C

External connection

External power supply

No. of unit

numbers allocated

Current consumption

(A) Model Standards

5 V 24 V

CJ1 Special I/O Units

Analog Output Unit

4 outputs

Set separately for each output

1 to 5 V (1/10,000), 0 to 10 V (1/20,000), and −10 to 10 V (1/40,000)

20 μs/1 point, 25 μs/2 points, 30 μs/3 points, 35 μs/4 pointsThe Direct conver-sion is provided.*1

±0.3% of F.S.

Removable terminal block

---

1

0.40 --- CJ1W-DA042V UC1, CE

Analog Output Units

8 outputs

1 to 5 V, 0 to 5 V, 0 to 10 V, −10 to 10 V

1/4,000 (Settable to 1/8,000)*2

1 ms/point (Settable to 250 μs/point)*2

±0.3% of F.S.

24 VDC

,140 mA max.

0.14

0.14*3 CJ1W-DA08V UC1, N,

L, CE

8 outputs

4 to 20 mA

24 VDC

,170 mA max.

0.17*3 CJ1W-DA08C UC1, N,

CE

4 outputs 1 to 5 V,

0 to 5 V, 0 to 10 V,−10 to 10 V, 4 to 20 mA

1/4,000 1 ms/point

Voltage:±0.3% of F.S.Current:±0.5% of F.S.

24 VDC

,200 mA max.

0.12

0.2*3 CJ1W-DA041

UC1, N, L, CE

2 outputs

24 VDC

,140 mA max.

0.14*3 CJ1W-DA021

High-speed type

High-speed type

+10%−15%

+10%−15%

+10%−15%

+10%−15%

CJ1W-AD/DA/MAD

3

Analog I/O Units

Note: The resolution and conversion speed cannot be set independently. If the resolution is set to 1/4,000, then the conversion speed will be 1 ms/point.

Accessories

Mountable Racks

Note: It may not be possible to mount this many Units to a Rack depending on the current consumption of the other Units.*1 This is the number of Units for a CJ2H-CPU6@ CJ2H CPU Unit (without EtherNet/IP) and a CJ1W-PA205@ or CJ1W-PD025 Power Supply Unit.*2 This is the number of Units for a CJ1W-PA205@ or CJ1W-PD025 Power Supply Unit.*3 A CP1W-EXT01 CJ Unit Adaptor is required.*4 This is the number of Units for a NJ501 CPU Unit, and a NJ-PA3001 or NJ-PD3001 Power Supply Unit.*5 This is the number of Units for a NJ-PA3001 or NJ-PD3001 Power Supply Unit.

Unit type Product name

I/O points

Signal range

selection

Signal range Resolution Conversion

period

Accuracy at ambient

temperature of 25°C

External connection

No. of unit

numbers allocated

Current consumption

(A) Model Standards

5 V 24 V

CJ1 Special I/O Units

Analog I/O Units

4 inputs Set

separately for each input and output

1 to 5 V, 0 to 5 V, 0 to 10 V, −10 to 10 V, 4 to 20 mA

1/4,000 (Settable to 1/8,000)

1 ms/point(Settable to 500 μs/point)

Voltage:±0.2% of F.S.Current:±0.2% of F.S. Removable

terminal block

1 0.58 − CJ1W-MAD42 UC1, N, L, CE

2 outputs

Voltage:±0.3% of F.S.Current:±0.3% of F.S.

Model Accessories

CJ1W-AD081-V1/AD041-V1CJ1W-DA08V/DA08C/DA041/DA021CJ1W-DA042VCJ1W-MAD42

None.

CJ1W-AD042 Four jumpers(For a current input, a jumper is used to connect the current input positive terminal and the voltage input positive terminal.)

ModelNJ system CJ system (CJ1, CJ2) CP1H system NSJ system

CPU Rack Expansion Rack CPU Rack Expansion Backplane CP1H PLC NSJ Controller Expansion

Backplane

CJ1W-AD042 7 Units *410 Units *5

(per Expansion Rack)

8 Units *19 Units *2

(per Expansion Backplane)

2 Units *3 Not supported

9 Units *2(per Expansion

Backplane)

CJ1W-AD081-V19 Units *4

10 Units *5(per Expansion

Rack)

10 Units *110 Units *2

(per Expansion Backplane)

10 Units *2(per Expansion

Backplane)

CJ1W-AD041-V1

CJ1W-DA042V

10 Units *410 Units *5

(per Expansion Rack)

CJ1W-DA08V

CJ1W-DA08C

CJ1W-DA041

CJ1W-DA021

CJ1W-MAD42 7 Units *410 Units *5

(per Expansion Rack)

7 Units *18 Units *2

(per Expansion Backplane)

8 Units *2(per Expansion

Backplane)

4

CJ1W-AD/DA/MAD

Individual Specifications

Analog Input Units CJ1W-AD041-V1/AD081-V1/AD042Specifications

*1 Do not apply a voltage higher than 600 V to the terminal block when performing withstand voltage test on this Unit. Otherwise, internal elements may deteriorate.

*2 Input signal ranges can be set for each input.*3 Voltage input or current input are chosen by using the voltage/current switch at the back of the terminal block.*4 To use a current input, connect the positive current input terminal and positive voltage input terminal with the enclosed short bar. *5 The Analog Input Unit must be operated according to the input specifications provided here. Operating the Unit outside these specifications

will cause the Unit to malfunction. *6 The resolution can be set to 8,000 and the conversion period to 250 μs in the setting. There is only one setting for both of these, i.e., they are

both enabled or disabled together.*7 The accuracy is given for full scale. For example, an accuracy of ±0.2% means a maximum error of ±8 (BCD) at a resolution of 4,000.

For the CJ1W-AD041-V1/ AD081-V1, the default setting is adjusted for voltage input. To use current input, perform the offset and gain adjustments as required.

*8 For the CJ1W-AD041-V1/ AD081-V1, 23±2°C.*9 The A/D conversion period is the time required from when the Analog Input Unit receives the analog signal until it stores the converted value

in internal memory. It takes at least one cycle for the converted data to be stored in the CPU Unit. (The direct conversion function of the CJ1W-AD042 is can be used to input data immediately to the CPU Unit.)

*10 Line disconnection detection is supported only when the range is set to 1 to 5 V or 4 to 20 mA. If there is no input signal when the 1 to 5 V or 4 to 20 mA range is set, the Line Disconnection Flag will turn ON.

Item CJ1W-AD041-V1 CJ1W-AD081-V1 CJ1W-AD042

Unit type CJ-series Special I/O Unit

Isolation *1 Between I/O and Controller signals: Photocoupler (No isolation between I/O signals.)

Between I/O and Controller signals: Digital isolator (No isolation between I/O signals.)

External terminals 18-point detachable terminal block (M3 screws)

Power consumption 420 mA max. at 5 VDC 520 mA max. at 5 VDC

Dimensions (mm) 31 × 90 × 65 mm (W × H × D)

Weight 140 g max. 150 g max.

General specifications Conforms to general specifications for CJ Series.

Input specifications

Number of analog inputs 4 8 4

Input signal range *2

1 to 5 V0 to 5 V0 to 10 V−10 to 10 V4 to 20 mA*3

1 to 5 V0 to 10 V−5 to 5 V−10 to 10 V4 to 20 mA*4

Maximum rated input (for 1 point) *5

Voltage Input: ±15 VCurrent Input: ±30 mA

Input impedance Voltage Input: 1 MΩ min. Current Input: 250 Ω (rated value)

Resolution 4,000/8,000 *6

1 to 5 V 10,000

0 to 10 V 20,000

−5 to 5 V 20,000

−10 to 10 V 40,000

4 to 20 mA 10,000

Converted output data 16-bit binary data

Accuracy *725°C *8 Voltage Input: ±0.2% of F.S.Current Input: ±0.4% of F.S.

0°C to 55°C Voltage Input: ±0.4% of F.S.Current Input: ±0.6% of F.S.

A/D conversion period *9 1 ms/250 μs per point *6 20 μs/1 point, 25 μs/2 points, 30 μs/3 points, 35 μs/4 points

Input functions

Mean value processingStores the last "n" data conversions in the buffer, and stores the mean value of the conversion values.Buffer number: n = 2, 4, 8, 16, 32, 64

Stores the last "n" data conversions in the buffer, and stores the mean value of the conversion values.Buffer number: n = 2, 4, 8, 16, 32, 64, 128, 256, 512

Peak value holding Stores the maximum conversion value while the Peak Value Hold Bit is ON.

Scaling ---

Setting values in any specified unit within a range of ±32,000 as the upper and lower limits allows A/D conversion to be executed and analog signals to be output with these values as full scale.

Input disconnection detection Detects the disconnection and turns ON the Disconnection Detection Flag. *10

Offset/gain adjustment Supported ---

Direct conversion ---

A/D conversion is performed and the converted value is refreshed when the ANALOG INPUT DIRECT CON-VERSION instruction (AIDC) is exe-cuted. This instruction is supported by the CJ2H-CPU@@ (-EIP) CPU Units with unit version 1.1 or later, and CJ2M-CPU@@. CJ1, NJ501, and CP1H CPU Units and NSJ Controllers do not support direct conversion.

CJ1W-AD/DA/MAD

5

Analog Output Units CJ1W-DA021/DA041/DA08V/DA08C/DA042VSpecifications

*1 Do not apply a voltage higher than 600 V to the terminal block when performing withstand voltage test on this Unit.*2 The maximum number of Analog Output Units that can be mounted to one Rack varies depending on the current consumption of the other

Units mounted to the Rack.Select a 24 VDC power supply based on the surge current. The following OMRON external power supplies are recommended.

*3 Output signal ranges can be set for each output.*4 The accuracy is given for full scale. For example, an accuracy of ±0.3% means a maximum error of ±60 mV for a −10 to 10 V range. For the

CJ1W-DA021/041, the accuracy is at the factory setting for a current output. When using a voltage output, adjust the offset gain as required.

Item CJ1W-DA021 CJ1W-DA041 CJ1W-DA08V CJ1W-DA08C CJ1W-DA042V

Unit type CJ-series Special I/O Unit

Isolation *1 Between I/O and Controller signals: Photocoupler (No isolation between I/O signals.)Between I/O and Controller sig-nals: Digital isolator (No isola-tion between I/O signals.)

External terminals 18-point detachable terminal block (M3 screws)

Power consumption 5 VDC, 120 mA max. 5 VDC, 140 mA max. 5 VDC, 400 mA max.

External power supply *224 VDC (inrush current: 20 A max., pulse width: 1 ms min.) ---

140 mA max. 200 mA max. 140 mA max. 170 mA max. ---

Dimensions (mm) 31 × 90 × 65 mm (W × H × D)

Weight 150 g max.

General specifications Conforms to general specifications for CJ-series Series.

Output specifica-tions

Number of analog outputs 2 4 8 8 4

Output signal range *31 to 5 V/4 to 20 mA0 to 5 V0 to 10 V−10 to 10 V

1 to 5 V0 to 5 V0 to 10 V−10 to 10 V

4 to 20 mA1 to 5 V0 to 10 V−10 to 10 V

Output impedance 0.5 Ω max. (for voltage output) 0.5 Ω max. (for voltage output) --- 0.5 Ω max.

(for voltage output)

Max. output current (for 1 point) 12 mA (for voltage output) 2.4 mA

(for voltage output) --- 2 mA (for voltage output)

Maximum permissible load resistance 600 Ω (current output) --- 350 Ω ---

Resolution 4,000 4,000/8,000 *8

1 to 5 V 10,000

0 to 10 V 20,000

-10 to 10 V 40,000

Set data 16-bit binary data

Accuracy *4

25°C Voltage output: ±0.3% of F.S.Current output: ±0.5% of F.S. ±0.3% of F.S. ±0.3% of F.S. ±0.3% of F.S.

0°C to 55°C Voltage output: ±0.5% of F.S.Current output: ±0.8% of F.S. ±0.5% of F.S. ±0.6% of F.S. ±0.5% of F.S.

D/A conversion period *5 1.0 ms per point 1.0 ms or 250 μs per point *8

20 μs/1 point, 25 μs/2 points, 30 μs/3 points, 35 μs/4 points

Output functions

Output hold function

Outputs the specified output status (CLR, HOLD, or MAX) under any of the following circumstances.• When the Conversion Enable Bit is OFF. *6• In adjustment mode, when a value other than the output number is output during adjustment. *7• When output setting value error occurs or Controller operation stops.• When the Load is OFF.

Scaling ---

Supported only for a conversion period of 1 ms and resolution of 4,000.Setting values in any specified unit within a range of ±32,000 as the upper and lower limits allows D/A conversion to be execut-ed and analog signals to be output with these values as full scale.

Setting values in any specified unit within a range of ±32,000 as the upper and lower limits allows D/A conversion to be executed and analog signals to be output with these values as full scale.

Offset/gain adjustment Supported ---

Direct conversion ---

D/A conversion is performed and the output value is re-freshed when the ANALOG OUTPUT DIRECT CONVER-SION instruction (AODC) is ex-ecuted. This instruction is supported by the CJ2H-CPU@@ (-EIP) CPU Units with unit version 1.1 or later, and CJ2M-CPU@@. CJ1, NJ501, and CP1H CPU Units and NSJ Controllers do not support direct conversion.

Manufacturer Model number Specifications

OMRON

S8VS-06024 100 to 240 VAC, 60 W

S8VS-12024 100 to 240 VAC, 120 W

S8VM-05024 100 to 240 VAC, 50 W

S8VM-10024 100 to 240 VAC, 100 W

+10% −15%

6

CJ1W-AD/DA/MAD

*5 The D/A conversion period is the time required for the Analog Output Unit to convert and output the data that was received from the CPU Unit. It takes at least one cycle for the data stored in the CPU Unit to be read by the Analog Output Unit. (The direct conversion function of the CJ1W-DA042V can be used to output data immediately from the CPU Unit.)

*6 When the operation mode for the CPU Unit is changed from RUN mode or MONITOR mode to PROGRAM mode, or when the power is turned ON, the Output Conversion Enable Bit will turn OFF. The output status specified according to the output hold function will be output.

*7 The CJ1W-DA042V does not have an Adjustment Mode.*8 The CJ1W-DA08V/08C can be set to a conversion cycle of 250 μs and a resolution of 8,000 using the setting.

Analog I/O Unit CJ1W-MAD42Specifications

Input Specifications and Functions

Item CJ1W-MAD42

Unit type CJ-series Special I/O Unit

Isolation Between I/O and Controller signals: Photocoupler(No isolation between I/O signals.)

External terminals 18-point detachable terminal block (M3 screws)

Current consumption 580 mA max. at 5 V DC

Dimensions (mm) 31 × 90 × 65 mm (W × H × D)

Weight 150 g max.

General specifications Conforms to general specifications for CJ-series Series.

Item Voltage input Current input

Number of analog inputs 4

Input signal range *1

1 to 5 V0 to 5 V0 to 10 V−10 to 10 V

4 to 20 mA *2

Maximum rated input (for 1 point) *3 ±15 V ±30 mA

Input impedance 1 MΩ min. 250 Ω (rated value)

Resolution 4,000/8,000 *7

Converted output data 16-bit binary data

Accuracy *425°C ±0.2% of F.S.

0°C to 55°C ±0.4% of F.S.

A/D conversion period *5 1.0 ms/500 μs per point *7

Mean value processing Stores the last "n" data conversions in the buffer, and stores the mean value of the conversion values.Buffer number: n = 2, 4, 8, 16, 32, 64

Peak value holding Stores the maximum conversion value while the Peak Value Hold Bit is ON.

ScalingEnabled only for conversion period of 1 ms and resolution of 4,000. Setting any values within a range of ±32,000 as the upper and lower limits allows the A/D conversion result to be output with these values as full scale.

Input disconnection detection Detects the disconnection and turns ON the Disconnection Detection Flag.

Offset/gain adjustment Supported

CJ1W-AD/DA/MAD

7

Output Specifications

*1 Input and output signal ranges can be set for each input and output.*2 Voltage input or current input are chosen by using the voltage/current switch at the back of the terminal block.*3 The Analog I/O Unit must be operated according to the input specifications provided here. Operating the Unit outside these specifications will

cause the Unit to malfunction.*4 The accuracy is given for full scale. For example, for an input, an accuracy of ±0.2% means a maximum error of ±8 (BCD) at a resolution of

4,000. For an output, an accuracy of ±0.3% means a maximum error of ±60 mV for a −10 to 10 V range.*5 The A/D conversion period is the time required from when the Analog Input Unit receives the analog signal until it stores the converted value

in internal memory. It takes at least one cycle for the converted data to be stored in the CPU Unit. The D/A conversion period is the time required for the Analog Output Unit to convert and output the data that was received from the CPU Unit. It takes at least one cycle for the data stored in the CPU Unit to be read by the Analog Output Unit.

*6 When the operation mode for the CPU Unit is changed from RUN mode or MONITOR mode to PROGRAM mode, or when the power is turned ON, the Output Conversion Enable Bit will turn OFF. The output status specified according to the output hold function will be output.

*7 By means of the setting, the resolution can be changed to 8,000, and the conversion period can be changed to 500 μs.

Item Voltage output Current output

Number of analog outputs 2

Output signal range *1

1 to 5 V0 to 5 V0 to 10 V−10 to 10 V

4 to 20 mA

Output impedance 0.5 Ω max. −Maximum external output current (for 1 point) 2.4 mA −

Maximum allowed load resistance − 600 Ω

Resolution 4,000/8,000 *7

Set data 16-bit binary data

Accuracy *425°C ±0.3% of F.S. ±0.3% of F.S.

0°C to 55°C ±0.5% of F.S. ±0.6% of F.S.

D/A conversion period *5 1.0 ms/500 μs per point

Output hold function

Outputs the specified output status (CLR, HOLD, or MAX) under any of the following circumstances.• When the Conversion Enable Bit is OFF. *6• In adjustment mode, when a value other than the output number is output during adjustment.• When output setting value error occurs or Controller operation stops.• When the Load is OFF.

ScalingEnabled only for conversion period or 1 ms and resolution of 4,000. Setting any values within a range of ±32,000 as the upper and lower limits allows D/A conversion to be executed and analog signals to be output with these values as full scale.

Ratio conversion function *5

Stores the results of positive and negative gradient analog inputs calculated for ratio and bias as analog output values.Positive gradient: Analog output = A × Analog input + B

(A: 0 to 99.99, B: 8000 to 7FFF hex)Negative gradient:Analog output = F − A × Analog input + B

(A: 0 to 99.99, B: 8000 to 7FFF hex, F: Output range maximum value)

Offset/gain adjustment Supported

8

CJ1W-AD/DA/MAD

External Interface

Analog Input Units CJ1W-AD041-V1/AD081-V1/AD042Components

IndicatorsThe indicators show the operating status of the Unit. The following table shows the meanings of the indicators.

* The ADJ LED is not provided with the CJ1W-AD042.

LED Meaning Indicator Operating status

RUN (green) OperatingLit Operating in normal mode.

Not lit Unit has stopped exchanging data with the CPU Unit.

ERC (red) Error detected by UnitLit

Alarm has occurred (such as disconnection detection) or initial settings are incorrect.

Not lit Operating normally.

ERH (red) Error in the CPU UnitLit Error has occurred during data exchange with the CPU Unit.

Not lit Operating normally.

ADJ (yellow) * AdjustingFlashing Operating in offset/gain adjustment mode.

Not lit Other than the above.

MACHNo.

AD081-V1RUNERCERH B1 A1ADJ

x101

x100

09

8765

4 3 2109

8765

4 3 21ON

12

MODE

MACHNo.

AD081-V1RUNERCERH B1 A1ADJ

x101

x100

21

21

21

21

09

8765

4 3 2109

8765

4 3 21

ON

ON

ON

ON

ON1

2

MODE

Front

With Terminal Block RemovedWith Terminal Block

Terminal block

Terminal block lock lever (pull down to release terminal block)

Unit number setting switch

Indicators *1

Terminal block

DIN Track mounting pin

Operating mode switch *2

Voltage/current switch *2

Slider

Slider

Side

Expansion connector

*1 The ADJ LED is not provided with the CJ1W-AD042.*2 These switches are not mounted for the CJ1W-AD042.

CJ1W-AD/DA/MAD

9

Input CircuitsThe following diagrams show the internal circuit of the analog input section.

CJ1W-AD041-V1/AD081-V1 CJ1W-AD042

Terminal ArrangementThe signal names corresponding to the connecting terminals are as shown in the following diagram.

CJ1W-AD041-V1 CJ1W-AD081-V1

CJ1W-AD042

Note: 1. Set the analog input number that you use and input signal range for each analog input, using the memory area or support software. The input signal range can be set separately for each input number.

2. The AG terminals are connected to the 0 V analog circuit in the Unit. Connecting shielded input lines can improve noise resistance.3. Do not connect anything to NC terminals.4. To use a current input with the CJ1W-AD042, connect the positive current input terminal and positive voltage input terminal with the

enclosed short bar.5. Connect a surge suppressor to inductive loads in the system (e.g., magnetic contactors, relays, and solenoids).

1 MΩ

15 kΩ 15 kΩ

15 kΩ 15 kΩ

AG (common to all inputs)

Input (+)

Input (–)

AG(analog 0 V)

Input circuit and conversion circuit

1 MΩ

Voltage/currentinput switch

250 Ω

510 kΩ

510 kΩ

2.2 kΩ

2.2 kΩ

AG (common to all inputs)

Input (–)

AG(analog 0 V)

Input circuit and conversion circuit

250 Ω

Current Input (+)

VoltageInput (+)

Input 2 (+)

Input 2 (−)

Input 4 (+)

Input 4 (−)

AG

N.C.

N.C.

N.C.

N.C.

Input 1 (+)

Input 1 (−)

Input 3 (+)

Input 3 (−)

AG

N.C.

N.C.

N.C.

N.C.

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Input 2 (+)

Input 2 (−)

Input 4 (+)

Input 4 (−)

AG

Input 6 (+)

Input 6 (−)

Input 8 (+)

Input 8 (−)

Input 1 (+)

Input 1 (−)

Input 3 (+)

Input 3 (−)

AG

Input 5 (+)

Input 5 (−)

Input 7 (+)

Input 7 (−)

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Current Input 2 (+)

Voltage Input 2 (+)

Input 2 (−)

AG

Current Input 4 (+)

Voltage Input 4 (+)

Input 4 (−)

AG

N.C.

Current Input 1 (+)

Voltage Input 1 (+)

Input 1 (−)

AG

Current Input 3 (+)

Voltage Input 3 (+)

Input 3 (−)

AG

N.C.

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

10

CJ1W-AD/DA/MAD

Analog Output Units CJ1W-DA021/041/08V/08C/DA042VComponents

*1 The ADJ LED is not provided with the CJ1W-DA042V.*2 This switch is not mounted for the CJ1W-DA08V, CJ1W-DA08C and CJ1W-DA042V.

IndicatorsThe indicators show the operating status of the Unit. The following table shows the meanings of the indicators.

* The ADJ LED is not provided with the CJ1W-DA042V.

LED Meaning Indicator Operating status

RUN (green) OperatingLit Operating in normal mode.

Not lit Unit has stopped exchanging data with the CPU Unit.

ERC (red) Error detected by UnitLit Alarm has occurred or initial settings are incorrect.

Not lit Operating normally.

ERH (red) Error in the CPU UnitLit Error has occurred during data exchange with the CPU Unit.

Not lit Operating normally.

ADJ (yellow) * AdjustingFlashing Operating in offset/gain adjustment mode.

Not lit Other than the above.

MACHNo.

DA041RUNERCERH B1 A1ADJ

x101

x100

09

8765

4 32109

8765

4 321ON

12

MODE

Front

With Terminal Block

Terminal block lock lever (pull down to release terminal block)

Unit number switches

Indicators *1

Terminal block

Operating mode switch *2

DIN Track mounting pin

Side

Slider

Slider

Expansion connector

CJ1W-AD/DA/MAD

11

Output CircuitsThe following diagrams show the internal circuit of the analog output section.

CJ1W-DA021/DA041/DA08V/DA08CVoltage Output Circuits Current Output Circuits

CJ1W-DA042VVoltage Output Circuits

Terminal ArrangementThe signal names corresponding to the connecting terminals are as shown in the following diagram.

CJ1W-DA021 CJ1W-DA041

CJ1W-DA08V (Voltage Output)and CJ1W-DA08C (Current Output) CJ1W-DA042V

Note: 1. Set the analog input number that you use and input signal range for each analog input, using the memory area or support software. The input signal range can be set separately for each input number.

2. The N.C. terminals are not connected to internal circuit.3. Use a separate power supply from the one used for Basic I/O Units. Faulty Unit operation may be caused by noise if power is supplied

from the same source. (This does not apply to CJ1W-DA042V.)4. Connect a surge suppressor to inductive loads in the system (e.g., magnetic contactors, relays, and solenoids).

Outputswitch and conversion circuit

AMP Voltage output (+)

Voltage output (–)

AG (common to all outputs)

Voltage output section

AMP

Current output section

Current output (+)

Current output (−)

AMPOutputswitch and conversion circuit

Outputswitch and conversion circuit

AMP Voltage output (+)

Voltage output (–)

AG (common to all outputs)

Voltage output 2 (+)

Output 2 (−)

Current output 2 (+)

N.C.

N.C.

N.C.

N.C.

N.C.

0 V

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Voltage output 1 (+)

Output 1 (−)

Current output 1 (+)

N.C.

N.C.

N.C.

N.C.

N.C.

24 V

Voltage output 2 (+)

Output 2 (−)

Current output 2 (+)

Voltage output 4 (+)

Output 4 (−)

Current output 4 (+)

N.C.

N.C.

0 V

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Voltage output 1 (+)

Output 1 (−)

Current output 1 (+)

Voltage output 3 (+)

Output 3 (−)

Current output 3 (+)

N.C.

N.C.

24 V

Output 2 (+)

Output 2 (−)

Output 4 (+)

Output 4 (−)

Output 6 (+)

Output 6 (−)

Output 8 (+)

Output 8 (−)

0 V

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Output 1 (+)

Output 1 (−)

Output 3 (+)

Output 3 (−)

Output 5 (+)

Output 5 (−)

Output 7 (+)

Output 7 (−)

24 V

Output 2 (+)

Output 2 (−)

N.C.

Output 4 (+)

Output 4 (−)

N.C.

N.C.

N.C.

N.C.

B1

B2

B3

B4

B5

B6

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

A9

Output 1 (+)

Output 1 (−)

N.C.

Output 3 (+)

Output 3 (−)

N.C.

N.C.

N.C.

N.C.

12

CJ1W-AD/DA/MAD

Analog I/O Unit CJ1W-MAD42Components

IndicatorsThe indicators show the operating status of the Unit. The following table shows the meanings of the indicators.

LED Meaning Indicator Operating status

RUN (green) OperatingLit Operating in normal mode.

Not lit Unit has stopped exchanging data with the CPU Unit.

ERC (red) Error detected by UnitLit Alarm has occurred (such as disconnection detection) or initial

settings are incorrect.

Not lit Operating normally.

ADJ (yellow) AdjustingFlashing Operating in offset/gain adjustment mode.

Not lit Other than the above.

ERH (red) Error in the CPU UnitLit Error has occurred during data exchange with the CPU Unit.

Not lit Operating normally.

MACHNo.

MAD42RUNERCERH B1 A1ADJ

x101

x100

09

8765

4 32109

8765

4 321

MACHNo.

MAD42RUNERCERH B1 A1ADJ

x101

x100

21

21

09

8765

4 32109

8765

4 321

ON

ON

FrontWith Terminal Block With Terminal Block Removed

Indicators

Terminal block

Voltage/current switch

DIN Track mounting pin

Terminal block

Terminal block lock lever (pull down to release terminal bloc

User number setting switch

Slider

Expansion connector

Slider

Side

CJ1W-AD/DA/MAD

13

I/O CircuitThe following diagrams show the internal circuit of the analog I/O section.

Input Circuits

Voltage Output Circuits Current Output Circuits

Terminal ArrangementThe signal names corresponding to the connecting terminals are as shown in the following diagram.

CJ1W-MAD42

Note: 1. Set the analog input number that you use and input signal range for each analog input, using the memory area or support software. The input signal range can be set separately for each input number.

2. The AG terminal (A7, B7) is connected to the 0 V analog circuit in the Unit. Connecting shielded input lines can improve noise resistance.3. The N.C. terminals (A4, B4) are not connected to internal circuit.

Wiring Vasic I/O Units with Terminal BlocksCrimp terminalsUse crimp terminals (M3) having the dimensions shown below.

1 MΩ

15 kΩ 15 kΩ

15 kΩ 15 kΩ

AG (common to all inputs)

Input (+)

Input (–)

AG(analog 0 V)

Input circuit and conversion circuit

1 MΩ

Voltage/currentinput switch

250 Ω

Output switch and conversion circuit

AMP Voltage output (+)

Voltage output (–)

AG (common to all outputs)

AMP

AMPCurrent output (+)

Current output (–)

Output switch and conversion circuit

Voltage output 2 (+)

Output 2 (–)

Current output 2 (+)

N.C.

Input 2 (+)

Input 2 (–)

AG

Input 4 (+)

Input 4 (–)

Voltage output 1 (+)

Output 1 (–)

Current output 1 (+)

N.C.

Input 1 (+)

Input 1 (–)

AG

Input 3 (+)

Input 3 (–)

A1

A2

A3

A4

A5

A6

A7

A8

A9

B1

B2

B3

B4

B5

B6

B7

B8

B9

6.2 mm max. 6.2 mm max.

14

CJ1W-AD/DA/MAD

Dimensions (Unit: mm)

CJ1W-AD041-V1/081-V1/AD042CJ1W-DA021/041/08V/08C/DA042VCJ1W-MAD42

Note: The appearance varies with the model.

Related Manuals

Manual name Cat. No. Manual name Application Description

CJ-series Analog I/OUnits Operation Manualfor NJ-series CPU Unit

W490CJ1W-AD0@@-@@CJ1W-DA0@@@CJ1W-MAD42

Learning about the functions and usage of CJseries Analog Input Units, Analog Output Units, and Analog I/O Units for using them in an NJ-series configuration.

The functions and usage of the CJ-series Analog Input Units, Analog Output Units, and Analog I/O Units for using them in an NJ-series configuration are described.

CS/CJ Series Analog I/OUnits Operation Manual W345

CS1W-AD041-V1/081-V1/161CS1W-DA041/08V/08CCS1W-MAD44CJ1W-AD041-V1/081-V1/042CJ1W-DA021/041/08V/08C/042VCJ1W-MAD42

Learning about the functions and usage of CJseries Analog Input Units, Analog Output Units, and Analog I/O Units.

The functions and usage of the CJ-series Analog Input Units, Analog Output Units, and Analog I/O Units for using them in a CJ-series configuration are described.

MACHNo.

AD081-V1RUNERCERH B1 A1ADJ

x101

x100

09

8765 4 321

09

8765 4 321

ON1

2

MODE

2.7

90

31

2.7

65

89

8.2

6.4

17.5

7.62

74.77

Terminal BlockDimensions

Terms and Conditions Agreement Read and understand this catalog. Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron’s analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer’s application or use of the Product. At Buyer’s request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take application responsibility in all cases. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. Programmable Products. Omron Companies shall not be responsible for the user’s programming of a programmable Product, or any consequence thereof. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron’s test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron’s Warranty and Limitations of Liability. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron’s representative at any time to confirm actual specifications of purchased Product. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

2013.5

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2013 All Right Reserved.

CSM_CJ1W-INPUT_DS_E_8_1

1

CJ-series Input Units

CJ1W-ID/IAA Wide Range of Basic Input Units for High Speed Input and Different Applications

• Receive ON/OFF signals from external devices into the PLC System to update I/O memory in the CPU Unit.

• New high-speed input models CJ1W-ID212 and CJ1W-ID233 are now available. These units can help to increase system throughput.

Features• High-speed input models are available, meeting versatile applications.

ON Response Time: 15μs, OFF Response Time: 90μs• Use 24-VDC, 100-VAC, and 200-VAC models to connect to devices with different types of outputs.• The 24-VDC models can be connected to devices with either NPN or PNP outputs. There is no need to select the polarity. *1• A digital filter in the Unit can be set from 0 to 32 ms to reduce the influence of external noise. • Either a Fujitsu or MIL connector interface can be used. *2• Several models of Terminal Block Conversion Units are available, making it easy to connect to external devices.

*1. The same polarity is used for the same common.*2. For models with 32 or 64 inputs.

CJ1W-ID212 CJ1W-ID233

CJ1W-ID/IA

2

Ordering InformationInternational Standards• The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus,

UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.• Contact your OMRON representative for further details and applicable conditions for these standards.

Input Units

AccessoriesConnectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable Connector-Terminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

Unit type Product name

SpecificationsCurrent

consumption (A)

Model Standards

I/O points Input voltage and current Commons External

connection

No. of words

allocated5 V 24 V

CJ1 Basic I/O Units

DC Input Units

8 inputs 12 to 24 VDC, 10 mAIndependent contacts

Removable terminal block 1 word 0.09 − CJ1W-ID201

UC1, N, L, CE

16 inputs 24 VDC, 7 mA16 points, 1 common

Removable terminal block 1 word 0.08 − CJ1W-ID211

16 inputs(High speed) 24 VDC, 7 mA

16 points,1 common

Removable terminal block 1 word 0.13 − CJ1W-ID212 N, L, CE

32 inputs 24 VDC, 4.1 mA 16 points, 1 common Fujitsu connector 2 words 0.09 − CJ1W-ID231

UC1, N, L, CE

32 inputs 24 VDC, 4.1 mA 16 points, 1 common MIL connector 2 words 0.09 − CJ1W-ID232

32 inputs(High speed) 24 VDC, 4.1 mA 16 points,

1 common MIL connector 2 words 0.20 − CJ1W-ID233 N, L, CE

64 inputs 24 VDC, 4.1 mA 16 points, 1 common Fujitsu connector 4 words 0.09 − CJ1W-ID261

UC1, N, L, CE

64 inputs 24 VDC, 4.1 mA 16 points,1 common MIL connector 4 words 0.09 − CJ1W-ID262

AC Input Units 8 inputs 200 to 24 VAC, 10 mA

(200 V, 50 Hz)8 points, 1 common

Removable Terminal Block 1 words 0.08 − CJ1W-IA201

16 inputs 100 to 120 VAC, 7 mA (100 V, 50 Hz)

16 points, 1 common

Removable Terminal Block 1 words 0.09 − CJ1W-IA111

3

CJ1W-ID/IA

Applicable ConnectorsFujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

* Crimp Contacts are also required. Refer to page 20 for details.

Applicable Connector-Terminal Block Conversion Units

Note: For the combination of Input Units with Connector-Terminal Block Conversion Units, refer to 2. Connecting Connector-Terminal Block Conversion Units.

Name Connection Remarks Applicable Units Model Standards

40-pin Connectors

SolderedFCN-361J040-AU ConnectorFCN-360C040-J2 Connector

CoverFujitsu Connectors: CJ1W-ID231(32 inputs): 1 per UnitCJ1W-ID261 (64 inputs): 2 per UnitCJ1W-OD231 (32 outputs):1 per UnitCJ1W-OD261 (64 outputs): 2 per UnitCJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit

C500-CE404

Crimped

FCN-363J040 HousingFCN-363J-AU ContactorFCN-360C040-J2 Connector

Cover

C500-CE405

Pressure welded FCN-367J040-AU/F C500-CE403

24-pin Connectors

SolderedFCN-361J024-AU ConnectorFCN-360C024-J2 Connector

Cover

Fujitsu Connectors:CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit

C500-CE241

Crimped

FCN-363J024 HousingFCN-363J-AU ContactorFCN-360C024-J2 Connector

Cover

C500-CE242

Pressure welded FCN-367J024-AU/F C500-CE243

Name Connection Remarks Applicable Units Model Standards

40-pin Connectors

Pressure welded FRC5-AO40-3TOSMIL Connectors:CJ1W-ID232/233 (32 inputs): 1 per UnitCJ1W-OD232/233/234 (32 outputs):1 per UnitCJ1W-ID262 (64 inputs): 2 per UnitCJ1W-OD262/263 (64 outputs): 2 per UnitCJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit

XG4M-4030-T

Crimped − XG5N-401*

20-pin Connectors

Pressure welded FRC5-AO20-3TOS MIL Connectors:CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit

XG4M-2030-T−

Crimped − XG5N-201*

Type Series I/O Number of poles Wiring method Terminal

type

Size MountingCommon terminals

Bleeder resistance Indicators I/O Units Model StandardsDepth

(mm)Height (mm)

Width (mm)

DIN Track Screws

PLCs XW2R Output 34

Phillips screw

M3 50 48.35 130.7

Yes Yes No No No

CJ1W-ID231CJ1W-ID261 XW2R-J34G-C1

CJ1W-ID232CJ1W-ID233CJ1W-ID262

XW2R-J34G-C2

Slotted screw (rise up)

M3(Europeantype)

50 45.11 98.5

CJ1W-ID231CJ1W-ID261 XW2R-E34G-C1

CJ1W-ID232CJ1W-ID233CJ1W-ID262

XW2R-E34G-C2

Push-in spring

Clamp 50 45.11 98.5

CJ1W-ID231CJ1W-ID261 XW2R-P34G-C1

CJ1W-ID232CJ1W-ID233CJ1W-ID262

XW2R-P34G-C2

CJ1W-ID/IA

4

Applicable I/O Relay Terminals

Note: For the combination of Input Units with I/O Relay Terminal and Connecting Cables, refer to 3. Connecting I/O Relay Terminals.

Type Series

Specifications Size (horizontal mounting) Mounting

Model StandardsClassification Polarity

Number of

points

Rated ON current at contacts

Operation indicators

Terminal block for

power supply wiring

Horizontal (mm)

Vertical (mm)

Height (mm)

DIN Track Screws

Space-saving G70D

Vertical typeG70D-V

Outputs

Relay outputs

NPN16 (SPST-NO × 16)

5A or 3A

Yes Expandable 135 46 81 Yes Yes

G70D-VSOC16U, C, CEMOSFET

relay outputs

0.3A G70D-VFOM16

Flat typeG70D

Relay outputs

NPN

8 (SPST-NO × 8) 5A

Yes −

68 93 44

Yes Yes

G70D-SOC08 −

16 (SPST-NO × 16)

3A

156 51 39

G70D-SOC16

PNP16 (SPST-NO × 16)

3A G70D-SOC16-1

MOSFET relay outputs

NPN 16 (SPST-NO × 16)

0.3AG70D-FOM16

−PNP G70D-FOM16-1

High-capacity, space-saving

G70R Outputs Relay outputs NPN 8 (SPST-

NO × 8) 10A Yes − 136 93 55 Yes Yes G70R-SOC08 −

Standard G7TC

Inputs

AC inputs

NPN16 (SPST-NO × 16)

1A

Yes −

182

85 68 Yes −

G7TC-IA16

U, C

DC inputs G7TC-ID16

Outputs Relay outputs

NPN

8 (SPST-NO × 8)

5A

102 G7TC-OC08

16 (SPST-NO × 16)

182

G7TC-OC16

PNP16 (SPST-NO × 16)

G7TC-OC16-1 −

High-capacity socket

G70A (Socket only)

Outputs Relay outputs

NPN 16 (SPDT × 16 possible with G2R Relays)

10 A (Terminal block allowable current)

No − 234 75 64 Yes −

G70A-ZOC16-3

U, C, CE

(Socket only) + Relay/SSR/MOSFET Relay/Timer

PNP

G70A-ZOC16-4(Socket only) + Relay/SSR/MOSFET Relay/Timer

5

CJ1W-ID/IA

Mountable Racks

ModelNJ system CJ system (CJ1, CJ2) CP1H system NSJ system

CPU Rack Expansion Rack CPU Rack Expansion Backplane CP1H PLC NSJ Controller Expansion

Backplane

CJ1W-ID201

10 Units10 Units

(per Expansion Rack)

10 Units10 Units

(per Expansion Backplane)

Not supported Not supported10 Units

(per Expansion Backplane)

CJ1W-ID211

CJ1W-ID212

CJ1W-ID231

CJ1W-ID232

CJ1W-ID233

CJ1W-ID261

CJ1W-ID262

CJ1W-IA201

CJ1W-IA111

CJ1W-ID/IA

6

SpecificationsCJ1W-ID201 DC Input Unit (12 to 24-VDC, 8 Points)

*1. The ON response time will be 20 μs maximum and OFF response time will be 400 μs maximum even if the response time are set to 0 ms due to internal element delays.

*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point DC Input Unit with Terminal Block

Model CJ1W-ID201

Rated Input Voltage 12 to 24 VDC

Rated Input Voltage Range 10.2 to 26.4 VDC

Input Impedance 2.4 kΩ

Input Current 10 mA typical (at 24 VDC)

ON Voltage/ON Current 8.8 VDC min./3 mA min.

OFF Voltage/OFF Current 3 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

Number of Circuits 8 independent circuits

Number of Simultaneously ON Points

100% simultaneously ON

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 80 mA max.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• Polarity of the input power supply can be connected in either direction.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

560

Ω

2.4 kΩ

560

Ω

2.4 kΩ10

00 p

F

Input indicator

Inte

rnal

circ

uits

to

1000

pF

Input indicator

Inte

rnal

circ

uits

Signal name

COM7

Jxx_Ch1_In07

COM0

Jxx_Ch1_In00

Signal name

Signal name

Con-nector pin *2

B1

IN0

B2

IN1

B3

IN2

B4

IN3

B5

IN4

B6

IN5

B7

IN6

B8

IN7

NC

C0

C1

C2

C3

C4

C5

C6

C7

NC

B0A1

A2

A3

A4

A5

A6

A7

A8

A0

12~24V DC

7

CJ1W-ID/IA

CJ1W-ID211 DC Input Unit (24 VDC, 16 Points)

*1. The ON response time will be 20 μs maximum and OFF response time will be 400 μs maximum even if the response time are set to 0 ms due to internal element delays.

*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point DC Input Unit with Terminal Block

Model CJ1W-ID211

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 3.3 kΩ

Input Current 7 mA typical (at 24 VDC)

ON Voltage/ON Current 14.4 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

Number of Circuits 16 (16 points/common, 1 circuit)

Number of Simultaneously ON Points

100% simultaneously ON (at 24 VDC) (Refer to the following illustration.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 80 mA max.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• Polarity of the input power supply can be connected in either direction.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Inte

rnal

circ

uits

Input indicator

to

Signal name

1000 pF

470 Ω3.3 kΩJxx_Ch1_In00

Jxx_Ch1_In15

COM

COM

18

16

14

12

10

8

6

4

2

00 10 20 30 40 50 60

No.

of s

imul

tane

ousl

y O

N p

oint

s

Input voltage: 26.4 VDC12 points at 55°C.

16 points at 45°C.

Ambient temperature(°C)

Temperature characteristics for simultaneously ON points

24 VDC

B1

Jxx_Ch1_In01

B2

Jxx_Ch1_In03

B3

Jxx_Ch1_In05

B4

Jxx_Ch1_In07

B5

Jxx_Ch1_In09

B6

Jxx_Ch1_In11

B7

Jxx_Ch1_In13

B8

Jxx_Ch1_In15

COM

A1

Jxx_Ch1_In00

A2

Jxx_Ch1_In02

A3

Jxx_Ch1_In04

A4

Jxx_Ch1_In06

A5

Jxx_Ch1_In08

A6

Jxx_Ch1_In10

A7

Jxx_Ch1_In12

A8

Jxx_Ch1_In14

COM

B0A0

Signal name

Signal name

Connector pin *2

CJ1W-ID/IA

8

CJ1W-ID212 DC Input Unit (24 VDC, 16 Points)

*1. The ON response time will be 15 μs maximum and OFF response time will be 90 μs maximum even if the response time are set to 0 ms due to internal element delays.

*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point DC Input Unit with Terminal Block

Model CJ1W-ID212

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 3.3 kΩ

Input Current 7 mA typical (at 24 VDC)

ON Voltage/ON Current 14.4 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 ms in the Setup.) *1

Number of Circuits 16 (16 points/common, 1 circuit)

Number of Simultaneously ON Points

100% simultaneously ON (at 24 VDC) (Refer to the following illustration.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 130 mA max.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• Polarity of the input power supply can be connected in either direction.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

1000 pF

470 Ω3.3 kΩ

Inte

rnal

circ

uits

Input indicator

to

Signal name

Jxx_Ch1_In00

Jxx_Ch1_In15

COM

COM

18

16

14

12

10

8

6

4

2

00 10 20 30 40 50 60

No.

of s

imul

tane

ousl

y O

N p

oint

s

Input voltage: 26.4 VDC12 points at 55°C.

16 points at 45°C.

Ambient temperature(°C)

Temperature characteristics for simultaneously ON points

B1

Jxx_Ch1_In01

B2

Jxx_Ch1_In03

B3

Jxx_Ch1_In05

B4

Jxx_Ch1_In07

B5

Jxx_Ch1_In09

B6

Jxx_Ch1_In11

B7

Jxx_Ch1_In13

B8

Jxx_Ch1_In15

COM

A1

Jxx_Ch1_In00

A2

Jxx_Ch1_In02

A3

Jxx_Ch1_In04

A4

Jxx_Ch1_In06

A5

Jxx_Ch1_In08

A6

Jxx_Ch1_In10

A7

Jxx_Ch1_In12

A8

Jxx_Ch1_In14

COM

B0A0

24 VDC

Signal name

Signal name

Connector pin *2

9

CJ1W-ID/IA

CJ1W-ID231 DC Input Unit (24 VDC, 32 Points)

* The ON response time will be 20 μs maximum and OFF response time will be 400 μs maximum even if the response times are set to 0 ms due to internal element delays.

Note: Observe the following restrictions when connecting to a 2-wire sensor. • Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V). • Use a sensor with a minimum load current of 3 mA min. • Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

Name 32-point DC Input Unit with Fujitsu Connector

Model CJ1W-ID231

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 5.6 kΩ

Input Current 4.1 mA typical (at 24 VDC)

ON Voltage/ON Current 19.0 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

Number of Circuits 32 (16 points/common, 2 circuits)

Number of Simultaneously ON Points 75% (12 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustration.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 90 mA max.

Weight 70 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The input power polarity can be connected in either direction.• Be sure to wire both pins A9 and A18 (COM0), and set the same polarity for both pins.• Be sure to wire both pins B9 and B18 (COM1), and set the same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

560

Ω56

0 Ω

5.6 kΩ

5.6 kΩ

1000

pF

1000

pF

Inte

rnal

circ

uits

Input indicator

to

toWd m+1

Wd m

Allocated CIO word

Signal name

Connector row A

Connector row B

Jxx_Ch1_In00

Jxx_Ch1_In15

COM0

Jxx_Ch2_In00

Jxx_Ch2_In15

COM1

COM0

COM1

SW

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

Number of Simultaneously ON Points vs. Ambient Temperature Characteristic

Num

ber

of s

imul

tane

ousl

y O

N p

oint

s

Ambient Temperature

(°C)

10 points/common at 55°C

12 points/common at 55°C

Input voltage: 26.4 VDC

Input voltage: 24 VDC

32 points at 48°C32 points at 40°C

AllocatedCIO word

AllocatedCIO word

Wd m+1Wd m 24 VDC

Wd m Wd m+1

24 VDC

Signal name

Signal name

Connec-tor pin

Jxx_Ch1_In00

Jxx_Ch1_In01

Jxx_Ch1_In02

Jxx_Ch1_In03

Jxx_Ch1_In04

Jxx_Ch1_In05

Jxx_Ch1_In06

Jxx_Ch1_In07

Jxx_Ch2_In00

Jxx_Ch2_In01

Jxx_Ch2_In02

Jxx_Ch2_In03

Jxx_Ch2_In04

Jxx_Ch2_In05

Jxx_Ch2_In06

Jxx_Ch2_In07

COM0

Jxx_Ch1_In08

Jxx_Ch1_In09

Jxx_Ch1_In10

Jxx_Ch1_In11

Jxx_Ch1_In12

Jxx_Ch1_In13

Jxx_Ch1_In14

Jxx_Ch1_In15

Jxx_Ch2_In08

Jxx_Ch2_In09

Jxx_Ch2_In10

Jxx_Ch2_In11

Jxx_Ch2_In12

Jxx_Ch2_In13

Jxx_Ch2_In14

Jxx_Ch2_In15

COM0

NC

NC

COM1

COM1

NC

NC

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

CJ1W-ID/IA

10

CJ1W-ID232 DC Input Unit (24 VDC, 32 Points)

* The ON response time will be 20 μs maximum and OFF response time will be 400 μs maximum even if the response times are set to 0 ms due to internal element delays.

Note: Observe the following restrictions when connecting to a 2-wire sensor. • Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V). • Use a sensor with a minimum load current of 3 mA min. • Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

Name 32-point DC Input Unit with MIL Connector

Model CJ1W-ID232

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 5.6 kΩInput Current 4.1 mA typical (at 24 VDC)

ON Voltage/ON Current 19.0 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

Number of Circuits 32 (16 points/common, 2 circuits)

Number of Simultaneously ON Points 75% (12 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustration.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 90 mA max.

Weight 70 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The input power polarity can be connected in either direction.• Be sure to wire both pins 23 and 24 (COM0), and set the same polarity for both pins.• Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

560

Ω56

0 Ω

5.6 kΩ

5.6 kΩ

1000

pF

1000

pF

Inte

rnal

circ

uits

Input indicator

to

toWd m+1

Wd m

Allocated CIO word

Signal name

Connector row A

Connector row B

Jxx_Ch1_In00

Jxx_Ch1_In15

COM0

Jxx_Ch2_In00

Jxx_Ch2_In15

COM1

COM0

COM1

SW

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60Num

ber

of s

imul

tane

ousl

y O

N p

oint

s

Ambient Temperature(°C)

10 points/common at 55°C

12 points/common at 55°C

Input voltage: 26.4 VDC

Input voltage: 24 VDC

32 points at 48°C32 points at 40°C

Number of Simultaneously ON Points vs. Ambient Temperature Characteristic

Wd m+1 Wd m+1

Wd m Wd m

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

2 NC

4 COM1

6 Jxx_Ch2_In07

8 Jxx_Ch2_In06

10 Jxx_Ch2_In05

12 Jxx_Ch2_In04

14 Jxx_Ch2_In03

16 Jxx_Ch2_In02

18 Jxx_Ch2_In01

20 Jxx_Ch2_In00

Jxx_Ch1_In07

Jxx_Ch1_In06

Jxx_Ch1_In05

Jxx_Ch1_In04

Jxx_Ch1_In03

Jxx_Ch1_In02

Jxx_Ch1_In01

Jxx_Ch1_In00

22 NC

24262830323436

1NC

3COM1

5Jxx_Ch2_In15

7Jxx_Ch2_In14

9Jxx_Ch2_In13

11Jxx_Ch2_In12

13Jxx_Ch2_In11

15Jxx_Ch2_In10

17Jxx_Ch2_In09

19Jxx_Ch2_In08

21NC

23252729313335

3840

3739

COM0 COM0

Jxx_Ch1_In15

Jxx_Ch1_In14

Jxx_Ch1_In13

Jxx_Ch1_In12

Jxx_Ch1_In11

Jxx_Ch1_In10

Jxx_Ch1_In09

Jxx_Ch1_In08

11

CJ1W-ID/IA

CJ1W-ID233 DC Input Unit (24 VDC, 32 Points)

* The ON response time will be 15 μs maximum and OFF response time will be 90 μs maximum even if the response times are set to 0 ms due to internal element delays.

Note: Observe the following restrictions when connecting to a 2-wire sensor. • Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V). • Use a sensor with a minimum load current of 3 mA min. • Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

Name 32-point DC Input Unit with MIL Connector

Model CJ1W-ID233

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 5.6 kΩInput Current 4.1 mA typical (at 24 VDC)

ON Voltage/ON Current 19.0 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

Number of Circuits 32 (16 points/common, 2 circuits)

Number of Simultaneously ON Points 75% (12 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustration.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 200 mA max.

Weight 70 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The input power polarity can be connected in either direction.• Be sure to wire both pins 23 and 24 (COM0), and set the same polarity for both pins.• Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

560

Ω56

0 Ω

5.6 kΩ

5.6 kΩ

1000

pF

1000

pF

Inte

rnal

circ

uits

Input indicator

to

toWd m+1

Wd m

Allocated CIO word

Signal name

Connector row A

Connector row B

Jxx_Ch1_In00

Jxx_Ch1_In15

COM0

Jxx_Ch2_In00

Jxx_Ch2_In15

COM1

COM0

COM1

SW

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60Num

ber

of s

imul

tane

ousl

y O

N p

oint

s

Ambient Temperature(°C)

10 points/common at 55°C

12 points/common at 55°C

Input voltage: 26.4 VDC

Input voltage: 24 VDC

32 points at 48°C32 points at 40°C

Number of Simultaneously ON Points vs. Ambient Temperature Characteristic

Wd m+1 Wd m+1

Wd m Wd m

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

2 NC

4 COM1

6 Jxx_Ch2_In07

8 Jxx_Ch2_In06

10 Jxx_Ch2_In05

12 Jxx_Ch2_In04

14 Jxx_Ch2_In03

16 Jxx_Ch2_In02

18 Jxx_Ch2_In01

20 Jxx_Ch2_In00

Jxx_Ch1_In07

Jxx_Ch1_In06

Jxx_Ch1_In05

Jxx_Ch1_In04

Jxx_Ch1_In03

Jxx_Ch1_In02

Jxx_Ch1_In01

Jxx_Ch1_In00

22 NC

24262830323436

1NC

3COM1

5Jxx_Ch2_In15

7Jxx_Ch2_In14

9Jxx_Ch2_In13

11Jxx_Ch2_In12

13Jxx_Ch2_In11

15Jxx_Ch2_In10

17Jxx_Ch2_In09

19Jxx_Ch2_In08

21NC

23252729313335

3840

3739

COM0 COM0

Jxx_Ch1_In15

Jxx_Ch1_In14

Jxx_Ch1_In13

Jxx_Ch1_In12

Jxx_Ch1_In11

Jxx_Ch1_In10

Jxx_Ch1_In09

Jxx_Ch1_In08

CJ1W-ID/IA

12

CJ1W-ID261 DC Input Unit (24 VDC, 64 Points)

* The ON response time will be 120 μs maximum and OFF response time will be 400 μs maximum even if the response times are set to 0 ms due to internal element delays.

Note: Observe the following restrictions when connecting to a 2-wire sensor. • Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V). • Use a sensor with a minimum load current of 3 mA min. • Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

Name 64-point DC Input Unit with Fujitsu Connector

Model CJ1W-ID261

Rated Input Voltage 24 VDC

Rated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 5.6 kΩInput Current 4.1 mA typical (at 24 VDC)

ON Voltage/ON Current 19.0 VDC min./3 mA min.

OFF Voltage/OFF Current 5 VDC max./1 mA max.

ON Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *

Number of Circuits 64 (16 points/common, 4 circuits)

Number of Simultaneously ON Points 50% (16 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustrations.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 90 mA max.

Weight 110 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

CN1 CN2

• The input power polarity can be connected in either direction.• Be sure to wire both pins A9 and A18 (COM0) of CN1, and set the

same polarity for both pins.• Be sure to wire both pins B9 and B18 (COM1) of CN1, and set the

same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

• The input power polarity can be connected in either direction.• Be sure to wire both pins A9 and A18 (COM2) of CN2, and set the

same polarity for both pins.• Be sure to wire both pins B9 and B18 (COM3) of CN2, and set the

same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

5.6 kΩ

1000

pF

560

Ω

5.6 kΩ

Input indicatorIndicator switching circuit

Inte

rnal

circ

uits

Inte

rnal

circ

uits

1000

pF

560

Ω

Wd m+1

Wd m

Wd m+2

Wd m+3

Allocated CIO word

Signal name

Connector row A

Connector row B

Connector row A

Connector row B

SWCN1

Jxx_Ch1_In00

Jxx_Ch1_In15COM0

Jxx_Ch2_In00

Jxx_Ch2_In15

COM0

COM1COM1

Jxx_Ch3_In00

Jxx_Ch3_In15COM2

Jxx_Ch4_In00

Jxx_Ch4_In15

COM2

COM3COM3

CN2

to

to

to

to

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Ambient Temperature

8 points/common (total: 26 points max.) at 55°C

8 points/common at 55°C

12 points/common (total: 45 points) at 55°C

Input voltage: 20.4 VDC

Input voltage: 26.4 VDC

Input voltage: 24 VDC

Num

ber

of s

imul

tane

ousl

y O

N p

oint

s

Number of Simultaneously ON Points vs. Ambient Temperature Characteristic

64 points at 25°C 64 points at 47°C

(°C)

64 points at 35°C

24 VDC

Wd

m+

1

Wd

m

Wd

m

24 VDC

Wd

m+

1

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

COM0

COM0

NC

NC

COM1

COM1

NC

NC

Jxx_Ch1_In07

Jxx_Ch1_In06

Jxx_Ch1_In05

Jxx_Ch1_In04

Jxx_Ch1_In03

Jxx_Ch1_In02

Jxx_Ch1_In01

Jxx_Ch1_In00

Jxx_Ch2_In07

Jxx_Ch2_In06

Jxx_Ch2_In05

Jxx_Ch2_In04

Jxx_Ch2_In03

Jxx_Ch2_In02

Jxx_Ch2_In01

Jxx_Ch2_In00

Jxx_Ch1_In15

Jxx_Ch1_In14

Jxx_Ch1_In13

Jxx_Ch1_In12

Jxx_Ch1_In11

Jxx_Ch1_In10

Jxx_Ch1_In09

Jxx_Ch1_In08

Jxx_Ch2_In15

Jxx_Ch2_In14

Jxx_Ch2_In13

Jxx_Ch2_In12

Jxx_Ch2_In11

Jxx_Ch2_In10

Jxx_Ch2_In09

Jxx_Ch2_In08

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

B20

B19

B18

B17

B16

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

Wd

m+

2

24VDC

Wd

m+

2

24 VDC

Wd

m+

3W

d m

+3

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

COM3

COM3

NC

NC

COM2

COM2

NC

NC

Jxx_Ch3 _In08

Jxx_Ch3_In09

Jxx_Ch3_In10

Jxx_Ch3_In11

Jxx_Ch3_In12

Jxx_Ch3_In13

Jxx_Ch3_In14

Jxx_Ch3_In15

Jxx_Ch4_In08

Jxx_Ch4_In09

Jxx_Ch4_In10

Jxx_Ch4_In11

Jxx_Ch4_In12

Jxx_Ch4_In13

Jxx_Ch4_In14

Jxx_Ch4_In15

Jxx_Ch3_In00

Jxx_Ch3_In01

Jxx_Ch3_In02

Jxx_Ch3_In03

Jxx_Ch3_In04

Jxx_Ch3_In05

Jxx_Ch3_In06

Jxx_Ch3_In07

Jxx_Ch4_In00

Jxx_Ch4_In01

Jxx_Ch4_In02

Jxx_Ch4_In03

Jxx_Ch4_In04

Jxx_Ch4_In05

Jxx_Ch4_In06

Jxx_Ch4_In07

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

13

CJ1W-ID/IA

CJ1W-ID262 DC Input Unit (24 VDC, 64 Points)

* The ON response time will be 120 μs maximum and OFF response time will be 400 μs maximum even if the response times are set to 0 ms due to internal element delays.

Note: Observe the following restrictions when connecting to a 2-wire sensor. • Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V). • Use a sensor with a minimum load current of 3 mA min. • Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

Name 64-point DC Input Unit with MIL ConnectorModel CJ1W-ID262Rated Input Voltage 24 VDCRated Input Voltage Range 20.4 to 26.4 VDC

Input Impedance 5.6 kΩInput Current 4.1 mA typical (at 24 VDC)ON Voltage/ON Current 19.0 VDC min./3 mA min.OFF Voltage/OFF Current 5 VDC max./1 mA max.ON Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *OFF Response Time 8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *Number of Circuits 64 (16 points/common, 4 circuits)Number of Simultaneously ON Points 50% (8 points/common) simultaneously ON (at 24 VDC) (Refer to the following illustrations.)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (100 VDC)Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.Internal Current Consumption 90 mA max.

Weight 110 g max.Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

CN1 CN2

• The input power polarity can be connected in either direction.• Be sure to wire both pins 23 and 24 (COM0) of CN1, and set the

same polarity for both pins.• Be sure to wire both pins 3 and 4 (COM1) of CN1, and set the

same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

• The input power polarity can be connected in either direction.• Be sure to wire both pins 23 and 24 (COM2) of CN2, and set the

same polarity for both pins.• Be sure to wire both pins 3 and 4 (COM3) of CN2, and set the

same polarity for both pins.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

to

to

to

to

Input indicatorIndicator switching circuit

Inte

rnal

circ

uits

Inte

rnal

circ

uits

Wd m+1

Wd m

Wd m+2

Wd m+3

Allocated CIO word

Signal name

Jxx_Ch1_In00

Jxx_Ch1_In15COM0

SWJxx_Ch2_In00

Jxx_Ch2_In15

CN1COM0

COM1 COM1

Jxx_Ch3_In00

Jxx_Ch3_In15COM2

Jxx_Ch4_In00

Jxx_Ch4_In15

COM2

COM3COM3

560

Ω56

0 Ω

1000

pF10

00pF

5.6 kΩ

5.6 kΩ

CN20

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Ambient Temperature

8 points/common (total: 26 points max.) at 55°C

8 points/common at 55°C

12 points/common (total: 45 points) at 55°C

Input voltage: 20.4 VDC

Input voltage: 26.4 VDC

Input voltage: 24 VDC

Num

ber

of s

imul

tane

ousl

y O

N p

oint

s

Number of Simultaneously ON Points vs. Ambient Temperature Characteristic

64 points at 47°C64 points at 35°C64 points at 25°C

(°C)

24 VDC

24 VDC

Wd

m+

1

Wd

m+

1

Wd

m

Wd

m

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

1NC

35791113151719212325272931333537

NC

39

24

NC

681012141618

COM1

2022242628303234363840

COM1

NC

COM0 COM0

Jxx_Ch1_In00

Jxx_Ch1_In01

Jxx_Ch1_In02

Jxx_Ch1_In03

Jxx_Ch1_In04

Jxx_Ch1_In05

Jxx_Ch1_In06

Jxx_Ch1_In07

Jxx_Ch2_In00

Jxx_Ch2_In01

Jxx_Ch2_In02

Jxx_Ch2_In03

Jxx_Ch2_In04

Jxx_Ch2_In05

Jxx_Ch2_In06

Jxx_Ch2_In07

Jxx_Ch2_In08

Jxx_Ch2_In09

Jxx_Ch2_In10

Jxx_Ch2_In11

Jxx_Ch2_In12

Jxx_Ch2_In13

Jxx_Ch2_In14

Jxx_Ch2_In15

Jxx_Ch1_In08

Jxx_Ch1_In09

Jxx_Ch1_In10

Jxx_Ch1_In11

Jxx_Ch1_In12

Jxx_Ch1_In13

Jxx_Ch1_In14

Jxx_Ch1_In15

Wd

m+

3

Wd

m+

3

Wd

m+

2

Wd

m+

2

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

40383634323028262422201816141210864

NC2COM3

393735333129272523

COM22119171513119753

NC 1COM3

COM2

NC

Jxx_Ch3_In15

Jxx_Ch3_In14

Jxx_Ch3_In13

Jxx_Ch3_In12

Jxx_Ch3_In11

Jxx_Ch3_In10

Jxx_Ch3_In09

Jxx_Ch3_In08

Jxx_Ch4_In15

Jxx_Ch4_In14

Jxx_Ch4_In13

Jxx_Ch4_In12

Jxx_Ch4_In11

Jxx_Ch4_In10

Jxx_Ch4_In09

Jxx_Ch4_In08

Jxx_Ch4_In07

Jxx_Ch4_In06

Jxx_Ch4_In05

Jxx_Ch4_In04

Jxx_Ch4_In03

Jxx_Ch4_In02

Jxx_Ch4_In01

Jxx_Ch4_In00

Jxx_Ch3_In07

Jxx_Ch3_In06

Jxx_Ch3_In05

Jxx_Ch3_In04

Jxx_Ch3_In03

Jxx_Ch3_In02

Jxx_Ch3_In01

Jxx_Ch3_In00

NC

CJ1W-ID/IA

14

CJ1W-IA201 AC Input Unit (200 VAC, 8 Points)

*1. Can be set to 0 ms, 0.5 ms, 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, or 32ms in the settings. When the response times have been set to 0 ms, the ON response time will be 10 ms maximum and the OFF response time will be 40 ms maximum due to internal element delays.

*2. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point AC Input Unit with Terminal Block

Model CJ1W-IA201

Rated Input Voltage 200 to 240 VAC 50/60 Hz

Rated Input Voltage Range 170 to 264 VAC

Input Impedance 21 kΩ (50 Hz), 18 kΩ (60 Hz)

Input Current 9 mA typical (at 200 VAC, 50 Hz), 11 mA typical (at 200 VAC, 60 Hz)

ON Voltage/ON Current 120 VAC min./4 mA min.

OFF Voltage/OFF Current 40 VAC max./2 mA max.

ON Response Time 18.0 ms max. (default setting: 8 ms) *1

OFF Response Time 48.0 ms max. (default setting: 8 ms) *1

Number of Circuits 8 (8 points/common, 1 circuit)

Number of Simultaneously ON Points

100% (8 points/common) simultaneously ON

Insulation Resistance 20 MΩ between external terminals and the GR terminal (500 VDC)

Dielectric Strength 2,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 80 mA max.

Weight 130 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

820 Ω 1 MΩ

0.15 μF 220 Ω

Input indicator

Inte

rnal

circ

uits

to

Signal name

COM

Jxx_Ch1_In00

Jxx_Ch1_In07

200 to 240 VAC

Signal name

Connec-tor pin *2

Jxx_Ch1_In00

Jxx_Ch1_In01

Jxx_Ch1_In02

Jxx_Ch1_In03

Jxx_Ch1_In05

Jxx_Ch1_In06

Jxx_Ch1_In07

B0

B1

B2

B3

B4

B5

B6

B7

B8

Jxx_Ch1_In04

A0

A1

A2

A3

A4

A5

A6

A7

A8 COM

NC

NC

NC

NC

NC

NC

NC

NC

NC

15

CJ1W-ID/IA

CJ1W-IA111 AC Input Unit (100 VAC, 16 points)

*1. Can be set to 0 ms, 0.5 ms, 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, or 32ms in the settings. When the response times have been set to 0 ms, the ON response time will be 10 ms maximum and the OFF response time will be 40 ms maximum due to internal element delays.

*2. Use an input voltage of 90 VAC or higher when connecting 2-wire sensors.*3. Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on

the Units.

Name 16-point AC Input Unit with Terminal Block

Model CJ1W-IA111

Rated input voltage 100 to 120 VAC 50/60 Hz *2

Rated Input Voltage Range 85 to 132 VAC

Input Impedance 14.5 kΩ (50 Hz), 12 kΩ (60 Hz)

Input Current 7 mA typical (at 100 VAC, 50 Hz), 8 mA typical (at 100 VAC, 60 Hz)

ON Voltage/ON Current 70 VAC min./4 mA min

OFF Voltage/OFF Current 20 VAC max./2 mA max

ON Response Time 18 ms max. (default setting: 8 ms) *1

OFF Response Time 48 ms max. (default setting: 8 ms) *1

Number of Circuits 16 (16 points/common, 1 circuit)

Number of Inputs ON Simultaneously 100% simultaneously ON (16 points/common)

Insulation Resistance 20 MΩ between external terminals and the GR terminal (500 VDC)

Dielectric Strength 2,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 90 mA max.

Weight 130 g max.

Accessories None

Circuit Layout

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

470 Ω 1 MΩ

0.22 μF 270 Ω

Input indicator

Inte

rnal

circ

uits

to

Signal name

COM

Jxx_Ch1_In00

Jxx_Ch1_In15

100 to 120 VAC

Signal name

Signal name

Connec-tor pin*3

A0

A1

A2

A3

A4

A5

A6

A7

A8

B0

B1

B2

B3

B4

B5

B6

B7

B8

COMCOM

Jxx_Ch1_In00

Jxx_Ch1_In02

Jxx_Ch1_In04

Jxx_Ch1_In06

Jxx_Ch1_In08

Jxx_Ch1_In10

Jxx_Ch1_In12

Jxx_Ch1_In14

Jxx_Ch1_In01

Jxx_Ch1_In03

Jxx_Ch1_In05

Jxx_Ch1_In07

Jxx_Ch1_In09

Jxx_Ch1_In11

Jxx_Ch1_In13

Jxx_Ch1_In15

16

CJ1W-ID/IA

Bit Allocations for Input Unit8-point Input Unit 16-point Input Unit

32-point Input Unit 64-point Input Unit

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Input)

00 IN0/Jxx_Ch1_In00

01 IN1/Jxx_Ch1_In01

: :

06 IN6/Jxx_Ch1_In06

07 IN7/Jxx_Ch1_In07

08 −

09 −

: :

14 −

15 −

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Input)

00 IN0/Jxx_Ch1_In00

01 IN1/Jxx_Ch1_In01

: :

14 IN14/Jxx_Ch1_In14

15 IN15/Jxx_Ch1_In15

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Input)

00 IN0/Jxx_Ch1_In00

01 IN1/Jxx_Ch1_In01

: :

14 IN14/Jxx_Ch1_In14

15 IN15/Jxx_Ch1_In15

Wd m+1(Input)

00 IN0/Jxx_Ch2_In00

01 IN1/Jxx_Ch2_In01

: :

14 IN14/Jxx_Ch2_In14

15 IN15/Jxx_Ch2_In15

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Input)

00 IN0/Jxx_Ch1_In00

01 IN1/Jxx_Ch1_In01

: :

14 IN14/Jxx_Ch1_In14

15 IN15/Jxx_Ch1_In15

Wd m+1(Input)

00 IN0/Jxx_Ch2_In00

01 IN1/Jxx_Ch2_In01

: :

14 IN14/Jxx_Ch2_In14

15 IN15/Jxx_Ch2_In15

Wd m+2(Input)

00 IN0/Jxx_Ch3_In00

01 IN1/Jxx_Ch3_In01

: :

14 IN14/Jxx_Ch3_In14

15 IN15/Jxx_Ch3_In15

Wd m+3(Input)

00 IN0/Jxx_Ch4_In00

01 IN1/Jxx_Ch4_In01

: :

14 IN14/Jxx_Ch4_In14

15 IN15/Jxx_Ch4_In15

17

CJ1W-ID/IA

External Interface8-point/16-point Units (18-point Terminal Blocks)

32-point Units (Models with 40-point Fujitsu Connector or MIL Connector)

ERR0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

ConnectorConnect to the connector on the next Unit.

I/O indicators

Model number label

Terminal block for I/O wiring, 18P × 1

ID231 ID232 1 2

0 1 2 34 5 6 78 912 13 14 15

10 11

ERR

Model number

I/O indicators

Unit with MIL ConnectorUnit with Fujitsu-compatibleConnector

ConnectorConnected to the connector on the next Unit.

Indicator Switch

Changes the 16 I/O displayed on the I/O indicators.

Word morm+1

I/O wiringconnector(40-pin × 1) Wd m (Row A on connector)

Fujitsu connector MIL connectorBottom of connectorTop of connectorWd m+1 (Row B on connector)

Setting 1Setting 2

CJ1W-ID/IA

18

64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)

Wiring Basic I/O Units with Terminal BlocksElectric WiresThe following wire gauges are recommended.

Crimp terminalsUse crimp terminals (M3) having the dimensions shown below.

Terminal Block Connector Wire Size

18-terminal AWG 22 to 18 (0.32 to 0.82 mm2)

ID261

0 1 2 3 4 5 6 78 9 12 13 14 1510 110 1 2 3 4 5 6 78 9 12 13 14 1510 11

I

II

ID261

1 2Model number

I/O indicators

Unit with MIL ConnectorUnit with Fujitsu-compatibleConnector

ConnectorConnected to the connector on the next Unit.

Indicator Switch

Changes the 32 I/O displayed on the I/O indicators.

Setting 1Setting 2

I/O wiringconnector(40-pin × 2)

Wd m and m+1: CN1Wd m+2 and m+3: CN2

Word m orm+2Word m+1or m+3

6.2 mm max. 6.2 mm max.

19

CJ1W-ID/IA

I/O Unit Wiring MethodsAn I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided CableAn I/O Unit can be directly connected to an external device by using a connector.

2. Connector-Terminal Block Conversion UnitUse a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit. Converting the I/O Unit connector to a screw terminal block makes it easy to connect external devices.

3. I/O Relay TerminalUse a Connecting Cable to connect to an I/O Relay Terminal. The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.

B

C

A

A User-provided cable

B External device

C Connector

B

C

A

A Connecting Cable for Connector-Terminal Block Conversion UnitXW2Z

B Connector-Terminal Block Conversion UnitXW2R

C Conversion to a screw terminal block

B

B

A

A G79 I/O Relay Terminal Connecting Cable

B G7@@ I/O Relay TerminalsOr, conversion to relay outputs and AC inputs.

CJ1W-ID/IA

20

1. Using User-made Cables with ConnectorAvailable ConnectorsUse the following connectors when assembling a connector and cable.

32- and 64-point Basic I/O Units with Fujitsu-compatible ConnectorsApplicable Units

Applicable Cable-side Connectors

32- and 64-point Basic I/O Units with MIL ConnectorsApplicable Units

Applicable Cable-side Connectors

*1. Socket and Stain Relief set.*2. Crimp Contacts (XG5W-0232) are sold separately.*3. Applicable wire size is AWG 28 to 24. For applicable conductor construction and more information, visit the OMRON website at

www.ia.omron.com.

Wire SizeWe recommend using cable with wire gauges of AWG 28 to 24 (0.08 to 0.2 mm2). Use cable with external wire diameters of 1.61 mm max.

Crimping ToolsThe following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors. Tools for Crimped Connectors (Fujitsu Component)

Tools for Pressure-welded Connectors (Fujitsu Component)

The following models are recommended for tools for OMRON MIL connectors.Tools for Pressure-welded Connectors (OMRON)

Tools for Crimped Connectors (OMRON)

Model Specifications Pins

CJ1W-ID231 Input Unit, 24 VDC, 32 inputs 40

CJ1W-ID261 Input Unit, 24 VDC, 64 inputs

Connection Pins OMRON set Fujitsu parts

Solder-type 40 C500-CE404Socket: FCN-361J040-AUConnector cover: FCN-360C040-J2

Crimped 40 C500-CE405Socket: FCN-363J040Connector cover: FCN-360C040-J2Contacts: FCN-363J-AU

Pressure-welded 40 C500-CE403 FCN-367J040-AU/F

Model Specifications Pins

CJ1W-ID232CJ1W-ID233 Input Unit, 24 VDC, 32 inputs

40CJ1W-ID262 Input Unit, 24 VDC, 64 inputs

Connection Pins OMRON set DDK parts

Pressure-welded 40 XG4M-4030-T *1 FRC5-A040-3T0S

Crimped

40 XG5N-401 *2 HU-40OS2-001

−Crimp Contacts for XG5N *3XG5W-0232 (loose contacts: 100 pieces)XG5W-0232-R (reel contacts: 10,000 pieces)

HU-111S

Product Name Model

Hand Crimping Tool FCN-363T-T005/H

Contact Withdrawal Tool FCN-360T-T001/H

Product Name Model

Hand Press FCN-707T-T101/H

Cable Cutter FCN-707T-T001/H

Locator Plate FCN-367T-T012/H

Product Name Model

Pressure-welding Tool XY2B-0002

Attachment XY2B-1007

Product Name Model

Manual Crimping Tool XY2B-7007

21

CJ1W-ID/IA

2. Connecting Connector-Terminal Block Conversion UnitsConnection Patterns for Connector-Terminal Block Conversion Units

Combination of I/O Units with Connector-Terminal Block Conversion Units

Types of Connecting Cables

Pattern Configuration Number of connectors

A 1

B 2

Unit I/O capacity

Number ofconnectors Polarity Connection

patternConnecting

Cable

Connector-Terminal Block

Conversion UnitWiring method Common

terminals

CJ1W-ID231 32 inputs 1 Fujitsuconnector NPN/PNP A XW2Z-@@@B

XW2R-J34G-C1 Phillips screw

NoXW2R-E34G-C1 Slotted screw (rise up)

XW2R-P34G-C1 Push-in spring

CJ1W-ID232 32 inputs 1 MILconnector NPN/PNP A XW2Z-@@@K

XW2R-J34G-C2 Phillips screw

NoXW2R-E34G-C2 Slotted screw (rise up)

XW2R-P34G-C2 Push-in spring

CJ1W-ID233 32 inputs 1 MILconnector NPN/PNP A XW2Z-@@@K

XW2R-J34G-C2 Phillips screw

NoXW2R-E34G-C2 Slotted screw (rise up)

XW2R-P34G-C2 Push-in spring

CJ1W-ID261 64 inputs 2 Fujitsuconnectors NPN/PNP B XW2Z-@@@B

(2 Cables)

XW2R-J34G-C1 (2 Units) Phillips screw

NoXW2R-E34G-C1 (2 Units) Slotted screw (rise up)

XW2R-P34G-C1 (2 Units) Push-in spring

CJ1W-ID262 64 inputs 2 MILconnectors NPN/PNP B XW2Z-@@@K

(2 Cables)

XW2R-J34G-C2 (2 Units) Phillips screw

NoXW2R-E34G-C2 (2 Units) Slotted screw (rise up)

XW2R-P34G-C2 (2 Units) Push-in spring

Appearance Connectors Model Cable lenght [m]

XW2Z-@@@B

One 40-pin Connector Made by Fujitsu Component, Ltd. to One 40-pin MIL Connector

XW2Z-050B 0.5

XW2Z-100B 1

XW2Z-150B 1.5

XW2Z-200B 2

XW2Z-300B 3

XW2Z-500B 5

XW2Z-@@@K

One 40-pin MIL Connector to One 40-pin MIL Connector

XW2Z-C50K 0.5

XW2Z-100K 1

XW2Z-150K 1.5

XW2Z-200K 2

XW2Z-300K 3

XW2Z-500K 5

Connecting Cable

Connector-Terminal Block Conversion Unit

34 terminals

Connecting Cable

Connector-Terminal Block Conversion Unit

34 terminals 34 terminals

CJ1W-ID/IA

22

3. Connecting I/O Relay TerminalsConnection Patterns for I/O Relay Terminals

Combination of I/O Units with I/O Relay Terminal and Connecting Cables

Types of Connecting Cables

Pattern Configuration

A

B

Model I/O points Number of connectors Polarity Connection

patternNumber of branches Connecting Cable I/O Relay Terminal

CJ1W-ID231 32 inputs 1 Fujitsu connector NPN

A 2 G79-I@C-@ G7TC-ID16

A 2 G79-I@C-@ G7TC-IA16

CJ1W-ID232 32 inputs 1 MIL connector NPNA 2 G79-O@-@-D1 G7TC-ID16

A 2 G79-O@-@-D1 G7TC-IA16

CJ1W-ID233 32 inputs 1 MIL connector NPNA 2 G79-O@-@-D1 G7TC-ID16

A 2 G79-O@-@-D1 G7TC-IA16

CJ1W-ID261 64 inputs 2 Fujitsu connectors NPN

B 2 G79-I@C-@ G7TC-ID16

B 2 G79-I@C-@ G7TC-IA16

CJ1W-ID262 64 inputs 2 MIL connectors NPN

B 2 G79-O@-@-D1 G7TC-ID16

B 2 G79-O@-@-D1 G7TC-IA16

Cable lenght G79-@C G79-I@C G79-I@C-@ G79-O@C G79-O@C-@ G79-O@-@-D1

0.25m − G79-I25C − G79-O25C − −

0.5m − G79-I50C − G79-O50C − G79-O50-25-D1

1.0m G79-100C − G79-I100C-75 − G79-O100C-75 G79-O75-50-D1

1.5m G79-150C − G79-I150C-125 − G79-O150C-125 −

2.0m G79-200C − G79-I200C-175 − G79-O200C-175 −

3.0m G79-300C − G79-I300C-275 − G79-O300C-275 −

5.0m G79-500C − G79-I500C-475 − G79-O500C-475 −

Connecting Cable

I/O Relay Terminal

Connecting Cable

I/O Relay Terminal I/O Relay Terminal

23

CJ1W-ID/IA

Dimensions (Unit: mm)

8-point/16-point Units (18-point Terminal Blocks)CJ1W-ID201CJ1W-ID211CJ1W-ID212CJ1W-IA201CJ1W-IA111

32-point Units (Input Units)With Fujitsu-compatible Connector (40-pin × 1)CJ1W-ID231

With MIL Connector (40-pin × 1)CJ1W-ID232CJ1W-ID233

ID2110 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

01

32

45

76

89

1110

1213

1415

DC24V7mA

COMCOM

6589

2.7

902.

7 31

ID2310

0

1

20

A B

20

1

1

1 2 34 5 6 78 9 10 1112 13 14 15

DC

24V

4.1

mA

6566.5

(112.5)

2.7

90

202.7

ID2310

0 1

1ch

0ch

1 2 34 5 6 78 9 10 1112 13 14 15

DC

24V

4.1

mA

6583.6

2.7

90

202.7

CJ1W-ID/IA

24

64-point Units (Input Units)With Fujitsu-compatible Connector (40-pin × 2)CJ1W-ID261

With MIL Connector (40-pin × 2)CJ1W-ID262

Related Manuals

Name Cat. No. Contents

CJ-series CJ2 CPU Unit Hardware User’s ManualCJ2H-CPU6@-EIPCJ2H-CPU6@CJ2M-CPU@@

W472

Describes the following for CJ2 CPU Units:• Overview and features• Basic system configuration• Part nomenclature and functions• Mounting and setting procedure• Remedies for errors• Also refer to the Software User’s Manual (W473).

SYSMAC CJ SeriesCJ1H-CPU@@H-R, CJ1G/H-CPU@@H, CJ1G-CPU@@P, CJ1G-CPU@@, CJ1M-CPU@@Programmable Controllers Operation Manual

W393 Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.

NJ-series CPU Unit Hardware User's Manual NJ501-@@@@ W500

An introduction to the entire NJ-series system is provided along with the following information on a Controller built with an NJ501 CPU Unit.• Features and system configuration• Introduction• Part names and functions• General specifications• Installation and wiring• Maintenance and inspection

Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).

6566.5

(112.5)

902.

72.

7

31

83.665

902.

7 31

2.7

Terms and Conditions Agreement Read and understand this catalog. Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron’s analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer’s application or use of the Product. At Buyer’s request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take application responsibility in all cases. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. Programmable Products. Omron Companies shall not be responsible for the user’s programming of a programmable Product, or any consequence thereof. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron’s test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron’s Warranty and Limitations of Liability. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron’s representative at any time to confirm actual specifications of purchased Product. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

2014.4

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2014 All Right Reserved.

CSM_CJ1W-OUTPUT_DS_E_7_1

1

CJ-series Output Units

CJ1W-OC/OA/ODA Wide Range of Basic Output Units for High Speed Output and Different Applications

• These Output Units receive the results of output instructions from the CPU Unit and perform ON/OFF control for external devices.

• High-speed Output models CJ1W-OD213 and CJ1W-OD234 can help to increase system throughput.

Features• High-speed output models are available, meeting versatile applications.

ON Response Time: 15μs, OFF Response Time: 80μs• Output Units are available with any of three output types: relay contact outputs, triac outputs, or transistor outputs.• For transistor outputs, select from sinking outputs or sourcing outputs. • Output Units with load short-circuit protection are also available. *1• Select the best interface for each application: Fujitsu connectors or MIL connectors. *2• A wide variety of Connector-Terminal Block Conversion Units are available to allow you to easily wire external output devices.

*1. The following Units have load short-circuit protection: CJ1W-OC202, CJ1W-OD204, CJ1W-OD212, and CJ1W-OD232.*2. Available for models with 32 outputs or 64 outputs

CJ1W-OD213 CJ1W-OD234

CJ1W-OC/OA/OD

2

Ordering InformationInternational Standards• The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2

Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.• Contact your OMRON representative for further details and applicable conditions for these standards.

Output Units

AccessoriesConnectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable Connector-Terminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

Unit type Product name

Specifications No. of words

allocated

Current consumption

(A) Model StandardsOutput

typeI/O

pointsMaximum switching

capacity Commons External connection 5 V 24 V

CJ1 Basic I/O Units

Relay Contact Output Units

− 8 outputs

250 VAC/24 VDC, 2 AIndependent contacts

Removable terminal block

1 words 0.090.048 max.

CJ1W-OC201

UC1, N, L, CE

− 16 outputs 250 VAC/24 VDC, 2 A

16 points, 1 common

Removable terminal block

1 words 0.110.096 max. CJ1W-OC211

Triac Output Unit

− 8 outputs 250 VAC, 0.6 A 8 points,

1 common

Removable terminal block

1 words 0.22 − CJ1W-OA201

Transistor Output Units

Sinking 8 outputs 12 to 24 VDC, 2 A 4 points,

1 common

Removable terminal block

1 words 0.09 − CJ1W-OD201

Sinking 8 outputs 12 to 24 VDC, 0.5 A 8 points,

1 common

Removable terminal block

1 words 0.10 − CJ1W-OD203

Sinking 16 outputs 12 to 24 VDC, 0.5 A 16 points,

1 common

Removable terminal block

1 words 0.10 − CJ1W-OD211

Sinking

16outputs(High

speed)

24 VDC, 0.5 A 16 points, 1 common

Removable terminal block

1 words 0.15 − CJ1W-OD213 N, L, CE

Sinking 32 outputs 12 to 24 VDC, 0.5 A 16 points,

1 commonFujitsu connector 2 words 0.14 − CJ1W-OD231

UC1, N, L, CE

Sinking 32 outputs 12 to 24 VDC, 0.5 A 16 points,

1 commonMIL connector 2 words 0.14 − CJ1W-OD233

Sinking

32 outputs(High

speed)

24 VDC, 0.5 A 16 points, 1 common

MIL connector 2 words 0.22 − CJ1W-OD234 N, L, CE

Sinking 64 outputs 12 to 24 VDC, 0.3 A 16 points,

1 commonFujitsu connector 4 words 0.17 − CJ1W-OD261

UC1, N, L, CE

Sinking 64 outputs

12 to 24 VDC, 0.3 A 16 points, 1 common

MIL connector 4 words 0.17 − CJ1W-OD263

Sourcing8

outputs24 VDC, 2 AShort-circuit protection

4 points, 1 common

Removable terminal block

1 words 0.11 − CJ1W-OD202

Sourcing 8 outputs

24 VDC, 0.5 AShort-circuit protection

8 points, 1 common

Removable terminal block

1 words 0.10 − CJ1W-OD204

Sourcing 16 outputs

24 VDC, 0.5 AShort-circuit protection

16 points, 1 common

Removable terminal block

1 words 0.10 − CJ1W-OD212

Sourcing 32outputs

24 VDC, 0.5 AShort-circuit protection

16 points, 1 common

MIL connector 2 words 0.15 − CJ1W-OD232

Sourcing 64 outputs 12 to 24 VDC, 0.3 A 16 points,

1 commonMIL connector 4 words 0.17 − CJ1W-OD262

3

CJ1W-OC/OA/OD

Applicable ConnectorsFujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

* Crimp Contacts are also required. Refer to page 31 for details.

Applicable Connector-Terminal Block Conversion Units

Note: For the combination of Output Units with Connector-Terminal Block Conversion Units, refer to 2. Connecting Connector-Terminal Block Conversion Units.

Name Connection Remarks Applicable Units Model Standards

40-pin Connectors

SolderedFCN-361J040-AU ConnectorFCN-360C040-J2 Connector Cover

Fujitsu Connectors: CJ1W-ID231(32 inputs): 1 per UnitCJ1W-ID261 (64 inputs): 2 per UnitCJ1W-OD231 (32 outputs): 1 per UnitCJ1W-OD261 (64 outputs): 2 per UnitCJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit

C500-CE404

CrimpedFCN-363J040 HousingFCN-363J-AU ContactorFCN-360C040-J2 Connector Cover

C500-CE405

Pressure welded FCN-367J040-AU/F C500-CE403

24-pin Connectors

Soldered FCN-361J024-AU ConnectorFCN-360C024-J2 Connector Cover

Fujitsu Connectors:CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit

C500-CE241

CrimpedFCN-363J024 HousingFCN-363J-AU ContactorFCN-360C024-J2 Connector Cover

C500-CE242

Pressure welded FCN-367J024-AU/F C500-CE243

Name Connection Remarks Applicable Units Model Standards

40-pin Connectors

Pressure welded FRC5-AO40-3TOSMIL Connectors:CJ1W-ID232/233 (32 inputs): 1 per UnitCJ1W-OD232/233/234 (32 outputs):1 per UnitCJ1W-ID262 (64 inputs): 2 per UnitCJ1W-OD262/263 (64 outputs): 2 per UnitCJ1W-MD263/563 (32 inputs, 32 outputs): 2 per Unit

XG4M-4030-T

Crimped − XG5N-401*

20-pin Connectors

Pressure welded FRC5-AO20-3TOS MIL Connectors:CJ1W-MD232/233 (16 inputs, 16 outputs): 2 per Unit

XG4M-2030-T−

Crimped − XG5N-201*

Type Series I/O Number of poles Wiring method Terminal

type

Size MountingCommon terminals

Bleeder resistance Indicators I/O Units Model StandardsDepth

(mm)Height (mm)

Width (mm)

DIN Track Screws

PLCs XW2R Output 34

Phillips screw

M3 50 48.35 130.7

Yes Yes No No No

CJ1W-OD231CJ1W-OD261

XW2R-J34G-C3

CJ1W-OD232CJ1W-OD233CJ1W-OD234CJ1W-OD262CJ1W-OD263

XW2R-J34G-C4

Slotted screw (rise up)

M3(Europeantype)

50 45.11 98.5

CJ1W-OD231CJ1W-OD261

XW2R-E34G-C3

CJ1W-OD232CJ1W-OD233CJ1W-OD234CJ1W-OD262CJ1W-OD263

XW2R-E34G-C4

Push-in spring

Clamp 50 45.11 98.5

CJ1W-OD231CJ1W-OD261

XW2R-P34G-C3

CJ1W-OD232CJ1W-OD233CJ1W-OD234CJ1W-OD262CJ1W-OD263

XW2R-P34G-C4

CJ1W-OC/OA/OD

4

Applicable I/O Relay Terminals

Note: For the combination of Output Units with I/O Relay Terminal and Connecting Cables, refer to 3. Connecting I/O Relay Terminals.

Type Series

Specifications Size (horizontal mounting) Mounting

Model StandradsClassification Polarity

Number of

points

Rated ON current at contacts

Operation indicators

Terminal block for

power supply wiring

Horizontal (mm)

Vertical (mm)

Height (mm)

DIN Track Screws

Space-saving G70D

Vertical typeG70D-V

Outputs

Relay outputs

NPN16 (SPST-NO × 16)

5A or 3A

Yes Expandable 135 46 81 Yes Yes

G70D-VSOC16U, C, CEMOSFET

relay outputs

0.3A G70D-VFOM16

Flat typeG70D

Relay outputs

NPN

8 (SPST-NO × 8) 5A

Yes −

68 93 44

Yes Yes

G70D-SOC08 −

16 (SPST-NO × 16)

3A

156 51 39

G70D-SOC16

PNP16 (SPST-NO × 16)

3A G70D-SOC16-1

MOSFET relay outputs

NPN 16 (SPST-NO × 16)

0.3AG70D-FOM16

−PNP G70D-FOM16-1

High-capacity, space-saving

G70R Outputs Relay outputs NPN 8 (SPST-

NO × 8) 10A Yes − 136 93 55 Yes Yes G70R-SOC08 −

Standard G7TC

Inputs

AC inputs

NPN16 (SPST-NO × 16)

1A

Yes −

182

85 68 Yes −

G7TC-IA16

U, C

DC inputs

G7TC-ID16

Outputs Relay outputs

NPN

8 (SPST-NO × 8)

5A

102 G7TC-OC08

16 (SPST-NO × 16)

182

G7TC-OC16

PNP16 (SPST-NO × 16)

G7TC-OC16-1 −

High-capacity socket

G70A (Socket only) Outputs Relay

outputs

NPN 16 (SPDT × 16 possible with G2R Relays)

10 A (Terminal block allowable current)

No − 234 75 64 Yes −

G70A-ZOC16-3

U, C, CE

(Socket only) + Relay/SSR/MOSFET Relay/Timer

PNP

G70A-ZOC16-4(Socket only) + Relay/SSR/MOSFET Relay/Timer

5

CJ1W-OC/OA/OD

Mountable Racks

ModelNJ system CJ system (CJ1, CJ2) CP1H system NSJ system

CPU Rack Expansion Rack CPU Rack Expansion Backplane CP1H PLC NSJ Controller Expansion

Backplane

CJ1W-OC201

10 Units10 Units

(Per Expansion Rack)

10 Units10 Units

(Per Expansion Backplane)

Not Supported Not Supported10 Units

(Per Expansion Backplane)

CJ1W-OC211

CJ1W-OA201

CJ1W-OD201

CJ1W-OD203

CJ1W-OD211

CJ1W-OD213

CJ1W-OD231

CJ1W-OD233

CJ1W-OD234

CJ1W-OD261

CJ1W-OD263

CJ1W-OD202

CJ1W-OD204

CJ1W-OD212

CJ1W-OD232

CJ1W-OD262

CJ1W-OC/OA/OD

6

SpecificationsCJ1W-OC201 Contact Output Unit (Independent Relays, 8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Contact Output Unit with Terminal Block (Independent Relays)

Model CJ1W-OC201

Max. Switching Capacity 2 A 250 VAC (cosφ = 1), 2 A 250 VAC (cosφ = 0.4), 2 A 24 VDC (16 A/Unit)

Min. Switching Capacity 1 mA 5 VDC

Relays NY-24W-K-IE (Fujitsu Takamizawa Components, Ltd.), Cannot be replaced.

Service Life of RelayElectrical: 150,000 operations (24 VDC, resistive load)/100,000 operations (240 VAC, cosφ = 0.4, inductive load) Mechanical: 20,000,000 operationsService life will vary depending on the connected load.

ON Response Time 15 ms max.

OFF Response Time 15 ms max.

Number of Circuits 8 independent contacts

Insulation Resistance 20 MΩ between external terminals and the GR terminal (500 VDC)

Dielectric Strength 2,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption

90 mA 5 VDC max. 48 mA 24 VDC max. (6 mA × No. of ON points)

Weight 140 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

• The input power supply polarity can be connected in either direction.

Output indicator

Inte

rnal

circ

uits

Signal name

Jxx_Ch1_Out00

Jxx_Ch1_Out00

2 A 250 VAC, 2 A 24 VDC max.

Signal name

Signal name

Connec-tor pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0

L

L

L

L

L

L

L

L

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

NC

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

NC

7

CJ1W-OC/OA/OD

CJ1W-OC211 Contact Output Unit (16 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point Contact Output Unit with Terminal Block

Model CJ1W-OC211

Max. Switching Capacity 2 A 250 VAC (cosφ = 1), 2 A 250 VAC (cosφ = 0.4), 2 A 24 VDC (8 A/Unit)

Min. Switching Capacity 1 mA 5 VDC

Relays NY-24W-K-IE (Fujitsu Takamizawa Components, Ltd.), Cannot be replaced.

Service Life of RelayElectrical: 150,000 operations (24 VDC, resistive load)/ 100,000 operations (250 VAC, cosφ = 0.4, inductive load) Mechanical: 20,000,000 operationsService life will vary depending on the connected load.

ON Response Time 15 ms max.

OFF Response Time 15 ms max.

Number of Circuits 16 points/common, 1 circuit

Insulation Resistance 20 MΩ between external terminals and the GR terminal (500 VDC)

Dielectric Strength 2,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption

110 mA 5 VDC max. 96 mA 24 VDC max. (6 mA × No. of ON points)

Weight 170 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

Output indicator

Inte

rnal

circ

uits

to

Signal name

Jxx_Ch1_Out15

Jxx_Ch1_Out00

COM

COM

2 A 250 VAC, 2 A 24 VDC max.

Signal name

Signal name

Connec-tor pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch1_Out01

Jxx_Ch1_Out03

Jxx_Ch1_Out05

Jxx_Ch1_Out07

Jxx_Ch1_Out09

Jxx_Ch1_Out11

Jxx_Ch1_Out13

Jxx_Ch1_Out15

Jxx_Ch1_Out00

Jxx_Ch1_Out02

Jxx_Ch1_Out04

Jxx_Ch1_Out06

Jxx_Ch1_Out08

Jxx_Ch1_Out10

Jxx_Ch1_Out12

Jxx_Ch1_Out14

COM

COM

CJ1W-OC/OA/OD

8

CJ1W-OA201 Triac Output Unit (8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Triac Output Unit with Terminal Block

Model CJ1W-OA201

Max. Switching Capacity 0.6 A 250 VAC, 50/60 Hz (2.4 A/Unit)

Max. Inrush Current 15 A (pulse width: 10 ms max.)

Min. Switching Capacity 50 mA 75 VAC

Leakage Current 1.5 mA (200 VAC) max.

Residual Voltage 1.6 VAC max.

ON Response Time 1 ms max.

OFF Response Time 1/2 of load frequency + 1 ms or less.

Number of Circuits 8 (8 points/common, 1 circuit)

Surge Protector C.R Absorber + Surge Absorber

Fuses 5 A (1/common, 1 used)The fuse cannot be replaced by the user.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (500 VDC)

Dielectric Strength 2,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Internal Current Consumption 220 mA max.

Weight 150 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

Output indicator

Inte

rnal

circ

uits

Fuse

to

Signal name

COM

Jxx_Ch1_Out00

Jxx_Ch1_Out07

250 VAC max.

Signal name

Connec-tor pin *

B0

B1

B2

B3

B4

B5

B6

B7

B8

A0

A1

A2

A3

A4

A5

A6

A7

A8

NC

NC

NC

NC

NC

NC

NC

NC

NC

L

L

L

L

L

L

L

LCOM

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

9

CJ1W-OC/OA/OD

CJ1W-OD201 Transistor Output Unit (8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Transistor Output Unit with Terminal Block (Sinking Outputs)

Model CJ1W-OD201

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 2.0 A/point, 8.0 A/Unit

Maximum Inrush Current 10 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 8 (4 points/common, 2 circuits)

Internal Current Consumption 90 mA max.

Fuse 6.3 A (1/common, 2 used)The fuse cannot be replaced by the user.

External Power Supply 12 to 24 VDC, 10 mA min.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Inte

rnal

circ

uits

Output indicator

Fuse

Fuse

to

to

Signal name

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out03

COM0

Jxx_Ch1_Out04

+V

Jxx_Ch1_Out07

COM1

12 to 24 VDC

12 to 24 VDC

Signal name

Signal name

Connec-tor pin *

B0

B1

B2

B3

B4

B5

B6

B7

B8

A0

A1

A2

A3

A4

A5

A6

A7

A8

L

L

L

LL

L

L

LJxx_Ch1_Out00

Jxx_Ch1_Out02

COM0

NC

NC

Jxx_Ch1_Out04

Jxx_Ch1_Out06

NC

Jxx_Ch1_Out01

Jxx_Ch1_Out03

+V

NC

NC

NC

Jxx_Ch1_Out05

Jxx_Ch1_Out07

COM1

+V

CJ1W-OC/OA/OD

10

CJ1W-OD203 Transistor Output Unit (8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Transistor Output Unit with Terminal Block (Sinking Outputs)

Model CJ1W-OD203

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.5 A/point, 4.0 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.1 ms max.

OFF Response Time 0.8 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 8 (8 points/common, 1 circuit)

Internal Current Consumption 100 mA max.

Fuse None

External Power Supply 10.2 to 26.4 VDC, 20 mA min.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Output indicator

Inte

rnal

circ

uits

to

Signal name

Jxx_Ch1_Out00

Jxx_Ch1_Out07

+V

COM

12 to 24 VDC

Signal name

Signal name

Connec-tor pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0L

L

L

L

L

L

L

L

Jxx_Ch1_Out01

Jxx_Ch1_Out03

Jxx_Ch1_Out05

Jxx_Ch1_Out07

Jxx_Ch1_Out00

Jxx_Ch1_Out02

Jxx_Ch1_Out04

Jxx_Ch1_Out06

NC

COM+V

NC

NC

NC

NC

NC

NC

NC

11

CJ1W-OC/OA/OD

CJ1W-OD211 Transistor Output Unit (16 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point Transistor Output Unit with Terminal Block (Sinking Outputs)

Model CJ1W-OD211

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.5 A/point, 5.0 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.1 ms max.

OFF Response Time 0.8 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 16 (16 points/common, 1 circuit)

Internal Current Consumption 5 VDC 100 mA max.

Fuse None

External Power Supply 10.2 to 26.4 VDC, 20 mA min.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Output indicator

Inte

rnal

circ

uits

to

Signal name

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15

COM

12 to 24 VDC

Signal name

Signal name

Connec-tor pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch1_Out01

Jxx_Ch1_Out03

Jxx_Ch1_Out05

Jxx_Ch1_Out07

Jxx_Ch1_Out09

Jxx_Ch1_Out11

Jxx_Ch1_Out13

Jxx_Ch1_Out15

Jxx_Ch1_Out00

Jxx_Ch1_Out02

Jxx_Ch1_Out04

Jxx_Ch1_Out06

Jxx_Ch1_Out08

Jxx_Ch1_Out10

Jxx_Ch1_Out12

Jxx_Ch1_Out14

COM+V

CJ1W-OC/OA/OD

12

CJ1W-OD213 Transistor Output Unit (16 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point Transistor Output Unit with Terminal Block (Sinking Outputs)

Model CJ1W-OD213

Rated Voltage 24 VDC

Operating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 0.5 A/point, 5.0 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 15 μs max.

OFF Response Time 80 μs max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 16 (16 points/common, 1 circuit)

Internal Current Consumption 5 VDC 150 mA max.

Fuse None

External Power Supply 20.4 to 26.4 VDC, 55 mA min.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Output indicator

Inte

rnal

circ

uits to

Signal name

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15

COM

24 VDC

Signal name

Signal name

Connec-tor pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch1_Out01

Jxx_Ch1_Out03

Jxx_Ch1_Out05

Jxx_Ch1_Out07

Jxx_Ch1_Out09

Jxx_Ch1_Out11

Jxx_Ch1_Out13

Jxx_Ch1_Out15

Jxx_Ch1_Out00

Jxx_Ch1_Out02

Jxx_Ch1_Out04

Jxx_Ch1_Out06

Jxx_Ch1_Out08

Jxx_Ch1_Out10

Jxx_Ch1_Out12

Jxx_Ch1_Out14

COM+V

13

CJ1W-OC/OA/OD

CJ1W-OD231 Transistor Output Unit (32 Points)Name 32-point Transistor Output Unit with Fujitsu Connector (Sinking Outputs) Model CJ1W-OD231Rated Voltage 12 to 24 VDCOperating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.5 A/point, 2.0 A/common, 4.0 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.Residual Voltage 1.5 V max.ON Response Time 0.1 ms max.OFF Response Time 0.8 ms max.Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.Number of Circuits 32 (16 points/common, 2 circuits)Internal Current Consumption 5 VDC 140 mA max.

Fuse NoneExternal Power Supply 10.2 to 26.4 VDC, 30 mA min.

Weight 70 g max.Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• Be sure to wire both terminals A9 and A19 (COM0).• Be sure to wire both terminals B9 and B19 (COM1).• Be sure to wire both terminals A10 and A20 (+V).• Be sure to wire both terminals B10 and B20 (+V).• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Output indicator

to

to

Inte

rnal

circ

uits

Wd m+1

Wd m

Allocated CIO word

Signal name

Connector row A

Connector row B

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15

COM0

Jxx_Ch2_Out00

+V

Jxx_Ch2_Out15

COM1

COM0

COM1

SW

Wd m+1

Wd m+1

Wd m

Wd m

12 to 24 VDC

12 to 24 VDC

Signal name

Signal name

Connec-tor pin Allocated

CIO wordAllocated CIO word

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

+V

COM0

+V

COM0

Jxx_Ch1_Out08

Jxx_Ch1_Out09

Jxx_Ch1_Out10

Jxx_Ch1_Out11

Jxx_Ch1_Out12

Jxx_Ch1_Out13

Jxx_Ch1_Out14

Jxx_Ch1_Out15

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

COM1

+V

COM1

+V

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out10

Jxx_Ch2_Out11

Jxx_Ch2_Out12

Jxx_Ch2_Out13

Jxx_Ch2_Out14

Jxx_Ch2_Out15

Jxx_Ch2_Out00

Jxx_Ch2_Out01

Jxx_Ch2_Out02

Jxx_Ch2_Out03

Jxx_Ch2_Out04

Jxx_Ch2_Out05

Jxx_Ch2_Out06

Jxx_Ch2_Out07

CJ1W-OC/OA/OD

14

CJ1W-OD233 Transistor Output Unit (32 Points)Name 32-point Transistor Output Unit with MIL Connector (Sinking Outputs)Model CJ1W-OD233Rated Voltage 12 to 24 VDCOperating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.5 A/point, 2 A/common, 4 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.Residual Voltage 1.5 V max.ON Response Time 0.1 ms max.OFF Response Time 0.8 ms max.Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.Number of Circuits 32 (16 points/common, 2 circuits)Internal Current Consumption 140 mA max.

Fuse NoneExternal Power Supply 12 to 24 VDC, 30 mA min.

Weight 70 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• Be sure to wire both terminals 23 and 24 (COM0).• Be sure to wire both terminals 3 and 4 (COM1).• Be sure to wire both terminals 21 and 22 (+V).• Be sure to wire both terminals 1 and 2 (+V).• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Wd m+1

Wd m to

to

Output indicator

Inte

rnal

circ

uits

Allocated CIO word

Signal name

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15

COM0

Jxx_Ch2_Out00

+V

Jxx_Ch2_Out15

COM1

COM0

COM1

SW

Wd

m+

1W

d m

Wd

m+

1W

d m

12 to 24 VDC

12 to 24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch2_Out00

Jxx_Ch2_Out01

Jxx_Ch2_Out02

Jxx_Ch2_Out03

Jxx_Ch2_Out04

Jxx_Ch2_Out05

Jxx_Ch2_Out06

+VCOM1

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out10

Jxx_Ch2_Out11

Jxx_Ch2_Out12

Jxx_Ch2_Out07

Jxx_Ch2_Out13

Jxx_Ch2_Out14

Jxx_Ch2_Out15

+V COM1

+V +V

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

Jxx_Ch1_Out08

Jxx_Ch1_Out09

Jxx_Ch1_Out10

Jxx_Ch1_Out11

Jxx_Ch1_Out12

Jxx_Ch1_Out13

Jxx_Ch1_Out14

Jxx_Ch1_Out15

COM0 COM0

15

CJ1W-OC/OA/OD

CJ1W-OD234 Transistor Output Unit (32 Points)Name 32-point Transistor Output Unit with MIL Connector (Sinking Outputs)Model CJ1W-OD234Rated Voltage 24 VDCOperating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 0.5 A/point, 2 A/common, 4 A/Unit

Maximum Inrush Current 4.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.Residual Voltage 1.5 V max.ON Response Time 15 μs max.OFF Response Time 80 μs max.Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.Number of Circuits 32 (16 points/common, 2 circuits)Internal Current Consumption 220 mA max.

Fuse NoneExternal Power Supply 20.4 to 26.4 VDC, 110 mA min.

Weight 70 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• Be sure to wire both terminals 23 and 24 (COM0).• Be sure to wire both terminals 3 and 4 (COM1).• Be sure to wire both terminals 21 and 22 (+V).• Be sure to wire both terminals 1 and 2 (+V).• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Wd m+1

Wd m to

to

Output indicator

Inte

rnal

circ

uits

Allocated CIO word

Signal name

Jxx_Ch1_Out00+V

Jxx_Ch1_Out15

COM0

Jxx_Ch2_Out00+V

Jxx_Ch2_Out15

COM1

COM0

COM1

SW

Wd

m+

1W

d m

Wd

m+

1W

d m

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch2_Out00

Jxx_Ch2_Out01

Jxx_Ch2_Out02

Jxx_Ch2_Out03

Jxx_Ch2_Out04

Jxx_Ch2_Out05

Jxx_Ch2_Out06

+VCOM1

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out10

Jxx_Ch2_Out11

Jxx_Ch2_Out12

Jxx_Ch2_Out07

Jxx_Ch2_Out13

Jxx_Ch2_Out14

Jxx_Ch2_Out15

+V COM1

+V +V

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

Jxx_Ch1_Out08

Jxx_Ch1_Out09

Jxx_Ch1_Out10

Jxx_Ch1_Out11

Jxx_Ch1_Out12

Jxx_Ch1_Out13

Jxx_Ch1_Out14

Jxx_Ch1_Out15

COM0 COM0

CJ1W-OC/OA/OD

16

CJ1W-OD261 Transistor Output Unit (64 Points)Name 64-point Transistor Output Unit with Fujitsu Connectors (Sinking Outputs)

Model CJ1W-OD261

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.3 A/point, 1.6 A/common, 6.4 A/Unit

Maximum Inrush Current 3.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 64 (16 points/common, 4 circuits)

Internal Current Consumption 5 VDC, 170 mA max.

Fuse None

External Power Supply 10.2 to 26.4 VDC, 50 mA min.

Weight 110 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

Output indicator

to

to

to

to

Wd m

Wd m+1

Wd m+2

Wd m+3

Inte

rnal

circ

uits

Allocated CIO word

Signal name

Connector row A

Connector row B

Connector row A

Connector row B

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15COM0

Jxx_Ch3_Out00

+V

Jxx_Ch3_Out15

COM2

COM0

COM2

+VJxx_Ch2_Out00

Jxx_Ch2_Out15COM1COM1

+VJxx_Ch4_Out00

Jxx_Ch4_Out15COM3COM3

CN1

SW

CN2

CJ1W-OC/OA/OD

17

External connection and terminal-device variable diagram

CN1 CN2

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals A9 and A19 (COM0) of CN1.• Be sure to wire both terminals B9 and B19 (COM1) of CN1.• Be sure to wire both terminals A10 and A20 (+V) of CN1.• Be sure to wire both terminals B10 and B20 (+V) of CN1.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals A9 and A19 (COM2) of CN2.• Be sure to wire both terminals B9 and B19 (COM3) of CN2.• Be sure to wire both terminals A10 and A20 (+V) of CN2.• Be sure to wire both terminals B10 and B20 (+V) of CN2.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

12 to 24 VDC

Wd

m

Wd

m+

1

12 to 24 VDCW

d m

+1

Wd

m

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

COM0

+V

COM0

+V

COM1

+V

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out10

Jxx_Ch2_Out11

Jxx_Ch2_Out12

Jxx_Ch2_Out13

Jxx_Ch2_Out14

Jxx_Ch2_Out15

COM1

+V

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

LJxx_Ch2_Out00

Jxx_Ch2_Out01

Jxx_Ch2_Out02

Jxx_Ch2_Out03

Jxx_Ch2_Out04

Jxx_Ch2_Out05

Jxx_Ch2_Out06

Jxx_Ch2_Out07

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

Jxx_Ch1_Out08

Jxx_Ch1_Out09

Jxx_Ch1_Out10

Jxx_Ch1_Out11

Jxx_Ch1_Out12

Jxx_Ch1_Out13

Jxx_Ch1_Out14

Jxx_Ch1_Out15

A20

A19

A18

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

B20

B19

B18

B17

B16

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

12 to 24 VDC

Wd

m+

3

Wd

m+

2W

d m

+2

Wd

m+

3

12 to 24 VDC

Signal name

Signal name

Connec-tor pin Allocated

CIO wordAllocated CIO word

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

COM3

+V

COM3

+V

COM2

+V

Jxx_Ch3_Out08

Jxx_Ch3_Out09

Jxx_Ch3_Out10

Jxx_Ch3_Out11

Jxx_Ch3_Out12

Jxx_Ch3_Out13

Jxx_Ch3_Out14

Jxx_Ch3_Out15

COM2

+V

Jxx_Ch3_Out00

Jxx_Ch3_Out01

Jxx_Ch3_Out02

Jxx_Ch3_Out03

Jxx_Ch3_Out04

Jxx_Ch3_Out05

Jxx_Ch3_Out06

Jxx_Ch3_Out07

Jxx_Ch4_Out00

Jxx_Ch4_Out01

Jxx_Ch4_Out02

Jxx_Ch4_Out03

Jxx_Ch4_Out04

Jxx_Ch4_Out05

Jxx_Ch4_Out06

Jxx_Ch4_Out07

Jxx_Ch4_Out08

Jxx_Ch4_Out09

Jxx_Ch4_Out10

Jxx_Ch4_Out11

Jxx_Ch4_Out12

Jxx_Ch4_Out13

Jxx_Ch4_Out14

Jxx_Ch4_Out15

CJ1W-OC/OA/OD

18

CJ1W-OD263 Transistor Output Unit (64 Points)Name 64-point Transistor Output Unit with MIL Connectors (Sinking Outputs)

Model CJ1W-OD263

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.3 A/point, 1.6 A/common, 6.4 A/Unit

Maximum Inrush Current 3.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 64 (16 points/common, 4 circuits)

Internal Current Consumption 170 mA max.

Fuse None

External Power Supply 12 to 24 VDC, 50 mA min.

Weight 110 g max.

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

Inte

rnal

circ

uits

Output indicator

to Wd m

Wd m+1

Wd m+2

Wd m+3

Allocated CIO word

Signal name

Jxx_Ch1_Out00

+V

Jxx_Ch1_Out15COM0

Jxx_Ch3_Out00

+V

Jxx_Ch3_Out15

COM2

COM0

COM2

+VJxx_Ch2_Out00

Jxx_Ch2_Out15COM1COM1

+VJxx_Ch4_Out00

Jxx_Ch4_Out15COM3COM3

CN1

SW

CN2

to

to

to

CJ1W-OC/OA/OD

19

External connection and terminal-device variable diagram

CN1 CN2

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals 23 and 24 (COM0) of CN1.• Be sure to wire both terminals 3 and 4 (COM1) of CN1.• Be sure to wire both terminals 21 and 22 (+V) of CN1.• Be sure to wire both terminals 1 and 2 (+V) of CN1.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals 23 and 24 (COM2) of CN2.• Be sure to wire both terminals 3 and 4 (COM3) of CN2.• Be sure to wire both terminals 21 and 22 (+V) of CN2.• Be sure to wire both terminals 1 and 2 (+V) of CN2.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

Wd

m

Wd

mW

d m

+1

Wd

m+

1

12 to 24 VDC

12 to 24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

+V

Jxx_Ch1_Out15

Jxx_Ch1_Out14

Jxx_Ch1_Out13

Jxx_Ch1_Out12

Jxx_Ch1_Out11

+V

+V

COM1

Jxx_Ch1_Out10

COM1

+V

Jxx_Ch1_Out00

Jxx_Ch1_Out07

Jxx_Ch1_Out06

Jxx_Ch1_Out05

Jxx_Ch1_Out04

Jxx_Ch1_Out03

Jxx_Ch1_Out02

Jxx_Ch1_Out01

COM0

Jxx_Ch1_Out08

Jxx_Ch1_Out09

COM0

Jxx_Ch2_Out15

Jxx_Ch2_Out14

Jxx_Ch2_Out13

Jxx_Ch2_Out12

Jxx_Ch2_Out11

Jxx_Ch2_Out10

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out00

Jxx_Ch2_Out07

Jxx_Ch2_Out06

Jxx_Ch2_Out05

Jxx_Ch2_Out04

Jxx_Ch2_Out03

Jxx_Ch2_Out02

Jxx_Ch2_Out01

Wd

m+

3

Wd

m+

3W

d m

+2

Wd

m+

2

12 to 24 VDC

12 to 24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

+V

COM3

+V

COM3

+V +V

COM2 COM2

Jxx_Ch4_Out08

Jxx_Ch4_Out09

Jxx_Ch4_Out10

Jxx_Ch4_Out11

Jxx_Ch4_Out12

Jxx_Ch4_Out13

Jxx_Ch4_Out14

Jxx_Ch4_Out15

Jxx_Ch3_Out08

Jxx_Ch3_Out09

Jxx_Ch3_Out10

Jxx_Ch3_Out11

Jxx_Ch3_Out12

Jxx_Ch3_Out13

Jxx_Ch3_Out14

Jxx_Ch3_Out15

Jxx_Ch4_Out00

Jxx_Ch4_Out01

Jxx_Ch4_Out02

Jxx_Ch4_Out03

Jxx_Ch4_Out04

Jxx_Ch4_Out05

Jxx_Ch4_Out06

Jxx_Ch4_Out07

Jxx_Ch3_Out00

Jxx_Ch3_Out01

Jxx_Ch3_Out02

Jxx_Ch3_Out03

Jxx_Ch3_Out04

Jxx_Ch3_Out05

Jxx_Ch3_Out06

Jxx_Ch3_Out07

CJ1W-OC/OA/OD

20

CJ1W-OD202 Transistor Output Unit (8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Transistor Output Unit with Terminal Block (Sourcing Outputs)

Model CJ1W-OD202

Rated Voltage 24 VDC

Operating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 2 A/point, 8 A/Unit

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Load Short-circuit Protection

Detection current: 6 A min.Automatic restart after error clearance.

Line Disconnection Detection Detection current: 200 mA

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 8 (4 points/common, 2 circuits)

Internal Current Consumption 110 mA max.

Fuse None

External Power Supply 24 VDC, 50 mA min.

Weight 120 g max.

Circuit Configuration

• When overcurrent or line disconnection is detected, the ERR indicator will light, and the corresponding bit (two points per bit) in the Basic I/O Unit Information Area (A050 to A069) will change to TRUE.

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

COM0 (+V)

COM1 (+V)

to

to

Output indicator

ERR indicator

Inte

rnal

circ

uits

Signal name

Jxx_Ch1_Out03

Jxx_Ch1_Out00

0 V

Jxx_Ch1_Out04

Jxx_Ch1_Out070 V

Sho

rt-c

ircui

t pr

otec

tion

Sho

rt-c

ircui

t pr

otec

tion

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin*

B0

B1

B2

B3

B4

B5

B6

B7

B8

A0

A1

A2

A3

A4

A5

A6

A7

A8

L

L

L

L

L

L

L

L

Jxx_Ch1_Out00

Jxx_Ch1_Out02

0 V

NC

NC

Jxx_Ch1_Out04

Jxx_Ch1_Out06

NC

Jxx_Ch1_Out01

Jxx_Ch1_Out03

COM0 (+V)

NC

NC

NC

Jxx_Ch1_Out05

Jxx_Ch1_Out07

0 V COM1 (+V)

21

CJ1W-OC/OA/OD

CJ1W-OD204 Transistor Output Unit (8 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Note: Although 16 I/O bits (1 word) are allocated, only 8 of these can be used for external I/O.

Name 8-point Transistor Output Unit with Terminal Block (Sourcing Outputs)

Model CJ1W-OD204

Rated Voltage 24 VDC

Operating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 0.5 A/point, 4.0 A/Unit

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Load Short-circuit Protection

Detection current: 0.7 to 2.5 AAutomatic restart after error clearance.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 8 (8 points/common, 1 circuit)

Internal Current Consumption 5 VDC, 100 mA max.

Fuse None

External Power Supply 20.4 to 26.4 VDC, 40 mA min.

Weight 120 g max.

Circuit Configuration

• When overcurrent is detected, the ERR indicator will light, and the corresponding bit in the Basic I/O Unit Information Area (A050 to A069) will change to TRUE.

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Output indicator

ERR indicator

Inte

rnal

circ

uits to

Signal name

COM (+V)

Jxx_Ch1_Out00

Jxx_Ch1_Out070 V

Sho

rt-c

ircui

t pr

otec

tion

24 VDC

Signal name

Signal name

Connec-tor pin *

B1

Jxx_Ch1_Out01

B2

Jxx_Ch1_Out03

B3

Jxx_Ch1_Out05

B4

Jxx_Ch1_Out07

B5

B6

B7

B8

A1

Jxx_Ch1_Out00

A2

Jxx_Ch1_Out02

A3

Jxx_Ch1_Out04

A4

Jxx_Ch1_Out06

A5

NC

A6

A7

A80 V

B0A0

COM (+V)

L

L

L

L

L

L

L

L

NC

NC

NC

NC

NC

NC

NC

CJ1W-OC/OA/OD

22

CJ1W-OD212 Transistor Output Unit (16 Points)

* Terminal numbers A0 to A8 and B0 to B8 are used in the external connection and terminal-device variable diagrams. They are not printed on the Units.

Name 16-point Transistor Output Unit with Terminal Block (Sourcing Outputs)

Model CJ1W-OD212

Rated Voltage 24 VDC

Operating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 0.5 A/point, 5.0 A/Unit

Maximum Inrush Current 0.1 mA max.

Leakage Current 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Load Short-circuit Protection

Detection current: 0.7 to 2.5 AAutomatic restart after error clearance.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 16 (16 points/common, 1 circuit)

Internal Current Consumption 5 VDC, 100 mA max.

External Power Supply 20.4 to 26.4 VDC, 40 mA min.

Weight 120 g max.

Circuit Configuration

• When overcurrent is detected, the ERR indicator will light, and the corresponding bit in the Basic I/O Unit Information Area (A050 to A069) will change to TRUE.

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Inte

rnal

circ

uits

Output indicator

ERR indicator

to

Signal name

Jxx_Ch1_Out15

Jxx_Ch1_Out00

0 V

COM (+V)

Sho

rt-c

ircui

t pr

otec

tion

24 VDC

Signal name

Signal name

Connector pin *

B1

B2

B3

B4

B5

B6

B7

B8

A1

A2

A3

A4

A5

A6

A7

A8

B0A0L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch1_Out01

Jxx_Ch1_Out03

Jxx_Ch1_Out05

Jxx_Ch1_Out07

Jxx_Ch1_Out09

Jxx_Ch1_Out11

Jxx_Ch1_Out13

Jxx_Ch1_Out15

Jxx_Ch1_Out00

Jxx_Ch1_Out02

Jxx_Ch1_Out04

Jxx_Ch1_Out06

Jxx_Ch1_Out08

Jxx_Ch1_Out10

Jxx_Ch1_Out12

Jxx_Ch1_Out14

0 VCOM (+V)

23

CJ1W-OC/OA/OD

CJ1W-OD232 Transistor Output Unit (32 Points)Name 32-point Transistor Output Unit with MIL Connector (Sourcing Outputs)

Model CJ1W-OD232

Rated Voltage 24 VDC

Operating Load Voltage Range 20.4 to 26.4 VDC

Maximum Load Current 0.5 A/point, 2.0 A/common, 4.0 A/Unit

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Load Short-circuit Protection

Detection current: 0.7 to 2.5 AAutomatic restart after error clearance.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 32 (16 points/common, 2 circuits)

Internal Current Consumption 5 VDC 150 mA max.

External Power Supply 20.4 to 26.4 VDC, 70 mA min.

Weight 80 g max.

Accessories None

Circuit Configuration

• When overcurrent is detected, the ERR indicator will light, and the corresponding bit (bit allocated for each common) in the Basic I/O Unit Information Area (A050 to A069) will change to TRUE.

• The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

Wd m

Wd m+1

to

to

Output indicator

Inte

rnal

circ

uits

ERR indicator

Allocated CIO word

Signal name

Jxx_Ch1_Out15Jxx_Ch1_Out00

0 V

Jxx_Ch2_Out00Jxx_Ch2_Out150 V

SW

COM0 (+V)COM0 (+V)

COM1 (+V)COM1 (+V)

Sho

rt-c

ircui

t pr

otec

tion

Sho

rt-c

ircui

t pr

otec

tion

24

CJ1W-OC/OA/OD

External connection and terminal-device variable diagram

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.• Be sure to wire both terminals 21 and 22 (COM0 (+V)). • Be sure to wire both terminals 1 and 2 (COM1 (+V)).• Be sure to wire both terminals 3 and 4 (0 V).• Be sure to wire both terminals 23 and 24 (0 V).• The signal names of the terminals are the device variable names.

The device variable names are the names that use "Jxx" as the device name.

Wd

m+

1

Wd

m+

1

Wd

m

Wd

m

24 VDC

24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

Jxx_Ch2_Out00

Jxx_Ch2_Out01

Jxx_Ch2_Out02

Jxx_Ch2_Out03

Jxx_Ch2_Out04

Jxx_Ch2_Out05

Jxx_Ch2_Out06

Jxx_Ch2_Out07

0 V

COM1 (+V)

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out10

Jxx_Ch2_Out11

Jxx_Ch2_Out12

Jxx_Ch2_Out13

Jxx_Ch2_Out14

Jxx_Ch2_Out15

0 V

COM1 (+V)

0 V

COM0 (+V)

0 V

COM0 (+V)

Jxx_Ch1_Out00

Jxx_Ch1_Out01

Jxx_Ch1_Out02

Jxx_Ch1_Out03

Jxx_Ch1_Out04

Jxx_Ch1_Out05

Jxx_Ch1_Out06

Jxx_Ch1_Out07

Jxx_Ch1_Out08

Jxx_Ch1_Out09

Jxx_Ch1_Out10

Jxx_Ch1_Out11

Jxx_Ch1_Out12

Jxx_Ch1_Out13

Jxx_Ch1_Out14

Jxx_Ch1_Out15

25

CJ1W-OC/OA/OD

CJ1W-OD262 Transistor Output Unit (64 Points)Name 64-point Transistor Output Unit with MIL Connectors (Sourcing Outputs)

Model CJ1W-OD262

Rated Voltage 12 to 24 VDC

Operating Load Voltage Range 10.2 to 26.4 VDC

Maximum Load Current 0.3 A/point, 1.6 A/common, 6.4 A/Unit

Maximum Inrush Current 3.0 A/point, 10 ms max.

Leakage Current 0.1 mA max.

Residual Voltage 1.5 V max.

ON Response Time 0.5 ms max.

OFF Response Time 1.0 ms max.

Insulation Resistance 20 MΩ between the external terminals and the GR terminal (100 VDC)

Dielectric Strength 1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.

Number of Circuits 64 (16 points/common, 4 circuits)

Internal Current Consumption 170 mA max. (5 VDC)

Fuse None

External Power Supply 10.2 to 26.4 VDC, 50 mA min.

Weight 110 g max.

Accessories None

Circuit Configuration

• The signal names of the terminals are the device variable names.The device variable names are the names that use "Jxx" as the device name.

Wd m

Wd m+1

Wd m+3

Wd m+2

Inte

rnal

circ

uits Indicator switch

Output indicator

to

to

to

to

Allocated CIO word

Signal name

Jxx_Ch1_Out150 V

Jxx_Ch1_Out00

COM0COM0

0 V

0 V

COM1

0 V

COM1

Jxx_Ch2_Out15

Jxx_Ch2_Out00

COM2COM2

Jxx_Ch3_Out15

Jxx_Ch3_Out00

Jxx_Ch4_Out15

Jxx_Ch4_Out00

COM3COM3

CN1 (OUT)

CN2 (OUT)

CJ1W-OC/OA/OD

26

External connection and terminal-device variable diagram

CN1 CN2

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals 21 and 22 (COM0 (+V)) of CN1. • Be sure to wire both terminals 1 and 2 (COM1 (+V)) of CN1.• Be sure to wire both terminals 23 and 24 (0 V) of CN1.• Be sure to wire both terminals 3 and 4 (0 V) of CN1.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

• When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if the polarity is reversed.

• Be sure to wire both terminals 21 and 22 (COM2 (+V)) of CN2. • Be sure to wire both terminals 1 and 2 (COM3 (+V)) of CN2.• Be sure to wire both terminals 23 and 24 (0 V) of CN2.• Be sure to wire both terminals 3 and 4 (0 V) of CN2.• The signal names of the terminals are the device variable

names.The device variable names are the names that use "Jxx" as the device name.

Wd

m12 to

24 VDCW

d m

+1

Wd

mW

d m

+1

12 to 24 VDC

Signal name

Signal name

Connec-tor pin

Allocated CIO word

Allocated CIO word

13

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

24

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L LJxx_Ch2_Out15

Jxx_Ch2_Out14

Jxx_Ch2_Out13

Jxx_Ch2_Out12

Jxx_Ch2_Out11

Jxx_Ch2_Out10Jxx_Ch2_Out02

Jxx_Ch1_Out15

Jxx_Ch1_Out14

Jxx_Ch1_Out13

Jxx_Ch1_Out12

Jxx_Ch1_Out11

0 V

0 V

Jxx_Ch2_Out07

Jxx_Ch2_Out06

Jxx_Ch2_Out05

Jxx_Ch2_Out04

Jxx_Ch2_Out03

COM1 (+V)

Jxx_Ch1_Out10

0 V

Jxx_Ch1_Out00

Jxx_Ch1_Out07

Jxx_Ch1_Out06

Jxx_Ch1_Out05

Jxx_Ch1_Out04

Jxx_Ch1_Out03

Jxx_Ch1_Out02

Jxx_Ch1_Out01

COM0 (+V)

Jxx_Ch1_Out08

Jxx_Ch1_Out09

COM0 (+V)

Jxx_Ch2_Out08

Jxx_Ch2_Out09

Jxx_Ch2_Out00

Jxx_Ch2_Out01

0 V

COM1 (+V)

Wd

m+

3W

d m

+2

12 to 24 VDC

12 to 24 VDC

Wd

m+

3W

d m

+2

Signal name

Signal name

Connector pin

Allocated CIO word

Allocated CIO word

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

39

37

35

33

31

29

27

25

23

21

19

17

15

13

10

9

7

5

3

1

LL

L L

L

L L

LJxx_Ch3_Out00

Jxx_Ch3_Out01

Jxx_Ch3_Out02

Jxx_Ch3_Out03

Jxx_Ch3_Out04

Jxx_Ch3_Out05

Jxx_Ch3_Out06

Jxx_Ch3_Out07Jxx_Ch3_Out15

Jxx_Ch4_Out00

Jxx_Ch4_Out01

Jxx_Ch4_Out02

Jxx_Ch4_Out03

Jxx_Ch4_Out04

Jxx_Ch4_Out05

Jxx_Ch4_Out06

Jxx_Ch3_Out08

Jxx_Ch3_Out09

Jxx_Ch3_Out10

Jxx_Ch3_Out11

Jxx_Ch3_Out12

Jxx_Ch3_Out13

Jxx_Ch3_Out14

Jxx_Ch4_Out08

Jxx_Ch4_Out09

Jxx_Ch4_Out10

Jxx_Ch4_Out11

Jxx_Ch4_Out12

Jxx_Ch4_Out07

Jxx_Ch4_Out13

Jxx_Ch4_Out14

Jxx_Ch4_Out15

0 V

COM3 (+V)

0 V

COM2 (+V)

0 V

COM3 (+V)

0 V

COM2 (+V)

27

CJ1W-OC/OA/OD

Bit Allocations for Output Unit8-point Output Unit 16-point Output Unit

32-point Output Unit 64-point Output Unit

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Output)

00 OUT0/Jxx_Ch1_Out00

01 OUT1/Jxx_Ch1_Out01

: :

06 OUT6/Jxx_Ch1_Out06

07 OUT7/Jxx_Ch1_Out07

08 −

09 −

: :

14 −

15 −

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Output)

00 OUT0/Jxx_Ch1_Out00

01 OUT1/Jxx_Ch1_Out01

: :

14 OUT14/Jxx_Ch1_Out14

15 OUT15/Jxx_Ch1_Out15

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Output)

00 OUT0/Jxx_Ch1_Out00

01 OUT1/Jxx_Ch1_Out01

: :

14 OUT14/Jxx_Ch1_Out14

15 OUT15/Jxx_Ch1_Out15

Wd m+1(Output)

00 OUT0/Jxx_Ch2_Out00

01 OUT1/Jxx_Ch2_Out01

: :

14 OUT14/Jxx_Ch2_Out14

15 OUT15/Jxx_Ch2_Out15

Allocated CIO wordSignal name (CJ/NJ)

CIO Bit

Wd m(Output)

00 OUT0/Jxx_Ch1_Out00

01 OUT1/Jxx_Ch1_Out01

: :

14 OUT14/Jxx_Ch1_Out14

15 OUT15/Jxx_Ch1_Out15

Wd m+1(Output)

00 OUT0/Jxx_Ch2_Out00

01 OUT1/Jxx_Ch2_Out01

: :

14 OUT14/Jxx_Ch2_Out14

15 OUT15/Jxx_Ch2_Out15

Wd m+2(Output)

00 OUT0/Jxx_Ch3_Out00

01 OUT1/Jxx_Ch3_Out01

: :

14 OUT14/Jxx_Ch3_Out14

15 OUT15/Jxx_Ch3_Out15

Wd m+3(Output)

00 OUT0/Jxx_Ch4_Out00

01 OUT1/Jxx_Ch4_Out01

: :

14 OUT14/Jxx_Ch4_Out14

15 OUT15/Jxx_Ch4_Out15

CJ1W-OC/OA/OD

28

External Interface8-point/16-point Units (18-point Terminal Blocks)

Note: The CJ1W-OD202, CJ1W-OD204, and CJ1W-OD212 also have an ERR indicator for the load short-circuit alarm.

32-point Units (Models with 40-point Fujitsu Connector or MIL Connector)

Note: Only the CJ1W-OD232 has an ERR indicator for the load short-circuit alarm.

ERR0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

ConnectorConnect to the connector on the next Unit.

I/O indicators

Model number label

Terminal block for I/O wiring, 18P × 1

ID231 ID232

0 1 2 34 5 6 78 912 13 14 15

10 11

ERR

1 2

Wd m (Row A on connector)Fujitsu connector MIL connector

Bottom of connectorTop of connectorWd m+1 (Row B on connector)

Setting 1Setting 2

Model number

I/O indicators

Unit with MIL ConnectorUnit with Fujitsu-compatibleConnector

ConnectorConnected to the connector on the next Unit.

Indicator Switch

Changes the 16 I/O displayed on the I/O indicators.

Word morm+1

I/O wiringconnector(40-pin × 1)

29

CJ1W-OC/OA/OD

64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)

Wiring Basic I/O Units with Terminal BlocksElectric WiresThe following wire gauges are recommended.

Crimp terminalsUse crimp terminals (M3) having the dimensions shown below.

Terminal Block Connector Wire Size

18-terminal AWG 22 to 18 (0.32 to 0.82 mm2)

ID261

0 1 2 3 4 5 6 78 9 12 13 14 1510 110 1 2 3 4 5 6 78 9 12 13 14 1510 11

I

II

ID261

1 2Model number

I/O indicators

Unit with MIL ConnectorUnit with Fujitsu-compatibleConnector

ConnectorConnected to the connector on the next Unit.

Indicator Switch

Changes the 32 I/O displayed on the I/O indicators.

Setting 1Setting 2

I/O wiringconnector(40-pin × 2)

Wd m and m+1: CN1Wd m+2 and m+3: CN2

Word m orm+2

Word m+1or m+3

6.2 mm max. 6.2 mm max.

CJ1W-OC/OA/OD

30

I/O Unit Wiring MethodsAn I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided CableAn I/O Unit can be directly connected to an external device by using a connector.

2. Connector-Terminal Block Conversion UnitUse a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit. Converting the I/O Unit connector to a screw terminal block makes it easy to connect external devices.

3. I/O Relay TerminalUse a Connecting Cable to connect to an I/O Relay Terminal. The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.

B

C

A

A User-provided cable

B External device

C Connector

B

C

A

A Connecting Cable for Connector-Terminal Block Conversion UnitXW2Z

B Connector-Terminal Block Conversion UnitXW2R

C Conversion to a screw terminal block

B

B

A

A G79 I/O Relay Terminal Connecting Cable

B G7@@ I/O Relay TerminalsOr, conversion to relay outputs and AC inputs.

31

CJ1W-OC/OA/OD

1. Using User-made Cables with ConnectorAvailable ConnectorsUse the following connectors when assembling a connector and cable.

32- and 64-point Basic I/O Units with Fujitsu-compatible ConnectorsApplicable Units

Applicable Cable-side Connectors

32- and 64-point Basic I/O Units with MIL ConnectorsApplicable Units

Applicable Cable-side Connectors

*1. Socket and Stain Relief set.*2. Crimp Contacts (XG5W-0232) are sold separately.*3. Applicable wire size is AWG 28 to 24. For applicable conductor construction and more information, visit the OMRON website at

www.ia.omron.com.

Wire SizeWe recommend using cable with wire gauges of AWG 28 to 24 (0.08 to 0.2 mm2). Use cable with external wire diameters of 1.61 mm max.

Crimping ToolsThe following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors. Tools for Crimped Connectors (Fujitsu Component)

Tools for Pressure-welded Connectors (Fujitsu Component)

The following models are recommended for tools for OMRON MIL connectors.Tools for Pressure-welded Connectors (OMRON)

Tools for Crimped Connectors (OMRON)

Model Specifications Pins

CJ1W-OD231 Transistor Output Unit with Sinking Outputs, 32 outputs 40

CJ1W-OD261 Transistor Output Unit with Sinking Outputs, 64 outputs

Connection Pins OMRON set Fujitsu parts

Solder-type 40 C500-CE404Socket: FCN-361J040-AUConnector cover: FCN-360C040-J2

Crimped 40 C500-CE405Socket: FCN-363J040Connector cover: FCN-360C040-J2Contacts: FCN-363J-AU

Pressure-welded 40 C500-CE403 FCN-367J040-AU/F

Model Specifications Pins

CJ1W-OD232 Transistor Output Unit with sourcing outputs, 32 outputs

40CJ1W-OD262 Transistor Output Unit with sourcing outputs, 64 outputs

CJ1W-OD233CJ1W-OD234 Transistor Output Unit with sinking outputs, 32 outputs

CJ1W-OD263 Transistor Output Unit with sinking outputs, 64 outputs

Connection Pins OMRON set DDK parts

Pressure-welded 40 XG4M-4030-T *1 FRC5-A040-3T0S

Crimped

40 XG5N-401 *2 HU-40OS2-001

−Crimp Contacts for XG5N *3XG5W-0232 (loose contacts: 100 pieces)XG5W-0232-R (reel contacts: 10,000 pieces)

HU-111S

Product Name Model

Hand Crimping Tool FCN-363T-T005/H

Contact Withdrawal Tool FCN-360T-T001/H

Product Name Model

Hand Press FCN-707T-T101/H

Cable Cutter FCN-707T-T001/H

Locator Plate FCN-367T-T012/H

Product Name Model

Pressure-welding Tool XY2B-0002

Attachment XY2B-1007

Product Name Model

Manual Crimping Tool XY2B-7007

CJ1W-OC/OA/OD

32

2. Connecting Connector-Terminal Block Conversion UnitsConnection Patterns for Connector-Terminal Block Conversion Units

Combination of I/O Units with Connector-Terminal Block Conversion Units

Pattern Configuration Number of Connectors

A 1

B 2

Unit I/O capacity

Number ofconnectors Polarity Connection

patternConnecting

Cable

Connector-Terminal Block

Conversion UnitWiring method Common

terminals

CJ1W-OD231 32 outputs 1 Fujitsu

connector NPN A XW2Z-@@@B

XW2R-J34G-C3 Phillips screw

NoXW2R-E34G-C3 Slotted screw (rise up)

XW2R-P34G-C3 Push-in spring

CJ1W-OD232 32 outputs 1 MIL

connector PNP A XW2Z-@@@K

XW2R-J34G-C4 Phillips screw

NoXW2R-E34G-C4 Slotted screw (rise up)

XW2R-P34G-C4 Push-in spring

CJ1W-OD233 32 outputs 1 MIL

connector NPN A XW2Z-@@@K

XW2R-J34G-C4 Phillips screw

NoXW2R-E34G-C4 Slotted screw (rise up)

XW2R-P34G-C4 Push-in spring

CJ1W-OD234 32 outputs 1 MIL

connector NPN A XW2Z-@@@K

XW2R-J34G-C4 Phillips screw

NoXW2R-E34G-C4 Slotted screw (rise up)

XW2R-P34G-C4 Push-in spring

CJ1W-OD261 64 outputs 2 Fujitsu

connectors NPN B XW2Z-@@@B (2 Cables)

XW2R-J34G-C3 (2 Units) Phillips screw

NoXW2R-E34G-C3 (2 Units) Slotted screw (rise up)

XW2R-P34G-C3 (2 Units) Push-in spring

CJ1W-OD262 64 outputs 2 MIL

connectors PNP B XW2Z-@@@K (2 Cables)

XW2R-J34G-C4 (2 Units) Phillips screw

NoXW2R-E34G-C4 (2 Units) Slotted screw (rise up)

XW2R-P34G-C4 (2 Units) Push-in spring

CJ1W-OD263 64 outputs 2 MIL

connectors NPN B XW2Z-@@@K (2 Cables)

XW2R-J34G-C4 (2 Units) Phillips screw

NoXW2R-E34G-C4 (2 Units) Slotted screw (rise up)

XW2R-P34G-C4 (2 Units) Push-in spring

Connecting Cable

34 terminals

Connector-Terminal Block Conversion Unit

Connecting Cable

34 terminals 34 terminals

Connector-Terminal Block Conversion Unit

33

CJ1W-OC/OA/OD

Types of Connecting Cables

3. Connecting I/O Relay TerminalsConnection Patterns for I/O Relay Terminals

Combination of I/O Units with I/O Relay Terminal and Connecting Cables

Appearance Connectors Model Cable lenght [m]

XW2Z-@@@B

One 40-pin Connector Made by Fujitsu Component, Ltd. to One 40-pin MIL Connector

XW2Z-050B 0.5

XW2Z-100B 1

XW2Z-150B 1.5

XW2Z-200B 2

XW2Z-300B 3

XW2Z-500B 5

XW2Z-@@@K

One 40-pin MIL Connector to One 40-pin MIL Connector

XW2Z-C50K 0.5

XW2Z-100K 1

XW2Z-150K 1.5

XW2Z-200K 2

XW2Z-300K 3

XW2Z-500K 5

Pattern Configuration

A

B

Unit I/O capacity Number of connectors Polarity Connection

patternNumber of branches Connecting Cable I/O Relay Terminal

CJ1W-OD231 32 outputs 1 Fujitsu connector NPN

A 2 G79-O@C-@ G7TC-OC16

A 2 G79-O@C-@ G7TC-OC08

A 2 G79-O@C-@ G70D-SOC16

A 2 G79-O@C-@ G70D-FOM16

A 2 G79-O@C-@ G70D-VSOC16

A 2 G79-O@C-@ G70D-VFOM16

A 2 G79-O@C-@ G70A-ZOC16-3 and Relay

A 2 G79-O@C-@ G70R-SOC08

A 2 G79-O@C-@ G70D-SOC08

CJ1W-OD232 32 outputs 1 MIL connector PNP

A 2 G79-I@-@-D1 G7TC-OC16-1

A 2 G79-O@-@-D1 G70D-SOC16-1

A 2 G79-O@-@-D1 G70D-FOM16-1

A 2 G79-O@-@-D1 G70A-ZOC16-4 and Relay

Connecting Cable

I/O Relay Terminal

Connecting Cable

I/O Relay Terminal I/O Relay Terminal

CJ1W-OC/OA/OD

34

Types of Connecting Cables

CJ1W-OD233 32 outputs 1 MIL connector NPN

A 2 G79-O@-@-D1 G7TC-OC16

A 2 G79-O@-@-D1 G7TC-OC08

A 2 G79-O@-@-D1 G70D-SOC16

A 2 G79-O@-@-D1 G70D-FOM16

A 2 G79-O@-@-D1 G70D-VSOC16

A 2 G79-O@-@-D1 G70D-VFOM16

A 2 G79-O@-@-D1 G70A-ZOC16-3 and Relay

A 2 G79-O@-@-D1 G70R-SOC08

A 2 G79-O@-@-D1 G70D-SOC08

CJ1W-OD234 32 outputs 1 MIL connector NPN

A 2 G79-O@-@-D1 G7TC-OC16

A 2 G79-O@-@-D1 G7TC-OC08

A 2 G79-O@-@-D1 G70D-SOC16

A 2 G79-O@-@-D1 G70D-FOM16

A 2 G79-O@-@-D1 G70D-VSOC16

A 2 G79-O@-@-D1 G70D-VFOM16

A 2 G79-O@-@-D1 G70A-ZOC16-3 and Relay

A 2 G79-O@-@-D1 G70R-SOC08

A 2 G79-O@-@-D1 G70D-SOC08

CJ1W-OD261 64 outputs 2 Fujitsu connectors NPN

B 2 G79-O@C-@ G7TC-OC16

B 2 G79-O@C-@ G7TC-OC08

B 2 G79-O@C-@ G70D-SOC16

B 2 G79-O@C-@ G70D-FOM16

B 2 G79-O@C-@ G70D-VSOC16

B 2 G79-O@C-@ G70D-VFOM16

B 2 G79-O@C-@ G70A-ZOC16-3 and Relay

B 2 G79-O@C-@ G70R-SOC08

B 2 G79-O@C-@ G70D-SOC08

CJ1W-OD262 64 outputs 2 MIL connectors PNP

B 2 G79-I@-@-D1 G7TC-OC16-1

B 2 G79-O@-@-D1 G70D-SOC16-1

B 2 G79-O@-@-D1 G70D-FOM16-1

B 2 G79-O@-@-D1 G70A-ZOC16-4 and Relay

CJ1W-OD263 64 outputs 2 MIL connectors NPN

B 2 G79-O@-@-D1 G7TC-OC16

B 2 G79-O@-@-D1 G7TC-OC08

B 2 G79-O@-@-D1 G70D-SOC16

B 2 G79-O@-@-D1 G70D-FOM16

B 2 G79-O@-@-D1 G70D-VSOC16

B 2 G79-O@-@-D1 G70D-VFOM16

B 2 G79-O@-@-D1 G70A-ZOC16-3 and Relay

B 2 G79-O@-@-D1 G70R-SOC08

B 2 G79-O@-@-D1 G70D-SOC08

Cable length G79-O@C-@ G79-O@-@-D1 G79-I@-@-D1

0.25m − − −

0.5m − G79-O50-25-D1 G79-I50-25-D1

1.0m G79-O100C-75 G79-O75-50-D1 G79-I75-50-D1

1.5m G79-O150C-125 − −

2.0m G79-O200C-175 − −

3.0m G79-O300C-275 − −

5.0m G79-O500C-475 − −

Unit I/O capacity Number of connectors Polarity Connection

patternNumber of branches Connecting Cable I/O Relay Terminal

35

CJ1W-OC/OA/OD

Dimensions (Unit: mm)

8-point/16-point Units (18-point Terminal Blocks)CJ1W-OC201/ OC211/ OA201/ OD201 / OD202/ OD203/ OD204/ OD211/ OD213 / OD212

32-point Unit (Output Units)With Fujitsu-Compatible Connector (40-pin × 1)CJ1W-OD231

With MIL Connector (40-pin × 1)CJ1W-OD232 / OD233 / OD234

ID2110 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

01

32

45

76

89

1110

1213

1415

DC24V7mA

COMCOM

2.7

2.7

90

6589

31

ID2310

0

1

20

A B

20

1

1

1 2 34 5 6 78 9 10 1112 13 14 15

DC

24V

4.1

mA

2.7

2.7

90

6566.5

(112.5)

20

ID2310

0 1

1ch

0ch

1 2 34 5 6 78 9 10 1112 13 14 15

DC

24V

4.1

mA

6583.6

2.7

2.7

90

20

CJ1W-OC/OA/OD

36

64-point Units (Output Units)With Fujitsu-Compatible Connector (40-pin × 2)CJ1W-OD261

With MIL Connector (40-pin × 2)CJ1W-OD262 / OD263

Related Manuals

Name Cat. No. Contents

CJ-series CJ2 CPU Unit Hardware User's ManualCJ2H-CPU6@-EIPCJ2H-CPU6@CJ2M-CPU@@

W472

Describes the following for CJ2 CPU Units:• Overview and features• Basic system configuration• Part nomenclature and functions• Mounting and setting procedure• Remedies for errors• Also refer to the Software User’s Manual (W473).

CJ Series CJ1H-CPU@@H-R, CJ1G/H-CPU@@H, CJ1G-CPU@@P, CJ1G-CPU@@, CJ1M-CPU@@ Programmable Controllers Operation Manual

W393 Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.

NJ-series CPU Unit Hardware User's Manual NJ501-@@@@

W500

An introduction to the entire NJ-series system is provided along with the following information on a Controller built with an NJ501 CPU Unit.• Features and system configuration• Introduction• Part names and functions• General specifications• Installation and wiring• Maintenance and inspection

Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).

65

66.5

(112.5)

31

902.

72.

7

83.6

65

902.

72.

7

31

Terms and Conditions Agreement Read and understand this catalog. Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron’s analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer’s application or use of the Product. At Buyer’s request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take application responsibility in all cases. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. Programmable Products. Omron Companies shall not be responsible for the user’s programming of a programmable Product, or any consequence thereof. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron’s test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron’s Warranty and Limitations of Liability. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron’s representative at any time to confirm actual specifications of purchased Product. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

2014.4

In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation Industrial Automation Company http://www.ia.omron.com/

(c)Copyright OMRON Corporation 2014 All Right Reserved.

The

info

rmat

ion

prov

ided

in th

is d

ocum

enta

tion

cont

ains

gen

eral

des

crip

tions

and

/or t

echn

ical

cha

ract

eris

tics

of th

e pe

rform

ance

of t

he p

rodu

cts

cont

aine

d he

rein

.Th

is d

ocum

enta

tion

is n

ot in

tend

ed a

s a

subs

titut

e fo

r and

is n

ot to

be

used

for d

eter

min

ing

suita

bilit

y or

relia

bilit

y of

thes

e pr

oduc

ts fo

r spe

cific

use

r app

licat

ions

.It

is th

e du

ty o

f any

suc

h us

er o

r int

egra

tor t

o pe

rform

the

appr

opria

te a

nd c

ompl

ete

risk

anal

ysis

, eva

luat

ion

and

test

ing

of th

e pr

oduc

ts w

ith re

spec

t to

the

rele

vant

spe

cific

app

licat

ion

or u

se th

ereo

f.N

eith

er S

chne

ider

Ele

ctric

Indu

strie

s SA

S no

r any

of i

ts a

ffilia

tes

or s

ubsi

diar

ies

shal

l be

resp

onsi

ble

or li

able

for m

isus

e of

the

info

rmat

ion

cont

aine

d he

rein

.

Oct 31, 20121

Product data sheetCharacteristics

TM238LFDC24DTcompact base M238 - 24 I/O - 24 V DC supply -CANOpen - internal RAM 1000 kB

MainCommercial Status CommercialisedRange of product Modicon M238 logic controllerProduct or componenttype

Compact base

Product specific appli-cation

-

Discrete I/O number 24Discrete input number 8 fast input conforming to EN/IEC 61131-2 type 1

6 input conforming to EN/IEC 61131-2 type 1Discrete input voltage 24 VDiscrete input voltagetype

DC

Discrete output number 6 output4 fast output

Discrete output voltage 24 V DCNumber of I/O expan-sion module

7

[Us] rated supply volt-age

24 V DC

Memory description Internal RAM 1000 kBData backed up Variables of type retain and retain persistent option-

al battery lithium thionyl chloride (TSXPLP01) 1 yearVariables of type retain and retain persistent internalbattery 3 days 22 h 10 yr

Mounting support 35 mm symmetrical DIN railPanel

ComplementaryDiscrete input logic Sink or source (positive/negative) input

Positive logic (sink) fast inputNumber of common point 4 fast input

2 output1 input1 fast output

Sensor power supply 19.2...30 V DCVoltage state1 guaranteed >= 15 V input/fast inputCurrent state 1 guaranteed >= 2 mA input/fast inputVoltage state 0 guaranteed <= 5 V input/fast inputCurrent state 0 guaranteed <= 1.5 mA input/fast inputDiscrete input current 8 mA fast input

10.4 mA inputInput impedance 3 kOhm fast input

2.3 kOhm inputResponse time 300 ns fast input

3 ms input0.25 ms fast output< 1 ms output

Configurable filtering time 4 ms fast input2 ms fast input1 ms fast input0.4 ms fast input0.004 ms fast input

2

Anti bounce filtering 4 ms configurable input/fast input12 ms configurable input/fast input1.5 ms configurable input/fast input0 ms configurable input/fast input

Input frequency <= 100 kHz input<= 100 kHz fast input (normal mode)<= 100 kHz fast input (counter mode)

Cable length <= 30 m shielded cable fast output (normal mode)<= 30 m output<= 30 m input<= 30 m fast input (normal mode)<= 10 m shielded cable fast input (counter mode)<= 10 m fast output (PWM or PTO mode)

Isolation between channels and internal logic 500 V DCIsolation between channels None input

500 V for output and fast output500 V for group of 2 fast inputs

Discrete output logic Positive logic (source)/negative logic (sink)Output voltage limits 19.2...30 VDiscrete output current 20...500 mA output

<= 500 mA fast output (normal mode)<= 100 mA fast output (PWM mode)<= 100 mA fast output (PTO mode)

Output frequency <= 20 kHz fast output (PWM mode)<= 100 kHz output<= 100 kHz fast output (PTO mode)

Absolute accuracy error 1 % of full scale fast output (PTO mode)1 % of full scale cyclic ratio 20...80% fast output (PWM mode)

Leakage current 0.05 mA output<= 2 mA fast output

[Ures] residual voltage <= 2 V output and fast outputTungsten load <= 3 W output and fast outputShort-circuit protection With output and fast outputOvervoltage protection With output and fast outputOverload protection With output and fast outputInput/Output number <= 248 HE-10 connector with I/O expansion module

<= 192 spring terminal block with I/O expansion module<= 136 removable screw terminal block with I/O expansion module

Supply voltage limits 19.2...28.8 VInrush current <= 35 APower consumption in W <= 17.2 WInsulation resistance > 10 MOhm at 500 V, between supply and earth terminals

> 10 MOhm at 500 V, between I/O and earth terminalsExact time for 1 Kinstruction 0.3 ms 70 % Boolean + 30 % fixed arithmeticExecution time per instruction 7.25 µs arithmetic REAL floating by operation

5111 µs arithmetic REAL floating +, -, x operations0.971 µs Boolean0.648 µs arithmetic REAL floating LD and ST0.506 µs arithmetic DINT double-word +, -, x operations0.459 µs arithmetic DINT double-word LD and ST0.439 µs arithmetic INT word +, -, x operations0.42 µs arithmetic INT word LD and ST

Exct time for event task 0.95 ms arithmetic DINT double-word>= 0.75 ms arithmetic INT word<= 1.75 ms arithmetic REAL floating

System overhead 0.9 ms master task (I/O)0.35 ms master task (advanced counting)0.2 ms master task (PTO)0.15 ms master task (simple counting)0.15 ms master task (PWM, frequency meter)

Input output assignment Reading/Writing I/O on extension modulesReading/Writing I/O on CANopen busReading/Writing I/O on base

Application structure 1 configurable freewheeling/cyclic master task2 configurable freewheeling/cyclic/event auxiliary tasks32 levels of priority between tasks4 interrupt tasks

Realtime clock With 10 s/month at 25 °C

3

Integrated connection type CANopen removable screw terminal block CANopen1 isolated serial link female RJ45 Modbus master/slave RTU/ASCII, charactermode or SoMachine-Network RS232/RS485 1.2...38.4 kbit/s (19.2 kbit/s by de-fault)1 isolated serial link female RJ45 Modbus master/slave RTU/ASCII or SoMa-chine-Network RS485 1.2...115.2 kbit/s (115.2 kbit/s by default)

Supply Serial link supply 5 V 200 mACANopen feature profile DR 303-1

DS 301 V4.02Transmission rate 800 kbit/s 50 m CANopen

500 kbit/s 100 m CANopen50 kbit/s 1000 m CANopen425 kbit/s 125 m CANopen250 kbit/s 250 m CANopen125 kbit/s 500 m CANopen1000 kbit/s 20 m CANopen

Positioning functions PWM/PTO 2 100 kHzCounting input number 8 100 kHz 32 bitsComplementary function Event processing

PIDMarking CELocal signalling 1 LED SL2

1 LED SL11 LED PWR1 LED per channel I/O state1 LED module error (ERR)1 LED CAN RUN1 LED CAN ERR1 LED Batt1 LED RUN

Electrical connection 1 removable screw terminal block for connecting the 24 V DC power supply1 removable screw terminal block (7 terminals) for connecting the sensors (in-puts)1 removable screw terminal block (6 terminals) for connecting the 6 preactuators(output)1 removable screw terminal block (5 terminals) for connection to the CANopenbus1 removable screw terminal block (12 terminals) for connecting the sensors (fastinputs)1 removable screw terminal block (10 terminals) for connecting the 4 preactua-tors (fast output)1 connector mini B USB 2.0 for a programming terminal

Product weight 0.595 kg

EnvironmentImmunity to microbreaks 10 msDielectric strength 500 V for 1 minute, between supply and earth terminals

500 V for 1 minute, between I/O and earth terminalsClass Class M20 <= 16 CANopenProduct certifications CSA

CTickGOSTUL

Ambient air temperature for operation -10...55 °CAmbient air temperature for storage -40...70 °CRelative humidity 95 % without condensationIP degree of protection IP20Pollution degree <= 2Operating altitude 0...2000 mStorage altitude 0...3000 mVibration resistance 1 gn 3.5 mm (f= 5...150 Hz)Shock resistance 15 gn for 11 msHeight 118 mmDepth 86 mmWidth 157 mm

4

Product data sheetDimensions Drawings

TM238LFDC24DT

Modicon M238 Logic Controller

Dimensions

5

Product data sheetMounting and Clearance

TM238LFDC24DT

Clearance

Mounting on a DIN Rail

Dimensions of the DIN Rail

Mounting on a Metallic Panel

Mounting Holes

6

Mounting the Modicon M238 Logic Controller on a Metallic Panel

7

Product data sheetConnections and Schema

TM238LFDC24DT

Wiring Requirements

Rules for Removable Screw Terminal Block

Rules for Removable Spring Terminal Block

DC Power Supply

Wiring Diagram

Use an external fast-blow fuse 2 A type F (UL recognized and CSA approved).

Regular Inputs

Wiring Diagram

(1) Fast-blow fuse 0.5 A(2) Sink input (positive logic)(3) Source input (negative logic)

Fast Inputs

8

Wiring Diagram

(1) Fast-blow fuse 0.5 A

Regular Outputs

Wiring Diagram

(1) Fast-blow fuse 2 A(2) Protection for inductive load

Fast Outputs

Wiring Diagram

(1) 2 A fast-blow fuse(2) Fast-blow fuse: 0.5 A in standard use / 0.1 A in PTO use(3) Protection for inductive load(4) Positive logic output wiring(5) Negative logic output wiring

Example of an incorrect wiring on Q2:

(1) 2 A fast-blow fuse(2) Incorrect wiring

CANopen Connection

Wiring Diagram

R Line termination resistor (120 Ω)

9

Wiring Diagram Examples for 1 Encoder on Fast Inputs

Incremental Encoder with Phase-Shifted Signals with TDC and 3-Wire PNP Detector

(2) Dual-phase encoder with index(4) PNP sensorUse a 0.5 A fast-blow fuse.

Incremental Encoder with Phase-Shifted Signals without TDC and Electromechanical Sensor

(1) Dual-phase encoder without index(3) Limit switchUse a 0.5 A fast-blow fuse.

Wiring Diagram Examples for 2 Encoders on Fast Inputs

Incremental Encoders with Phase-Shifted Signals with TDC

(2) Dual-phase encoder with indexUse a 0.5 A fast-blow fuse.

Incremental Encoders with Phase-Shifted Signals without TDC

(1) Dual-phase encoder without indexUse a 0.5 A fast-blow fuse.