34
Supplement Since the draft of this book was submitted, remarkable progress has been achieved in the field of the physics of emission-line stars. In this supplement, selected papers (published mostly in 2005 and 2006) are presented with some notes focusing into two topics: fine structure of emission-line forming regions (envelope, wind, and disk) and magnetic fields of early-type stars (February, 2007). Structure of emission-line forming regions With the advancement of optical and infrared interferometry and other so- phisticated observational techniques, dimensions and internal structure of the emission-line forming regions have been markedly unveiled recently and com- pared with theoretical models. Many types of interferometer systems have been developed and used for observations. They include Very Large Telescope Interferometer (VLTI, ESO), Infrared and Optical Telescope Array (IOTA, Mt. Hopkins), Navy Prototype Optical Interferometer (NPOI, US Naval Ob- servatory), Stellar Interferometer (Sydney University), and Center for High Angular Resolution Astronomy (CHARA Array, Mt. Wilson). Coronagraphic Imaging system with Adaptive Optics (CIAO, Subaru telescope) also yields high spatially resolved infrared images of stellar envelopes. LBV and central stars of planetary nebulae Near-infrared observations with the VLTI have been carried out for Eta Cari- nae and the central star of planetary nebula CPD-56°8032 (Chesneau et al. 2006). Weigelt et al. (2006) measured different disk diameters of Eta Carinae in the continuum (4.3 mas), in HeI emission (6.5 mas), and in Bry emission (9.6 mas) in K band. Line emissions showed a larger diameter as compared to that in the continuum. Chesneau et al. (2005) also derived the sub-arcsecond structure of the Eta Carinae envelope in the narrow-band images at 3.74 and 4.05 urn. A butterfly-shaped dusty environment and a void around the cen- tral star were found. Through spectropolarimetric observations, Davies et al. (2005) found an aspheric and clumpy structure in the winds of LBVs, which is more apparent in stars of strong Hex emission. 503

Supplement - Springer

Embed Size (px)

Citation preview

Supplement

Since the draft of this book was submitted, remarkable progress has beenachieved in the field of the physics of emission-line stars. In this supplement,selected papers (published mostly in 2005 and 2006) are presented with somenotes focusing into two topics: fine structure of emission-line forming regions(envelope, wind, and disk) and magnetic fields of early-type stars (February,2007).

Structure of emission-line forming regions

With the advancement of optical and infrared interferometry and other so-phisticated observational techniques, dimensions and internal structure of theemission-line forming regions have been markedly unveiled recently and com-pared with theoretical models. Many types of interferometer systems havebeen developed and used for observations. They include Very Large TelescopeInterferometer (VLTI, ESO), Infrared and Optical Telescope Array (IOTA,Mt. Hopkins), Navy Prototype Optical Interferometer (NPOI, US Naval Ob-servatory), Stellar Interferometer (Sydney University), and Center for HighAngular Resolution Astronomy (CHARA Array, Mt. Wilson). CoronagraphicImaging system with Adaptive Optics (CIAO, Subaru telescope) also yieldshigh spatially resolved infrared images of stellar envelopes.

LBV and central stars of planetary nebulae

Near-infrared observations with the VLTI have been carried out for Eta Cari-nae and the central star of planetary nebula CPD-56°8032 (Chesneau et al.2006). Weigelt et al. (2006) measured different disk diameters of Eta Carinaein the continuum (4.3 mas), in HeI emission (6.5 mas), and in Bry emission(9.6 mas) in K band. Line emissions showed a larger diameter as compared tothat in the continuum. Chesneau et al. (2005) also derived the sub-arcsecondstructure of the Eta Carinae envelope in the narrow-band images at 3.74 and4.05 urn. A butterfly-shaped dusty environment and a void around the cen-tral star were found. Through spectropolarimetric observations, Davies et al.(2005) found an aspheric and clumpy structure in the winds of LBVs, whichis more apparent in stars of strong Hex emission.

503

504

Be stars

Astrology of Emission-Line Stars

Stee et al. (2005) reviewed the methods and techniques of interferometricobservations of hot star disks with application to Be and B[e] stars.

In the optical region, Tycner et al. (2005, 2006) carried out narrow-bandHex interferometry using NPOI and found the intensity distribution in the en-velopes for y Cas and <P Per, and a relationship between Hex emission and lin-ear size of emission-line forming region for 11 Tau and f3 CMi. They attributedthis relationship to the large optical thickness of Hex radiation. Grundstromand Gies (2006) calculated numerical model of disks for the H« emission line,and found that the Hex disk radii as theoretically predicted are consistent withHex interferometric observations.

In the infrared spectral regions, various types of long baseline interferome-ters and interferometric array systems were used. Gies et al. (2007) in K band,Kervella and Domiciano de Souza (2006) in H, K bands, and Meilland andStee (2006) determined the size and geometrical structure of the envelopes ofsome Be stars. Chesneau et al. (2005) carried out interferometric observationsof the Be stars Alpha Arae in the N band at VLT, and derived the upperlimits of the envelope size to be approximately 4 mas, corresponding to 14stellar radius.

The formation and dissipation of the envelopes of Be stars are consideredby Meilland et al. (2006) and Rivinius (2005). Meilland et al. suggested twoscenarios: one is the successive outbursts of central stars to form disks andrings, and the other is the slowly decreasing mass loss until the disks vanish.Rivinius considered the lifecycles of classical Be stars, similar to the successiveoutburst scenario of Meilland. If not replenished by subsequent outbursts, thering will finally dissipate and Be stars will become B star.

Mira variables

Stratified structure of the circumstellar envelopes of Miras, such as the dif-ference in the radii of optical and radio photospheres and of inner dust shell,has been depicted by combined optical, infrared, and radio interferometers(Cotton et al. 2005, Whittkowiski and Boboltz 2005). Stellar diameters in theoptical (Ireland and Scholz 2006, Ireland et al. 2005) and infrared (Millan-Gabet et al. 2005, Ohnaka et al. 2005) spectral regions revealed the markeddependence on the wavelength and pulsational phase of Mira stars, where wecan see the effects of dust formation and pulsational shock propagation. Dy-namic models have been calculated and compared with observations (Ohnakaet al. 2006).

Herbig Ae/Be stars

Highly spatially resolved observations of HESs in the optical and infraredspectral regions have been carried out mostly by three groups: VLTI

Supplement 505

(Benisty et al. 2005, Preibisch et al. 2006), IOTA (Millan-Gabet et al. 2006,Monnier et al. 2005, 2006), and Subaru CIAO (Tamura and Fukagawa 2005,Fujiwara et al. 2006, Fukagawa et al. 2006, Honda et al. 2005, Lin et al. 2006,Okamoto et al. 2005). Far-UV long-slit spectrograph with the HST is alsoused to resolve the inner cavity of a disk (Grady et al. 2005). Complicatedstructure of circumstellar disks of dust or molecular gases, such as centralcavity, asymmetric disk, spiral arms, etc., are elucidated, along with somerelationship with the H(X emission intensity.

T Tau stars

As in the case of HES, recent observations of the structure of accretion diskshave been made in near- and mid-infrared spectral regions mainly at MaunaKea (Subaru, Keck telescopes) and ESO (VLT). Particular attention has beenpaid to the imaging of the inner part of the disks. Akeson et al. (2005) con-firmed the existence of inner edge of dust disk using the Keck interferometer.Mayama et al. (2006) using the CIAO of Subaru telescope, and Duchene et al.(2005) combining Keck telescope II, resolveda complex circumstellar structurearound the multiple system of T Tau. Quanz et al. (2006) and Millan-Gabetet al. (2006) observed the structure of optically thick accretion disk of FU Oriin mid-infrared band using the VLT interferometer.

Magnetic fields of early-type stars

It has long been supposed that early-type stars are lacking magnetic fieldsbecause of the absence of convection layers theoretically predicted. Recently,however, magnetic fields have been detected in early-type stars, particularlyin Be and Herbig Ae/Be stars. Its significant effects on the structure andevolution of envelopes have become widely recognized.

Be stars

Neiner and Hubert (2005) reviewed the indirect and direct methods of detec-tion based on oblique rotator models. Rotational modulation of spectral linesand X-ray fluxes provide a promising method. Smith and Balona (2006) andSmith et al. (2006) suggested the existence of strong magnetic fields on thesurface of Be stars by analyzing short-term variabilities in B, V bands, lineemissions, and X-ray fluxes.

Several theoretical models for magnetic winds and disks are proposed,generally based on the oblique rotator scheme with dipole-like magneticfields (Brown and Cassinelli 2005, Maheswaran 2005, Ud-Doula et al. 2005).Cassinelli and Neiner (2005) presented a broad discussion on the origin anddissipation of magnetic fields in Be stars. On the origin, two possible mech-anisms were proposed: one is the dynamo action in the convection core and

506 Astrology of Emission-Line Stars

its transportation to the surface and envelope, and the other is that the fossilfields remained from the initial stage of star formation.

HES

Detection and measurements of magnetic fields in HESs have been performedmainly at VLT, ESO, and at CFHT, Mauna Kea, using the spectropolarime-terse Hubrig et al. (2005, 2006) measured the magnetic fields for several HESsand found a large magnetic field of around 450 G for HD 139614 as thelargest case among Herbig Ae stars. Yudin et al. (2006) detected Zeeman fea-tures in Call doublet and in metallic lines, whereas Yudin (2005) suggestedthe existence of localized magnetic fields generated during the evolution ofcircumstellar envelopes.

Catala et al. (2007) observed the Herbig Ae starHD 190073 with theechelle spectropolarimetric device attached to the CFH Telescope, and de-tected the magnetic field in the photosphere of this star. Drouin et al. (2005)used both VLT and CFHT to detect the magnetic fields and chemical pecu-liarities in two HESs that are supposed to be the progenitors of the magneticAp/Bp stars. Hamaguchi et al. (2005) showed that the properties of thermalX-rays observed by the ASCA satellite are well explained by magnetic activityin the circumstellar disk of HESs.

References

LBV and central stars of planetary nebulae

Chesneau, 0., Colliud, A., de Marco, 0., and 7 co-authors (2006). A close look intothe carbon disk at the core of the planetary nebula CPD-56°8032. A. A., 455,1009-1018.

Chesneau, 0., Min, M., Herbst, T., and 15co-authors (2005). The sub-arcsecond dustyenvironment of Eta Carinae. A. A., 435, 1043-1061.

Davies, B., Oudmaijer, T. D., and Vink, J. S. (2005). Asphericity and clumpiness inthe winds of Luminous Bleu Variables. A. A., 439, 1107-1125.

Weigelt, G., Petrov, R. G., Chesneau, 0., Davidson, K., and 21 co-authors (2006).VLTI-AMBER observations of Eta Carinae with high spatial resolution and spectralresolutions of 1500 and 10,009. Advances in Stellar Interferometry. Monnier, J.D., Scholler, M., and Danchi W. C. (eds.), Proc. The SPIE, Soc, Photo-OpticalInstrumental Engineering. Bellington, WA, Vol. 6268.

Be stars

Chesneau, 0., Meilland, A., Rivinius, T., and 12 co-authors (2005). First VLTI/MIDIobservations of a Be star: Alpha Arae. A. A., 435, 275-287.

Supplement 507

Gies, D. R., Bagnuolo, W. G., Baines, E. K., ten Brummelaar, T. A., and 21 co-authors(2007). CHARA Array K'-band measurements of the angular dimensions of Be stardisks.Ap. J., 654, 527-543.

Grundstrom, E. D. and Gies, D. R. (2006). Estimating Be star disk radii using H«emission equivalent widths. Ap. J., 651, L53-L56.

Kervella, P. and Domiciano de Souza, A. (2006). The polar wind of the fast rotatingBe star Scherner. VINCI/VLTI interferometric observations of an elongated polarenvelope. A. A., 453, 1059-1066.

Meilland, A. and Stee, Ph. (2006). Recent results from the SIMECA code and VLTIobservations. EAS Pub. Ser., 18, 273-290.

Meilland, A., Stee, Ph., Zorec, J., and Kanaan, S. (2006). Be stars: one ring to rulethem all? A. A., 455, 953-961.

Rivinius, T. (2005). Links between hot stars and their disks. The Nature and Evolutionof Disks around Hot Stars. Ignace R. and Gayley K. G. (eds.), ASP Conf. Sere Vol.337, Ast. Soc. Pacific, San Francisco, CA, 178-189.

Stee, Ph., Meilland, A., Berger, D., and Gies, D. (2005). Interferometic study of hotstar disks. The Nature and Evolution of Disks around Hot Stars. ASP Conf. SereVol. 337, Ast. Soc. Pacific, San Francisco, CA, 211-222.

Tycner, Ch., Lester, J. B., Hajian, A. R., Armstrong, J. T., and 5 co-authors (2005).Properties of the Halpha-emittiong circumstellar regions of Be stars. Ap. J.., 624,359-371.

Tycner, Ch., Gilbreath, G. C., Zavala, R. T., Armstrong, J. T., and 5 co-authors (2006).Constraining disk parameters of Be stars using Norrowband Halpha Interferometrywith the Navy Prototype Optical Interferometer. A. J., 131, 2710-2721.

Mira variables

Boboltz, D. A. and Wittkowski, M. (2005). Joint VLBA/VLTI observations of theMira variable S Orionis. Ap. J., 618, 953-961.

Cotton, W. D., Mennesson, B., Diamond, P. J., Perrin, G., and 10 co-authors (2005).IR and SiD maser observation of Miras. Future Direction in High Resolution As-tronomy. Romney J. D. and Reid M. J. (eds.), ASP Conf. Sere Vol. 340, Ast. Soc.Pacific, San Francisco, CA, 380.

Ireland, M. J. and Scholz, M. (2006). Observable effects of dust formation in dynamicatmospheres of M-type Mira variables. M. N. R. A. S., 367, 1585-1593.

Ireland, M. J., Tuthill, P. G., Davis, J., and Tango, W. (2005). Dust scattering inthe Miras resolved by Optical interferometric polarimetry. M. N. R. A. S., 361,337-344.

Millan-Gabet, R., Pedretti, E., Monnier, J. D., Scholerb, F. P., and 4 co-authors (2005).Diameters of Mira stars measured simultaneously in the J, H, K' near-infrared bands.Ap. J., 620, 961-969.

Ohnaka, K., Scholz, M., and Wood, P. R. (2006). Comparison of dynamical modelatmospheres of Mira variables with mid-infrared interferometric and spectroscopicobservations. A. A., 446, 1119-1127.

Ohnaka, K., Bergeat, J., Driebe, T., Graser, D., Hofmann, H.-H., and 14 co-authors(2005). Mid-infrared interferometry of the Mira variable RR Sco with the VLTIMIDI instumemt. A. A., 429, 1057-1067.

508 Astrology of Emission-Line Stars

Wittkowski, M. and Boboltz, D. A. (2005). Joint VLTI/VLBA observations of Mirastars. Future Directions in High Resolution Astronomy. Romney J. D. and ReidM. J. (eds.), ASP Conf. Ser. Vol. 340, Ast. Soc. Pacific, San Francisco, CA, 389-393.

Herbig Ae/Be stars

Benisty, M., Malbet, F., de Wit, W. J., Kraus, S., Meilland, A., and 12 co-authors(2005). MWC 297: disk and wind spatially resolved with VLTI/AMBER. Protostarsand Planets V. Proceedings of the Conf. held Oct. 24-28, in Hilton Wailoloa Village,Hawaii, LPI Contr. No. 1286.

Cabrit, S., Pety, J., Pesenti, N., and Dougados, C. (2006). Tidal stripping and diskkinametics in the RW Aurigae system. A. A., 452, 897-906.

Fujiwara, H., Honda, M., Kataza, H., Yamashita, T., Onaka, T., and 6 co-authors(2006). The asymmetric thermal emission of the protoplanetary disk surroundingHD 142527seen by SUBARU/COMICS. Ap. J., 644, L433-L136.

Fukagawa, M., Tamura, M., Itoh, Y., Kudo, T., Imaeda, Y., and 3 co-authors (2006).Near-infrared images of protoplanetary disk arounding HD 142527. Ap. J., 636,L153-L156.

Grady, C. A., Woodgate, B., Heap, S. R., Bowers, C., and 3 co-authors (2005). Resolv-ing the inner cavity of the HD 100546 disk: A candidate young planetary system?Ap. J., 620, 470-480.

Honda, M., Kataza, H., Okamoto, Y. K., Yamashita, T., and 7 co-authors, SUBARU/COMICS 24.5 micron imaging of neaby Herbig Ac/Be disks. Protostars and Planetsv. Proceedings of the Conf. held Oct. 24-28, in Hilton Wailoloa Village, Hawaii, LPIContr. No. 1286.

Lin, S. Y., Ohashi, N., Lim, J., Ho, P., Fukagawa, M., and Tamura, M. (2006). Possiblemolecular spiral arms in the protoplanetary disk of AB Aurigae. Ap. J., 645, 1297-1304.

Millan-Gaber, R., Monnier, J. D., Berger, J. P., Traub, W. A., and 12 co-authors(2006). Bright localized near-infrared emission at 1-4 AU in the AB Aurigae diskrevealed by IOTA Closure Phases. Ap. J., 645, L77-L80.

Monnier, J. D., Berger, J. P., Millan-Gabet, R., Traub, W. A., and 12 co-authors(2006). Few skewed disks found in first closure-phase survey of Herbig Ae/Be stars.Ap. J., 647, 444-463.

Monnier, J. D., Millan-Gabet, R., Billmeier, R., Akeson, R. L., and 30 co-authors(2005). The near-infrared size-luminosity relations for Herbig Ae/Be disks. Ap. J.,624, 832-840.

Okamoto, Y. K., Kataza, H., Honda, M., Yamashita, T., and 6 co-authors (2006).Extended mid-infrared dust emission survey toward Herbig Ae/Be stars. Protostarsand Planets V. Proceedings of the Conf. held Oct. 24-28, in Hilton Wailoloa Village,Hawaii, LPI Contr. No. 1286.

Preibisch, Th., Kraus, S., Driebe, Th., van Boekel, R., and Weigelt, G. (2006). Acompact dusty disk around the Herbig As star HR 5999 resolved with VLTI/MIDI.A. A., 458, 235-243.

Raman, A., Lisanti, M., Wilner, D. J., Oi, C., and Hogerheijde, M. (2006). A Keplelriandisk around the Herbig Ae star HD 169142. A. J., 131, 2290-2293.

Supplement 509

Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri stars-Herbig Ae/Be stars, Vega-like stars, and submillimeter polarizations. AstronomicalPolarimetry: Current Status and Future Directions. Adamson, A., Aspin, C., Davis,C. J., and Fujiyoshi, T. (eds.), ASP Conf. Sere Vol. 343, Ast. Soc. Pacific, SanFrancisco, CA, 215.

T Tau starsAkeson, R. L., Walker, C. H., Wood, K., Eisner, J. A., and 6 co-authors (2005). Keck

interferometer observations of classical and weak-line T Tauri stars. Ap. J., 635,1173-1181.

Duchene, G., Ghez, A. M., McCabe, C., and Ceccarelli, C. (2005). The circumstellarenvironment of T Tauri S at high spatial and spectral resolution. Ap. J., 628, 832-846.

Mayama, S., Tamura, M., Hayashi, M., Itoh, Y., Fukagawa, M., and 16 co-authors(2006). Subaru near infrared coronagraphic images of T Tauri. P. A. S. Japan, 58,375-382.

Millan-Gabet, R., Monnier, J. D., Akeson, R. L., Hartmann, L. and 30 co-authors(2006). Keck interferometer observations of FU Orionis objects. Ap. J., 641, 547-555.

Quanz, S. P., Henning, Th., Bouwman, J., Ratzka, Th., and Leinert, Ch. (2006). FUOrionis: The MIDI VLTI perspective. Ap. J., 648, 472-483.

Magnetic fields of early-type stars

Be stars

Brown, J. C. and Cassinelli,J. P. (2005). Effects of magnetic fields on winds anddisks. The Nature and Evolution of Disks around Hot Stars. Ignace R. and GayleyK. G. (eds.), ASP Conf. Sere Vol. 337, Ast. Soc. Pacific, San Francisco, CA,88-99.

Cassinelli, J. P. and Neiner, C. (2005). Magnetic fields and Be stars. The Nature andEvolution of Disks around Hot Stars. ASP Conf. Sere Vol. 337, Ast. Soc. Pacific,San Francisco, CA, 43-55.

Maheswaran, M. (2005). A magnetic rotator wind disk model for Be stars. The Natureand Evolution of Disks around Hot Stars. ASP Conf. Sere Vol. 337, Ast. Soc.Pacific, San Francisco, CA, 259-263.

Neiner, C. and Hubert, A. M. (2005). Magnetic fields in Be stars. The Nature andEvolution of Disks around Hot Stars. ASP Conf. Ser. Vol. 337, Ast. Soc. Pacific,San Francisco, CA, 275-278.

Smith, M. A. and Balona, L. (2006). The remarkable Be star HD 110432 (BZ Crucis).Ap. J., 640, 491-504.

Smith, M. A., Henry, G. W., and Vishniac, E. (2006). Rotational and cyclical variabilityin gamma Cassiopeia. Ap. J., 647, 1375-1386.

Ud-Doula, A., Townsend, R., and Owocki, S. (2005). Centrifugal breakout of magneti-cally confined line-driven stellar winds. The Nature and Evolution of Disks aroundHot Stars. ASP Conf. Sere Vol. 337, Ast. Soc. Pacific, San Francisco, CA, 319-323.

510

HES

Astrology of Emission-Line Stars

Catala, C., Alecian, E., Donati, J. F., Wade, G. A., and 6 co-authors (2007). Themagnetic field of the pre-main sequence Herbig Ae star HD 190073. A. A., 462,293-301.

Drouin, D., Wadem G. A., Landstreet, J. D., Mason, E., and 6 co-authors (2005).Seeking the progenitors of magnetic Ap stars: A search for magnetic fields in HAeBestars using FORS 1 and ESPaDOnS. EAS Publ., Sere 17, 309-312.

Hamaguchi, K., Yamauchi, S., and Koyama, K. (2005). X-ray study of Herbig Ac/Bestars. Ap. J., 618, 360-384.

Hubrig, S., Szeifert, T., North, P., Scholler, M., and Yudin, R. V. (2005). Magneticfields of B and Herbig Ae stars measured with FORS 1 at VLT. The Nature andEvolution of Disks around Hot Stars. Ignace R. and Galey K. G. (eds.), ASP Conf.Sere V. 337, Ast. Soc. Pacific, San Francisco, CA, 236-239.

Hubrig, S., Yudin, R. V., Scholler, M., and Pogodin, M. A. (2006). Accurate magneticfield measurement of Vega-like stars and Herbig Ae/Be stars. A. A., 446,1089-1094.

Yudin, R. V., Pogodin, M. A., Hubrig, S., and Scholler, M. (2006). Magnetic fields inHerbig Ae/Be stars. Convection in Astrophysics. IAU Symp. 239, held on 21-25.August, 2006 in Prague, Czech Republic, S239, 51.

Yudin, R. V. (2005). Circumstellar discs around Ae/Be and Vega-type stars and localmagnetic fields. The Nature and Evolution of Disks around Hot Stars. Ignace R.and Galey K. G. (eds.), ASP Conf. Sere V. 337, Ast. Soc. Pacific, San Francisco,CA, 342-345.

Author Index

Letter T or F after the page number indicates the author found in the table or figureof the page.

AAbbott, D. C. 90, 91, 91F, 195Aiad, A. 476, 477fAlbright, G. E. 354, 354FAlencar, S. H. P. 488Allen, D. A. 251, 274, 275T, 398T, 398,

399Aller, L. H. 36, 61, 69, 141, 220TAmbartsumian, V. A. 329, 337, 448Anandarao, B. G. 399Anderson, Ch. M. 399, 400FAnderson, L. S. 179Andrillat, Y. 219, 219T, 227, 255, 256,

256FAnupama, G. C. 382, 383F, 384T, 393Apparao, K. M. V. 258Appenzeller, I. 453, 460,.462, 462F, 488Arkhipova, V. P. 405, 406FArmitage, P. J. 114, 115F, 494Ashok, N. M. 254, 255, 255FAthey, R. G. 179Attridge, J. M. 467, 467TAudard, M. 329

BBaade, D. 270Baker, J. G. 138, 140Bakos, A. G. 262Ballereau, D. 266Balona, L. A. 273, 274Bappu, M. K. V. 7, 321, 322F, 340F,

341TBaratta, G. B. 406Barbier, D. 25Barker, P. K. 240, 241FBasri, G. 465, 466F, 488

Bastien, P. 429, 455, 455T, 456FBatalha, C. C. 465, 466FBath, G. T. 386Batten, A. H. 229Bauer, W. H. 359F, 360Baum, E. 197Beals, C. S. 11, 198, 281, 282FBehr, A. 246Belcher, J. W. 96Belczynski, K. 398Bell, K. R. 475FBellingham, J. G. 470Benedettini, M. 484, 486, 486FBennett, P. D. 360Beristain, G. 490, 491FBertout, C. 471,476Bertschinger, E. 99Beskrovnaya, N. G. 431, 442Bhatt, H. C. 431Bibo, E.A. 438, 439FBidelman, W. P. 224Bjorkman, K. S. 248, 249FBleau, W. J. 282Bloch, M. 373, 373F, 380Bode, M. F. 382, 384T, 404Bohannan, B. 276, 276FBohm, T. 183, 424, 427, 435, 436F, 442,

442F, 444, 445Bohm-Vitense, E. A. 343Bohn, H. U. 130TBond, H. E. 222Bopp, B. 325Bord, D. B. 350Bouret, J. C. 427, 445Bourvier, J. 463, 465F, 467, 471Bowen, I. S. 11, 171

511

512

Bowen, G. H. 350Brandt, J. C. 96Breger, M. 429Briot, D. 229, 234, 235F, 296Brocklehurst, M. 142Brown, A. 465Bruevich, E. A. 146, 335, 337FBudding, E. 352, 355FBunsen, R. 9Burgers, J. M. 13Burwell, C. G. 226, 397Byrne, P. B. 366

CCabrit, S. 453, 471, 472Cakirli, 6 365Calvet, N. 466FCampbell, W. W. 4Cannon, A. J. 5, 6, 6T, 8Canto, J. 447Carlberg, R. G. 127Cassinelli, J. P. 75, 89, 92, 260, 261F, 295Castelaz, M. W. 350Caster, J. I. 75, 90, 161, 162, 162F, 212Catala, C. 183, 424, 427, 435, 436F, 442,

443, 443F, 444, 445, 446Cerruti-Sola, M. 223, 224FChalonge, D. 25, 26, 27F, 373, 373FChambers, H. L. 348Chandrasekhar, S. 74Chaubey, U. S. 296Chauville, J. 65, 232, 266Cheng, Q. Q. 176, 177, 179, 321Cherepashchuk, A. M. 208, 210Chevalier, R. A. 99Chin, C. W. 295Chincarini, G. 374, 374TChoi, H. J. 320, 320FCiardullo, R. 222Cidale, L. 275Cohen, D. H. 240, 260, 261FCohen, M. 213, 215T, 449, 449T, 450,

455, 456F, 457, 458F, 479, 479T, 480,481F

Collins, H.G. W. 232, 234, 235FConti, P. S. 106, 106F, 190, 191, 192T,

193F, 202, 215, 215T, 216, 216T,217F, 219, 219T, 275

Contini, M. 383, 402

Author Index

Corcoran, M. F. 197, 211Corporon, P. 437, 437TCote, J. 251Cox, A. N. 29TCoyne, G. V. 246Cram, L. E. 179, 180, 181, 181F, 325, 465Crawford, D. L. 20TCrowe, R. A. 343, 344TCrowther, P. A. 213, 214TCuntz, M. 130, 179

DDachs, J. 234, 235, 235FDamiani, F. 7.1.5D'Antona, F. 412Davidson, K. 275, 278, 287Davis, L. Jr. 92, 95, 96Fde Groot, M. 278, 284de Jager, C. 293, 329, 330FDe Marco, 0.222Deslandres, H. A. 7Deutsch, A. J. 14de Winter, D. 274de Zeeuw, P. T. 192Divan, L. 25, 26, 27FDoazan, V. 226, 266Dobrzycka, D. 380, 396Dominik, C. 98Dougherty, S. M. 195, 204Downes, R. A. 393, 394F, 395, 397Doyle, J. G. 325, 328Drake, S.A. 144, 144F, 145, 146F, 235,

236, 396Dufay, J. 380, 381F

EEberhard, G. 7Echevarria, J. 396Elitzur, M. 142, 397Emerson, D. 155Emerson, J. P. 460, 461FEndal, A. S., 343Engvold, O. 321Ergma, E. 210Etzel, P. B. 355, 355F

FFabregat, J. 297Feibelman, W. A. 222

Author Index

Feinstein, A. 262, 296Fekel Jr., F. 325Feldmeier, A. 128, 128FFelli, M. 196, 196F, 197, 197TFernandez, M. 477, 478FFinkenzeller, U. 424, 425T, 426F, 435,

444, 487Fleming, W. 5, 5T, 6Folha, D. F. M. 460, 461FFormiggini, L. 410Fox, M. W. 344T, 344F, 346, 346T,

348F, 349FFraunhofer, J. von 3Frew, D. J. 278Frost, S. A. 216, 217F, 219Fukuda. 1. 66, 66F, 219T, 231, 435,

436F

GGabler, A. 75Gahm, G. F. 453, 453T, 470, 471Gail, H. P. 97, 98Gallagher III, J. S. 291, 291F, 292Garcia-Alvarez, D. 336Garmany, C. D. 106, 106FGarrison, R. T. 343, 344TGauzit, J. 408Gehrz, R. D. 251Gershberg, R. E. 329, 334, 335, 335T,

394, 395T, 401, 484Ghandour, L. 445Ghez, A. M. 468Ghosh, K. K. 248Giampapa, M. S. 179, 180, 181F, 182Gill, C. D. 375, 377F, 378FGillet, D. 125, 126F, 347, 349TGilroy, K. K. 218Giovanardi, C. 484, 485F, 486, 487FGlasby, J. S. 440Gliese, W. 328, 328TGomez, A. E. 20Gray, D. 66,343Grinin, V. P. 430, 430F, 438, 482, 483Gutierrez-Moreno, A. 155,401

HHack, M. 356, 357T, 360Hagen, W. 360Hamann, F. 429

513

Hamann, W. R. 169, 170, 190, 212, 213,214T

Hanuschuk, R. W. 226, 268, 269FHarmanec, P. 229, 259, 273, 300Haro, G. 329, 337, 338Harrop-Allin, M. K. 114Hartigan, P. 472, 472FHartmann, L. 101, 111, 112F, 113F, 319,

324, 325, 325T, 326F, 339, 339F,476T, 493, 494F

Hessman, F. V. 389, 390FHearn, A. G. 92Helfand, D. J. 350Henyey, L. G. 12Herbig, G. H. 7, 8, 318, 423, 449, 449T,

452, 454, 469, 474, 476Herbst, W. 319, 319F, 440, 450, 467,

467T, 469F, 470Hernandez, J. 424Herzberg, G. 36Hertzsprung, E. 8Hill, S. J. 99, 100FHillier, D. J. 212, 280Hillenbrand, L. A. 425T, 427, 428THirata, R. 229, 232F, 239, 248, 265,

265F, 266Hirth, G. A. 473, 474FHoffiich, P. 487FHoffmeister, C. 343, 366, 366F, 367F,

379T .Holzer, T. E. 102, 102FHoneycutt, R. K. 353Horaguchi, T. 259, 266, 267FHorne, K. 170, 384F, 385, 386, 388

388FHoudebine, E. R. 325, 327F, 332Howarth, 1. D. 202Huang, S. S. 65, 239, 268Hubble, E. 290Hubeny, J. 249Hubert, H. 226Hubert-Delplace, A. M. 226, 262Huggins, W. 3, 4, 11Hugoniot, H. 12Humason, M. L. 8Hummel, W. 239Hummer, D. G. 75, 143, 163Humphreys, R. M. 275, 276F, 278, 287Husfeld, D. 169

514

IIben, Jr., I. 115, 412Ichimura, K. 331Ignace, R. 198Iijima, T. 380, 382Ikeda, Y. 407, 408F, 409FIllarionov, A. F. 404Imhoff, C. L. 460, 462, 462FInglis, D. R. 61Ivison, R. J. 403

JJain, S. K. 431Jankovics, I. 487Jaschek, M. 224, 229, 239Jaschek, C. 229, 239Jeffery, D. 163Johns-Krull, C. M. 462, 463FJohnson, H. L. 19, 20TJorissen, A. 116, 116FJoy, A. H. 7, 8, 9T, 350, 448Jura, M. 350

KKahn, F.D. 382, 384TKaitchuck, R. H. 353Kambe, E. 270, 271FKarovska, M. 350Kato, S. 268Katsova, M. M. 336Katysheva, N. A. 480Kawabata, S. 357, 358FKeenan, P. C. 23T, 24, 343Kenyon, S. J. 291, 291F, 292, 397, 405T,

406, 409, 410T, 476TKharchenko, N. 343Kingsburg, R. L. 190, 191TKippenhahn, R. 85, 86F, 352Kirchhoff, G. 3, 9, 10Kirkpatrick, J. D. 24Knapp, G. R. 107, 108, 344TKneer, F. 314Koesterke, L. 213, 214TKogure, T. 149, 150, 153, 163, 229,

230F, 232F, 236, 237, 237F, 238F,239, 242F, 244F, 262, 263F, 264,264F

Kohler, R. 468Kohoutek, L. 221T

Author Index

Kolotilov, E. A. 440, 441F, 479, 479T,482

Konigl, A. 111Kopal, Z. 351Koppen, J. 480, 480T, 483, 483TKosirev, N. A. 74Kraft, R. P. 375Kriz, S. 229, 268Kron, G. E. 20TKruszewski, A. 246Kudritzki, R. P. 73Kuhi, L. V. 198, 200F, 449, 450, 450F,

455, 456F, 457, 458F, 479, 479T, 480,481F

Kukarkin, B. V. 344T, 352, 398T, 440Kunasz, P. B. 168Kunjaya, Ch. 248Kunkel, W. E. 331, 331F, 332T, 335Kurucz, R. L. 71, 72, 72F, 73F, 251,

252FKwok, S. 97

Lla Dous, C. 393Lafun, J. ~ J. 125, 126FLamers, H. J. G. L. M. 89, 92, 162, 163,

212, 218, 218T, 274, 277,278T, 283F,284, 285F, 286F

Landsman, W. B. 182, 183FLandstreet, J. D.·430, 455Lang, K. R. 23TLanger, N. 293Lauterborn, D. 352Lawson, W. A. 274Leep, E. M. 215, 215T, 216T, 219, 219FLeedjarv, L. 404Leinert, Ch. 468Leitherer, C. 105, 106, 106e, 218, 218T,

277Lepine, S. 208Leung, K. C. 353Leynolds, O. 13Li, W. 435Lim, J. 107Liu, Q. Z. 258Livio, M. 114, 115F, 379TLopez, J. A. 412Loup, C. 108Lucy, L. 90

Author Index

Lundstrom, I. 198, 199FLuttermoser, D. G. 350

MMacGregor, K. B. 96, 101Mach, E. 12Maeda, Y. 211Maeder, A. 208, 209F, 278, 293,.295,

411Maehara, H. 350, 404Magazzu, A. 454, 454FMaheswaran, M. 295Malfait, K. 424, 429Marchenko, S. V. 210, 212FMarkova, N. 281, 282, 283F, 284Marlborough, J. M. 163, 248, 249, 255Marsh, T. R. 170, 385Martin, E. L. 435, 454Martinez-Pais, I. G. 386, 387FMason, E. 396Mathieu, R. D. 468Matthews, H. E. 447Mauas, P. J. D. 176Maunder, E. W. 5Maury, A. C. 5,22Mazzitelli, I. 412McDavid, D. 248McLaughlin, D. B. 369, 371FMeier, S. R. 398T, 402, 403FMelo, C. H. F. 468Menard, F. 455, 457FMendez, R. H. 222, 223FMendoza, C. 174TMendoza, E. E. 262, 457Mennickent, R. E. 233, 234F, 239Menzel, D. H. 10, 11, 138, 140Merrill, P. W. 6, 7, 14, 32, 226, 228, 397,

408Meyer, M. R. 460Meynet, G. 293, 295Mihalas, D. 73, 74F, 75, 166,168Mikolajewska, J. 393Mikolajewski, M. 404Miller, D. L. 212Miller, J. R. 319, 319FMiroshnichenko, A. S. 259Mirzoyan, L. V. 338, 338FMitchell, G. F. 447Miyamoto, S. 12, 13, 147, 150, 236

515

Moffat, A. F. J. 205, 207, 207F, 208, 209,210

Montes, D. 361, 361T, 362, 363FMorales-Rueda, L. 385Morgan, W. A. 24, 25, 337Moreno, H. 155, 401Morris, M. 107, 108Morris, P. W. 194Morse, J. A. 279, 279FMullan, D. J. 107, 176, 177F, 179Munari, U. 398, 399TMundt, R. 423, 424, 425T, 426F, 444,

447, 447TMuratorio, G. 289Muzerolle, J. 446, 489, 489F, 490F

NNegueruela, I. 219, 219T, 259Neuhauser, R. 462, 463, 463T, 464, 464FNewman, M. J. 108, 109FNiedzielski, A. 201, 201FNieuwenhuijzen, H. 123, 124, 125F, 293Nisini, B. 484, 485, 486, 487FNussbaumer, H. 410, 411, 411e

oO'Brien, T. J. 375, 377F, 378FOkazaki, A. 268Oliverson, N. A. 399, 400FOlson, E. C. 115, 355, 355FOsaki, Y. 270, 273, 386Osten, R. A. 331Ostriker, E. C. 111Owocki, S. P. 208, 213Ozeren, F. F. 321

p

Paczynski, B. 113Palla, F. 492, 492F, 493, 493FPallavicini, R. 450Panagia, N. 196, 196F, 197, 197TPapkalla, R. 168Parenago, P. 344T, 352, 398T, 440, 469·Parker, E. N. 13Parsamian, E. S. 329, 334, 334FPayne-Gaposchkin, C. 369Pena, M. 222Penny, L. 216, 217T, 219Percy, J. R. 262, 270

516

Perek, L. 221TPerez, M. R. 427, 445, 446Perinotto, M. 223, 224FPersson, S. E. 429Peters. G. J. 249, 353Petit, M. 368TPettersen, B. R. 323Pickering, E. C. 5, 5T, 22Pikel'ner, S. B. 14Pirzkal, N. 436, 437, 437TPlanck, M. 10Plavec, M. 229, 353, 353TPoe, C. H. 208, 213Poeckert , R. 248, 255Polidan., R. S. 229, 353, 353TPollock, A. M. T. 197Pols, O. R. 300, 300T, 301Pontefract, M. 430Portegies Zwart, S. F. 301Porter, J. M. 225Pottasch, S. R. 141, 141T, 142, 142T,

152, 152F, 220, 220T, 221, 221T,236

Prabhu, T. P. 382, 383F, 384TPraderie, F.' 444Preibisch, Th. 425T, 431, 434F, 445Preston, G. W. 317, 318FProudman, I. 82, 84

QQuirrenbach, A. 246

RRankine, W. J. M. 12Rao, N. K. 449Rappaport,S. 258Ratering, C. 389Rauw, O. 208, 209FRay, T. P. 447, 447T, 448FRayet, G. 4, 189Reid, I. N. 24Reipurth, B. 468, 488Richards, M. T. 115, 354,·354FRinehart, S. A. 257, 257TRitter, H. 368TRivinius, Th. 225, 243, 245Robert, C. 205Robinson, E. L. 366Robinson, R. D. 259

Author Index

Rochowicz, K. 201, 201FRodono, M. 332, 333FRomanishin, W. 296Rons, N. 166Roques, P. 8Rosino, L. 374, 374T, 382Rossano, G. S. 470Rosseland, S. 11, 12, 136Rountree, J. 249Rybicki, G. B. 163, 169Rydgren, A. E. 458, 459FRygh, B.O. 319

SSaijo, K. 359Saito, M. 359Sandage, A. 290Schaller, G. 293, 294FSchatzman, E. 14Schild, H. 405, 406Schild, R. 296Schmid, H. 405, 406Schmitz, F. 179Schmutz, W. 170, 202Schrijver, C. 176, 177FSchulte-Ladbeck, R. A. 198Schwank, ~. 401, 401F, 402FSchwarzschild, K. 9Seaquist. E. R. 403Secchi, A. 3, 4Sedlmayer, E. 97, 98Seggewiss, W. 202Seitter, W. C. 369Shafter, A. W. 389, 390F, 391, 392FShara, M. M. 205, 378Shawl, S. J. 350Shnol, E. E. 335, 394, 395T, 401, 484Shore, S. N. 382, 383Short, C. I. 328, 366Shu, F. H. 111Simon, T. 182, 183FSingh, M. 296Skinner, S. L. 205,433, 434, 435F,

445Slavin, A. J. 375Slettebak, A. 228, 228T, 229, 233, 234,

234F, 235, 235F, 249 250F, 296,297F

Smith, L. F. 198, 200F, 208, 209F

Author Index

Smith, L.J. 278TSmith, M. A. 250, 259, 273Snow, T. P. Jr. 92, 253FSobolev, V. V. 12, 155, 160, 161Soker, N. 278Solomon, P. H. 90Sonneborn, G. 249Sorelli, C. 446Stahl, O. 284, 289, 289TStahler, S. W. 108, 110F, 492, 492F,

493FStarrfield, S. 377Stauffer, J. R. 318, 324, 325, 325T, 326F,

339, 339FStebbins, J. 20Stein, R. F. 83Stella, L. 258, 258TStelzer, R. 463Stencel, E. R. 360Stenholm, B. 19~, 199FStepien, K. 130Stibs, D. W. N. 169Stickland, D. J. 391, 392FStothers, R. B. 295Strassmeier, K. G. 341, 342F, 361,

361TStripe, G. M. 145Strom, S. E. 423Stromgren, B. 20Struve, O. 11, 13, 65, 226, 227F, 268Sunyaev, R. A. 404Swings, J.P. 274, 275TSzeifert, Th. 291, 292, 292T

TTakeda, Y. 66Tamura, S. 407, 408F, 409FTappert, C. 389Tarasov, A. E. 231Taylor, A. R. 240Teller, E. 61Telting, J. 272, 272FThe, P. S. 424, 425T, 427, 435, 438,

439F, 440F,445Theuns, T. 115, 116FThorn, C. 245Tjin A Djie, H. R. E. 488Torrej6n, J. M. 297Torres-Dodgen, A. V. 193

517

Townsend, R. H. D. 233Truran, J. W. 379T, 406Turner, C. G. 66Tutukov, A. V. 412Tycner, Ch. 245, 245TTylenda, R. 221

UUesugi, A. 219T, 435, 436FUlmschneider, P. 83, 84, 84F, 85F, 130,

131F, 179Ulrich, R. K. 144, 144F, 145, 146F, 235,

236,282,396Underhill, A. B. 208, 210, 211T, 213,

216, 218Unsold, A. 63, 65F

VVacca, W. D. 191, 192T, 193Van Altena, S. F. 20van Bever, J. 301Vanbeveren, D. 361van Blerkom, D. 161, 162F, 212van den Ancker, M. E. 274van den Heuvel, E. P. J. 258, 298F, 299,

299Tvan der Hucht, K. A. 190, 191T, 192,

192T, 194, 194F, 202, 203F, 204F,205, 205T, 209, 221T

Van de Hulst, H.C, 13van Genderen, A. M. 205, 206, 206F,

208, 280van Kerkwijk, M. H. 210, 255Van Maanen, A. 8Vaughan, A. H. 317, 318FVink, J. S, 429, 430, 433F, 457Viotti, R. 278, 279, 280e, 405T, 406Vladilo, G. 319Vrancken, M. 239Vrba, F. 429Vreux, J. M. 202, 208, 210, 213

WWalborn, N. R. 215, 215T, 216T,

278TWalker, M. F. 270, 375,476Wallerstein, G. 14, 280Walter, F. M. 450, 452F, 480,

482F

518

Warner, B. 114, 169, 366, 379T, 385,386T, 389, 391T

Waters, L. B. F. M. 251,252, 252F,253F, 255, 285, 487, 487F

Webbink, R. F. 379, 379TWeber, E. J. 92, 95, 96FWehrse, R. 487FWeigert, A. 352Werner, K. 169Wesselius, P. P. 285Weymann, R. 97White, N. E. 259White, R. C. 195White, S. M. 107Williams, P. M. 194, 194F, 195, 202,

204F, 205Williams, R. E. 370, 372, 372F, 374, 375,

376F, 382, 396, 396TWillson, L. A. 99, 100, 100F, 453Wilson, O. C. 7,321, 322F, 340F,

341TWinkler, K. A. 108, 109FWolf, B. 284, 291, 292Wolf, C. 4, 189Wood, B. E. 350

Author Index

Wood, K. 247, 247F, 248Wood, P. R. 99, 346, ,348F, 349FWoolley, R. v. d. R. 169

y

Yamashita, Y. 40, 350, 404Young, A. 323, 324F, 328, 328TYudin, R. V. 225, 232, 233TYungelson, L. R. 210

ZZak, D. S. 458, 459FZamanov, R. 281Zanstra, H. 10Zhai, D. S. 362, 364, 364F, 365FZhang, X. B. 362, 364, 364F,

365FZhekov, S. A. 205Zickgraf, F. J. 274, 287, 287T, 288F, 289,

289T, 290, 295Zinn, R. J. 74FZinnecker, H. 425T, 431, 434F, 444, 445,

468Zorec, J. 229, 290, 296Zwitter, T. 398

Subject Index

The letter T or F after the page number denotes the subject found in Table orFigure of the page.

AAbsolute magnitude 20

(Flare stars) 338F(WR stars) 193, 193F(LBV) 275(DNe) 384F, 385

Accretion disk/flow 108, 113Spherically symmetric accretion 108,

109FMagnetospheric accretion 112, 489

Accretion disk/flow in stars(Binary system) 113, 115F, 116F(Mira) 350(CVs) 366, 372, 377, 380(Symbiotic) 404, 405F, 409(Protostars) 110(HES) 434, 445, 446(TTS) 112, 113F, 429, 460, 471

Acoustic spectrum/power 83, 84FActivity index 317, 318FAe star 224, 226, 229AGB (asymptotic giant branch) 108,

404, 412Alfven waves 101, 101FAlgol eclipsing binary 114, 115, 352Algol star/system 229, 231, 354, 355FApproximate lamda iteration (ALI)

method 168, 212Association

OB association 190, 192TT association 449Chamaeleon association 468Orion association 334, 337, 337F, 370Association NGC 2264 338, 338F

ATA (Australia Telescope Array) 433

ATLAS1272Atmospheric eclipse 356, 357T

BBalmer decrement 12, 140, 154

(Static envelope) 145, 146F(Movingenvelope) 335, 394, 395T, 484(LTE model) 335(Nebular approximation) 140, 141T,

142T, 396, 397, 482(Envelope approximation) 483, 483T(Accretion disk) 396, 396T

Balmer decrement in stars(Emission-line stars) 153(Be stars) 150, 152F, 233, 235F, 237F(B[e]) 289(dMe stars) 334, 336(Flare stars) 331, 332T, 334, 335T(Mira variable) 346, 348T, 349T(RS CVn) 366(Cataclysmic variables) 393, 394, 394F(Symbiotic stars) 399, 401, 402F(HES) 479, 479T, 480T(TTS) 480, 481F

Balmer jump/discontinuity 25, 25F, 476Basal atmosphere 175, 179, 321BCD classification -+ Spectral

classificationBe star 12

(Classical) Be stars 224, 228T, 423,424, 444

Ordinary Be stars 226, 239Peculiar Be stars 274, 275TB[e] stars 287, 287T, 289T, 295Be/X-ray binary 258, 258T, 300

519

520

Be star (cant.)Be-shell stars 226, 240, 244F, 262,

263FBinary. stars

WR binaries 208, 210, 299Algol binary/system 114, 300, 352,

355F, 440, 469Close binary 113, 351F, 366Eclipsing binary 114, 351, 437, 437TBe/X-ray binary 258, 258T, 300, 300TBinary of atmospheric eclipse 356,

357TBinary system/binarity in stars

(WR) 190, 192T(Of) 217(PNCS) 222(Be) 228T, 229(dMe) 325(Flare stars) 329(Mira variables) 350(Symbiotic stars) 408, 410T(HES) 435, 437T(TTS) 468

Birthline 492Black body 10, 41, 46Blueing effect 438Bolometric magnitude/luminosity 21

(LBV) 275(Be) 260, 261F(RES) 431, 434F(TTS) 463

Boltzmann's law/distribution 42Boundary layer 111, 112FBreak-up velocity 231, 232FBrown dwarf 24

CCABS == Chromospherically Active

Binary System ---+ CatalogueCAK ---+ stellar winds (theory)Cataclysmic variable stars (CVs) 170,

366, 393Catalogue

BSC (Bright Star Catalogue) 229, 296CABS (Chromospherically active

binary stars) 361Catalogue of spectroscopic binary

systems 229Draper Memorial Catalogue 5

Subject Index

GCVS (General catalogue of variablestars) 344T, 352, 398T, 440

HD (Henry Draper catalogue) 6HDE (Extended HD catalogue) 24HRC (Herbig-Roo catalogue) 449TMWC (Mount Wilson catalogue) 226,

398New Yale Catalogue (Trigonometric

parallax) 20Catalogue of stars for stellar type

(WR) 190, 192(Be) 226(UV Cet-type stars) 329(Mira variables) 343(Algolsystems) 352(RS CVn systems, CABS) 398(Symbiotic stars) 399(HES) 424(TTS) 449, 470

CFHT --+ ObservatoryChemical abundance/chemical

composition(WR) 212, 214T, 215T(Of) 215(LBV) 280(Novae) 411F, 412(Symbiotic novae) 410, 411F

Chromoshere 13Chromospheric activity 85, 107, 176,

18~ 317, 319, 360, 427, 446Chromospheric emission line 7, 180,

180T, 323Models of chromosphere 179, 465,

466FColor index 19, 26,

(Late type stars) 319(Flare stars) 339, 339F(Symbiotic stars) 398, 399T

Co-moving frame method (CMFmethod) 166

Compact stars(WR stars) 208, 210(Be) 258, 300

Complete linearization method 212Convection layer 79, 82, 85, 319, 454Corona 13, 89, 323

Coronal emission line/coronal lines372, 374, 382

Coronal X-rays 323, 383

Subject Index

Co-rotation circumstellar material 273Curve of growth 66, 68F, 69, 69F

DDepolarization

(Be) 246, 248(HES) 430

Dilution factor 135, 136T, 138, 146Discrete absorption component (CAC)

(Be stars) 250Doppler tomography 170, 389Dust shell (envelope)

(WR) 202(Be) 251(B[eD 287(Symbiotic stars) 399(HES) 430,431,438(TTS) 457

EE/ C variation (Be) 262Eddington approximation 54, 55, 149Edington-Barbier relation 52,56, 57, 62Eddington (luminosity) limit 98Einstein coefficient 38, 43, 137, 140Einstein Observatory ~ X-ray satelliteEquilibrium

Thermodynamic equilibrium (TE) 10,41, 46, 137

Detailed balancing 41, 43Local thermodynamic equilibrium

(LTE) 10, 47, 52, 54, 71, 80Non local thermodynamic equilibrium

(Non-LTE) 10, 71, 180Thermal equilibrium 52Radiative equilibrium (RE) 53Statistical equilibrium 139, 144, 148

Escape probability 10Escape probability by motion 12, 155,

160, 161, 394, 395T(Cataclysmic variables) 394(TTS) 489(Pre-main sequence stars) 484

Escape probability by scattering 142,144F

(Flare stars) 336(Cataclysmic variables) 396

Escape probability by multiplescattering 335, 337F

521

Sobolev type probability = Escapeprobability by motion 12

Sobolev-P method 163Evolutionary state/scenario, of

stars(stars) 85, 86F(Massive stars) 292, 294F, 299(Be) 296, 300(LBV) 280(dMe) (age effect) 339, 339F(Flare stars) 337

.(Novae) 412(Planetary nebulae) 412(Symbiotic stars) 410(TTS) 485(Pre-main sequence stars) 7, 492,

492F, 493(Protostars) 108, 110F

EXor star 475, 494, 494F

FFlare star 8, 328, 328TFluorescence line 452, 453TFluorescense mechanism

(Nebula) 10(TTS) 452

Forbidden line 11, 35, 171, 172Nebular-type forbidden lines 171Semi-forbidden line (Intersystem lines)

175, 176T, 403Critical electron density 172, 174T,

370, 427Forbidden lines in stars

(WR) 202(Be) 274, 275T(B[e] stars) 275, 287, 290(LBV) 280(P Cyg stars) 281(HS variables) 291(Atmospheric eclipse) 357(VV Cep) 359(Novae) 370, 382, 396(Symbiotic stars) 399(Symbiotic novae) 406(HES) 424, 427(TTS) 453, 472, 474F

Fraunhofer lines 3, 10FU Ori type star (FUor) 472, 475F,

476T, 494, 494F

522

GGray atmosphere 54, 74Grotrian diagram 31, 40

CaII35FFe I 452FHI32FHeI37FNaI34F

HHarvard classification ---+ Spectral

classificationHerbig-Haro objects 446,447Herbig Ae/Be (HES, HABE) 8, 423,

425THipparcos satellite/parallax 20, 192HR (Hertzsprung-Russell) diagram 1,

2F, 26, 28F, 276F, 285FHII region

(WR) 191, 192T(Symbiotic stars) 401, 401F

HMXB (High mass X-ray binary) 258,298F, 299

Hubble-Sandage variable (HS variable)~ Variable stars

Hubble Space Telescope (HST) 182,183F, 222,279, 279F, 291, 350,412

Hugoniot curve ---+ Rankine-Hugoniotrelation

Humphrey-Davidon instability limit 275,276F, 284, 285F

IInfrared excess

(WR) 195, 202(Be) 251, 254(B[e]) 274, 287(Mira variables) 410(Symbiotic stars) 399, 410(HES) 423, 427(TTS) 460, 471

Infrared satelliteIRAS (Infrared Astronomical

Observatory) 251, 399, 429ISO (Infrared Space Observatory) 202,

203F, 209, 484, 486Infrared spectrum

(WR) 202, 203F

Subject Index

(Be) 251, 255, 256F(HES) 429(TTS) 457, 484

Inglis-Teller formula 61Instability

Disk instability 386Raylergh-Taylor instability 127Sound-wave instability 127Mass-tranfer instability 386Pulsational instability 85Wind instability 197, 208

Interferometry/interferometer 245,245T

Interstellar absorption 154, 193Infrared Space Observatory (ISO) ~

Infrared satelliteIUE satellite/observations ---+ Ultraviolet

satellite

JJet flow/stream 404,446, 447T, 448F,

471, 473

KKeplerian motion 239Kirchhoff-Bunsen's experiment 55Kirchhoff's law 10, 47

LLagrangian point 113, 114FLamda operator (A-operator) 168

Approximate A-operator (ALImethod) 169

LBV (Luminous blue variable) 275,276F, 278T, 293

Limb darkening 49Linear polarization

(Be stars) 246, 247F, 249F(HES) 423, 429(TTS) 455, 455T, 456F

Lithium (Li) abundance 449, 454,454F

Local thermodynamic equilibrium(LTE) ---+ Equilibrium

LTE model/LTE stateStellar atmosphere 52, 71, 72F, 73FFlare stars 335Cataclysmic variables 396

Luminosity class 24, 224

Subject Index

MMagnetic accretion flow

(TTS) 489(HES) 446

Magnetosphere 404, 446, 489Mass-accretion rate

(Symbiotic stars) 409(TTS) 463F, 474, 494, 494F

Mass-loss rate 104(Early-type stars) 104, 106F(Late- type stars) 107(Massive stars) 293, 294F(WR) 211(Of) 218, 218T(Be) 251, 253F, 487F(LBV) 277, 280(PNCS) 223, 224F(P Cyg stars) 284, 286F(HS variables) 291, 292T(dMe) 107(Mira variables) 410(VV Cep) 359(Symbiotic stars) --+ (Mira variables)(HES) 434, 487F(TTS) 453, 471, 484, 486, 487F(YSO = Young stellar object) 487f

MCAK --+ stellar winds (theory)Method of velocity zones 163Miln-Eddington model 10Model atmosphere 70

LTE-model 71, 72F, 73FNon-LTE model 72, 74, 180Extended atmosphere 74Unified model 75

NNebula

Planetary nebula 220, 220TReflection nebula 279, 279F, 430, 447

Nebular approximation 138, 141(Be stars)(cataclysmic variables) 397(Pre-main sequence stars) 482

Non-radial pulsation (NRP)(WR) 208, 210(P Cyg) 284(Be) 270, 272F, 296

Novae 1-4Classical nova (CN) 367, 368T, 412

523

Recurrent nova (RN) 378, 379TDwarf nova (DN) 385, 386TNova-like variables (NL) 389, 391TSymbiotic nova 404, 405T

oObservatory

Asiago Observatory 373, 382Beijin Astronomical Observatory

(Xinglong Station) 362Calar Alto Observatory 473, 478Cerro Tololo Interamerican

Observatory (CTIO) 350Canada-France-Hawaii Telescope

(CFHT) 207Colorado University Observatory 241FCote D'Azur Observatory 245Crimean Observatory 441, 442ESO (European Southern

Observatory) 223, 279, 287, 288FHarvard College Observatory 5Haute Provence observatory 255, 373,

373F, 380, 381FKitt Peak Observatory 471, 472Kuiper Airborn Observatoy (KAO)

428FLick Observatory 4, 453Mauna Kea (CFHT, UKIRT) 207,460Mt. Hopkins Observatory 291,324Mt. Lemon Observatory 390F, 392FMt. Stromlo Observatory 346Mt. Wilson Observatory 6, 11, 341National Radio Observatory at Kitt

Peak 447Okayama Astrophysical Observatory

40, 265F, 270, 331, 357, 407ORM == Observatorio del Roque de

Los Muchachos (Canary Islands)375

Paris Observatory 4Roman College Observatory 3South-African Observatory 392FVainu Bappu Observatory 382Washington Observatory 400Whipple Observatory 424Wyoming IR Observatory 436·Yerkes Observatory 12

Oe star 219, 219T, 224Of stars 155, 215, 215T, 285F, 293

524

One-arm oscillation 268Orion Spectrum 370

p

P Cyg-type stars 11, 13, 284, 285FP Cyg profile 162, 280, 281F; 282F

(LBV) 276, 280(P Cyg stars) 284(PNCS) 220, 223F(Be) 249(B[e]) 289(Mira variable) 350(CVs) 369, 374, 380(HES) 424, 442, 444(TTS) 460Inverse P Cyg profile 282, 284, 444,

445, 460, 476Phase variation/change

(Be stars) 261, 262, 263F, 264F, 266(Algols) 354, 354F(Mira variables) 345F, 346(VV Cep) 357, 358F(Dwarf nova) 387, 387F(Symbiotic stars) 407, 408F

Photometric system 20TPlanck function 41Planetary nebulae 3, 220, 220T, 221T,

350, 412PNCS (Central star of planetary nebula)

220, 220T, 221TPoisson's law 122Polar 366Pole-on star 226, 236, 238F, 289TPre-main sequence star 423,457, 477,

493FProfile of absorption line 58

Damping profile 58Doppler profile 59Lorentz profile 58Voigt profile 59, 59F, 144Rotationary broaded profile 65F

Propeller action 404, 405FProtostar 108, 110F, 492, 494F

Q

RRadiation field 47, 138, 146

Nebular type 138

Subject Index

Be-star type 147, 150Radiative equilibrium 53Radiative transfer 11, 44, 49Radio flare 331Radio emission

Thermal emission 195(WR) 195(RS CVn) 360(HES) 433, 435F, 445

Radio spectrum(WR) 195(Symbiotic stars) 403

Rankine-Hugoniot relation (RH relation)120

Hugoniot curve 120, 121F, 123FGeneralized R-H relation 122,

125FRayleigh-Jeans approximation 42Recombination/recombination line

138Red dwarf emission-line star (dMe) 7,

323, 326FRed giant 340, 341T, 401,412Roche lobe 113, 351, 351F, 360

Roche equipotential curves 114FRoche lobe overflow (RLOF) 113, 229,

300Rosseland cycle 11, 136, 147TRotational velocity/ V sin i

Determination procedure 65Average rotational velocity 66, 66FBreak-up velocity 231(Of) 216, 217T(Oe) 219T(Be) 230F, 230, 232F, 233T, 297F(dMe) 325(Red giants) 343(HES) 434, 436F(TTS) 466, 467T

RS CVn stars 321,360, 361TRunaway star 301

SSchwarzschild criterion for convection

instability 80Schuster-Schwarzschild model 10SEI method (Sobolev exct intergarion

method) 163Shell absorption line 166

Subject Index

(Be) 229,240, 241F, 242F, 256F, 257,264, 265F

(VV Cep) 360(HES, TTS) 487

Shock wave 13, 117, 118FStationary shock wave 117, 118F, 119FAdiabatic shock wave 120, 121FRadiative shock wave 125, 126FShock waved in stellar atmosphere 122Shock-wave train 130

Shock waves in stars 122(Early-type stars) 127(WR) 198(Late-type stars) 129(Mira variables) 99, 346, 348F(CVs) 383(HES) 433

Singular pointX-type 13, 89, 95, 97Alfven type 95, 96Singular locus 91, 91F

Solar winds 87, 92Sound waves 117

Sound velocity 87, 97, 117Generation rate of sound waves 82Energy spectrum of sound waves ~

Acoustic spectrumSource function 44, 46, 50, 54, 178Spectral atlas

Atlas of representative stellar spectra(Yamashita et al.) 40 .

MKK (Morgan, Keenan and Kellman)atlas 25

WR stars 190, 202Spectral classification 3, ST

BCD classification 25, 27F, 229, 296Harvard classification 6, 22, 23TMK classification 24, 249Pickering-Fleming classification 5Secchi's classification 3WR stars 190, 191TOf stars 215Be stars 229, 249

Spectral energy distribution (SED)(Black body) 41, 42F(WR) 193, 194F(Be) 251, 252F(HES) 427, 428F, 445(Symbiotic stars) 403

525

(TTS) 458, 459FSpectral index

(WR) 194, 197, 197T(HES) 433

Spectroscopic binary(WR) 202, 208(dMe) 325

Star clusterHyades' 339, 339FPleiades 334, 334f, 339, 339F, 468Presepe 338, 338FOrion Nebula cluster 467

Star forming region (SFR)(WR) 190, 193(HES) 423(TTS) 449, 468, 479T

Stark broadening 144, 144FStark effect 60, 61Stefan-Boltzmann's law 42, 52Stellar evolution ~ Evolutionary

state/scenario, of starsStellar luminosity 21, 321, 323Steller parallax 20Stellar rotation ~ Rotational velocity

Line broadening 2-41fStellar winds (theory) 13

Coronal-type (solar type) 88F, 89, 107CAK/MCAK theory 90, 91Dust driven wind 97Magnetic rotator model 92Pulsationally driven wind 98, 100FRadiation (pressure) driven wind 89,

91FWave-driven wind 100, 103F

Stellar wind (observation)(WR stars) 201, 202, 208, 210, 211(Of stars) 216, 218, 218T(LBV) 277(P Cyg stars) 284, 285, 286F(Be stars) 249, 251, 254, 260(B[eD 290(Binary system) 115, 116F(Symbiotic stars) 409(HES) 433, 434, 444(TTS) 453, 471, 473F

Superionization(Be) 249(HES) 427

Supernova 293, 299T

526

Symbiotic binary 409, 410TSymbiotic novae 404, 405T, 406FSymbiotic stars 6, 397, 398T

TThermodynamic equilibrium (TE) ---+

EquilibriumThermonuclear runaway 377, 378, 383Transition layer 130, 323Turbulence 62T Tauri stars (TTS) 7, 112, 113F, 338,

448CTTS (Classical TTS) 450, 455, 463,

468, 479WTTS (Weak-lined TTS) 450, 455,

463, 468, 479NTTS (Naked TTS) 450,480ETTS (Early-type TTS) 450PTTS (Post TTS) 450,470FU Ori type ---+ FU Ori type stars

(FUor)yy Ori type ---+ YY Ori type stars

UUltraviolet satellite

IUE (International UltravioletExplorer) ---+ 193, 194, 201, 216,223, 249, 289, 321, 350, 360, 402,403F, 410, 460, 462F

FUSE (Far Ultraviolet SpectroscopicExplorer) 350

Ultraviolet spectrum(A stars) 182(WR stars) 201, 201F(Be stars) 249(Red giants) 343(Mira) 350(VV Cep) 360(Symbiotic) 402, 403F(HES) 427(TTS) 460

United Kingdom Infrared Telescope(UKIRT) 460

UXors (UX Ori type) 470

VVariable stars

Hubble-Sandage variable (HS variable)290, 292T

Subject Index

Cataclysmic variable (CVs) 366, 366FMira-type 98, 343, 344T, 350, 412Z Cam type 385U Gem type = SS·Cyg type 385,

386TOri type 440T Tau type ---+ T Tau starsW UMa system 353RW Tri type 389, 391TSU UMa type 385, 389UX UMa type 389, 391TFU Ori type (FUor) -+ FU Ori typeYY Ori type ---+ YY Ori typeUV Cet type (flare stars) 329

Veiling effect 262, 470VLA (Very Large Array) 195, 403, 433VLBI (Very Long Baseline

Interferometry) 383V/R variation

(Of) 218(Be) 259, 262, 266(CVs) 387(RES) 441

Von Zeipel gravity darkening law 233,266

WWhite dwarf companion

(WR) 206(Be) 300T, 301(RS CVn) 362(CVs) 366, 375, 385, 391(Symbiotic stars) 401, 404, 412(Symmetric novae) 407

Wien's displacement law 41Wilson-Bappu relation 7, 321, 322F, 340,

340FWolf-Rayet (WR) stars 5, 11, 189, 192T,

292[WR] star 190, 220

XX-ray binary ---+ HMXB (High-mass

X-ray binary)X-ray satellite

ASCA (Advanced Satellite forCosmology and Astrophysics) 211

Chandra satellites 329Einstein Observatory 197

Subject Index

ROSAT 182, 198, 211, 260, 431, 444,462

UHURU 259X-ray emission/source

(WR) 197(Be) 258(A type stars) 182(0 stars) 128(Late-type stars) 130, 323(dMe) 324F, 325(Flare stars) 329

(RS CVn) 360, 361T(CVs) 383(HES) 431, 444(TTS) 462

yYY Ori type/star 476, 480

ZZAMS (zero-age main sequence) 293,

464, 492

527

Index of Star N arne

Stellar objects that appear only in the selected lists of respective types of stars are notincluded. The types of stars are indicated in the brackets in an abbreviated form afterthe star name. Some stars are classified into two types. Letter T or F after the pagenumber indicates the star found in Table or Figure. The Gothic letter shows the mainpage of the star.

Proper name

Algol --t {3 PerHyades cluster 339, 339FMira Ceti --t 0 CetMira B (Be/WD) 350Orion association 337, 338FPleiades cluster 338F, 339, 339F, 468Pleione == 28 Tau == HD 23862 (Be) 228T, 244F, 263F, 264, 265, 265FPresepe cluster 338, 338FRigel (B81) 3Sirius (AI V) 3, 4TSun 4T, 21, 62, 70, 89Vega == Q Lyr (AO V) 3, 4T

Constellation name

Ao And == HD 217675 (Be) 228T, 263FAF And (HS) 290, 292TWW And (Algol) 355F, 356Z And == HD 221650 == MWC 416 (Symbiotic) 398, 398T, 410TQ Aql == HD 187642 (A7) 182, 183FV536 Aql (TTS) 456FV603 Aql (CN) 368T, 369V1370 Aql (CN) 372F1r Aqr == HD 212571 (Be) 228T, 248, 249FV 603 Aql == Aql 1918 (CN) 366, 366T, 375Q Aur == HD 34029 (G9111) 4TE Aur == HD 31964 (Atmospheric eclipse) 356, 357T( Aur == HD 32068 (Atmospheric eclipse) 356, 357T

529

530 Index of Star Name

AB Aur = HD 31293 (HES) 425T, 426F, 427, 428F, 430, 432F, 433T, 434, 442,442F, 443F, 445, 446

Nova Aurigae 4RW Aur (TTS) 7, 449T, 451F, 453, 453T, 461FSU Aur (TTS) 449T, 451Fr Aur (CN) 372FUY Aur (TTS) 461F, 485F

BQ Boo = HD 124897 (K2III) 4T

cZ Cam (DN) 384, 386TE Cap = HD 205637 (Be) 228T, 244F, 274AG Car (LBV) 276F, 277DH Car (flare) 8S Car (Mira) 344T, 347, 349, 349T, 349F, 350"7 Car = HD 93308 (LBV) 276, 276F, 277, 278, 278T, 279F, 280, 280F, 291,

292, Cas = HD 5394 (Be) 4, 228T, 245T, 246, 248, 257, 257T, 258T, 259, 263F, 265,

266, 267FVX Cas (HES) 479TV376 Cas (HES) 428FV635 Cas = 4UOl15 + 634 (Be) 258T, 259V705 Cas (CN) 375, 378F8 Cen = HD 105435 (Be) 252F, 268, 269FJ.L Cen = HD 120344 (Be) 245'CQ Cep = WR 155 = HD 214419 (WR) 209F, 210, 211TQ Cep = HD 203280 (A7) 182, 182F.A Cep = HD 210839 (Of) 218TVV Cep (Atmospheric eclipse) 357T, 357, 358F, 359, 359FAY Cet (RS CVn) 361T, 362UV Cet (Flare) 328T, 329, 330F, 338o Cet = HD 14386 = Mira Ceti (Mira) 4T, 98, 344T, 349F, 350, 410SZ Cha (TTS) 488VW Cha (TTS) 471EZ CMa = WR 6 = HD 50896 (WR) 192T, 205T, 210GU Cha = HD 52721 (HES) 425T, 428FZ CMa (HES, TTS, Fuor) 434, 449T, 451F, 476Tw CMa = HD 56139 (Be) 245{3 CMi = HD 58715 (Be) 228T, 245, 245T, 246YZ CMi (Flare) 326T, 333TYZ Cnc (DN) 386T, 389, 390F, 393R CrA (RES, TTS) 470S CrA (TTS) 470T CrA (TTS) 428F, 470TY CrA (HES) 433, 425F, 437, 437T, 438V693 CrA (CN) 372F8 CrB = HD 141714 (gK) 320, 320F

Index of Star Name

T CrB (RN, symbiotic) 4, 379, 379T, 380, 403RS CVn == HD 114519 (RS CVn) 361, 361TCyg X-3 (X-ray binary) 210CH Cyg == HD 182917 (Symbiotic) 398T, 404CI Cyg == MWC 415 (Symbiotic) 6,398, 398T, 399, 400F, 403KU Cyg (Algol) 355FP Cyg == HD 193237 (LBV) 5, 276, 276F, 277, 278, 278T, 280, 282, 283F, 284R Cyg == HD 185456 (Mira) 14SS Cyg (DN) 386T, 386, 387F, 388, 388F, 389, 39331 Cyg == HD 192577 (Atmospheric eclipse) 356, 357T32 Cyg == HD 192696 (Atmospheric eclipse) 356, 357T59 Cyg == HD 200120 (Be) 228T, 240, 241F, 263FV 444 Cyg == HD 193576 == WR 139 (WR) 192T, 209F, 210,211, 211T, 212FV 1016 Cyg (Symbiotic) 398T, 405T, 406, 406F, 407, 410TV 1057 Cyg (Fuor) 474, 475F, 476TV 1329 == HBV 475 (Symbiotic nova) 405T, 406, 406F, 407, 408F, 409FV 1331 (TTS) 461FV 1500 Cyg (Nova 1975) (CN) 368T, 369, 372FV 1515 Cyg (Fuor) 475F, 476TV 1668 Cyg (CN) 372F

DHR Del == Del 1967 (CN) 368T, 369, 406FS Dor == HD 35343 (LBV) 276F, 277, 278T, 284, 291AG Dra (Symbiotic) 398T, 403, 403FAS Dra (RS CVn) 361BY Dra (RS CVn) 361, 361TDR Dra (RS CVn) 331

EAQ Eri (DN) 389RZ Eri (RS CVn) 362A Eri == HD 33328 (Be) 270, 271F

GDN Gem == Gem 1912 (CN, Nb) 370, 371FU Gem (DN) 385, 386TYY Gem (RS CVn) 361, 361TRZ Gru (NL) 391, 391T, 392F, 393

HAD Her (Algol) 355F, 35688 Her == HD 162732 (Be) 228T, 266V 533 Her == Nova Her 1963 (CN) 368T, 369, 373, 373F, 374TV 775 Her == HD 175742 (RS CVn) 361V 815 Her == HD 166181(RS CVn) 361RW Hya == MWC 412 == HD 117970 (Symbiotic) 6,398, 398T, 4.10TTT Hya (Algol) 354F, 355VW Hyi (DN) 386T, 389

531

532

LEV Lac (Flare) 328T, 331, 331F, 332, 332T, 335TEW Lac = HD 217050 (Be) 228T, 240, 244F, 263F, 270RT Lac (RS CVn) 361T, 365AD Leo (Flare) 328T, 331, 333F, 335TDH Leo = HD 86590 (RS CVn) 36193 Leo (RS Cvn) 362EX Lup (EXor) 474GQ Lup (TTS) 488RY Lup (TTS) 488BF Lyn = HD 80715 (RS CVn) 361Q Lyr --t Vega(3 Lyr = HD 174638 (Eclipsing binary) 4, 6T, 6, 300T

M(3 Man A = HD 45725 (Be) 244FAT Mic (Flare) 336R Man (HES) 425T, 428F, 447T, 449T, 470

Index of Star Name

oQ Ori (M1 lab) 3,4TKK Oph (HES) 437TRS Oph (RN, symbiotic) 379, 379T, 380, 381F, 382, 383F, 384T, 393, 394F, 396,

398RZ Oph (Algol) 115, 353F<" Oph (Be, Oe) 273A Ori = HD 36861 (Of) 216T, 218TBF Ori (HES) 428F, 438FU Ori (TTS, Fuor) , 449T, 474, 475F, 476TGW Ori == HBC 85 (TTS) 449T, 468HK Ori (HES) 425T, 447TSU Ori (TTS) 451FTOri (TTS) 425T, 426F, 438UX Ori = HD 293762 (HES) 425T, 438, 439F, 440, 440F, 470, 479T, 490YY Ori (TTS) 476, 477Fw Ori = HD 37490 (Be, HES) 256F, 274, 425T, 428F, 488TV 380 Ori (HES) 425T, 426F, 447T

PAG Peg == HD 207757 (Symbiotic nova) 398T, 402, 405T, 406, 410TEQ Peg A (Flare) 335TI I Peg = HD 224085 (RS CVn) 366KT Peg == HD 222317 (RS CVn) 361AX Per == MWC 411 (Symbiotic) 6, 398, 39ST, 399, 400F, 403KT Per (DN) 386T, 389X Per == HD 24534 (Be) 228T, 248, 300TXY Per (HES) 437T(3 Per == Algol = HD 19356 (Algol) 115E Per == HD 24760 (Be) 273

Index of Star Name

</> Per = HD 10516 (Be) 228T, 243, 244F, 245T, 252F, 300T'l/J Per = HD 22192 (Be) 228T, 240, 242F, 243, 244F,245T, 25748 Per = HD 25940 (Be) 245T, 300TRR Pic (CN) 368T, 372F19 Pis (Carbon) 4T( Pup = HD 66811 (04f) 75, 76, 218TNX Pup (HES) 438, 439F, 488T Pyx (RN) 379, 379T, 380

Sa Sco (M1 I) 4TS ScI (Mira) 344T, 345F, 346AK Sco (HES) 488U Sco (RN) 372F, 379, 379T, 380V 856 Sco -+ HR 5999 (HES)V443 Sct (CN) 393, 394FMS Ser (RS CVn) 361RT Ser (CN, Nc, symbiotic nova) 405T, 406VV Ser (HES) 488HM Sge (Symbiotic) 405T, 406, 406F, 407, 410T9 Sge = HD 188001 (Of) 218, 218TSgr 1991 (CN) 373FV4066 Sgr = HBC 662 (TTS) 468

533

Ta Tau (K5III) 3T Tau (TTS) 449T, 451F, 467T, 485FcTau = HD 37202 (Be) 228T, 242F, 243, 244F, 245T, 247, 247F, 248, 256F, 257,

257T, 265'f} Tau = HD 23630 (Be) 228T, 245, 245TAA Tau (TTS) 455, 457F, 467TBP Tau (TTS) 451F, 467TCQ Tau (TTS) 438CW Tau (TTS) 461F, 473, 474FDG Tau (TTS) 485FDI Tau (TTS) 467TDK Tau (TTS) 485FDN Tau (TTS) 467FDO Tau (TTS) 456F, 459F, 473DR Tau (TTS) 461F, 472, 472F, 481, 485FDS Tau (TTS) 477FGG Tau (TTS) 459FGI Tau (TTS) 467TGK Tau (TTS) 467THK Tau (TTS) 488HL Tau (TTS) 456F, 485FHP Tau (TTS) 467THV Tau (TTS) 488IQ Tau (TTS) 459F

534 Index of Star Name

RR Tau (HES) 430, 430F, 438RY Tau (TTS) 7, 449T, 461F, 469, 469FRW Tau (TTS) 461F, 462, 462FGK Tau (TTS) 467TGI Tau (TTS) 467TSU Tau (TTS) 467TUX Tau (TTS) 488XZ Tau (TTS) 456F28 Tau ---+ PleioneV410 Tau (TTS) 449T, 467TV 711 Tau == HD 22468 (RS CVn) 361, 361T, 362, 364F, 365FRR Tel (Symbiotic nova) 405T, 406, 406F

UDW UMa (NL) 391, 3919T, 392F, 393SU UMa (DN) 386T, 390F, 396W UMa (Eclispsing binary) 353f3 UMi (K4III) 3€ UMi == HD 153751 (RSCVn) 361T, 362

v"'? Vel == WR 11 (WR) 192, 195,202, 203F, 205TEQ Vir (TTS) 466FHS Vir (DN) 389W Vir (Pop. II Cep) 14PU Vul (Symbiotic nova) 405T, 406WW Vul (HES) 440, 441F, 479T, 480, 488

Catalogue number

A0535+262 (Be) 258T, 259BD +40°4124 (RES) 488TBD+41°3731 (HES) 428FBD +46°3471 (RES) 428FCoD -42° 11721 (RES) 486, 486FCoD -44°3318 (HES) 488TCPD-52°9243 (LBV) 287Elias 1 (HES) 434Elias 12 (TTS) 482FESO Ha 28 (RES) 488GL 388 == AD Leo (dMe) 326FGL 487 (dMe) 326FGL 490a == BF CVn (dMe) 326FGL 490b (dMe) 326FGL 494 == DT Vir (dMe) 326FGL 616-2 == CR Dra (dMe) 326FGL 644a,b (dMe) 326FGL 669 a,b (dMe) 326FHBC 85 ---+ GW Ori (TTS)

Index of Star Name

HBC 662 ~ V4066 Sgr (TTS)HD 4004 = WR1 (WR) 129T, 201HD 5005 (Of) 217FHD 5394 ~ "I Cas (Be)HD 9974 = WR 3 (WR) 192T, 198, 200FHD 10516 ~ ¢ Per (Be)HD 14386 ~ 0 Cet (Mira)HD 15558 (Of) 218THD 15570 (Of) 216, 217F, 218THD 16523 = WR 4 (WR) 192T, 214THD 19356 ~ {3 Per (Algol)HD 22192 ~ 1jJPer (Be)HD 22468 -+ V 711 Tau (RS CVn)HD 23862 ~ 28 Tau (Be)HD 24534 ~ X Per (Be)HD 31293 ~ AB Aur (HES)HD 31648 (B[eD 275THD 31964 ~ e Aur (Atmospheric eclipse)HD 32068 ~ ( Aur (Stmospheric eclipse)HD 35343 ~ S Dra (LBV)HD 35929 (HES) 432F, 433THD 37202 ~ ( Tau (Be)HD 37490 ~ w Ori (Be, HES)HD 39680 (Oe) 219, 219THD 41335 (Be) 256FHD 44458 (Be) 256FHD 45677 = FS CMa (Be) 274, 275THD 50138 (B[eD 275THD 50896 = WR 6 ~ EZ CMa (WR)HD 51585 (B[eD 275THD 52721 ~ GU CMa (HES)HD 53367 (HES) 438HD 58647 (HES) 432F, 433THD 66811 -+ ( Pup (Of)HD 68273 = WR 11 ~ "12 VelHD 79573 = WR 15 (WR) 214THD 70309B (TTS) 471HD 73974 (gK) 320, 320FHD 86161 = WR 16 (WR) 205T, 214THD 92740 = WR 22 (WR) 208,209, 209FHD 93308 ~ "7 Car (LBV)HD 96548 = WR 40 (WR) 205T, 214THD 100546 (Ae) 183HD 104994 = WR 46 (WR) 205, 205T, 206, 206FHD 105435 ~ 8 Cen (Be)HD 117297 = WR 53 199FHD 117970 ~ RW Hya (Symbiotic star)HD 141569 (HES) 437THD 144668 ~ HR 5999 (HES)

535

536 Index of Star Name

HD 149757 --* ( Oph (Oe, Be)HD 150193 (HES) 437T, 488THD 151932 = WR 78 (WR) 198, 214THD 158860 = WR 94 (WR) 199FHD 163296 (B[e], HES) 275T, 488THD 165688 = WR 111 (WR) 192T, 198, 214THD 167362 (B[eD 275THD 168076 (Of) 217THD 174638 --* {3 Lyr (Eclipsing binary)HD 177230 = WR 123 (WR) 205T, 213, 214THD 182917 --* CH Cyg (Symbiotic)HD 188001 --* 9 Sge (Of)HD 191765 = WR 134 (WR) 4, 162F, 192T, 201, 213HD 192103 = WR 135 (WR) 5, 192T, 207, 207FHD 192163 = WR 136 (WR) 162F, 192T, 198, 200F, 201, 205THD 192641 = WR 137 (WR) 5, 192T, 202, 204FHD 193237 --* P Cyg (LBV)HD 193576 = WR 139 --* V444 Cyg (WR)HD 193793 = WR 140 (WR) 192T, 194, 194F, 202, 204F, 205HD 193928 = WR 141 (WR) 192T, 201HD 197406 = WR 148 (WR) 192T, 210HD 200120 --* 59 Cyg (Be)HD 200775 = MWC 361 (HES) 437T, 480T, 483, 488THD 207757 --* AG Peg (Symbiotic)HD 214410 = WR 155 --* CQ CepHD 217050 ~ EW Lac (Be)HD 221650 --* Z And (Symbiotic)HD 250550 (HES) 438He2-131 (PNN) 222, 223FHenS 12 ([BeD 287T, 289THenS 22 (B[eD 287T, 289, 289THenS 134 ([BeD 287T, 289THH 30 (TTS) 488HH 105 (HH obiect) 447HR 4621 (Be) --* 8 CenHR 5999 = HD 144668 = V856 Sco (HES) 425T, 426F, 427,438, 439F, 488, 488THR 7574 --* 9 Sge (Of)IC 348 (star cluster) 468L726-8 (Flare) 8Lalande 21258B (Flare) 8LkHa 198 (HES) 447TLkHa 234 (HES) 447, 447T, 448FLSS 3013 --* WR 50 (WR)M31 (Andromeda Galaxy) 290, 291F, 292M33 (Galaxy) 290, 291F, 292MWC 300 (LBV, HES) 287, 434MWC 314 (B[eD 290MWC 349 (B[eD 275T, 290MWC 361 (HES) 432F, 433T

Index of Star Name

MWC 411 -t AX Per (Symbiotic)MWC 412 -t RW Hya (Symbiotic)MWC 415 -t CI Cyg (Symbiotic)MWC 416 -t Z And (Symbiotic)MWC 480 (HES) 432F, 433TMWC 645 (B[eD 275TMWC 1080 (HES) 425T, 432F, 433T, 437T, 447T, 486NGe 2264 (star cluster) 338, 338FNGC 3766 (star cluster) 296, 297FNGC 4755 (star cluster) 296, 296FNGC 7000 (star cluster) 338FNGC 7027 (PN) 221NGC 7129 (refl. Nebula) 447R 50 (B[eD 287T, 287, 288F, 289, 289TR 66 (B[eD 287T, 289TR 82 (B[eD 287T, 289, 289TR 126 (B[eD 287T, 289TStar No, 103 in Pleiades (slow flare) 334, 334FSz 06, 19, 62, 65, 68, 77, 82, 98 (TTS) 466F4UOl15+634 -t V635 CasWR 50 = LSS 3013 (WR) 205TWR 56 = LSS 3117 (WR) 214TWR 116 (WR) = AS 306 (WR) 199FWR 124 (WR) 214TWR 125 (WR) 204FWR 156 (WR) 214T

537