28
Me/rori/ic.v K, I'lunerary Science 35, 259-286 (2000) 0 Meteoritical Society, 2000 Printed in USA The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles INGO LEYA1.2*, HANS-JURGEN LANGEI, SONJA NEUMANNI, RAINER WIELER2 AND ROLF MICHELl 'Center for Radiation Protection and Radioecology, Am Kleinen Felde 30, University of Hannover, D-30167 Hannover, Germany Zlnstitute for Isotope Geology and Mineral Resources, ETH Zurich, NO C61, CH-8092 Zurich, Switzerland *Correspondence author's e-mail address: [email protected] (Received 1999 April 5; accepted in revised form 1999 October 12) ~~ ~~ Abstract-We present a purely physical model for the calculation of depth- and size-dependent production rates of cosmogenic nuclides by galactic cosmic-ray (GCR) particles. Besides the spectra of primary and secondary particles and the excitation hnctions of the underlying nuclear reactions, the model is based on only one free parameter-the integral number of GCR particles in the meteoroid orbits. We derived this value from analysis of radionuclide data in Knyahinya. We also show that the mean GCR proton spectrum in the meteoroid orbits has been constant over about the last 10 Ma. For the major target elements in stony meteoroids, we present depth- and size-dependent production rates for loBe, 14C, 26A1, 36Cl, and 53Mn as well as for the rare gas isotopes 3He, ZoNe, 21Ne, 22Ne, 36Ar, and 38Ar. The new data differ from semi- empirical estimates by up to a factor of 4 but agree within -20% with results obtained by earlier parametric or physical approaches. The depth and size dependence of the shielding parameter 22Ne/21Ne and the correlations 26AI vs. loge, 26AI vs. 53Mn, loBe/zlNe vs. 22Ne/21Ne, and 36Ar vs. 36Cl for deciphering preatmospheric sizes, shielding depths, terrestrial residence times, and exposure histories are also discussed. INTRODUCTION The interaction of solar cosmic-ray (SCR) and galactic cosmic- ray (GCR) particles with cosmic dust, meteoroids, and planetary surfaces produces a large variety of cosmogenic nuclides. They provide information about preatmospheric radii, sample locations, exposure ages, terrestrial residence times, and complex exposure histories of the extraterrestrial objects as well as the history of the galactic cosmic radiation itself. For a proper interpretation, the depth and size dependence of the production rates have to be known. During the last four decades, a variety of models have been developed (e.g,. Signer and Nier, 1960; Arnold et al., 1961; Reedy and Arnold, 1972; Graf et al., 1990b; Michel et aL, 1991; and Masarik and Reedy, 1994). For further references see Reedy et al. (1983), Vogt et al. (1990), and Michel et al. (1991), and for recent developments see Michel and Neumann (1998). Whereas most of the earlier models are empirical or semiempirical (e.g., the results or the input parameters are ad.justed to meteorite data), the production rates presented here are based on a purely physical approach with only one free parameter-the integral number of GCR particles in the meteoroid orbit. As in most earlier models, we consider here only nuclide production by GCR, although in meteorites with low ablation losses, production induced by SCR may increase the concentrations of cosmogenic nuclides in the meteorites significantly. Such effects are discussed by Michel and Neumann (1 998) and Neumann (1999). The model here is based on depth- and size-dependent spectra of primary and secondary particles and on excitation functions of the underlying nuclear reactions. The model calculations were validated on the basis of five terrestrial thick-target simulation experiments in which the interaction of GCR protons with stony and iron meteoroids were simulated (Michel et al., 1985, 1989, 1995a, 1996; Michel and Neumann, 1998; Liipke, 1993; Leya, 1997; Leya and Michel, 1998a). We already showed that the model describes the depth- and size-dependent production rates in the artificial stony and iron meteoroids within 10% (Leya, 1997; Leya and Michel, 1998a; Michel et al., 1996). Because the primary and secondary particle spectra inside the simulation targets match those in real meteoroids (Michel et al., 1996; Leya, 1997), we expect a similar accuracy for the modeled production rates in meteoroids and planetary surfaces. Here we focus on the results for stony meteoroids with radii from 5 to 120 cm. A detailed discussion of modeled production rates in iron meteoroids and in lunar surface material will be published elsewhere. THE PHYSICAL MODEL We calculated production rates of cosmogenic nuclides P, by integrating the depth- and size-dependent spectra of primary and secondary particles with the excitation functions of the underlying nuclear reactions: where NA is Avogadro's number, A, is the mass number of the target element i, cI is the abundance of i (g/g), and k is an index for the reaction particle type (primary protons, secondary protons, and secondary neutrons); u,,,,k(E) is the excitation function for the production of nuclide j from target element i by reactions induced by particles of type k, and Jk is the differential flux density of particles of type k. The radius of the meteoroid is R and the shielding depth of the sample is d; E and M are the energy of the reacting particles and the solar modulation parameter, respectively. Our model explicitly takes into account only proton- and neutron-induced reactions. We consider primary and secondary galactic a-particles only in an approximate way, because the particle spectra and cross sections needed for an accurate modeling are not yet available. We assume that an incoming 4He nucleus breaks up into four nucleons in the first inelastic collision, each having 25% of the incoming energy. Because the primary spectrum as a function of energy per nucleon is roughly identical for galactic protons and a-particles (Simpson, 1983), the four nucleons have approximately the same energy distribution as the galactic protons. Assuming further that the multiplicities and the spectral distributions of the emitted particles are similar for both proton and neutron projectiles, galactic a-particles can be taken into account by a simple scaling factor. Because the GCR consists of -87% protons and 12% a-particles (Simpson, 1983), we take the latter into account by multiplying the production rates obtained from Eq. (I) with 1.55. 259

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

Embed Size (px)

Citation preview

Me/rori/ic.v K, I'lunerary Science 35, 259-286 (2000) 0 Meteoritical Society, 2000 Printed in USA

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles INGO LEYA1.2*, HANS-JURGEN LANGEI, SONJA NEUMANNI, RAINER WIELER2 AND ROLF MICHELl

'Center for Radiation Protection and Radioecology, Am Kleinen Felde 30, University of Hannover, D-30167 Hannover, Germany Zlnstitute for Isotope Geology and Mineral Resources, ETH Zurich, NO C61, CH-8092 Zurich, Switzerland

*Correspondence author's e-mail address: [email protected]

(Received 1999 April 5; accepted in revised form 1999 October 12) ~~ ~~

Abstract-We present a purely physical model for the calculation of depth- and size-dependent production rates of cosmogenic nuclides by galactic cosmic-ray (GCR) particles. Besides the spectra of primary and secondary particles and the excitation hnctions of the underlying nuclear reactions, the model is based on only one free parameter-the integral number of GCR particles in the meteoroid orbits. We derived this value from analysis of radionuclide data in Knyahinya. We also show that the mean GCR proton spectrum in the meteoroid orbits has been constant over about the last 10 Ma. For the major target elements in stony meteoroids, we present depth- and size-dependent production rates for loBe, 14C, 26A1, 36Cl, and 53Mn as well as for the rare gas isotopes 3He, ZoNe, 21Ne, 22Ne, 36Ar, and 38Ar. The new data differ from semi- empirical estimates by up to a factor of 4 but agree within -20% with results obtained by earlier parametric or physical approaches. The depth and size dependence of the shielding parameter 22Ne/21Ne and the correlations 26AI vs. loge, 26AI vs. 53Mn, loBe/zlNe vs. 22Ne/21Ne, and 36Ar vs. 36Cl for deciphering preatmospheric sizes, shielding depths, terrestrial residence times, and exposure histories are also discussed.

INTRODUCTION

The interaction of solar cosmic-ray (SCR) and galactic cosmic- ray (GCR) particles with cosmic dust, meteoroids, and planetary surfaces produces a large variety of cosmogenic nuclides. They provide information about preatmospheric radii, sample locations, exposure ages, terrestrial residence times, and complex exposure histories of the extraterrestrial objects as well as the history of the galactic cosmic radiation itself. For a proper interpretation, the depth and size dependence of the production rates have to be known. During the last four decades, a variety of models have been developed (e.g, . Signer and Nier, 1960; Arnold et al., 1961; Reedy and Arnold, 1972; Graf et al., 1990b; Michel et aL, 1991; and Masarik and Reedy, 1994). For further references see Reedy et al. (1983), Vogt et al. (1990), and Michel et al. (1991), and for recent developments see Michel and Neumann (1998). Whereas most of the earlier models are empirical or semiempirical (e.g. , the results or the input parameters are ad.justed to meteorite data), the production rates presented here are based on a purely physical approach with only one free parameter-the integral number of GCR particles in the meteoroid orbit. As in most earlier models, we consider here only nuclide production by GCR, although in meteorites with low ablation losses, production induced by SCR may increase the concentrations of cosmogenic nuclides in the meteorites significantly. Such effects are discussed by Michel and Neumann (1 998) and Neumann (1999). The model here is based on depth- and size-dependent spectra of primary and secondary particles and on excitation functions of the underlying nuclear reactions. The model calculations were validated on the basis of five terrestrial thick-target simulation experiments in which the interaction of GCR protons with stony and iron meteoroids were simulated (Michel et al., 1985, 1989, 1995a, 1996; Michel and Neumann, 1998; Liipke, 1993; Leya, 1997; Leya and Michel, 1998a). We already showed that the model describes the depth- and size-dependent production rates in the artificial stony and iron meteoroids within 10% (Leya, 1997; Leya and Michel, 1998a; Michel et al., 1996). Because the primary and secondary particle spectra inside the simulation targets match those in real meteoroids (Michel et al., 1996; Leya, 1997), we expect a similar accuracy for the modeled production rates in

meteoroids and planetary surfaces. Here we focus on the results for stony meteoroids with radii from 5 to 120 cm. A detailed discussion of modeled production rates in iron meteoroids and in lunar surface material will be published elsewhere.

THE PHYSICAL MODEL

We calculated production rates of cosmogenic nuclides P, by integrating the depth- and size-dependent spectra of primary and secondary particles with the excitation functions of the underlying nuclear reactions:

where NA is Avogadro's number, A , is the mass number of the target element i , cI is the abundance of i (g/g), and k is an index for the reaction particle type (primary protons, secondary protons, and secondary neutrons); u,,,,k(E) is the excitation function for the production of nuclide j from target element i by reactions induced by particles of type k, and Jk is the differential flux density of particles of type k. The radius of the meteoroid is R and the shielding depth of the sample is d; E and M are the energy of the reacting particles and the solar modulation parameter, respectively. Our model explicitly takes into account only proton- and neutron-induced reactions. We consider primary and secondary galactic a-particles only in an approximate way, because the particle spectra and cross sections needed for an accurate modeling are not yet available. We assume that an incoming 4He nucleus breaks up into four nucleons in the first inelastic collision, each having 25% of the incoming energy. Because the primary spectrum as a function of energy per nucleon is roughly identical for galactic protons and a-particles (Simpson, 1983), the four nucleons have approximately the same energy distribution as the galactic protons. Assuming further that the multiplicities and the spectral distributions of the emitted particles are similar for both proton and neutron projectiles, galactic a-particles can be taken into account by a simple scaling factor. Because the GCR consists of -87% protons and 12% a-particles (Simpson, 1983), we take the latter into account by multiplying the production rates obtained from Eq. ( I ) with 1.55.

259

260 Leya et al.

This approximation neglects that the stopping power for a-particles is -4x higher than for protons, even for particles with the same energy per nucleon. This leads to a higher attenuation of 4He particles compared to protons and also changes the shapes of the p- and a-spectra inside the meteoroid in different ways. Experimental data also show that residual nuclide production depends on the reaction particle types and that for some reactions the 4He breakup is incomplete (Michel and Brinkmann, 1980). For all products discussed in this paper, these facts have only a minor influence on the production rates, and we are able to describe the depth and size dependence of the production rates in stony and iron meteoroids as well as on the lunar surface within the errors of the experimental data. However, when extending the model calculations to new cosmogenic nuclides, the a-approximation must be reconsidered.

Spectra of Primary and Secondary Particles

We calculated the depth- and size-dependent particle spectra using the approach described in detail by Michel et al. (1991), Lange (1994), and Leya (1997). Briefly, starting with the parameterization of the GCR spectrum according to Castagnoli and La1 (1980) (Fig. I), the intra- and internuclear cascades of primary protons, secondary protons, and secondary neutrons were simulated by Monte Carlo techniques. Using the HET- (Armstrong and Chandler, 1973) and MORSE-codes (Emmett, 1975) within the HERMES system (Cloth et al., 1988), we calculated the spectra for H chondrites with radii of 5, 10, 15, 25, 32, 40, 65, 85, 100, and 120 cm and for a 2n irradiation geometry for a solar modulation parameter M = 650 MeV. In addition, we calculated the spectra for a r = 40 cm H chondrite for A4 = 300, 450, and 620 MeV, respectively. The spectra were calculated for H chondrites but they are valid for all chondrite classes, because the differences in spectral shapes and flux densities due to different compositions (Table 1) are marginal (Lange, 1994; Masarik and Reedy, 1994). For carbonaceous chondrites, however, the spectra are somewhat different (Lange, 1994; Masarik and Reedy, 1994). Hence, production rates for those chondrites can be calculated by our model only within an uncertainty of -50%. Considering the scatter in the particle fluxes and the production rates curves (e.g. , small increases in otherwise monotonously decreasing data lines), we estimate the uncertainties of the calculated spectra to be -5%. Note that all particle spectra shown are normalized to an integral flux of primary GCR protons of 1 cm-2 s-1.

In Fig. 2a-q we show the spectra of primary protons, secondary protons, and secondary neutrons in the center of r = 10 and 25 cm H chondrites, respectively. The spectral shapes of primary protons (Fig. 2a) are nearly independent of the meteoroid radius and are very similar to the free space GCR spectrum of the same modulation parameter (see Fig. I) . The absolute values of the spectra and hence the flux densities decrease with increasing radius.

The spectra of secondary protons (Fig. 2b) show a modest increase at low energies, a broad maximum -100 MeV, and a monotonic steep decrease towards higher energies. Above a few hundred mega-electron volts, the shapes of the spectra as well as their absolute values are nearly independent of the meteoroid radius because in this energy range, the macroscopic inelastic cross sections are nearly energy independent and the proton stopping power is small. For particles with energies less than -100 MeV, the energy loss and absorption dominate; hence the slope of the spectra at lower energies becomes steeper as the radius increases.

Although for energies >10 MeV the shapes of the spectra of secondary neutrons are nearly independent of radius because of the

10-1 . . I . . ..., . . . . . ,.., . . . . , ..., , , , , , , .., ,

M [MeV]

900 ,,'

i

(1 969) 10-5 I

1 c ' I . 1 1 . 1 4 1 I . . . . . . 100 101 102 I 03 104

ENERGY [MeV] FIG. 1. Spectra of GCR protons at 1 AU. Galactic cosmic-ray particles consist of -87% protons, 12% a-particles, and 1% heavier ions. The GCR spectra are modulated by the solar magnetic field and therefore vary with solar activity. Galactic cosmic-ray spectra can be characterized by only one free parameter M (MeV), which is equivalent to the energy a GCR particle loses when penetrating into the solar system to a given heliocentric distance. We show the GCR spectra for an active Sun (1969, M = 900) and for periods of a quiet Sun (1977, M = 300). Also, the mean GCR proton spectrum over the last 10 Ma ( M = 650) as determined in this work is plotted.

TABLE 1. Chemical composition chondrites.

glg) of H, L, and LL

Element H chondrite L chondrite LL chondrite Metal

C 0.1 0.09 0.12 -

0 35.98 39.44 41.14 -

Na 0.64 0.704 0.705 - Mg 14.03 14.91 15.20 -

Al 1.13 1.19 1.185 - Si 17.1 18.57 18.90 Ca 1.24 1.32 1.37 - Ti 0.0719 0.07 0.078 -

Mn 0.24 0.26 0.27 - Fe 27.45 2 1.93 19.63 95.0 Ni 1.74 1.24 1.07 5.0

The Monte Carlo calculations of the differential particle spectra are based on the values for H chondrites. We used these values as target element abundances for the model calculations. The data are from Mason (1979) and Jarosevitch (1990).

energy independence of the macroscopic inelastic cross sections and the neutron stopping power, the absolute values of the differential flux densities increase with increasing radius (Fig. 2c). This is due to the higher neutron losses from small meteoroids. At neutron energies 4 0 MeV, the spectra strongly depend on meteoroid size. Because of their high 0 content, stony meteoroids are good neutron moderators; hence the flux density of low energy neutrons increases with radius.

Note that many of the differences discussed above for the centers of smaller and larger meteoroids, respectively, are also observed for smaller and larger shielding depths within a meteoroid of a given size.

Thin-target Production Cross Sections

For each cosmogenic nuclide, the model requires detailed excitation functions for proton- and neutron-induced reactions for all relevant target elements. For the proton-induced reactions, the data base for the long-lived radionuclides loge, 14C, 26AI, 36Cl, and

-

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 26 1

n d

10-1 , , . , . I /,, . . . . . ..,, . . , , > ..., . . , . . . .., , M = 650 MeV primary protons

..._. ._.....

r - 2 S c m

r = 10 cm

......

10' 102 I 03 I 04

0 U

10-2 , , , , , , , , , . . , . . , .., , . . , . . . ., , . , . I . I ., b

secondary protons : * b Y

v1 z w x a

L

25 cm

d w

ENERGY [MeV] FIG. 2. Spectra of primary GCR protons, secondary protons, and secondary neutrons at the center of a r = 10 cm (solid line) and r = 25 cm (dotted line) H chondrite irradiated with a primary GCR proton spectrum ( M = 650 MeV). All data are normalized to an incident flux of primary galactic particles of 1 cm-2 s-I.

53Mn is fairly complete now (Dittrich et a/., 1990; Michel et a/., 1995b, 1997; Schiekel et a/., 1996a,b; Neupert, 1996; Schneider et a/., 1987; Sisterson et a/. , 1991, 1992, 1994, 1995, 1996a,b, 1997a,b,c; Merchel, 1998), whereas accelerator mass spectrometer (AMS) measurements for 4lCa and 1291 are underway (see e.g., Klein et a/., 1990; Fink et a/., 1991, 1998; Schnabel et a/., 1998). For the model calculations, we relied on measurements of the

Hannover collaboration if possible. We choose other data only when they fill a gap in our data base and are consistent with our data, for example, when the two sets of excitation functions agree within the experimental uncertainties at overlapping energies. For loge we also used the data by Amin et a/ . ( 1 972), Honda and La1 (1964), and Sisterson et a/. (1996a, 1997b); for 1 % we used Sisterson et al. (1 991, 1992, 1994, 1995) and Jull et a/. (1 998); for 26AI we used Furukawa et a/. (1971), Shibata et a/. (1993), Paul et a/. (1980), and Norman et a/. (1981); for 36CI we used Baklouti (1 975), Honda and La1 (1 960), and Schaeffer and Zahringer (1 959); and for 53Mn we used Gensho et a/. (1 979), Kumabe et a/ . (1 963), and Sprinzak et a/. (1973). Also, for the rare gases He and Ne, the data base is now rather complete, for example, as a result of our recent measurements (Leya et al., 1998b). Besides these new data, we also use the cross sections presented by Michel et a/. (1989, 1995b), Pulfer (1979), Walton et a/. (1976), Baros and Regnier (1984), and Sisterson and Caffee (1998).

For the neutron-induced reactions, the situation is much worse. In spite of the fact that secondary neutrons dominate the production of cosmogenic nuclides, there is an extreme lack of experimental cross sections. Up to now only three reports present cross sections for neutron-induced reactions relevant for the production of cosmogenic nuclides (Reedy et a/., 1979; Lavielle et a/., 1990; Nakamura et a/., 1992). For the model calculations, we used the cross section data base described in detail by Leya ( 1 997), Leya and Michel (1998a), and Michel et a/. (1996). Briefly, the measured integral production rates from five thick-target simulation experiments (e .g . , Michel et al., 1985, 1989, 1993; Lupke, 1993; Leya, 1997) contain information about the neutron-induced production that can be extracted if the proton-induced production can be reliably calculated and subtracted from the measured production rates. Using the cross section data base for the proton- induced reactions, a posteriori excitation functions for the neutron- induced reactions can be derived by an energy dependent least squares method starting with theoretical a priori neutron excitation functions as guess functions (for more details see Leya,1997; and Leya and Michel, 1998a). We showed that, with this cross section data base, our model describes total production rates in all five simulation experiments within 29% (Leya, 1997; Leya et a/., 1998a; Michel et a/., 1996). We expect a similar quality for real meteoroids because their neutron spectra are similar to those produced in the simulations (Leya, 1997; Michel et a/., 1996). Unless otherwise stated, we used a posteriori neutron cross sections. For some target-product combinations (e .g . , IoBe from Na), however, there exist no measured proton-induced cross-sections or the thick-target production rates were not measurcd in the simulations. In these cases, we modeled the production rates using proton and/or neutron excitation functions that are calculated on the basis of the Hybrid model for preequilibrium reactions. For this we used the AREL- (Blann, 1994, pers. comm.) and the ALICE-IPPE- code (Shubin e t a / . , 1995). These model calculations are marked in Tables A1-A4 as apriori.

In Fig. 3, we show exemplarily the excitation functions for the proton- and neutron-induced production of loge from 0 and 26AI from Si. This figure demonstrates that the often used assumption of equal cross sections of proton- and neutron-induced reactions is generally not valid and may lead to erroneous production rates. Note that the interpretation of production rates strongly depends on the quality of the cross section data base. When new cross sections become available, the entire analysis has to be redone. However,

262 Leya et al.

t " " ' ' ' ' " " I ' ' ' " ' " 1 ' ' ' " " ' 1 q \. I ,

ENERGY [McV] FIG. 3. Proton and neutron cross sections for the production of IOBe from 0 and 26AI from Si. The proton cross sections are corrected for secondary particles influences. The neutron excitation functions are (I posteriori data. The figure demonstrates that the often used assumption of equal cross sections of proton- and neutron-induced reactions is generally not valid and may lead to erroneous production rates.

evaluating the input parameters of the model on the basis of simulation experiments makes the model predictions more secure and reproducible and omits gross misinterpretations.

THE MEAN GALACTIC COSMIC-RAY PROTON- SPECTRUM DURING THE LAST 10 MILLION YEARS

So far, calculated production rates are normalized to an integral flux density of primary protons of Jo,,(E > 10 MeV) = 1 cm-2 s-1. To compare meteorite data directly to the calculations, we have to determine the mean GCR spectrum in the meteoroid orbits (see also Leya, 1997; Michel et al., 1991). The integral number of GCR protons with energies above 10 MeV, Jo,,,,, (E > 10 MeV), depends on the solar modulation parameter M.

Jo,,,,,(E> 10MeV)= 1.24+10.95xexp (2)

-(M+12.71) 4.48 exp ( 52,2 )

We investigated the dependence of the production rates on the solar modulation parameter M by calculating production rates at the center of a 40 cm L chondrite for M = 300,450,620, and 650 MeV, respectively. The results were multiplied with the corresponding J( , , , , value and the a-scaling factor of I .55 and plotted as a function of the J0,,,,, values (Fig. 4; for further details, see Leya, 1997; and Michel et al., 1991). As expected, the correlation between production rates and Jo,,,,, is not linear because for larger Jo,,,,, values (i .e. , smaller M values) there is mainly an increase of low-energy primary particles (see also Fig. 1) that have lower multiplicities for secondary particles and lower production rates. As seen in Fig. 4, a second-order polynomial describes the correlation well.

We determined the solar modulation parameter that is related to the integral number of GCR protons in the meteoroid orbits by comparing the loBe and 26Al data from Fig. 4 with measured production rates from the L-chondrite Knyahinya (Graf et al., 1990a,b). Knyahinya is well suited for this purpose because its preatmospheric shape and size has been carefully reconstructed by Graf el al. (1990a,b). Also, all radionuclides considered here are in

1 L-chondrite

90 R = 40 cm, center 2 z - 0 0 CI

I1 - r - i IoBe 1 i / - L

8 I I . I -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

J (E > 10 MeV) [cm-2 s-11 09PP

FIG. 4. Calculated IOBe and 26AI production rates at the center of a r = 40 cm L chondrite for a solar modulation parameter M = 300, 450, 620, and 650 MeV, respectively. These modulation parameters are equivalent to Jo,,,,) values of 5.12, 3.64, 2.64, and 2.51 cm-2 S-I , respectively. The calculated production rates for the different M values were multiplied with the corresponding Jo,,,,, values and the a-scaling factor 1.55 and plotted as a function of the Jo,,,,, values. The curve shows a second-order polynomial fit used to derive the integral number of GCR protons in the meteoroid orbits.

saturation due to the long exposure age of 40.5 Ma and there is no indication of a complex exposure history of Knyahinya (Graf et al., 1990qb). A further advantage is the large radius of this meteorite of 45 cm because production rates are not very sensitive to uncertainties of the radius determination for large meteorites. Our new value for the integral number of GCR protons with energies >I0 MeV in meteoroid orbits is:

J O , ~ ~ ( E P > 10 MeV,meteoroid orbit) = 2.62~m-~s-I (3)

This is equivalent to a solar modulation parameter M = 650 MeV. Thus, all production rates discussed in this paper are for a free space flux density of primary GCR nucleons with energy >I0 MeV in meteoroid orbits of 1.55 x 2.62 cm-2 s-1 = 4.06 cm-2 s-1.

We will show below that the same value for Jo,,,,, explains the depth profiles of IOBe, 26AI 36CI, and 53Mn simultaneously. The model calculations for these four nuclides are based on measured thin-target proton cross sections and a posteriori neutron excitation functions. Because the abundance of a cosmogenic radionuclide reveals the exposure history of the irradiated body during a time period of -3 half lives (T1/2(10Be) = 1.6 Ma, T1/2(26AI) = 716 ka, T1/2(36Cl) = 301 ka, T1/2(53Mn) = 3.7 Ma), this demonstrates that the GCR spectrum was constant over about the last 10 Ma.

Note that the determination of the solar modulation parameter M and the integral number of GCR particles J O , G C ~ strongly depends on the cross section data base. Hence, the differences between our value and the J O , ~ , - ~ value of 4.80 cm-2 s-1 presented by Reedy et al. (1993) and Masarik and Reedy (1994) are only due to the different cross section data sets used. Whereas these authors used a priori neutron data and proton cross sections not corrected for influences by secondary particles, our calculations are based on a posteriori neutron cross sections and proton data corrected for contributions due to secondary particles.

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

W k

PRODUCTION RATES OF COSMOGENIC NUCLIDES IN STONY METEOROIDS

In Tables A l and A2. we present elemental production rates of loge, 14C, 26Al, 36CI, and 53Mn from the major target elements. The elemental production rates for 3He, 20Ne, 2lNe, 22Ne, 36Ar, and 38Ar are given in Tables A3 and A4. We used these data to calculate the production rates in ordinary chondrites discussed in the following. Note that for any given chemical composition, the production rates can be calculated by the reader. For this purpose, Tables AI-A4 are available as EXCEL files from the correspondence author

Production Rates for Beryllium-10, Carbon-14, Aluminum-26, Chlorine-36, and Manganese-53

Figure 5 shows the depth and size dependence of the loge and 14C production rates in IH and L chondrites with radii from 5 to 120 cm and for a 2n exposure geometry. In Fig. 6, we compare modeled production rates of IOBe, I4C, 26Al, 36CI, and 53Mn with some measured data. Generally, modeled and measured values also agree within the experimental uncertainties for data not shown in Fig. 6. In the following we will discuss two exceptions, IOBe and 1 % in Knyahinya.

The model calculations for loge underestimate the production rates in meteoroids with radii larger than -40 cm (see Fig. 6a). This effect was also observable in our earlier calculations (Bhandari et a/., 1993: Michel et a / . , 1991, 1995a). It is partially explained by differences in the loBe standards used for the measurements (Michel et a/. , 1995a). Whereas all model input parameters are measured against the standard "S433," the loge data in Knyahinya (Graf et a/., 1990a) arc based on the standard "1 la," which gives loBe activities -6.3% higher (Hofmann e t a / . , 1987). However, after correcting the IoBe data in Knyahinya by 6.3%, there is still a discrepancy of -14% between modeled and measured data, which we cannot yet explain. Note that the IOBe estimates presented by Reedy et a/. (1993) are higher than our results and agree better with the measurements.

Our modeled 14C: data overestimate the measured production in Knyahinya (Ju l l et id., 1994) by -18% (see Fig. 6b). Because the thick-target production rates of 14C from 0, Mg, Al, and Si are not measured, up to now the calculations for these nuclides are based on a priori neutron excitation functions. As a consequence, we assume that the observed differences rather are due to uncertainties in the model than to any change in the galactic cosmic particle spectrum during the last few 10 ka. Hence, for practical applications, the 1%

production rates from 0 given in Table Al should be decreased by a factor of0.82. With this ad.justment, our modeled values agree with the calculations prcscntcd by lul l e t a / . (1994).

The IoBc and 14C production rates in LL chondrites are about 11 and 13%. respectively, higher than in H chondrites and about 3.5 and 4.0%. respectively. higher than in L chondrites. This is because of the different 0 concentrations in the different chondrite classes, as 0 is by far the most important target element for these nuclides. We therefore scale production rates in L and LL chondrites, respectively, to those in H chondrites simply by the respective 0 concentration in the various chondrite classes. This leads to uncertainties of 12% for loge and < I % for 1%.

In Fig. 7, we prcsent depth- and size-dependent production rates of 26A1. Generally, our rcsults agree with measured data within their experimental uncertainties (see Fig. 6c,d). The differences in the production ratcs between I 1 and LL chondrites (-9.5%) and between I I and 1, chondritcs (-So/,) are due to the different elemental

14C in chondrites - 80 (7 . z

l0Hc in chondrites

- -

n -

- -U

- _I

. E z a

70

60

50

40

30

20

i/) W

d h

E 0

- 24 - 22 - 20 - 18 - 16 - 14 - 12

20 18

12

- 1 0 a' - 8

- 6

263

6 d z 0 + H

u 5 CI 0 d a

60 t , #

F 1 27l '0 k. "1 b , >>

0 20 40 60 80 100 120

0 2

DEPTH [cm]

FIG 5 Galactic cosmic-ray production rates of loBe and I4C in ordinary chondrites with radii between 5 and 120 cm and for a 2n geometry

abundances of Mg, Al, and Si. Because the abundances of these three elements relative to each other are very similar in all ordinary chondrite classes, the 26AI depth profiles become independent of chondrite type by scaling the production rates to, for example, Si concentration.

In Fig. 8, the production rates of 36CI and 53Mn are presented in the commonly used unit dpm/kg Fe. However, Ni significantly contributes to the production rates of these two nuclides. For example, at the center of a 50 cm meteoroid, about 4 and 3% of the total 36CI and 53Mn, respectively, are due to Ni. Using mean Fe/Ni- ratios for H, L, and LL chondrites (Table 1) usually leads to uncertainties of less than -1%. For meteorites with exceptional Fe/Ni ratios (e .g . , St. Severin), production rates can be calculated by the reader, because we report in Table A2 36CI and 53Mn production rates from Fe and Ni separately.

The model calculations describe the depth and size dependence of the 36Cl and 53Mn production well as shown in Fig. 6e-h, where the contributions from Ni have been explicitly taken into account. In Fig. 8a, we present 36CI production rates for stony meteoroids with radii from 5 to 120 cm and for a 2n exposure geometry. The production rates decrease with increasing shielding depth as well as with increasing radius because 36CI is a high-energy product from Fe and Ni. The depth profiles for 53Mn are shown in Fig. 8b. The 4n production varies between 166 and 476 dpmikg Fe. This range

264

30.

Leya et al.

- He-I 0 in Knyahinya a .

L-chondrite, r = 45 cm

n bu RO

7o 24 --. C-14 in Knyahinya b : ; L-chondritc, r = 45 cm

E a a U

a U

w b

...........................

0 5 I0 IS 20 25 30

20 U

L

100 - ................................................... ...... ..... ... . . -..,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 5 10 15 20 25

100

A1-26 in Knyahinya d

,. _ _ _ ~ -

, 40

80 L-chondrite, r = 45 cm I

. . . .

0 10 20 30 40 30

- CI-36 in Knyahinya f 2 5 - L-chondrite, r = 45 cm

................... ............ .....,

............................................................

0 10 20 30 40

L-chondrite, r = 45 cm

300 ,-'

I00 ........................................................ I

_._I

0 0 10 20 30 40

DEPTH [cm] FIG 6 Depth profiles of IOBe, I4C, 26AI, W I , and 53Mn in various meteorites Except for I0Be and I4C in Knyahinya, the modeled GCR depth profiles describe the experimental data (Cressy, 1975, Englert and Herr, 1980, Graf et a l , 1990a, Jull e / a l , 1994, Nishiizumi el a l , 1989, Reedy et a l , 1993, Vogt, 1988) within their uncertainties In the calculations, the total production (TO) and the production by primary protons (PP), secondary protons (SP), and secondary neutrons (SN) are distinguished

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 265

6 0 0 - - I . I . I . I ~ I . I -

53Mn in stony meteoroids . : 0

0 .............

Y

................

0

- y" 70 26A1 in chondrites

F! 2 50

4 40 c

30

--. 5 60

+ .-

0 20 40 60 80 100 120 DEPTH [cm]

FIG. 7. Galactic cosmwray production rates of 26AI in ordinary chondrites with radii between 5 and 120 cm and for a 2n geometry.

30 I ' I ~ I . I ' I ' 8

36Cl in stony meteoroids

n 0

F4 bI)

3 E P, a U

a w 5 - t-l 4 0 d o 20 40 60 80 100 120

" @ 200 P 1

0 ~ ~ ' ~ " ' ~ " " ' 1 0 20 40 60 80 100 120

DEPTH [cm]

covers most production rates measured in ordinary chondrites with exposure ages long enough to bring 53Mn in saturation.

Production Rates for the Rare Gas Isotopes Neon-21, Argon-36, and Argon38

We present the depth and size dependence of the 2lNe production rates in H and L chondrites with radii between 5 and 120 cm and for a 27t geometry in Fig. 9. The depth profiles follow the general trends seen for loge, 14C, 26A1, and 53Mn. Similar to 26A1, the differences in the modeled 2lNe production rates (-7% between H and L chondrites and -9% between H and LL chondrites) are due to different concentrations of the main target elements Mg, Al, and Si. Hence, the production rates become independent of meteoroid type by scaling the data to, for example, a unit of Si concentration.

We determined 2lNe exposure ages for Knyahinya, Keyes, Bansur, Madhipura, Allan Hills (ALH) 78084, Udaipur, and St. Severin by fitting modeled 2lNe depth profiles to experimental data. In Table 2, the data are compared with those derived from two empirical approaches (Nishiizumi et al., 1980; Eugster, 1988) and a semiempirical model (Graf et al., 1990b). Maximum differences between these four approaches are -30% but most ages agree within -1 0%.

We show 3 8 A r depth profiles in the Fe phase of chondrites in Fig. 10. The data are given together with the depth- and size- dependent production rates of 36Ar in Table A4. Because both nuclides are high-energy products from Fe, the production rates decrease with increasing shielding depth. We cannot yet give Ar production rates in bulk meteorites because a posteriori calculations exist only for the Ar production from Fe and Ni but not for Ca, the major target element for Ar production in silicates. Hence, with the present data base, we cannot decide whether the 38Ar production rates by Graf and Marti (1989) or the 10% lower values given by Eugster (1988) are to be preferred. Note that predicted 36ArPAr ratios are around 0.724.75, that is, -15% higher than measured values in iron meteorites (Signer and Nier, 1960) and metal separated from chondrites (Nyquist et al., 1973). We are therefore reevaluating Ar production cross sections in Fe and Ni.

COMPARISON WITH EARLIER MODELS

In this section we exemplarily compare our model predictions with production rates of cosmogenic nuclides derived by others

ZlNe in chondrites c .................

~

0 20 40 60 80 100 120 DEPTH [cm]

FIG. 8. Galactic cosmic-ray production rates of 36CI and 53Mn (dpm/kg Fe) in stony meteoroids with radii between 5 and 120 cm and for a 2n geometry.

FIG. 9. Galactic cosmic-ray production rates of 21Ne in ordinary chondrites with radii between 5 and 120 cm and for a 2n exposure geometry.

266

1 ~ 1 ' 1 ~ 1 ' 1 ' 1

Leya et al.

'TABLE 2 Comparison of 2iNe and 10Be/2iNe exposure ages (Ma) derived in this work with those calculated on the basis of the empirical approaches by Nishiizumi et a1 (1980) and Eugster (1988) as well as with those derived by Graf el a1 (1990b) on the basis of a semiempirical model *

Meteorite r (cm) T,,,, (Malt re,,, (M4t T,,,(Ma)f T,,,, (Ma)+ T,, (Ma)$ (Nishiizumi) (Eugster) h a f ) (via P(2iNe),this work) (via loBe/&Ne, this work)

Knyahinya 45 40 29 (0 27) 37 65 (0 25) 40 5 (0 2) 38 03 (0 30) 32 5 (4 2) Keyes 31 29 22 (0 26) 27 31 (0 24) 24 6 (0 2) 28 39 (0 39) 28 1 (2 5)

24 5 (2 I ) Bansur 14 2420(031) 22 62 (0 29) 25 92 (0 99) Madhipura 8 5 16 78 (0 37) 15 68 (0 35) 20 43 (0 94) 19 5 (1 7) ALH 78084 14 32 75 (0 35) 30 61 (0 33) 28 9 (0 3) 33 53 (0 27) 33 6 (2 9) Udaipur 12 38 57 (0 48) 36 05 (0 45) 36 44 (0 42) 39 8 (4 2) St Severin# 27 15 87 (0 18) 15 6 (2 4)

*The rare gas data are from Graf el a1 (1988, 1990b), Cressy (1975), Gopalan and Rao (1976) Bhandari et a/ (1993), Sarafin et a1 (1985), Schultz and Signer (1976), and Wright eta1 (1973) ?Errors include standard deviation of absolute 21Ne concentrations :Data from Graf ef a1 (1990b) #Radius of a sphere with a volume equal to that of an ellipsoid with main semiaxes of 40,20, and 25 cm +Errors include standard variations of absolute I0Be and 22Ne concentrations and in 22Ne/2iNe ratios standard '5433 "

-

-

-

- - -

All I0Be data are normalized to the

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 - - 2lI . n no , , , , I , I , I , I

0 20 40 60 80 100 120

DEPTH [cm]

FIG. 10 Galactic cosmic-ray production rates of lSAr in the metal phase of ordinary chondrites with radii between 5 and 120 cm and for a 2n exposure.

(Graf et al., 1990b; Masarik and Reedy, 1994; Hohenberg et al., 1978; Schultz and Freundel, 1985). In Fig. l la, we compare our *lNe production rates in the centers of L chondrites with those calculated by the parametric model by Graf et al. (1990b). The different approaches give production rates in close agreement for meteoroid radii up to -30 cm. For larger radii, the production rates calculated by Graf et al. (1990b) start to decline, whereas our calculations predict maximum values for a radius of -40 cm. The differences increase with meteoroid radius from -6% for r = 40 cm to -36% for r = 100 cm. This is due to the assumption of an exponential attenuation of secondary particles in the Graf et al. (1990b) model, which leads to an underestimation of the secondary neutron fluxes ( i e . , an underestimation of the total production rates).

Adopting a similar approach than that used here, Reedy et al. (1993), Reedy and Masarik (1994, 1995), and Masarik and Reedy ( 1 994) reported physical model calculations using the LAHET code system (Prael and Lichtenstein, 1989) in combination with the MCNP code (Briesmeister, 1993). Using a different set of proton cross sections and neutron excitation functions that are either based on the assumption of equal cross sections for proton- and neutron- induced reactions or that are adjusted to the measured GCR record

Grafet al. (1990b) ' \ \

for L-chondrites

I , I . I , , , I

o 20 40 60 xn inn 120 RADIUS [cm] 10 I I I -

d Q\ m .

~ l4C 2lNe 22Ne / 26.41 36CI ~ S 3 W d

>.' a

z n E z zq

2 2 z

w ' W ^ d

bi

-=c I,

0. I

FIG. 11. (a) Comparison of calculated center production rates of 2lNe in L chondrites as a function of meteoroid radius from this work and from the parametric model by Graf et al. (1990b). (b) Comparison of calculated elemental production rates of IOBe, I4C, 2lNe, 22Ne, 26AI, 36CI, and 53Mn for depths of about 5 0 4 0 g/cm-' in a meteoroid with a radius of -1 10 g/cm2 from this work with those presented by Masarik and Reedy (1994).

in meteorites, these authors proposed a long-term average flux density of GCR particles of 4.8 cm-2 s-1 and A4 = 550 MeV, significantly different from our values of 4.06 cm-2 s-1 and M = 650 MeV. In Fig. 1 1 b, we compare the production rates given by Masarik and Reedy (1994) with our results. Except for the

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

I ' I ' I , l ' I ~ ,

lHlS WORK Hohenberg et al. (1978)

267

production rates of 1013e from Fe, 14C from Si and Fe, 2lNe from Si and Fe, 22Ne from Fc, and 26Al from Al, the data agree within -20%. Note that for the target-product combinations that dominate the cosmogenic production in chondrites (e .g . , IOBe and 1% from 0, 26AI from Si) the production rates given by the two models always differ by less than -10%. For the above mentioned seven target- product combinations. we prefer our results because they are based on complete and consistent proton excitation functions and a posteriori neutron data.

In Fig. 12a, we compare our modeled elemental 21Ne production rate ratios for the major target elements and for various meteoroid radii with data presented by Schultz and Freundel (1985). These authors did not give size- and depth-dependent production rates. 'The modeled 2lNe ratios AI/Si. P21(AI/Si), show a very minor depth and sizc dependency and agree with the ratio given by Schultz and Freundel (1985) within its uncertainty. Ratios P21(Ca/Si) and PZI(Fc/Si) both decrease with increasing shielding depth as well as with increasing meteoroid sizc. The modeled P21(Ca/Si) agree for

Schultz and Freundel(l984)

MglSi ~.~

W k

Al/Si Z L l / r = 10,40,85 cm c 0 .41 T

r = 10,40,85 cm CdSi /

all radii and shielding depths with the value by Schultz and Freundel (1985) but the latter has a large uncertainty. For P21(Fe/Si), these authors gave a value of 0.066 ? 0.015. We calculate such high values only for meteoroid radii of 10 cm or less. Ratio P21(Mg/Si) increases with radius and shielding depth. For meteoroid radii < I 20 cm, the modeled ratios are significantly lower than the value of 5.06 * 0.85 given by Schultz and Freundel (1985). On the other hand, the absolute 2lNe production rate for L chondrites of (0.32 2 0.04) x cc STP/g Ma given by Schultz and Freundel (1985) agrees well with the "mean" value of -0.35 x 10-8 cc STP/g Ma derived here, assuming that meteorite samples found on Earth are most likely either from the central part of small meteoroids or from mean shielding depths of ob.jects with a radius between 2 M O cm radius.

In Fig. 12b and Table 3, we compare modeled rcsults for a 2 n exposure geometry presented by Hohenberg et al. (1978) with our data. As noted earlier, a detailed discussion of 222 production rates predicted by our model will be published elsewhere. We therefore do not give the respective data in Table AI-A4 but just present here 2 n elemental production rates for comparison. For shielding depths less than -10 g/cm2, our 2lNe production rates for Mg and Si are about 1.3 and 1.5 times, respectively, higher than the data by Hohenberg et al. (1978). At larger shielding, the 2lNe production rates from Mg given by both estimates agree within -10%. For the 2lNe production from Si, however, the differences between our results and the data by Hohenberg et al. (1978) increase with increasing shielding depth and reach a factor of 3.2 at 500 g/cmz.

Despite the fact that our model describes measured loge and 14C production rates only within -20%, the data presented in this paper should replace earlier estimates because they are based on the best available data set for the proton excitation functions and improved neutron cross sections (Leya, 1997; Michel et al., 1996).

THE DEPTH AND SIZE DEPENDENCE OF THE SHIELDING PARAMETERS NEON-ZZ/NEON-Zl

AND HELIUM-31NEON-21

Some ratios of cosmogenic nuclides such as 22Ne/2lNe and 3He/2lNe significantly change with meteoroid size and sample depth. Hence, these ratios can be used as indicators of the hardness of the irradiation and consequently of the shielding depth. In Fig. 13, we compare measured and modeled 22NerNlNe ratios for four meteorites. Remarkably, most modeled results agree with the measured ratios within the uncertainties. For small meteoroids (r < 45 cm), Reedy and Masarik (1995) calculated 22Ne/2lNe ratios are in good agreement with our results.

In Fig. 14, we present the depth and size dependence of the 22NeP'Ne ratios for H and L chondrites with radii between 5 and 85 cm. Most curves decrease monotonically with increasing depth. Only in meteoroids with r > 85 cm do the modeled ratios increase at large depths. We cannot decide whether this increase has a physical meaning or reflects only statistical uncertainties in the particle fluxes. Therefore, we do not consider the 22NePINe data of meteoroids with radii larger than r 2 85 cm any further. However, this is not a serious limitation of the overall applicability of the model, because such large meteoroids are very rare. Although our 22Ne/21Ne ratios for all chondrites with r 5 85 cm are > I .06, Graf et al. (1990b) presented 22NePINe ratios <1.06 for shielding depths >70 cm.

Measured and modeled sHe/*INe ratios for the LI,-chondrite St. Severin are shown in Fig. 15. The calculated values agree with the

268

i ' l ' l ' l ' l ' l ' l ~ t ' l ' ~ 3 l ' l ' I ' l '

1 16

I 1 4 113 1153 'I 1 1 2 -

22NePlNe in St.Severin

LL-chondrite, reff = 27 cm .

c

1 1 1 - - ?jJ (7- 1:

1 1 0 -

109 ' I ' " ' ' I ' I . ' ' " I ~ I . ' . 1 ~ 1 . I ~ I ~

. d

Leya et al.

TABLE 3 Comparison of elemental production rates of 2'Ne [atoms/mm/kg] for a 271 exposure geometry derived in this work with those presented by Hohenberg ef a1 (1978)

~ ~ ~ ~ ~ ~~~ __ ~ -~ -~ __ ~-

This work Hohenberg et al (1978) ~ ~~

Shielding (g/cm2) Na Mg

Surface 128 232 I 130 240 2 132 249 5 140 278 10 151 323 20 167 390 40 176 452 65 169 462 100 145 418 150 116 353 225 8 2 6 269 500

~ ~ ~ ~

1 4 0 50 1 ~ -

~-

Al si 119 7 3 3 120 7 4 0 121 74 6 126 76 9 I32 80 1 140 83 9 140 82 9 I29 75 7 I07 62 4 81 5 4 7 2 5 4 8 31 6

~-

8 4 6 4 9 0 -~ ~

Ca Fe

18.2 2.14 18.0 2.10 17.8 2.07 17.3 1.96 16.5 182 15.2 1.61 12.7 1.29 10.2 0.995 7.39 0.701 4 76 0.435 2.54 0.222 0.260 0.021

1 ~ 1 ~ 1 ' I ' I ~ l ~ I '

I . 24 22Ne/21Ne in ALH78084

i H-chondrite, r = 14 cm 1.20

T - I

1.12 - I

1.15, I I I I i

22NePINe in Knyahinya -

L-chondrite, r = 45 cm .

-

u : 1 08 - 1 07 -

1 0 6 -

1 05 I I I I

0 10 20 30 40 50

~

Na

290 8 290 8 3187 334 1 362 1 404 0 424 5 423 6 385 8 324 3 225 9

51 6

~

-

Mg -

313 2 313 2 349 5 369 1 405 4 458 5 485 1 489 3 445 9 366 3 253 0

55 5

- __-_ ~ ~

Al SI Ca Fe

1295 1043 2 8 5 6 6 8 1295 1043 2 8 5 6 6 8 141 5 1124 2 8 2 6 3 5 1468 1167 2 7 9 6 1 4 1581 1254 2 7 5 575 1750 1388 2 6 6 5 0 7 1789 1420 2 3 9 4 0 7 1767 1419 2 1 0 3 2 0 1555 1276 1 6 7 225 1253 1046 1 2 4 151

~~

8 4 2 7 1 6 7 6 3 0822 1 6 9 1 5 6 1 2 5 0 0 9 0 -~ ~~ ~

DEPTH [cm] FIG 13. Calculated and measured 22Ne/21Ne depth profiles for ALH 78084, Keyes, Knyahinya, and St. Severin. The experimental data are from Sarafin ef al. (1985), Cressy (1975), Graf (1988), and Schultz and Signer (1976).

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

. . . . . . . . . . . . . . . . . . .

269

t ' " ' " " " " ' " " ' i

0 1.20 L 5: hl N

1.15

1.10

22NePINe in H- and L-chondrites 4

3

FIG. 14. Calculated depth profiles of 22NePINe ratios in ordinary chondrites with radii between 5 and 85 cm.

sp 1 Y I I

3HePINe in St.Severin

0 5 10 15 20 25 30 DEPTH [cm]

FIG. 15. Calculated and measured 3HePINe depth profile in St. Severin. The experimental data are from Schultz and Signer (1976). In the calculations, the total production rate ratio (TO) and the ratios due to primary protons (pp), secondary protons (sp), and secondary neutrons (sn) are distinguished.

measured data within error limits. It has to be noted, however, that the calculations are based on incomplete proton and neutron cross sections for the production of 3He from 0 and on the assumption of equal production rates for 3He and 3H. Hence, the model calculations for 3He are not as good as for the other cosmogenic nuclides presented here. As a consequence, we cannot, at present, rigorously rule out that the agreement between model and measured data is somewhat fortuitous, for example, because St. Severin might have lost 3H during close passages to the Sun. Further investigations about 3H diffusion in terrestrial irradiation experiments and meteorites are presently underway.

Empirical correlations between 2lNe production rates and 22Ne/21Ne ratios were reported, for example, by Nishiizumi et al. (1980) and Eugster (1988). We compare our modeled results with both empirical calculations and with the results presented by Graf et al. (1990b) in Fig. 16. For 22NePINe ratios below -1.12, our modeled data agree with both empirical relations. For higher 22Ne/21Ne ratios, the calculated values are systematically lower than

those given by the empirical relations. The discrepancies are -20% for 22Ne/2lNe < 1.16 and -30% for 22NePlNe ratios of about 1.2- 1.25 (k, for meteoroids with radii less than -10 cm). It is possible that part of the difference between modeled data and empirical relations for small meteoroids is due to effects due to SCR, which are not considered in our calculations but which could have influenced the data base used by Nishiizumi et al. (1980) and Eugster (1988). Adding SCR contributions shifts the modeled data towards the empirical correlations. We will present a detailed discussion of model calculations for solar cosmic rays in a future paper of this series. Note that the empirical correlations are defined by few data points. The insert in Fig. 16 shows the data base for L and LL chondrites used by Eugster (1988). The individual data points have considerable errors due to the relatively large uncertainties of the SIKr-Kr ages, and only three data points with 22Ne/21Ne > 1.20 exist. Furthermore, the dotted correlation line defined by Eugster (1988) is based on the assumption that the 3He production rate is independent of shielding, whereas, for example, our model predicts in the center of a r = 10 cm meteoroid a 30% lower 3He production rate than in the center of a r = 40 cm body (c.f., Table A4). It is therefore unclear whether the Eugster (1988) correlation or our model describes the experimental data more accurately.

The values of this work mostly fall into the field defined by the Graf et al. (1990b) model for meteoroid radii r 5 85 cm (Fig. 16). However, in detail the two models yield different results. The Graf et al. (1990b) model predicts 2lNe production rates higher than our data at meteoroid surfaces and lower than our data in central regions. As already discussed, this is due to the assumption of an exponential attenuation of the secondary particle fluxes in the Graf et al. (1990b) model that first of all results in an underestimation of total production rates at larger shielding depths and also in depth profiles that are too flat.

PRODUCTION RATE CORRELATIONS FOR DECIPHERING IRRADIATION CONDITIONS

OF STONY METEOROIDS

In Fig. 17a, we show IOBe vs. 26AI production rates for L chondrites with radii between 5 and 120 cm. For r 540 cm, there is a well-defined correlation between loge and 26Al for all depths indicated by a shaded band. For larger radii, the relation between these two nuclides becomes ambiguous. This is because loge is a high-energy product compared to 26AI; hence, IOBe decreases faster with increasing shielding than 26AI. Nevertheless, the figure shows an allowed field for experimental values if both nuclides are in saturation. Data outside this allowed field indicate short exposure ages, long terrestrial residence times, complex exposure histories, or SCR contributions.

Figure 17b shows P(53Mn) expressed in d p d k g Fe vs. P(26A1) expressed in d p d k g Si. For all meteoroid radii between 5 and 120 cm, the data plot in a quite narrow shaded band. Data plotting outside this area again indicate short exposure ages or long terrestrial residence times compared to the half live of 26AI and 53Mn, complex exposure histories, or contributions due to solar cosmic rays.

In Fig. 18a, we show the correlation loBe/zlNe vs. 22Ne/LINe. All calculated data for each chondrite class fall along a linear array as shown in the figure and in Table 4. We also show experimental data for various meteorites and the correlation given by Graf (1988). We calculated the 10BePlNe ratios using our 2lNe exposure ages

270 Leya et al.

0.40

0.35

0.30

c 00

0 0.20 c U

-0.15 a, 1 + 5 c m A 40cm

x 10cm v 50cm

m 15 cm 0 65cm z c e, 1

1.10 1.15 1.20 1.25

22NePlNe in L-chondrites FIG. 16. Modeled 21Ne production rates vs. 22Ne/ZlNe for L chondrites with radii between 5 and 85 cm. Part of the differences between modeled data and empirical relations (Nishiizumi et al. 1980; Eugster 1988) may be due to SCR effects that are not taken into account in our model, but the insert demonstrates that it is unclear whether the relation by Eugster (1988) or our model results more accurately describes the experimental data used by Eugster (1988) for L and LL chondrites (filled dots). We also compare our results with the data by Graf et al. (1990b). The different results by these models are caused by the simplifying assumption of an exponential attenuation of the secondary particle fluxes in the model of Graf et al. (1990b).

from Table 2. Our correlations agree within the uncertainties with the experimental data but are significantly steeper than the correlation by Graf (1988). The exposure age T,,, (106 years) can be calculated by:

where A(1OBe) and cc(21Ne) are measured 1OBe and *lNe concentrations in dpm/kg and 10-8 cm3 STP/(g x Ma), respectively, and h is the decay constant of loge (h = 0.433 Ma-1). The values a and b are offset and slope, respectively, as given in Table 4. In

TABLE 4. Offset and slope of the linear correlation I0Be/2’Ne vs. 22Ne/21Ne for H, L, and LL chondrites.

Table 2, we also give the exposure ages for the seven meteorites calculated with Eq. (4). Except for Knyahinya, these ages agree with those calculated via 2lNe production rates within the uncertainties. For Knyahinya, the loBe/zlNe age is -17% too low, which is mainly due to the problem that our model underestimates loge production rates in large meteoroids as discussed above. Note, however, that for 22NePNe ratios below 1.10, the 1OBePINe values scatter by up to ? 15% for equal shielding depths. Hence exposure ages for such samples can be calculated by Eq. (4) only to within about 2 15%.

Figure 18b shows the correlation between P(36Ar) vs. P(36CI) in the metal phase of ordinary chondrites. Because most 36Ar is produced via the decay of the progenitor 36Cl, the two production rates closely correlate. Hence, 36Ar production rates can unambiguously be determined from measured 36Cl concentrations by:

Meteoroid type Offset (a) Slope (b)

H chondrites -0.606 0.653 L chondrites -0.583 0.632 LL chondrites -0.549 0.605

The exposure ages can be calculated on the basis of Eq. 4 using the values for (a) and (b).

P(36Ar) = 2 . 3 0 5 1 ~ x P(36CI) ( 5 )

where P(36Ar) and P(36CI) are in cm3 STP/(g Fe x Ma) and dpmlkg Fe, respectively. Knowing the cumulative 36Ar concen- trations and 36Cl production rates in the metal phase of ordinary chondrites, the cosmic-ray exposure age can be calculated via:

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 27 I

The model calculations are based on the best available data sets for proton and neutron excitation functions. In earlier model calculations from our group (Michel et a/., 1991, 1993, 1995a; Herpers et a/. , 1995), many of the proton cross sections were too high because of contributions due to secondary particles. Here we use only proton cross sections determined in a way that contributions due to secondary particles can be neglected or could be reliably corrected for. Also, for the neutron excitation functions, the best available data sets were used because the cross sections were a posteriori validated on the basis of five thick-target irradiation experiments in which the cosmogenic nuclide production in stony and iron meteoroids was simulated under controlled conditions (Leya, 1997; Leya and Michel,

8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 1998a; Michel et a/., 1996). Therefore, the data presented here replace the results published earlier by Michel et a/. (1991, 1993, 1995a) and llerpers et a/. (1 995).

Here we discussed modeled production rates only for

rates presented in Tables AI-A4 are also applicable to other classes of stony meteoroids because the differences in the particle spectra between different types of stony meteoroids are marginal (Lange, 1994; Masarik and Reedy, 1993).

We determined the mean GCR spectrum in the meteoroid orbits to be equivalent to a spectrum of GCR

and an integral flux density of GCR particles of Jf,,pp = 4.06 cm-2 s-I, We also showed that the mean GCR spectrum in the meteoroid orbits was constant over about the last 10 Ma.

We showed in the previous sections that our model calculations describe the GCR production of the

P( loge) [dpm/kg]

l ' l ' l ' l ' l ' l ' H, L, and LL chondrites; but the elemental production

~ 3 5 0 -

m X c m - 0 3 ? m -

v m c m -

+ us cn,

particles with a solar modulation parameter of 650 MeV X 4Ocm

I00 cm - 121) c m - L 1 5 0 - @ , I , I , I , I , I , y ,

150 200 250 300 350 400 450 500 550 cosmogenic nuclides loge, 26A1, 2lNe, 22Ne, 36C1, 36Ar,

P(53Mn) [dpm/kg Fe] 38Ar, and 53Mn mostly within the uncertainties of the experimental data. Two exceptions are lOBe in large

FIG 17. (a) Galactic cosmic-ray production rates of 10Be vs. 26AI in L chondrites and (h) of P(26AI) expressed in (dpdkg Si) vs. P(53Mn) expressed in (dpmkg Fe) in ordinary chondrites. Scaling P(26AI) and P(53Mn) to a unit Si- and Fe-content, respectively, yields a linear correlation independent of the chemical composition of the meteoroid (shaded hand)

meteoroids and 14', For calculations underestimate measured data for meteoroid radii '40 cm and our modeled 14C data should be decreased by a factor of 0.82 for practical app~ications, hi^ is also the first generation of model calculations that is able to describe the depth dependence of the shielding indicator

22Ne/*lNe for chondrites with radii up to 85 cm. Using our 2lNe production rates, we determined exposure ages for a variety of chondrites in agreement with exDosure ages derived from empirical

Our

c ~ ( ' ~ A r ) 2 . 3 0 5 1 ~ 1 0 - ~ x P(36CI)

(6) T,,. =

I I

relations presented by Nishiizumi et a/. (1980) and Eugster (1988). For the majority of the target elements in bulk stony where cc(36Ar) is the measured 36Ar concentration expressed in

cm3/(gFe), and p(36ci) is the 36c1 production rate expressed meteoroids, the new production rates agree within -20% with those calculated by Masarik and Reedy (1994). However, for some target in dpm/kg Fe. The exposure age is given in mil1ions Of years'

SUMMARY AND CONCLUSIONS

We present a purely physical model for the calculation of depth- and size-dependent GCR production rates in stony meteoroids. Besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based only on one free parameter-the integral number of GCR particles in the meteoroid orbits. We determined this parameter by adjusting calculated production rates to depth profiles measured in the L-chondrite Knyahinya.

product combinations (e .g . , 2lNe from Si and 26Al from Al), the agreement is only within -50% and in a few cases (e .g . , for 2lNe, 22Ne from Fe and 1% from Si) both estimates differ by up to a factor of 4. For the above mentioned target-product combinations, we prefer our results because they are based on complete and consistent proton excitation functions and a posteriori neutron data. For meteoroid radii r < 40 cm, our P(2lNe) data agree with the results calculated by Graf et a/. (1990b) using a parametric model. For larger meteoroids the latter model underestimates the production rates because it underestimates secondary particle contributions. For

272 Leya et al.

1.05 1.10 1.15 1.20 1.25 - n 22NeP 1 Ne

0 10 0 65

4 6 8 10 12 14 16 18 20 22 24 m W a

P(36Cl) [dpdkg] FIG. 18. (a) Correlation ioBe/2iNe vs. 22Ne/21Ne in H. L. and LL chondrites. Also the

26Al vs. 53Mn that are very useful for the discussion of exposure ages, terrestrial residence times, shielding depths, preatmospheric radii of the meteorite, and contributions due to SCR.

Note that the model presented can only be used to calculate the depth and size dependence of the production rates induced by GCR particles. Solar cosmic ray effects are not taken into account. However, in very small meteorites (e.g. , the L-chondrite Salem), SCR dominates the production (Nishiizumi et al., 1990; Evans et al., 1987; Michel et al., 1996). Hence, SCR effects must be kept in mind when production rates of cosmogenic nuclides in meteorites, even in small ones, are discussed.

With the .Jo,pp values of 4.06 cm-2 s-1, we calculate 14C production rates -1 8% higher than measured data in Knyahinya (Jull et al., 1994). We believe that this difference is due to the incomplete neutron cross section data base for I4C rather than due to a changc in the GCR intensity of -1 8% on a time scale of -10 ka. The model calculations for 3He production are also less reliable because the cross section data base for the production of 3He from 0, its main target element, is still incomplete. Additionally, the calculations are based on the assumption of equal production rates for 3He and 3H, which is justified for medium energies only (Michel et al., 1995b). As a consequence, at present, diffusive losses of 3H in meteoroids cannot rigorously be excluded based on the model calculations. This problem is presently studied and the new results will improve the discussion about 3H and 3He diffusive losses in meteoroids.

In summary, the present generation of model calculations is able to quantitatively describe most aspects of GCR-produced cosmogenic nuclides in stony meteoroids within a wide size range. Remember that our

linear relationship given by Graf (1988) and experimental data from Knyahinya, Keyes, model is based on measured pro& excitation functions Bansur, Udaipur, ALH 78084, Madhipura, and St. Severin are plotted. The experimental and a posteriori neutron cross sections, Besides the 'OBe and 2iNe data are taken from Graf (1988), Graf el al. (1990a), Vogt (1988, 1991), Cressy (1975), Gopalan and Rao (1976), Sarafin et al. (1985), and Schultz and Signer JO,GCR there is no ad.iustment to meteorite data. In (1976). The experimental loBe/21Ne are calculated using our 2lNe exposure ages from some earlier model calculations (e.g. , Reedy el al., 1993; Table 2. Note that for 22Ne/2iNe ratios below 1.10, the i0Be/2iNe values scatter Up to Reedy and Masarik, 1994; Masarik and Reedy, 1994), the k 15% for equal shielding depths. Hence, with the linear relationships in this figure exposure ages can be calculated only to within about ?15%. Panel (b) shows GCR results were ad.iusted (via the neutron cross production rates f(36Ar) VS. P(36CI) in the metallic phase of ordinary chondrites with sections) to measured meteorite data. In some cases, this radii between 5 and 120 cm. Because most 36Ar is produced VIU the decay of W I , both leads to a better agreement between calculation and production rates closely correlate. measurement than our approach ( e g , IOBe in

Knyahinya), but such models are not well suited to a 2 n exposure geometry, our production rates for 2lNe from Mg, which is the dominant reaction mechanism, agree within with deduce, for example, diffusive losses of 3H or 3He in meteorites or

variations of the GCR intensity with time. the empirical results found in lunar rocks by Hohenberg et a/ . (1978). For the *lNe production from Si, however, our values are Acknowledgments-The first author wishes to thank the Deutsche up to 3 x higher than the Hohenberg et al. (1978) data. Significant Forschungsgemeinschalt for financial support. The work was partially

supported by the Deutsche Forschungsgemeinschalt and the Swiss National differences are also observable between our results and the empirical Science Foundation, Reviews by an anonymous referee and, espec,ally, by data by SchUltz and Freundel (198% the latter giving P21(Mg/Si) R. C. Reedy are appreciated. This work would also not have been possible significantly higher than the model calculations. However, the mean without the opportunity to use many different accelerators. We greatly 2 1 ~ ~ production rate for L chondrites of (0.32 f 0.04) 10-8 cc appreciate the skill and the assistance of the various accelerator staff. STP/g Ma given by these authors agrees with our estimate of about Edrtorial handlmg: G. Wetherill 0.35 x 10-8 cc STP/g Ma, assuming that meteorite samples found on Earth are most likely either from the central part of small meteoroids REFERENCES

or from mean shielding depths of larger objects. AMlN B. S., BISWAS S . , LAL D. AND SOMAYAJULA B. L. K. (1972) Radiochemical measurements of IOBe and 'Be formation cross sections

AMSTRONG T, w, AND CHANDLER K, c, (1972) HETc-A high energy We also present the correlations IoBe"lNe "" 22Ne/21Ne and in oxygen by 135 and 550 MeV protons, Nut[. phys, A195,31]-320,

36Ar vs. 36CI to be used to calculate cosmic-ray exposure ages in chondrites. We also show modeled results for IOBe vs. 26Al and transport code. Nucl. Sci. Eng. 49, 1 10.

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 273

ARNOLD J . R., HONIM M. AND LAL D. (1961) Record of Cosmic-Ray Intensity in the Meteorites J Geophys. Res. 66,3519-3539.

BAKLOUTI M. (1975) Production de CI-36 par reactions de spallation a haute energie: calcul de I'age du rayonnement cosmic. Ph D. thesis, Universitat Bordeaux, France. 59 pp.

BAROS I:. AND REGNIER S. (1 984) Measurements of cross sections for 22Na, 2c- 22Ne and 36-38Ar in the spallation of Mg, Al, Ca and Fe. Production ratios of some cosmogenic nuclides in meteorites. J Physique 45,855-861.

BHANDARI N., MATHEW K-J . RAO M. N., HERPERS U., BREMER K., VOGT S.. WO[,Fl,I W.. HOFMANN H-J., MICHEL R., BODEMANN R. AND LANGE H-J. (1993) Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids. Geochim. Cosmochim. Acta 57,

BRIESMEISTER .I F (1993) MCNP-A general Monte Carlo N-partrcle transport code, version 4A. Los Alamos National Laboratory Report LA-12625-M, Los Alamos, New Mexico, USA.

CASTAGNOLI G . A N D h i , D. (1980) Solar modulation effects in terrestrial production of carbon-14 Radiocarbon 22, 133-159.

CLOTH P., FILGES D. NEEF R. D., STERZENBACH G , REUL CH., ARMSTRONG 'I. W , COLBORN B L., ANDERS B. AND BRUCKMANN H ( 1988) I IERMES-I Iigh Energy Radiation Monte-Carlo Elaborate System, J U E L-2203

CRESSY P. J. (1975) AI-26 in cores of the Keyes chondrite J , Geophys. Res. 80, 1551-1553.

WOLFLI W (1990) Determination of cross sections for the production of 'Be. '"Be, and 22Na by high energy protons. Radiochim Acta 50, 11-18.

EMMETT M. B. (1975) The MORSE Monte Carlo Radiation Code System. ORNL-4942, Oak Ridge, Tennessee, USA

ENG1,ERT P. A N D HERR W (1980) On the depth-dependent production of long-lived spallogenic 5'Mn in the St. Severin chondrite. Earth Planet.

EUGSTER 0. (1 988) Cosmic-ray production rates for He-3, Ne-2 1, Ar-38, Kr- 83. and Xc-126 in chondrites based on Kr-81-Kr exposure ages Geochim. ('osmochim. Acta 52, 1649-1662

EVANS J. C . RIXVES J. tl AND REEDY R C (1987) Solar cosmic ray produced radionuclides i n the Salem meteorite (abstract). Lunar Planet.

2361-2375.

DITTRICII 13, I IERPERS U . , L U P K E M , MICHEL R., HOFMANN H - J AND

Sci. Lett. 47,361-369.

Sci 18,271-272. FINK D., SISTERSON J M . VOGT S., HERZOG G., KLEIN J., MIDDLETON R.,

I(OEt1LER A. AND MEGLIS A. (1991) Production O f Ca-41 and K, SC, and V short lived isotopes by the irradiation of Ti with 35 to 150 MeV protons: Applications to solar cosmic ray studies. Nucl Instrum. Methods Phys. Res B52.601-607.

FINK I>.. K L E I N R., MIDDLETON R., VOGT S., HERZOG G. F. AND REEDY R C. (1998) Ca-41, AI-26, and Be-I0 in lunar basalt 74275 and Be-I0 in thc double drive tuhc 74002/74001 Geochim. Cosmochim. Acta 62,

FURUKAWA M., SHlZURl K , KOMURA K., SAKAMOTO K AND TANAKA s. 23 89-2402.

(1971) Production ol'A1-26 and Na-22 from proton bombardment of Si, AI and Mg. Nucl f h y s A174, 539-544.

GENSHO R.. N I I I I O 0 , MAKINO T. AND HONDA M. (1979) Some long-lived and stable nuclides produced by nuclear reactions. In Origin and Distrihution of the Elements. Vol. I 1 of Physics and Chemistry of the Earth (ed L 'I Ahrcns). pp 11-18. Pergamon Press, New York, New York, LISA.

GOPALAN I< A N D RAO M. N (1976) Rare gases in Bansur, Udaipur and Madhipura chondrites. Meteoritics 11, 131-136.

GRAF 'Ill. (1988) Produktion kosmogener Nuklide in Meteoriten Ph D. thesis, t:.TH Zurich, Switzerland. 134 pp.

GRAF Tii. A N D MARTI K (1989) Exposure ages of H-chondrites and parent body structure (abstract). h n a r Planet Sci. 20,353-354.

GRAF T H . tJT A L (1990a) Cosinogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochim. Cosmochim. Acta 54,25 I 1-2534.

GRAF TH., BAUR H A N D SIGNER P. (1990b) A model for the production of cosmogenic nuclides in chondrites. Geochim. Cosmochim. Acta 44, 539-547

HERPERS U . Voor S. BREMER K., HOFMAN H-J., SUTER M., WIELER R., LANGE H-J. A N D MlrllEL R. (1995) Cosmogenic nuclides in differentiated Antarctic meteorites: Measurements and model calculations. Planet $>ace Sci 43, 545-556.

HOFMANN 11-J., Blit<R I , BONANl G., VON GUNTEN H R., RAMAN S , SUTER M.. WALKER R. I... WOLFLI W AND ZIMMERMANN D. (1987) '0Be: Half-live and AMS standards. Nucl. Instrum. Methods. Phys. Res. B29, 32-36

HOIIENUERG C. M.. MART1 K., PODOSEK F. A,, REEDY R. C. AND SHIRCK J . R. ( 1978) Comparisons between observed and predicted cosmogenic noble gaes in lunar samples Proc Lunar Planet. Sci. Conf 9th. 231 1-2344

HONDA M. AND LAL D (1960) Some cross sections for the production of radionuclides in the bombardment of C, N, 0 and Fe by medium energy protons. Phys. Rev 118, 1618-1625.

HONDA M. AND LAL D. (1964) Spallation cross section for long-lived radionuclides in iron and light nuclei. Nucl Phys. 51,363-368.

JAROSEWICH E. (1990) Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25,323-337.

JULL A. J . T., DONAHUE D. J . , REEDY R. C. AND MASARIK J (1994) A C-14 depth profile in the L5 chondrite Knyahinya. Meteoritics 29,649-65 1.

JULL A. J . T., CLOUDT S., DONAHUE D. J . , SISTERSON J . M., REEDY R. C. AND MASARIK J . (1998) I4C depth profiles in Apollo 15 and 17 cores and lunar rock 68815. Geochim. Cosmochim. Actu 62,3025-3036.

KLEIN J., FINK D., MIDDLETON R., VOGT S., HERZOG G. F., REEDY R. C., SISTERSON J . M., KOEHLER A. M. A N D MEGLIS A. (1990) Average SCR flux during the past I05 years: Interference from Ca-41 in lunar rock 74275 (abstract). Lunar Planet. Sci. 21,635.

KUMABE A., OGATA H., KOMATUZAKI T., INOUE N., TOMITA S., YAMADA Y., YAMAKI T. AND MATSUMOTO S. (1963) (p,alpha) reactions on the even nuclei Ni-58, Ni-60, and Fe-56. Nucl. Phys. 46,437-453.

LANGE H J , (1994) Uber die Wechselwirkung der galaktischen kosmischen Strahlung mit extraterrestrischer Materie. Bestimmung von Dunntargetwirkungsquerschnitten und Modellrechnungen Ph.D. thesis, Universitl Hannover, Germany 257 pp.

LAVIELLE B., SAUVAGEON H. AND BERTIN P. (1990) Cross Sections for Neon and Krypton Isotopes Produced by Neutrons. In Workshop on Cosmogenic Nuclide Production Rates (eds. P. A. I Englert, R. C. Reedy and R. Michel), pp. 65-69. Lunar Planetary Institute, Houston, Texas, USA.

LEVA 1. (1997) Modellrechnungen zur Beschreibung der Wechselwirkungen galaktischer kosmischer Teilchenstrahlung mit Stein- und Eisenmeteoroiden Dunntargetbestrahlungen und Dicktargetexperimente. Ph.D. thesis, UniversitSit Hannover, Germany. 459 pp.

LEVA I AND MICHEL R (1998a) Determination of neutron cross sections for nuclide production at intermediate energies by deconvolution of thick- target production rates. In Proc. Int. Conf Nuclear Data for Science and TechnologV (ed. G. Reffo), pp. 1463-1467. Trieste, Italy.

LEVA I . , BUSEMANN H., BAUR H., WIELER R., GLORIS M.. NEUMANN S., MICHEL R., SUDBROCK F AND HERPERS U. (1998b) Cross sections for the proton induced production of He and Ne isotopes from magnesium, aluminum and silicon. Nucl. Instr. Meth. Phys. Res. B145,449458.

LUPKE M. (1993) Untersuchung zur Wechselwirkung galaktischer Protonen mit Meteoroiden-Dicktarget Simulationsexperimente und Messung von Diinntarget-Wirkungsquerschnitten. Ph.D. Thesis, University Hannover, Germany. 260 pp.

MASARIK J. AND REEDY R . C (1993) Production profiles of nuclides by galactic-cosmic-ray particles in the tops of lunar rocks (abstract). Meteoritics 28,391-392.

MASARIK J. AND REEDY R. C. (1994) Effects of bulk composition on nuclear production processes in meteorites. Geochim. Cosmochim. Acta 58, 5307-53 17.

MASON B. (1979) Cosmochemistry Part 1. Meteorites. In Data of Geochemistry (ed. F. Fleischer), pp. €3-B132. Geological Survey Professional Paper 440-B-I, Washington, D.C., USA.

MERCliEL S. (1998) Uber die Wechselwirkung der kosmischen Strahlung mit extraterrestrischer Materie. Radiochemische Bestimmung der Produktionsraten von kosmogenen langlebigen Radionuklides in Meteoriten. Ph.D. Thesis, Universitat zu KOln, Germany. 23 1 pp.

MICHEL R. AND BRINKMANN G. (1980) Alpha-induced reactions on cobalt. Nucl. Phys. A338.167-189.

MICHEL R. AND NEUMANN S (1998) Interpretation of cosmogenic nuclides in meteorites on the basis of accelerator experiments and physical model calculations. Proc. Indian Acud Sci., Earth Planet Sci. 107(4), 441-457.

MICHEL R. /;7'A/.. (1985) On the depth-dependence of spallation reactions in a spherical thick diorite target homogeneously irradiated by 600 MeV protons. Simulation of production of cosmogenic nuclides in small meteorites. Nucl Instrum. Methods Phys. Res. B16,61-82.

MICHEL R. /T A/.. (1989) Production of stable and radioactive nuclides in thick stony targets ( R = 1 5 and 25 cm) isotropically irradiated with 600 MeV protons and simulation of the production of cosmogenic nuclides in meteorites. Nucl. Instrum. Methods Phys. Res. B42,76-100.

On the production of cosmogenic nuclides in meteoroids by galactic protons. Meteoritics 26,221-242.

MICHEL R., LUPKE M., HERPERS U., ROSEL R., FILGES D., DRAGOVITSCH P., WOLFLI W., DITTRICH B. AND HOFMANN H. J. (1993) Simulation of the interactions of galactic cosmic ray protons by irradiation of a thick stony target with 1.6 GeV protons. J Radioanal. Nucl. Chem. Art. 169,

MICHEL R., DRAGOVITSCH P , CLOTH P., DAGGE G. AND FILGES D (1991)

13-25.

274 Leya et al.

MICHEL R., LUPKE M., HERPERS U., ROSEL R., SUTER M., DITTRICH- HANNEN B., KUBIK P. W., FILGES D. AND CLOTH P. (1995a) Simulation and modeling of the interaction of galactic protons with stony meteoroids. Planet. Space Sci. 43,557-572.

MICHEL R. ET AL. (l995b) Nuclide production by proton-induced reaction on elements (6 5 Z 5 29) in the energy range from 800 MeV to 2600 MeV. Nucl. Instrum. Methods Phys. Res. B103,183-222.

MICHEL R., LEVA I. AND BORGES L. (1996) Production of cosmogenic nuclides in meteoroids. Accelerator experiments and model calculations to decipher the cosmic ray record in extraterrestrial matter. Nucl. Instr. Meth. Phys. Res. B113,434444

MICHEL R. ET AL.(l997) Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, 0, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. Methods Phys. Res. B129, 153-193.

NAKAMURA T., SUGITA IH., IMAMURA M., UWAMINO Y., SHIBATA S., NAGAI H., TABANATAKE M. AND KOBAYASHI K. (1992) Measurement of long-lived IOBe, I4C and 26AI production cross sections for 1 0 4 0 MeV neutrons by accelerator mass spectrometry. In Nuclear Data for Science and Technology (ed. S M. Qaim), pp. 714-716. Springer Verlag, Berlin, Germany

NEUMANN S. (1999) Aktivierungsexperimente mit Neutronen mittlerer Energien und die Produktion kosmogener Nuklide in extraterrestrischer Materie. Ph.D. thesis, Uinversitat Hannover, Germany. 165 pp.

NEUPERT U. (1 996) Langlebige kosmogene Radionuklide in Meteoriten aus heiflen und kalten Wtisten. Messung von naturlichen Vorkommen, Dtinntargetwirkungsquerscliiii~en und Dicktargetproduktionsraten zur Rekonstruktion von Bestrahlungsgeschichten. Ph.D. thesis, Universitat Hannover, Germany 183 pp.

NISHIIZUMI K., REGNIER S. A N D MARTI K. (1980) Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. SO, 156-170.

NISHIIZUMI K., KUBIK P-W., ELMORE D., REEDY R. C. AND ARNOLD J . R. (1989) Cosmogenic 36CI production rates in meteorites and the lunar surface (abstract). Lunar Planet. Sci. 19,305-312.

NISHIIZUMI K. ET AL. (1990) Solar cosmic ray produced nuclides in the Salem meteorite (abstract). Meteoritics 25,392-393.

NORMAN E. B , LESKO K. T., CHUPP T. E. AND SCHWALBACH P. (1981) 26s.41 production cross sections from the 26Mg(p,n)26AI reaction. Nucl.

NYGUIST L., FUNK H., SCIILJLTZ L. A N D SIEGNER P. (1973) He, Ne and Ar chondritic Fe-Ni as irradiation hardness sensors. Geochim. Cosmochim.

PAUL M., HENNING W., KUTSCHERA W., STEPHENSON E. J. AND YNTEMA J. L. (1980) Measurement of the 26Mg(p,n)*6BAl (7.2 x l o 5 yr) cross section via accelerator mass spectrometry. Phys. Lett. 94B, 303-306.

PRAEL R AND LICHTENSTEIN H. (1989) User Guide LCS: The LAHETCode System. Los Alamos National Laboratory Report LA-UR-89-3014, Los Alamos, New Mexico, IJSA.

PULFER P. (1 979) Bestiinmung von absoluten Produktionsquerschnitten fur protoneninduzierte Reaktionen im Energiebereich zwischen 15 MeV und 72 MeV und bei 1820 MeV. Modellrechnungen fur die Produktion von ZONe, 2'Ne und 22Ne an der Mondoberflache durch die Bestrahlung mit solaren Protonen. P1i.D. thesis, Universitat Bern, Germany. 131 pp.

REEDY R. C. AND ARNOLD .I R. (1972) Interaction of Solar and Galactic Cosmic Ray particles with the Moon. J. Geophys. Res. 77,537-555.

REEDY R. C. AND MASARIK J (1994) Cosmogenic-Nuclide Depth Profiles in the Lunar Surface (abstract) Lunar Planet Sci. 25, 11 19-1 120.

REEDY R. C. AND MASARIK J. (1995) Production profiles of nuclides by galactic-cosmic-ray particles i n small meteoroids. In Workshop on Meteorites from Cold and Hot Deserts (eds. L. Schultz, J. Annexstad and M. Zolensky), pp 55-57 Lunar and Planetary Institute, Houston, Texas, USA.

REEDY R. C., HERZOG G. F AND JESSBERGER E. K. (1979) The Reaction Mg(n,alpha)Ne at 14.1 and 14.7 MeV: Cross Sections and Implications for Meteorites. Earth Planet. Sci Letters 44,341-348.

REEDY R C , ARNOLD J. R. AND LAL D. (1983) Cosmic-ray record in solar system matter. Ann. Rev. Nucl. Part Sci. 33,505-537.

REEDY R. C., MASARIK J , N I S H I I Z U M I K. , ARNOLD J . R., FINKEL R. C., CAFFEE M. W., SOUTHON .I, JULL A. J . T. AND DONAHUE D. J . (1993) Cosmogenic-radionuclide profiles in Knyahinya. New measurements and models (abstract). Lunar Planet. Sci. 24, 1195-1 196

SCHAEFFER 0. A. AND ZAHRINGER J (1959) High-sensitive mass spectrometric measurement of stable helium and argon isotopes produced by high-energy protons in iron. Phys. Rev. 113,674678.

SARAFIN R., BOUROT-DENISE M , CROZAZ G., HERPERS U., PELLAS P., SCHULTZ L. A N D WEBER H. W (1985) Cosmic ray effects in the Antarctic meteorite ALH78084. Earth Planet Sci. Lett. 73, 171-182.

Phys. A357,228-236

Acta37, 1655-1685.

SCHIEKEL TH ET AL. (1996a) Nuclide production by proton-induced reactions on elements (6 5 Z 5 29) in the energy range from 200 MeV to 400 MeV. Nucl. Instrum. Methods Phys Res. B 114,91-119.

SCHIEKEL TH., SUDBROCK F., HEWERS U., Gloris M., LEVA I. , MICHEL R., SYNAL H-A. AND SUTER M. (1996b) On the production of T I by high energy protons in thick and thick targets. Nucl. Instrum. Methods Phys. Res. B 113,484489.

SCHNABEL CH. ET AL. (1998) Determination of proton-indiced production cross sections and production rates of 1-129 and Ca-41. In Proc. Int. Conf Nuclear Data for Science and Technology, (ed G . Reffo) pp.

SCHNEIDER R. J., SISTERSON J. M. AND KOEHLER A. M. (1987) Measurement of cross-sections for AI-26 and Na-24 by protons in aluminum. Nucl. Instrum. Methods Phys. Res. B29,271-274.

SCHULTZ L. AND SIGNER P. (1976) Depth dependence of spallogenic helium, neon, and argon in the St.Severin chondrite. Earth Planet. Sci. Lett. 30,

SCHULTZ L. AND FREUNDEL M. (1985) On the production rate of 21-Ne in ordinary chondrites. Proc. Isotopic Ratios in the Solar System CEPADUES-Editions, 27-33, Paris, France.

SHIBATA S., IMAMURA M., NAGAI H., KOBAYASHI K , SAKAMOTO K., FURUKAWA M. AND FUllWARA 1. (1993) Measurements of Be-I0 and AI-26 production cross section with 12 GeV protons by accelerator mass spectrometry. Phys. Rev. C48,2617-2624.

SHUBIN Y. N., LUNEV V. P., KONOBEYEV A. Y. AND DITYUK A. 1. (1995) Computer code ALICE-IPPE, IAEA INDC(CCP)-385, Vienna, Austria.

SIGNER P. AND NIER A. 0. (1960) The distribution of cosmic-ray-produced rare gases in iron meteorites. J. Geophys. Res. 65,2947-2963.

SIMPSON J . A. (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann. Rev. Nucl. Part. Sci. 33,323-381.

SISTERSON J . M. AND CAFFEE M. W. (1998) Neon production from Al, Mg, Si and Fe: New proton production cross section measurements (abstract). Lunar Planet Sci 29, #1234, Lunar Planetary Institute, Houston, Texas, USA (CD-ROM).

SISTERSON J . M., ROMAN H. M., VOGEL J. S., SOUTHON J . R. AND REEDY R. C. (1991) Determination of solar-proton fluxes using C-14 i n lunar rocks (abstract). Lunar Planet. Sci. 22, 1267-1268.

SISTERSON J. M , KOEHLER A. M., JULL A. J . T., DONAHUE D. J., MCHARGUE L., REEDY R. C. AND ENGLERT P. A. J. (1992) Cross section measurements for the production of '2-14 and Be-I 0: Improved estimates for cosmogenic nuclide production rates (abstract). Lunar Planet. Scr. 23, 1305-1306.

SISTERSON J. M. E ~ ' A L . (1994) Proton production cross section for C-14 from silicon and oxygen: Implications for cosmic-ray-studies. Nucl. Instrum. Methods P hys. Res. B82, 5 10-5 12.

SISTERSON J. M., SCHNEIDER R. J., JULL A. J. T., DONAHUE D. J., CLOUDT S., BEVERDMG A,, ENGLERT P. A. J., CASTANEDA C., VINCENT J. AND REEDY R. C. (1995) Production cross sections for C-14 from elements found in lunar rocks: Implications for cosmic ray studies (abstract). Lunar Planet. Sci. 26, 1309-1310.

SISTERSON J . M. 1:7' ~ ~ ( 1 9 9 6 a ) Measurement of proton production cross sections of Be-I0 and AI-26 from elements found in lunar rocks. Nucl. Instrum. Methods Phys. Res. B123,324-329.

SISTERSON J. M. 1;7' ~ ~ ( 1 9 9 6 b ) Revised solar cosmic ray flux estimated using measured depth profiles of C-14 in lunar rocks; the importance of good C-14 cross section determinations (abstract). Lunar P lanet. Sci. 27,1209-1210.

SISTERSON J . M., KIM K., BEVERDING A,, ENGLERT P. A. J., CAFFEE M. W., VINCENT J., CASTENEDA C. A N D REEDY R. c. (1997a) Measuring excitation functions needed to interpret cosmogenic nuclide production in lunar rocks. In Proc. Conference of the Applications of Accelerators in Research and Industry 14th (eds. J . L. Duggan and 1. L. Morgan), pp. 81 1-814. AIP Press, Woodbury, New York, USA.

SISTERSON J. M., KIM K., CAFFEE M. W. AND REEDY R. C (1997b) Be-I0 and AI-26 production in lunar rock 68815: Revised production rates using new cross section measurements (abstract). Lunar Planet. Scr. 28,

SISTERSON J. M., NISHIIZUMI K., CAFFEE M. W., IMAMURA M AND REEDY R. C. (1997~) Revised CI-36 production rates in lunar rock 64455 using new cross section measurements (abstract). Lunar Planet. Sci. 28, 1329-1330.

SPRMZAK A., KENNEDY A. J., PACER J . C., WILEY J . AND PORILE N. T. (1973) Systematics of (p, p') and (p, alpha) spectra from 14 MeV proton bombardment of medium-A targets. Nucl. Phys. A203,280-294.

VOGT S. (1988) Untersuchungen zur tiefenabhangigen Production langlebiger kosmogener Nuklide in Meteoriten. Ph.D. thesis, Universitat zu Kdn, Germany. 150 pp.

1559-1561.

191-1 99.

1327-1 328.

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 275

VOGT S., HERZOG G. F. AND REEDY R. C. (1990) Cosmogenic nuclides in extraterrestrial matter. Rev. Geophysics 28,253-275.

WALTON J. R., HEYMAN D., YANlV A., EDGERLEY D. AND ROWE M. w. (1976) Cross sections for He and Ne isotopes in natural Mg, Al, and Si, He isotopes in CaF,, Ar-isotopes in natural Ca, and radionuclides in

natural Al, Si, Ti, Cr, and stainless steel induced by 12 to 45 MeV protons. J Geophys. Res. 81,56895699.

WRIGHT R. J., SIMMS L. A,, REYNOLDS M. A. AND BOGARD D. D. (1973) Depth variation of cosmogenic noble gases in the 120 kg Keyes chondrite. J. Geophys. Res. 78,1308-1318.

APPENDIX

Calculated elemental production rates for radionuclides and rare gas isotopes in stony meteoroids.

TABLE Al Calculated elemental GCR production rates of 'OBe and I4C as a function of radius I and shielding depth d R inside stony meteoroids * --

Radius Depth (cm)

5

10

15

25

32

40

-

Elemental production rates (dpdkg) loge from

d/R C

~

0 00-0 10 62 5 0 10-0 20 65 8 020-070 67 4 0 30-040 6 8 6 040-0 50 6 9 0 0 50-060 7 0 6 0 60-1 00 72 i 0 00-0 10 74 3

0 10-020 78 8 020-070 8 2 4 0 30-040 85 3 040-050 8 6 9 0 50-060 8 8 9 060-1 00 91 4 0 00-0 07 8 1 2 007-0 13 8 6 9 0 17-020 91 4 020-027 94 2 027-0 3 3 9 7 4 033-040 99 5 040-047 100 047-053 102 053-060 104 060-067 105 067-073 106 073-1 00 106 0 00-0 10 97 0 0 10-020 108 020-030 115 030-040 121 040-050 125 050-060 126 060-070 131 070-1 00 134 000-006 98 7 006-0 12 109 0 12-0 19 116 0 19-025 122 025-031 126 031-037 131 037-044 134 044-050 137 050-056 139 056-062 141 062-1169 143 069-075 144 075-1 00 142 000-006 104 006-0 12 115 0 12-0 19 123 0 19-025 129 025-011 I37

0 Na Mg

243 13.7 13.8 25 1 137 13.9 255 1 3 6 1 3 8 25.7 135 1 3 8 258 134 137 265 1 3 5 1 4 0 268 1 3 6 1 4 0 27.1 1 3 4 1 3 9 282 132 1 3 9 290 1 3 0 1 3 8 2 9 8 129 1 3 9 301 1 2 8 1 3 8 3 0 6 127 1 3 8 3 1 4 I 2 8 141 285 12.9 137 299 127 137 31 0 12.5 1 3 7 3 1 7 124 137 3 2 6 12.4 1 3 8 3 3 0 122 1 3 8 332 12 1 13.7 3 3 5 121 137 3 3 9 1 1 9 13.6 3 4 2 1 1 9 1 3 6 3 4 4 11 8 1 3 6 341 116 134 3 1 8 121 134 3 4 5 1 1 5 137 3 6 0 1 1 . 1 132 3 7 5 110 133 38.3 107 132 3 8 7 105 131 3 9 5 104 132 40.4 104 132 31 8 I I 5 12.9 3 4 3 I I 0 129 3 5 9 I 0 8 1 2 9 3 7 2 105 12.8 3 8 2 103 1 2 8 392 101 1 2 8 3 9 9 9 9 5 1 2 8 4 0 6 9.91 1 2 8 4 1 0 9 7 8 1 2 8 4 1 4 9 6 2 127 41 8 9 5 0 126 41 8 9 3 8 1 2 5 41 8 9 3 8 1 2 6 327 1 1 1 12.7 3 5 3 105 126 3 7 2 102 1 2 5 3 8 3 9 7 4 1 2 3 3 9 3 9 4 6 1 2 3

Al

13 9 13 9 13 9 13 8 I3 7 I3 9 I4 0 13 9 13 8 17 7 13 7 13 6 13 6 I3 8 I3 6 13 5 13 4 I3 4 13 5 I3 4 13 3 13 3 13 2 13 3 13 2 I3 0 13 I 12 9 12 7 12 7 12 5 12 3 12 4 12 4 12 6 12 4 12 3 12 2 12 I 12 0 12 0 12 0 I I 9 I I 8 I I 7 I I 6 I I 7 12 3 12 0 1 1 9 11 6 I I 5

Si Ca Ti Mn Fe Ni

9 18 4 7 9 7 9 2 9 2 2 4 7 9 7 9 2 9 1 8 4 7 5 7 8 4 9 0 9 471 7 8 0 901 4 6 3 7 6 7 9 I8 467 7 8 0 9 18 471 7 8 0 9 0 9 467 7 7 1 8 9 7 4 5 5 7 5 9 8 89 4 47 7 47 8 8 9 4 4 3 7 4 3 8 8 1 434 7 3 5 8 8 1 434 731 8 8 9 4 3 8 7 3 9 881 443 7 4 3 8 7 3 434 731 8 6 9 426 7 19 8 6 5 422 7 1 5 865 4 I8 7 1 1 8 5 7 4 14 7 0 2 8 4 9 4 0 6 6 9 8 8 4 9 406 6 9 4 8 4 4 402 6 8 6 8 4 0 3 98 6 8 2 8 3 6 3 9 4 6 7 8 8 2 0 3 89 6 7 0 8 4 0 410 6 9 8 8 2 0 3 88 6 6 6 8 0 0 369 641 7 9 6 3 64 6 3 3 7 8 0 352 6 17 767 341 6 0 5 7 6 7 341 6 0 5 7 6 7 3 3 9 601 8 0 4 3 89 6 6 2 7 84 3 69 6 3 7 771 3 5 6 6 2 1 7 5 9 3 4 5 6 0 5 751 3 36 5 9 3 7 4 3 3 2 8 5 81 7 3 5 322 572 7 3 5 3 19 5 6 8 731 7 1 5 564 7 1 9 3 0 9 552 711 3 0 2 544 7 0 2 2 9 9 5 4 0 7 1 1 2 9 6 5 4 0 7 8 0 3 76 6 4 1 7 5 5 3 5 0 6 0 9 7 3 5 3 3 3 5 8 9 7 1 5 3 1 7 564 7 02 3 05 5 48

7 5 5 512 7 55 5 72 7 5 1 564 7 4 3 5 60 7 3 5 552 7 4 7 5 60 7 4 7 5 60 7 39 5 56 7 27 5 40 7 15 532 7 15 5 2 8 7 06 5 20 7 0 2 5 20 711 520 7 11 532 6 9 8 520 6 9 0 5 07 6 8 6 5 03 6 8 2 499 6 7 4 4 9 5 6 7 0 487 6 6 6 487 6 6 2 479 6 5 8 479 6 5 0 475 641 467 6 7 0 491 641 4 6 1 6 1 7 443 6 13 4 3 4 5 9 3 426 581 414 5 8 5 414 581 410 6 3 3 467 6 0 9 443 5 97 430 581 414 5 68 406 5 60 3 97 5 52 3 89 5 4 8 3 8 5 5 4 4 3 80 532 3 7 2 5 24 3 65 5 20 3 67 524 361 6 1 3 451 585 422 5 64 404 540 3 84 524 371

4 67 4 67 4 63 4 55 4 5 1 4 5 5 4 59 4 5 1 4 43 4 34 4 30 4 26 4 22 4 26 4 30 4 22 4 14 4 10 4 06 4 02 3 98 3 95 3 91 3 89 3 84 3 80 4 01 3 78 3 61 3 56 3 4 4 3 35 3 35 3 33 3 79 3 60 3 48 3 37 3 29 3 21 3 15 3 12 3 08 3 01 2 94 2 92 2 93 3 66 3 42 3 27 3 1 1 2 99

0 Mg Al ~~

3 7 5 8 6 9 8 6 9 41 8 8 8 9 8 7 3 4 4 3 8 9 3 8 7 3 4 5 9 8 9 7 8 6 9 471 8 9 7 8 6 5 4 8 7 9 1 8 8 8 1 5 0 8 9 2 6 8 8 1 532 9 1 8 8 7 7 6 0 5 9 3 4 8 6 9 65 4 9 50 8 6 9 6 9 4 9 6 2 8 7 3 71 9 9 6 2 8 6 5 7 4 1 9 7 4 8 6 9 7 7 6 9 9 5 8 7 7 6 3 7 9 3 0 8 6 1 1 2 3 9 5 4 861 7 8 0 9 7 4 861 8 2 8 9 8 3 8 5 7 8 6 9 9 9 9 8 6 5 9 0 1 100 861 91 8 100 8 5 3 9 3 8 1010 8 5 3 9 6 6 10 1 8 4 9 99 1 102 8 4 9

101 102 8 4 9 101 101 8 3 2 8 6 5 9 6 6 8 4 0

103 10 1 8 3 2 113 102 8 2 4 121 1 0 5 8 2 8 127 1 0 6 8 I6 129 1 0 6 8 12 134 107 8 I6 141 1 0 9 8 I6 9 0 5 9 5 0 8 1 2

105 9 8 7 8 0 8 115 101 804 123 1 0 3 7 9 6 129 1 0 4 7 9 6 136 1 0 6 7 9 2 141 1 0 6 7 9 2 143 1 0 8 7 9 2 147 1 0 8 7 9 2 149 1 0 8 7 8 8 153 1 0 8 7 8 4 155 1 0 8 7 7 5 157 1 0 8 7 8 0 9 7 9 9 50 7 96

115 9 8 3 7 8 4 126 10 1 7 7 5 134 102 7 6 7 141 103 7 59

Si Ca

2 55 300 261 3 0 0 2 6 3 2 9 8 265 2 9 4 266 291 2 12 2 9 4 214 2 9 5 2 1 1 292 2 17 2 85 2 83 2 81 2 8 7 2 7 9 2 8 8 2 7 5 2 9 2 2 74 2 9 9 2 7 6 2 7 5 2 7 9 2 8 4 2 7 3 2 9 0 2 6 8 2 9 4 265 3 00 264 3 0 1 2 6 1 301 2 5 7 3 03 2 56 3 04 2 5 3 3 0 5 2 52 3 0 6 2 4 9 301 2 4 6 2 8 6 2 5 9 3 00 2 4 4 307 2 3 4 316 2 3 0 317 222 3 1 8 217 3 2 2 2 16 3 2 6 2 I5 2 1 9 245 2 9 3 2 3 3 3 00 2 26 3 0 5 2 I8 3 1 0 214 3 15 2 0 8 3 17 204 321 2 0 3 3 2 3 201 3 24 197 3 22 192 7 2 2 1 9 0 3 2 8 1 9 0 219 2 3 6 2 9 0 221 2 9 8 211 300 201 1 0 6 194

~

Fe Ni

470 2 4 0 430 239 4 2 6 237 422 234 4 1 4 231 4 18 2 3 3 422 2 3 3 4 18 2 3 2 4 0 6 2 26 3 9 8 2 2 2 3 96 2 20 3 9 0 2 16 3 8 9 2 16 391 217 1 9 7 2 2 1 387 2 15 380 211 3 76 2 0 9 374 207 368 204 364 201 3 6 2 201 3 58 I 9 8 3 56 1 9 7 7 52 1 9 4 348 192 367 204 346 191 3 30 182 324 1 7 8 3 13 172 305 167 3 05 1 6 6 302 1 6 6 348 192 329 1 8 2 3 17 1 7 5 307 1 6 9 3 00 1 65 292 1 6 0 2 8 5 I 5 7 2 83 1 5 5 2 7 9 1 5 3 2 72 1 5 0 266 147 265 1 4 5 264 I 4 4 3 35 1 8 6 312 172 297 164 2 82 1 5 5 271 1 4 9

~

216 Leya et al.

TABLE A l . Continued.

Elemental production rates (dpdkg) Radius Depth 'OBe from (cm) d/R ~I

C ~ ~. ~ ~

40 031-037 137 0.37-0.44 142 044-0 50 145 050-0.56 149 056-062 1 5 1 062-069 149 0.69-0 75 152 0 75-1.00 156

SO 0.00-005 103 005-0 10 116 0 10-0 15 125 0.15-0.20 130 020-025 134 0.25-030 138 030-0.35 142 0.35-0.40 144 0.40-0.45 147 045-0.50 149 050-055 149 055-060 151 060-065 149 0.65-0 70 152 0.70-0.75 152 075-080 151 0 80-1 00 154

65 0.00-004 9 9 9 0.04-0.08 112 008-0 12 118 0 12-0.15 124 0 15-019 129 0.19-023 133 0.23-0.27 136 027-031 139 0.31-0.35 143 0.35-0.38 144 038-042 146 042-046 146 046-050 146 050-0.54 148 0.54-058 147 058-062 149 0.62-0.65 147 065-069 148 0 69-0 73 IS0 0.73-1.00 144

003-006 103 006-009 110 0.09-0.12 117 0.12-0.15 121 015-018 123 0.18-021 126 021-024 I28 024-0.26 128 0.26-0.29 128 029-032 130 032-035 131 0.35-0.38 130 038-0.41 131 041-044 131

85 0.00-0.03 93.4

0 Na Mg Al Si Ca Ti Mn Fe Ni

40 1 41.4 42 2 42 6 43 4 43 0 43 4 44 7 31 8 34 8 36 9 38.1 38 9 39 5 40 4 40 6 41 4 41 8 41 8 42 2 41 8 42 2 42.2 42 2 42 6 30 7 33 5 34 8 36 1 36 9 38 0 38.3 38 7 39 6 39 8 40 2 40 0 39 9 40 3 40 2 41 0 40 0 40 0 40 6 38 5 28 6 30 9 32 3 33 6 34 4 34 8 35 3 35 6 35 2 35.3 35 4 35.5 35 3 35 3 35 2

044-047 134 3 5 8

9 3 0 1 2 3 9 1 4 1 2 3 8 9 3 1 2 3 8 8 9 1 2 3 8 7 7 1 2 3 8 6 5 12 1 8 5 3 12 1 8 5 3 1 2 3

104 119 9 8 3 1 1 9 9 46 9 18 8 77 8 53 8 36 8 12 7 92 7 67 7 63

1 9 I 8 1 5 1 5 1.4 1.3 1 2 1 1 1 0

7 4 7 1 0 9 771 1 0 8 7 1 1 1 0 8 7 1 9 107 7 1 9 1 0 8 751 1 1 0 9 8 7 1 1 4 9 1 0 111 8 7 7 1 1 0 8 1 6 1 1 0 8 0 4 1 0 8 7 8 4 1 0 8 7 4 7 1 0 5 727 103 711 1 0 1 6 9 8 102 6 7 8 10 1 6 6 2 9 9 5 6 13 9 7 4 6 2 5 9 7 4 6 13 9 7 0 6 0 9 9 7 8 5 8 5 9 3 8 5 6 8 9 1 4 5 85 9 4 2 5 4 4 8 8 5 9 2 2 106 861 1 0 5 8 0 8 102 771 1 0 0 7 31 9 8 7 6 9 4 9 6 2 6 6 6 9 4 2 6 1 3 9 2 6 6 0 5 8 9 3 593 8 8 5 572 8 6 9 5 5 6 8 5 1 5 4 4 8 1 6 5 20 8 2 0 4 99 7 96 491 8 0 4

1 1 4 1 1 4 1 1 3 11 3 I I 3 1 1 I 1 1 0 1 1 2 1 1 5 1 1 1 1 1 3 1 1 1 10 8 10 6 10 6 10 4 10 2 10 I 10 0 9 87 9 74 9 62 9 66 9 74 9 95

1 1 0 10 8 10 4 10 2 9 99 9 91 9 62 9 42 9 38 9 26 9 14 8 97 8 73 8 69 8 61 8 61

8 20 8 36 7 88

9 99 9 62 9 42 9 14 8 85 8 61 8 40 8 12 8 00 7 84 7 67 7 55 7 15 7 15

8 32

10 1

6 9 4 2 9 8 5 3 6 6 9 0 2 9 0 5 2 8 6 8 2 2 8 1 5 2 0 6 7 8 2 7 8 5 12 6 7 4 2 74 5 0 7 6 6 6 271 503 6 5 8 265 491 6 6 2 2 6 3 4 9 5 7 2 7 3 4 8 597 7 0 6 3 24 5 68 6 9 0 3 08 544 6 7 8 297 5 2 8 6 5 4 2 8 0 5 03 6 4 1 2 7 0 491 6 3 3 264 4 83 621 2 5 4 467 6 0 5 247 4 5 9 593 2 3 8 4 4 3 5 9 3 235 4 4 3 581 2 2 8 4 3 0 5 68 2 2 3 422 5 6 0 214 4 1 0 5 6 4 2 1 9 4 1 4 5 6 8 2 1 6 4 1 4 5 8 5 231 4 3 8 6 9 4 3 3 0 5 6 8 6 7 0 3 0 8 5 4 0 641 2 87 5 0 7 6 2 1 270 4 8 3 601 256 4 6 3 5 9 3 247 451 5 6 8 2 3 3 4 3 0 5 5 2 224 4 18 5 4 8 2 1 9 4 1 0 5 4 4 2 14 4 0 3 5 32 2 0 5 3 90 5 2 0 201 7 8 2 5 0 3 1 9 2 3 6 9 4 9 9 1 8 8 3 6 4 4 9 5 1 8 3 3 5 8 491 1 7 9 1 5 5 4 7 5 172 1 4 0 4 6 3 1 6 5 3 11 4 7 5 171 337 4 4 7 1 5 8 1 1 5 6 4 6 1 1 0 532 621 284 4 9 5 5 9 3 2 6 4 467 5 7 2 2 4 8 4 4 7 5 4 8 2 3 3 4 2 2 5 2 8 2 19 4 0 3 5 12 207 1 85 491 1 9 5 3 6 8 471 1 8 5 3 5 2 4 6 7 I 8 1 3 4 5 4 55 I 7 4 1 1 4 4 4 3 1 6 9 3 24 4 3 4 1 6 1 1 1 6 4 18 1 5 5 1 0 1 4 0 6 I 4 7 291

711 402 143 2 8 6

0 Mg Al

5 16 3 6 3 507 3 55 4 9 9 3 46 491 341 491 3 3 7 4 8 3 3 3 2 471 3 2 5 475 3 2 5 572 4 18 5 44 3 9 2 5 24 3 13 5 07 3 59 4 8 3 3 4 0 471 3 2 9 4 6 3 3 22 451 311 4 3 8 302 4 2 6 2 9 3 422 289 414 282 404 274 391 2 6 8 3 9 9 270 3 9 5 2 6 8 4 2 2 284 5 4 4 4 0 0 5 1 6 371 4 8 7 3 47 4 6 3 3 28 447 3 13 434 3 0 2 4 14 287 397 2 7 6 1 9 3 270 3 86 2 6 3 3 7 3 2 5 5 1 6 5 2 4 9 7 52 2 4 0 3 4 6 2 3 6 1 4 1 231 3 3 8 2 2 8 3 2 4 2 17 1 1 3 212 1 2 1 2 1 4 3 0 0 1 9 9 5 07 3 74 4 7 5 3 4 3 447 3 20 4 26 3 02 406 2 85 1 8 5 269 3 6 9 255 351 242 337 2 3 0 3 3 0 225 1 1 9 217 3 1 0 210 7 0 2 2 0 3 290 194 2 79 1 8 4 272 181

2 93 2 85 2 78 2 74 2 72 2 67 2 60 2 60 3 39 3 17 3 01 2 90 2 74 2 65 2 59 2 49 2 43 2 33 2 32 2 25 2 19 2 12 2 16 2 13 2 31 3 23 3 01 2 81 2 64 2 51 2 43 2 29 2 19 2 16 2 10 2 01 197 1 8 9 1 8 6 1 8 2 1 7 9 171 1 6 5 1 6 8 1 5 6 3 02 2 78 2 59 2 43 2 29 2 15 2 04 1 9 3 184 1 7 9 1 7 2 167 162 1 5 4 147 142

145 1 0 4 7 5 9 151 1 0 6 7 5 9 156 107 7 5 9 160 1 0 8 7 6 1 166 1 0 8 7 55 164 1 0 8 7 4 7 167 1 0 8 7 4 7 171 1 1 0 7 5 5 9 8 7 9 0 5 7 4 7

116 9 5 4 7 4 1 128 9 8 7 7 4 1 136 9 9 9 7 3 9 141 9 9 9 7 2 3 148 100 7 1 5 153 1 0 1 711 156 102 7 0 2 161 102 6 9 4 164 102 6 9 0 166 1 0 2 6 8 6 170 10 1 6 7 8 168 9 9 9 6 6 6 168 10 1 6 6 2 169 100 6 6 2 167 10 1 6 7 0 173 10 1 6 8 2 96 6

113 124 131 I38 144 148 151 157 160 163 163 163 165 165 167 I65 167 170 160 90 5

105 115 123 129 133 138 140 141 143 144 146 146 146 I47

8 6 9 7 19 9 0 9 7 0 6 9 1 8 6 9 0 9 3 4 6 8 2 9 3 8 6 7 0 9 50 6 6 6 9 4 6 6 54 9 4 2 641 9 54 641 9 54 6 17 9 54 6 2 9 9 4 6 6 17 9 3 4 601 9 3 8 6 0 5 9 1 4 5 9 7 9 4 2 5 97 9 2 2 5 81 9 1 8 577 9 3 4 5 89 901 5 56 8 0 8 6 6 6 8 3 6 6 5 4 8 4 4 6 3 7 8 6 1 6 2 9 8 6 5 6 1 3 8 57 5 97 8 5 7 5 8 5 8 57 5 77 8 4 0 5 5 6 8 3 6 552 8 3 2 5 4 0 8 2 8 5 3 2 8 2 0 5 2 4 8 1 2 512 8 0 0 4 9 9

149 8 12 5 0 3

14C from -

SI Ca

3 10 1 9 0 3 17 1 8 5 3 2 2 1 8 0 3 2 4 1 7 8 1 2 6 I 7 6 1 2 4 1 7 1 3 2 3 1 6 9 3 32 1 6 9 2 6 3 2 19 2 7 9 2 0 5 2 9 0 1 9 5 2 9 5 1 8 8 2 9 4 1 7 8 2 9 6 1 7 2 2 9 8 1 6 8 2 9 9 I 6 2 2 9 8 1 5 8 3 0 0 1 5 2 3 0 0 151 2 9 6 1 4 6 2 9 5 1 4 1 2 9 7 1 1 8 2 9 4 1 4 0 3 0 0 I 3 9 2 9 9 I 4 8 251 2 0 9 2 6 6 I 9 4 2 6 9 181 2 7 5 I 7 1 2 7 6 1 6 1 2 8 0 1 5 8 2 7 8 1 4 9 2 7 6 1 4 3 2 7 9 1 4 0 2 7 9 1 3 7 2 7 9 1 1 2 2 7 6 1 2 8 2 72 I 2 1 2 7 3 I 2 1 2 7 3 1 1 8 277 1 1 5 2 6 9 1 1 1 2 6 8 107 2 7 3 1 10 2 59 1 0 2 2 33 1 9 6 2 4 6 1 8 0 2 4 8 1 6 7 2 5 3 1 5 8 2 5 4 1 4 8 2 5 1 1 4 0 2 5 1 1 1 2 251 1 2 5 2 4 5 1 19 2 4 5 1 17 2 4 3 1 1 1 2 4 0 1 0 8 2 3 8 1 0 5 2 3 5 0 9 9 2 1 2 0 9 5 2 1 4 0 9 1

Fe NI -

2 6 5 I 4 5 2 5 8 141 2 5 0 1 3 6 2 4 6 1 3 4 2 4 4 I 1 3 2 4 0 131 2 1 3 1 2 8 2 3 3 1 2 7 110 I 7 2 289 1 5 9 274 151 2 6 3 1 4 5 2 4 8 1 3 6 2 3 9 131 2 3 3 1 2 8 2 24 1 2 3 2 18 1 1 9 2 0 9 I 14 2 0 8 1 11 201 1 10 I 9 6 1 0 6 1 8 9 1 0 3 I 9 3 1 0 5 I 9 0 1 0 4 2 0 6 1 1 1 2 9 5 1 6 3 274 151 2 55 1 4 0 2 3 9 131 227 124 2 19 I 2 0 206 I 13 197 1 0 8 1 9 1 I 0 5 1 8 8 1 0 3 1 8 0 0 9 8 1 7 6 0 9 6 1 6 8 091 I 6 5 0 89 161 0 8 7 1 5 8 0 8 5 I 5 1 081 1 4 5 0 7 8 1 4 9 0 8 0 1 1 8 0 7 4 2 76 157 2 5 3 1 4 0 235 1 2 9 220 121 207 1 1 1 1 9 4 1 0 6 1 84 1 0 0 1 7 1 0 9 4 I 6 4 0 8 9 1 6 0 0 87 1 5 3 0 83 1 4 9 0 8 0 144 0 7 8 1 1 6 0 7 3 1 1 0 0 6 9 I 2 5 0 6 7

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 277

TABLE A1 . Conhued

Radius Depth (cm) d/R

C

85 047-050 134 050-053 134 053-056 134 056-059 135 059-062 133 062-1 00 135

004-008 107

0 12-0 I6 119 0 16-020 121 020-024 120 024-028 120 028-032 120 032-036 123

040-044 120 044-048 118 048-052 116 052-056 114 0 56-060 113 060-064 113 064-068 115 068-072 I l l 072-076 113 076-080 107 080-1 00 I08

120 0 00-0 02 83 2 002-004 93 8 004-006 9 9 5 006-008 104 008-0 10 108 0 10-0 12 108 0 12-0 I5 110 0 15-0 17 112 0 17-0 19 112 019-021 113 021-023 117

025-027 109 027-029 108 029-031 107 031-033 107 033-035 106 075-037 106 037-040 106 040-042 103 042-044 103 044-046 102 046-048 9 9 5 048-050 99 I 0 50-0 52 98 7 0 52-0 54 98 7 0 54-0 56 9 5 4 0 56-0 58 95 0 0 58-060 9 4 6 060-062 9 4 6 062-065 93 0 065-067 9 3 0 067-069 92 6

071-073 88 I 077-075 86 I 075-077 8 6 9 077-019 8 6 9 0 79-1 00 78 4

100 000-004 9 5 4

008-012 1 1 5

036-040 123

023-025 I I I

0 69-0 71 89 7

0

35 7 35 7 35 4 35 8 35 2 35 2 28 9 31 3 32 8 33 4 33 4 32 9 32 5 32 3 32 9 32 6 31 7 31 1 30 5 29 8 29 6 29 I 29 7 28 6 29 0 26 9 27 7 25 5 27 8 28 9 29 7 30 5 30 5 30 6 30 8 30 6 30 7 30 6 29 8 29 3 28 7 28 3 28 5 28 I 21 9 27 7 26 9 26 7 26 5 26 0 25 8 25 5 25 3 24 7 24 8 24 4 24 3 23 9 23 8 23 I 23 3 22 9 22 6 22 I 22 3 1') 7

~~

Na Mg

4 87 8 0 0 471 7 8 0 451 7 5 9 4 6 3 7 7 5 4 5 5 7 6 3 4 22 7 23 885 1 0 3 7 88 987 7 15 9 5 0 6 6 6 9 2 2 6 13 8 7 3 5 68 8 2 4 532 7 9 2 491 7 5 5 471 747 4 4 3 7 2 3 4 2 6 6 9 8 4 0 0 6 1 0 379 6 37 362 6 17 748 621 716 572 323 5 93

3 I6 564 214 4 9 5 3 00 5 40 861 9 6 2 7 80 9 34 7 2 3 901 6 8 2 8 8 5 6 4 6 8 6 5 617 8 4 0 577 8 0 8 5 52 7 88 5 24 7 67 499 7 4 7 4 8 3 731 4 59 7 02 4 3 0 6 7 8 398 6 3 7 7 85 621 3 8 1 6 2 9 365 6 0 5 352 593 341 589 3 23 5 68 3 1 6 5 4 8 314 5 4 0 701 5 72 2 86 5 I6 279 5 12 2 79 4 95 267 491 271 4 9 5 2 6 3 4 7 5 262 471 2 53 4 59 2 3 5 4 59 226 4 5 1 2 2 9 451 2 38 4 59 247 463 2 0 0 404 206 426 I 6 5 3 4 3

~~

3 07 5 64

Elemental production rates (dpdkg) IOBe from 14C from

Al Si Ca Ti Mn Fe

7 0 6 3 9 9 141 284 6 9 0 3 89 I 3 7 2 16 6 7 0 371 I 3 1 2 6 3 6 8 2 3 7 9 132 2 6 8 6 7 0 3 73 I 3 0 2 6 3 6 3 7 3 4 9 I 2 1 246 9 9 5 6 2 5 297 5 12 9 3 4 5 72 2 56 4 55 8 8 5 536 229 4 14 8 4 9 5 03 209 386 800 471 191 3 5 5 7 5 5 443 175 329 7 1 9 4 1 8 162 3 0 9 6 8 2 392 1 4 8 2 8 5 6 70 3 78 1 3 9 2 72 641 3 5 9 129 257 6 1 7 3 4 6 123 247 5 9 3 3 2 9 I 1 5 2 3 3 5 6 4 3 1 1 109 220 544 3 0 0 I 0 4 2 12 5 36 2 92 0 9 7 2 0 1 499 2 66 0 8 7 185 5 12 272 0 8 9 I 8 9 491 261 0 8 4 180 4 9 9 270 0 8 8 I 8 6 4 4 3 231 0 7 4 159 471 2 5 3 0 8 5 176 9 4 2 597 292 4 9 5 8 9 7 5 5 6 259 451 8 5 7 5 2 8 235 4 14 8 3 2 503 2 19 393 8 0 4 4 83 2 05 3 74 7 7 5 4 6 3 194 355 7 4 7 443 180 3 33 7 2 3 422 171 3 I9 6 9 8 4 10 162 3 0 5 6 7 8 3 92 152 2 89 6 6 2 381 I 4 5 2 7 9 6 3 3 7 6 3 I 7 8 2 6 6 6 0 5 3 44 I 2 8 2 4 8 5 6 8 320 1 1 8 232 552 311 1 1 3 224 556 3 10 110 221 536 299 I 0 5 2 12 524 291 I01 205 5 I6 281 0 9 7 1 9 8 491 269 0 9 2 189 4 7 9 262 0 89 184 4 7 5 261 0 8 9 I 8 3 4 6 3 2 54 0 8 4 I 7 6 451 245 0 7 9 1 6 8 4 4 3 2 39 0 7 6 I 6 4 4 3 4 236 0 7 8 164 426 229 0 7 4 1 5 8 4 2 6 232 0 7 5 161 4 14 225 0 7 4 157 4 1 4 2 2 3 0 7 4 156 401 216 071 I51 3 91 204 0 6 3 I 3 9 3 80 I 9 9 0 6 0 I 3 4 377 1 9 8 0 6 2 136 7 86 206 0 6 4 I 4 0 394 214 0 6 7 145 3 3 9 176 0 5 0 116 3 5 3 184 0 5 2 120 2 86 I 4 5 0 4 0 0 9 6

~~

270 1 7 9 2 63 174 2 50 1 6 6 2 53 1 6 9 2 4 8 1 6 6 231 1 5 5 4 87 3 58 474 311 3 9 6 280 369 2 5 8 3 4 0 235 316 215 296 201 2 73 184 2 59 I 7 4 2 4 3 1 6 3 2 3 3 1 5 8 2 2 0 147 207 1 3 8 201 1 3 3 1 9 0 1 2 8 171 116 I 7 4 1 1 8 I 6 7 1 I I 174 1 14 146 0 9 8 166 I10 475 3 5 0 4 3 0 3 13 7 98 2 85 7 76 267 7 57 2 52 7 40 2 37 719 221 304 211 291 199 2 76 1 8 8 267 181 2 53 172 2 37 1 6 0 2 20 1 4 9 2 12 1 4 3 2 0 9 1 4 0 201 1 3 5 I 9 4 I 3 0 I85 126 I 7 6 I 2 0 I 7 2 116 173 114 166 I 0 9 159 104 152 102 I 5 4 102 I 4 8 0 9 7 I51 0 9 9 147 0 9 7 147 0 9 5 143 091 1 3 0 0 8 4 125 081 127 0 8 4 I 7 1 087 I 3 7 0 8 9 I 0 5 071 I 10 0 7 3 0 8 5 0 6 0

Ni

I 4 1 I 3 7 I 3 0 I 3 1 129 1 19 2 89 2 5 1 2 25 2 07 1 8 8 172 1 60 I 4 6 I 3 7 I 2 8 I 2 3 1 14 107 104 0 91 0 87 0 88 0 84 0 87 0 73 0 84 2 83 2 5 3 2 30 2 14

~

02 90 77 68 59 49 43 36 25 17

I I I 1 09 104 101 0 96 0 91 0 88 0 88 0 84 0 80 0 76 0 78 0 74 0 76 0 14 0 74 0 71 0 64 0 61 0 63 0 65 0 68 0 50 0 5 3 0 41

0 ~~

151 153 152 152 151 I56

112 123 130 I33 134 134 I36 139 139 135 135 134 I32 130 I30 I30 I27 128 I22 I26

95 0

81 2 96 6

I04 I10 I I6 I I9 121 I24 I24 I26 I26 I24 124 123 I21 I21 121. 121 I I9 I I6 I I7 115 113 113 I12 I13 I09 I08 I08 I06 104 103 I04 I03 102 101 I04 I00 95 0

~ ~~

Mg Al Si Ca ~~ ~

8 0 8 4 9 9 7 9 2 4 87 7 8 0 471 7 92 4 83 7 84 4 7 5 767 4 5 5 7 9 6 6 4 6 8 2 0 6 17 8 2 4 5 93 8 2 4 572 8 0 8 5 4 4 7 8 4 5 16 7 6 3 4 9 5 7 4 7 4 7 5 751 471 7 3 5 4 5 5 7 I I 4 3 8 6 9 0 4 1 8 6 6 6 402 6 54 3 88 6 50 3 8 5 6 2 5 3 6 3 641 373 6 17 356 6 3 3 364 581 327 581 3 39 7 27 6 0 9 751 5 89 7 59 5 6 8 7 63 5 56 7 6 3 5 4 0 7 5 5 5 24 7 4 7 5 0 7 7 4 3 4 9 5 727 4 7 9 7 19 4 6 7 711 4 5 9 6 9 0 4 4 3 6 7 4 4 2 6 6 5 0 4 0 2 6 33 1 89 6 3 7 3 9 3 6 17 3 7 8 6 1 3 371 6 0 9 3 6 8 5 93 3 54 5 81 3 4 3 5 77 339 5 6 4 332 5 52 3 22 5 4 8 3 18 544 3 I3 5 2 8 3 0 5 5 2 8 3 0 5 5 16 295 5 16 296 5 07 2 90 507 2 88 491 2 1 5 471 2 6 9 4 79 2 74 4 7 9 279 451 247 4 6 3 257 3 9 0 2 14

~

234 0 9 2 2 2 9 0 89 224 0 84 2 2 8 0 8 6 2 2 3 0 8 4 2 14 0 7 8 2 29 I 8 7 2 39 I 6 2 241 I 4 6 241 I 3 4 235 I 2 2 227 1 12 2 2 0 1 0 4 2 14 0 9 5 2 15 0 8 9 2 1 1 0 8 7 2 0 3 0 8 0 I 9 6 0 7 4 1 8 8 0 70 184 0 6 7 184 0 6 7 1 7 3 0 5 6 1 7 8 0 5 8 172 0 5 4 1 7 5 0 56 I 5 4 0 4 8 I 6 2 0 54 207 I 8 4 2 I6 164 2 2 0 I 4 9 222 I 19 222 I 3 1 2 19 I 2 7 2 16 I 1 5 2 13 I 0 9 2 10 I 0 3 207 0 9 7 2 0 5 0 9 7 I 9 9 0 8 9 I 9 4 0 8 2 I 8 4 0 7 6 I 7 9 0 7 3 I 8 3 071 1 7 6 068 174 0 6 5 1 7 3 0 6 7 167 0 5 9 1 6 2 0 5 8 161 0 5 8 I 5 9 0 55 I 5 6 0 52 I 5 3 0 50 I 5 0 0 5 0 1 4 9 0 4 8 I 4 9 0 4 9 I 4 3 0 4 8 I 4 4 0 4 8 I 4 2 0 4 6 I 4 4 041 I 3 9 0 3 9 I 3 5 041 1 3 6 0 4 2 I 3 9 0 4 4 I 2 2 0 3 7 I 2 9 0 34 I 0 4 0 2 7 ~

Fe Ni

I 2 4 0 6 7 I 2 0 0 6 5 I 14 0 6 1 I 1 5 0 6 2 I I 3 061 I 0 5 0 56 2 64 147 2 2 8 1 2 5 2 0 3 I 1 1 I 8 6 I 0 1 I 6 8 0 9 2 I 5 4 0 8 4 I 4 3 0 7 8 I 3 0 070 I 2 1 0 6 6 1 1 3 061 I08 0 5 8 I00 0 54 0 9 4 0 5 1 091 0 4 9 0 8 5 0 4 5 0 7 6 041 0 7 6 041 0 7 1 0 3 9 0 7 6 0 4 0 0 6 4 0 34 077 0 3 9 2 60 144 231 127 209 I 15 I 9 4 I 0 7 I 8 2 100 I 7 2 0 9 4 I 5 9 0 8 7 I 5 0 0 8 2 I 4 2 0 7 8 I 3 3 0 7 3 I 2 8 0 6 9 I21 0 6 6 I I I 0 6 0 107 0 5 6 0 9 9 0 5 4 0 9 6 0 5 2 0 9 2 0 50 0 8 9 0 4 8 0 8 4 0 4 5 0 8 0 0 4 3 0 7 7 0 4 2 0 7 7 041 077 0 3 9 0 6 9 0 3 7 0 6 6 0 3 5 0 6 8 0 3 6 0 6 4 0 14 0 6 6 0 3 5 0 6 5 0 3 4 0 6 5 0 3 4 0 6 2 0 3 3 0 5 5 0 2 9 0 5 2 0 2 8 0 5 4 0 2 9 0 5 6 0 3 0 0 5 9 031 0 4 3 0 2 3 0 4 5 0 2 4 0 7 4 0 18

-- .-

*The data for IOBe from Na and I4C from Mg, Al, Si, and Ca are from apriori calculations. For practical applications the I4C production rates from 0 must be decreased by a factor of 0.82.

278 Leya et al.

TABLE A2. Calculated elemental GCR production rates of 26AI, W l , and 53Mn as a function of radius r and shielding depth dlR inside stony meteoroids *

Radius Depth (cm)

5

10

15

25

32

40

djR

0 00-0 10 0 10-020 0 20-0 30 0 10-0 40 0 40-0 so 0 50-0 60 0 60-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60 -I 00 0 00-0 07

0 13-0 20 0 20-0 27 0 27-0 37 0 33-0 40 0 40-0 47 0 47-0 51 0 53-0 60 0 60-0 67 0 67-0 77 0 77-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40 0 50

0 07-0 1 3

0 50-0 60 0 60-0 70 0 70-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 0 25-0 31 0 71-0 17 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 025-011 0 31-0 37 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00

~

Mg

0 79 0 90 0 95 0 97 0 97 0 99 I 0 1 0 90 I 02 I 06 I 0 9 I I I 1 1 3 1 12 0 91 I 04 I 0 8 I I I 1 1 4 1 1 6 116 I 1 7 I 1 7 I 1 8 1 2 0 1 1 8 0 99 I I I I I6 1 1 9 I 2 0 I 16 I 1 9 1 2 4 0 96 I 07 I 1 0 I 1 4 1 1 4 1 1 6 116 I 1 6 I 19 I I9 I 19 I 1 7 1 1 5 0 95 1 0 6 1 0 9 1 I I 110 I 0 8 1 12 1 0 8 I 0 9 1 14 1 1 1 110 I 14

~ ~~

__ Al

187 203 212 218 22 1 228 23 I 232 257 273 284 29 1 298 307 259 287 303 317 329 336 341 347 356 364 371 368 318 365 393 414 430 434 45 I 463 322 364 391 410 426 443 455 463 471 479 483 49 I 475 338 385 414 434 45 1 463 47 1 483 495 503 499 508 512

~ ~~

Elemental production rates (dpm/kg) 26AI from

SI

140 1 50 154 158 160 164 168 168 182 191 199 203 207 213 184 20 1 21 1 220 227 233 236 240 243 248 25 1 251 22 I 250 267 281 289 29 I 301 314 225 25 1 267 28 1 290 301 310 312 319 324 329 332 328 235 264 283 294 304 312 319 326 334 343 343 348 351

-~ Ca

31 1 31.3 31 3 31.2 31.1 31 6 31 7 31.4 31 3 31 4 31 5 31 3 31 4 31 8 31 0 31 I 31 1 31 I 31.4 31.2 31 I 31 I 31 0 31 0 31 0 30 6 30 4 30 3 30 0 30.3 30.0 29 8 30 0 30.0 29 4 29 4 29 4 29 2 29 3 29 2 29 2 29.2 29 2 29 0 28.9 28 7 28 9 28 8 28 5 28 4 28 0 27.9 27.9 28 I 28 1 28.1 28 0 27 7 27 7 28 1

. ~~

Ti Fe

8 04 8 00 8 00 7 92 7 84 7 96 7 96 7 88 7 75 7 67 7 63 7 55 7 55 7 59 7 59 7 51 7 43 7 35 7 35 7 27 7 19 7 19 7 1 1 7 I I 7 06 6 94 7 15 6 86 6 66 6 58 6 41 6 29 6 29 6 25 6 82 6 62 6 46 6 29 6 21 6 09 6 01 6 01 5 93 5 89 5 81 5 72 5 77 6 62 6 29 6 09 5 85 5 72 5 64 5 56 5 48 5 44 5 36 5 32 5 24 5 24

4 75 4 75 4 71 4 63 4 59 4 63 4 63 4 59 4 51 4 43 4 38 4 30 4 30 4 34 4 38 4 30 4 22 4 18 4 14 4 10 4 04 4 02 3 98 3 95 1 92 3 86 4 06 3 84 3 66 1 6 0 1 4 9 3 39 3 39 3 37 3 85 3 66 3 53 1 4 1 3 34 3 25 3 19 3 16 3 12 3 06 2 99 2 96 2 96 1 71 3 46 3 30 3 14 303 2 96 2 88 2 80 2 76 2 73 2 69 2 62 2 61

NI

3 98 3 98 3 94 3 90 3 84 3 90 3 90 3 87 3 78 3 71 3 69 3 63 3 62 3 64 3 69 3 61 3 54 3 50 3 48 3 44 3 39 3 38 3 34 3 32 3 28 3 24 3 42 3 23 3 08 3 03 2 93 2 85 2 85 2 83 3 24 3 07 2 97 2 81 2 81 2 73 2 68 2 66 2 63 2 57 2 5 1 2 49 2 49 3 12 2 92 2 78 2 64 2 55 2 49 2 42 2 35 2 32 2 30 2 27 2 21 2 20

Ca Ti Fe Ni

78 4 84 5 88 1 91 4 92 6 95 4 97 0 98 I

108 1 I5 120 I23 I26 131 110 121 129 134 140 144 I46 148 152 I56 1 58 157 136 157 169 I79 186 188 194 20 I 138 157 I69 178 185 I93 198 20 1 205 209 21 I 213 208 146 167 180 I90 197 202 207 212 217 221 218 222 226

52 0 53 2 53 6 54 0 54 0 5 5 2 55 6 55 2 56 4 57 7 58 5 58 5 58 9 60 5 56 4 58 1 59 3 60 I 61 3 61 3 61 3 61 7 62 I 62 5 62 5 62 1 59 3 62 5 63 7 65 4 66 2 66 6 67 4 68 6 58 5 61 3 62 9 64 2 65 4 66 2 67 0 67 8 68 2 68 6 68 6 68 6 68 2 58 9 61 7 63 3 64 2 65 4 66 2 67 8 69 0 69 8 69 8 69 4 69 8 71 1

23 0 23.3 23.3 23 2 23.2 23 6 23 8 23.5 23 6 23.7 23 9 23 8 23 9 24 4 23.2 23 4 23 6 23 6 23 9 23.9 23.7 23 8 23.7 23 I 23 6 23.1 22 9 23 I 23 1 23 4 23.1 23 0 23 1 23 3 22.1 22.3 22 4 22 3 22 3 22 4 22 4 22 5 22 6 22 4 22 I 21 9 22 5 21 6 21 7 21.7 21 4 21 4 21 4 21 6 21 7 21 7 21.8 21.5 21 2 21.7

16 5 I6 4 I6 2 16 1 15 9 I6 0 I6 0 I5 9 I5 4 15 1 I5 0 14 7 I4 6 I4 7 15 I 14 7 I4 4 14 I I4 0 I3 8 116 I 3 5 l i 4 13 3 I3 2 I3 0 13 8 I2 8 I 2 1 I I 8 I I 4 I I I I I 0 10 8 13 1 12 3 I I 8 I I 3 I I 0 10 6 104 10 2 10 1 9 91 9 74 9 58 9 42

I2 6 I I 5 10 9 10 1 9 83 9 54 9 22 8 89 8 81 8 57 8 44 8 32 8 16

‘3Mn from

~~

Fe

I66 179 187 193 197 203 207 211 234 248 260 267 274 284 238 264 28 I 294 307 317 322 328 335 342 348 346 30 I 348 376 399 414 418 434 45 I 309 351 378 402 418 434 447 455 463 471 479 483 479 328 376 406 430 447 459 47 I 483 495 508 499 508 520

Ni

I I6 122 125 127 128 132 134 i33 142 148 152 155 157 162 143 153 160 165 170 173 175 177 179

183 182 164 182 192 202 206 207 213 22 I 165

181

181 191 200 206 212 217 220 223 227 228 229 227 171 188 200 207 213 217 222 227 23 I 235 234 236 240

TABLE A2. Continued

Radius Depth (cm) dlR

50 000-005 0 05-0 10 0 10-0 I5 0 15-0 20 0 20-0 25 0 25-0 30 0 30-0 35 0 35-0 40 0 40-0 45 0 45-0 50 0 50-0 55 0 55-0 60 0 60-0 65 0 65-0 70 0 70-0 75 0 75-0 80 0 80-1 00

65 000-004 0 04-0 08 0 08-0 12 0 12-0 15 0 15-0 19 0 19-0 23 0 23-0 27 0 27-0 31 0 31-0 35 0 z5-0 38 0 38-0 42 0 42-0 46 0 46-0 50 0 50-0 54 0 54-0 58 0 58-0 62 0 62-0 65 0 65-0 69 0 69-0 73 0 73-1 no

85 000-003 0 03-0 06

0 09-0 12 0 12-0 15 0 15-0 18 0 18-021 0 21-0 24 0 24-0 26 0 26-0 29 0 29-0 32 0 32-0 35 0 35-0 38 038-041 0 41-0 44 0 44-0 47 0 47-0 50 0 50-0 5 7 0 53-0 56 0 56-0 59 0 59-0 62 0 62-0 65 0 65-1 00

0 06-0 09

The production of cosrnogenic nuclides in stony meteoroids by galactic cosmic-ray particles 219

_ _ - _ - - ~

Elemental production rates (dpdkg) z6Al from 36CI from

02 no 06 05 04 04 05 04 02

I 0 2

0 90 0 09 0 99 I 0 1 0 97 0 84 0 93

0 90

n 95 0 97 0 97 0 96 0 96 0 93 0 94 0 91 0 92 0 91 0 80 0 88 0 86 0 83 n 82 0 87 0 x0 0 82 0 78 0 87 0 xx 0 80 0 87 0 x7 0 84 0 82 0 81 0 80 0 78 0 79 0 77 0 14 0 72 0 71 0 71 0 69 0 60 0 69 0 69 0 70 0 64

Al

334 383 414 434 447 459 47s 479 487 495 495 495 495 495 495 499 512 327 372 399 414 426 438 447 455 463 471 475 483 47 I 471 47 I 47 I 467 483 479 459 303 340 367 385 397 406 414 418 418 418 422 422 422 414 414 418 418 422 418 418 414 422 406

Si ~~~

233 263 281 296 305 31 I 319 323 329 334 339 340 338 336 338 334 348 227 254 27 1 281 290 300 305 308 317 323 326 324 322 324 324 324 320 326 330 312 212 235 251 26 I 270 274 28 I 282 2x3 285 285 287 285 283 283 286 290 293 289 287 287 300 283

Ca

27 0 27 2 27 3 27 I 26 5 26 3 26 2 25 9 25 6 25 5 25 3 24 9 24 6 24 7 24 5 24 9 24 9 25 9 25 8 25 2 25 1 24 7 24 6 24 1 23 8 23 6 23 5 23 2 22 9 22 4 22 4 22 2 22 3 21 5 21 4 21 7 20 6 24 I 23 8 23 2 23 0 22 6 22 0 21 6 21 3 20 5 20 4 20 I I9 7 I9 3 I8 9 1 8 4 18 6 I8 5 180 17 6 18 0 I7 7 I6 9 I6 9

TI

6 13 5 89 5 72 5 56 5 32 5 20 5 07 4 95 4 83 4 71 4 71 4 59 4 51 4 43 4 47 4 51 4 59 5 89 5 56 5 28 5 07 4 87 4 1 5 4 59 4 43 4 38 4 30 4 I8 4 06 3 91 3 89 7 80 3 76 3 65 3 5 8 3 65 3 47 5 48 5 16 4 87 4 67 4 43 4 22 4 06 3 91 3 74 3 66 3 54 3 45 3 35 3 24 3 10 3 09 3 05 2 95 2 81 2 89 2 85 2 68 2 70

- Fe

3 44 3 21 3 05 2 94 2 78 2 68 2 61 2 51 2 44 2 35 2 33 2 26 2 20 2 14 2 18 2 15 2 30 3 28 3 05 2 84 2 67 2 54 2 45 2 31 2 21 2 17 2 12 2 03 I 9 9 1 90 1 86 I 8 2 I 7 8 I 7 0 1 6 4 1 6 8 I 5 5 3 07 2 81 2 61 2 46 2 31 2 17 2 0 s 1 9 4 1 8 4 I 19 I 7 2 I 6 6 I61 1 5 3

45 41 40 36 29 30 28 19 20

NI

2 89 2 70 2 56 2 47 2 33 2 25 2 20 2 12 2 06 1 98 I 9 7 I 90 186 I 7 9 I 8 3 1 8 1 I 94 2 75 2 56 2 39 2 25 2 13 2 06 1 9 4 I 8 6 1 8 2

78 71 67 60 56 53 50 44 38

1 4 2 I 3 2 2 57 2 3 1 2 20 2 07 1 9 4 I 8 2 1 7 3 1 6 3 I 5 5 1 5 1 1 4 5 I 4 0 1 3 6 1 2 9 I 2 3 1 19 1 I8 1 14 I 0 9 I 10 I 08 100 1 0 2

"Mn from

Ca

145 166 181 190 197 20 1 208 210 215 218 218 219 218 22 1 221 220 225 141 162 173 181 186 192 198 20 I 206

~~

208 210 213 210 212 21 I 212 210 214 214 206 131 148 I60 169 I74 I79 183 186 186 186 187 I89 188 187 187 189 I89 190 189 I90 187 191 I88

T I

56 4 59 7 62 1 63 3 63 3 64 2 65 0 6 5 4 65 4 66 2 65 4 65 4 65 0 65 8 65 4 66 2 65 0 54 4 57 3 58 1 59 7 60 I 61 3 61 3 61 3 62 I 62 1 62 1 61 7 61 3 62 I 61 7 62 5 61 3 60 9 61 7 59 7 50 8 52 8 51 6 54 8 55 6 5 5 2 55 6 5 5 6 54 4 54 4 54 4 54 0 53 6 53 2 52 8 53 6 53 6 52 4 52 0 52 8 52 4 51 2 52 0

Fe

20 2 20 3 20 5 20 6 20 1 20 0 20 0 I9 8 I9 5 19 3 I9 4 19 0 I8 9 18 5 I8 7 I9 0 19 5 I 9 2 I9 5 19 I I9 0 18 7 I8 7 18 2 17 8 I 7 9 I7 8 I7 6 17 3 16 8 I6 7 I 6 8 I6 9 I6 4 I 6 0 16 5 I5 6 I 7 9 I8 0 I7 7 I7 4 17 I I 6 7 16 4 I6 0 I5 6 15 5 15 I I 4 9 I4 7 I4 4 14 1 13 9 I 3 9 I3 6 I3 0 13 3

13 0 12 2 12 8

NI

I I 6 10 7 10 1 9 58 9 01 8 65 8 36 8 04 7 71 7 43 7 31 7 I I 6 86 6 74 6 78 6 74 7 02

I I I 10 1 9 30 8 69 8 20 7 84 7 79 7 06 6 86 6 62 6 37 6 17 5 89 5 X I 5 56 5 40 5 20 5 07 5 12 4 83

10 4 9 34 8 57 8 00 7 43 6 94 6 50 6 13 5 77 5 56 5 36 5 I6 4 91 4 63 4 34 4 30 4 22 4 05 3 85 z 95 3 9 3

3 64 3 60

Fe

327 378 410 434 45 I 463 475 483 495 503 508 512 508 512 516 508 528 318 365 392 414 426 443 455 463 479 483 487 49 1 49 I 495 49 1 495 49 I 495 503 479 298 337 365 388 402 414 426 430 430 430 434 447 438 438 438 447 447 455 45 I 455 447 459 455

Ni ~ ~-

167 186 198 206 21 1 215 219 222 226 228 228 229 229 230 229 227 23 I 161 179 188 194 200 206 209 210 216 217 219 219 218 220 219 220 217 219 222 214 151 165 174 181 186 188 191 192 192 192 193 194 193 191 191 193 194 195 193 192 192 197 192

Leya et al. 280

TABLE A2 Continued - _ _ _

Elemental uroduction rates (dpm/kg) Radius Depth 26Al from (cm) d/R

~- 100 000-004

0 04-0 08 0 08-0 12 0 12-0 16 0 16-0 20 0 20-0 24 0 24-0 28 0 28-0 32 0 32-0 36 0 36-0 40 0 40-0 44 0 44-0 48 0 48-0 52 0 52-0 56 0 56-0 60 0 60-0 64 0 64-0 68 0 68-0 72 0 72-0 76 0 76-0 80 0 80-1 00

120 000-0 02 0 02-0 04 0 04-0 06 0 06-0 08 0 08-0 10 0 10-0 12 0 12-0 15 0 15-0 17 0 17-0 19 0 19-0 21 0 21-0 23 0 23-0 25 0 25-0 27 0 27-0 29 0 29-0 31 031-033 0 33-0 35 0 35-0 37 0 37-0 40 0 40-0 42 0 42-0 44 0 44-0 46 0 46-0 48 0 48-0 50 0 50-0 52 0 52-0 54 0 54-0 56 0 56-0 58 0 58-0 60 0 60-0 62 0 62-0 65 0 65-0 67 0 67-0 69 0 69-0 71 0 71-0 73 0 73-0 75 0 75-0 77 0 77-0 79 0 79-1 00

0 80 0 86 0 84 0 82 0 79 0 76 0 73 0 69 0 67 0 65 0 63 0 61 0 58 0 55 0 53 0 50 0 51 0 51 0 50 0 44 0 45 0 70 0 78 0 81 0 79 0 77 0 75 0 75 0 73 0 71 0 68 0 65 0 63 0 60 0 58 0 56 0 56 0 54 0 51 0 52 0 48 0 47 0 48 0 45 0 45 0 43 0 43 0 45 0 41 0 41 0 38 0 40 0 36 0 37 0 35 0 39 0 35 0 3 3 0 72 0 34

Al

316 361 383 395 399 398 394 389 391 387 378 372 369 358 353 346 344 343 339 335 322 275 313 334 348 357 362 366 367 363 36 I 359 356 358 350 345 343 340 332 328 320 310 307 297 300 297 296 297 285 284 275 270 264 258 265 273 26 I 274 27 I 260

.~

~ ~~

SI

219 245 259 269 269 270 268 269 27 1 266 260 259 257 25 1 247 245 242 239 239 229 235 193 218 229 236 244 247 249 252 248 249 246 243 243 239 233 234 23 I 230 225 218 219 215 212 210 209 212 204 200 20 I 194 I90 I84 187 I86 190 I86 I94 184 179

- Ca Ti Fe Ni

23 4 22 6 21 7 21 1 20 1 I9 0 18 3 17 5 I7 4 I6 8 I6 2 15 5 14 8 I4 4 14 3 13 5 13 8 13 2 I3 4 I I 9 12 4 21 9 21 4 20 8 20 4 I9 9 19 3 I8 7 18 3 I7 7 I7 2 16 9 I6 3 I5 8 14 8 I4 3 14 5 I4 0 13 7 I3 7 13 2 12 8 12 6 12 3 1 1 9 1 1 8 I I 6 I I 3 1 1 3 10 9 10 8 10 6 10 8 10 3 10 I 10 2 10 3 9 26 9 66 7 96

~

5 28 4 75 4 34 4 04 3 75 3 48 3 27 3 05 2 93 2 77 2 66 2 51 2 38 2 27 2 20 2 03 2 07 1 96 2 01 1 7 1 186 5 12 4 67 4 38 4 14 3 93 3 74 3 55 3 39 3 23 3 08 2 97 2 83 2 67 2 47 2 40 2 38 2 28 2 20 2 I5 2 03 1 99 1 99 1 8 9 1 81 1 7 8 I 7 5 1 69 1 69 1 64 1 6 2 157 1 5 0 I 4 3 I 4 3 1 4 9 I 5 5 I 3 0 I 34 1 09

2 93 2 53 2 27 2 07 I 8 8 1 7 3 1 60 1 46 137 I 2 7 1 2 2 1 1 3 I 07 1 02 0 95 0 85 0 87 0 82 0 85 0 73 0 83 2 88 2 56 2 33 2 17 2 03 192 I 7 8 I 68 1 5 9 1 4 9 I 43 1 3 6 1 2 5 116 1 I 1 I 08 1 04 0 99 0 95 0 90 0 87 0 87 0 82 0 78 0 75 0 76 0 72 0 73 0 72 0 72 0 69 0 61 0 59 0 60 0 63 0 65 0 49 0 51 0 40

Ca Ti

2 46 2 13 191 1 7 5 1 5 9 1 46 1 3 5 123 I 1 5 1 07 1 03 0 96 0 90 0 86 0 81 0 72 0 73 0 69 0 72 0 61 0 70 2 42 2 15 1 9 6 182 171 1 62 1 5 0 142 134 1 26 121 I 14 I 06 0 98 0 94 0 92 0 88 0 84 0 80 0 76 0 74 0 74 0 70 0 66 0 64 0 65 0 62 0 63 0 62 0 62 0 59 0 52 0 50 0 52 0 54 0 56 0 41 0 43 0 33

. -- -

137 157 I68 173 176 175 174 I73 I75 I74 170 168 I66 I62 159 157 I59 I56 156 151 I47 118 I36 145 I52 I57 I59 161 162 162 162 161 159 I59 I57 155 154 153 150 I49 I44 142 I42 137 I38 136 135 135 131 131 128 126 124 123 123 125 120 124 124 1 I6

49 9 52 4 52 8 53 2 52 4 50 8 49 9 49 1 49 5 48 7 47 1 46 3 44 7 43 9 43 9 42 6 43 9 42 2 43 0 39 8 39 3 45 I 47 I 47 9 48 1 49 1 48 3 48 3 48 3 47 5 47 1 46 7 45 5 44 3 43 4 42 2 42 6 41 4 41 0 41 0 39 8 39 0 38 6 37 9 37 4 37 4 37 0 35 9 36 1 34 7 35 2 34 1 34 5 33 2 31 8 33 0 32 9 31 1 32 2 27 0

Fe Ni

I7 4 16 9 I6 4 I6 0 15 2 14 5 13 8 13 2 12 9 12 4 1 1 9 1 1 4 10 9 10 6 10 1 9 34 9 58 9 14 9 66 8 12 9 09

16 2 15 9 15 5 I5 2 I4 9 14 6 14 I I3 6 13 4 13 0 12 8 12 1 1 1 7 10 8 10 6 10 8 10 4 10 1 9 78 9 38 9 22 9 26 9 09 8 89 8 61 8 40 8 28 8 40 8 12 8 08 7 96 7 63 7 47 7 39 7 55 8 00 6 46 6 78 5 28

9 95 8 40 7.35 6 62 5 97 5 40 4 99 4 51 4 22 3 91 3 76 3 49 3 26 3 05 2 90 2 65 2 70 2 49 2.55 2 29 2 40 9 83 8 61 7 75 7 15 6 62 6 17 5 72 5 40 4.99 4 71 4 43 4.22 3 89 3 56 3 43 3 33 3 17 3 04 2 97 2 77 2 70 2 64 2 46 2 28 2 28 2 27 2 13 2 13 2 09 2 01 I 9 1 I 7 3 I 6 6 I 7 3 1 8 5 1 8 7 I 5 7 I 5 9 I .33

S3Mn from

Fe

311 357 387 397 405 405 404 404 410 410 402 397 395 384 376 378 381 37 I 37 I 356 361 268 309 332 347 361 366 372 317 376 381 377 371 369 365 363 36 1 361 356 353 342 343 343 33 I 33 I 328 326 32 I 316 318 312 307 302 306 306 299 281 299 295 277

Ni

154 170 I78 182 183 181 179 179 180 178 174 I72 I68 166 163 160 I62 159 162 153 I52 136 151 158 I62 I66 167 I68 171 168 168 I66 164 162 160 I57 157 I53 153 I50 145 I46 145 141 I40 139 140 136 134 133 132 129 126 126 122 I27 I23 124 123 112

*The data for 36CI from Ca and 53Mn from Ni are from apriori calculations

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles 28 1

TABLE A3. Calculated elemental GCR production rates of 20Ne, "Ne and "We as a function of radius R and shielding depth d1R inside stony meteoroids.'

(cm)

5

10

15

25

32

40

50

~

Radius Depth dlR

2ONe from

Na Mg Al Si

0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60-1 00 0 00-0 07 0 07-0 I 7 0 13-0 20 0 20-0 27 0 27-0 7 7 0 73-0 40 0 40-0 47 0 47-0 57 0 53-0 60 0 60-0 67 0 67-0 73 0 77-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60-0 70 0 70-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 0 25-0 31 0 31-0 77 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 0 25-0 71 0 31-0 37 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00 0 00-0 05 0 05-0 10 0 10-0 15 0 15-0 20

7 7 5 4 8 7 3 1 4 2 7 8 774 5 2 8 3 2 9 291 79 8 5 5 2 33 7 29 8 41 4 5 6 8 3 4 3 3 0 2 4 2 6 5 8 1 7 4 6 3 0 5 447 60 I 7 5 5 71 7 4 5 9 61 7 3 5 9 31 8 4 7 5 6 1 7 3 6 1 3 1 8 544 6 8 2 3 8 3 337 589 7 2 7 3 9 9 15 I 62 5 7 5 9 41 0 76 1 6 5 0 7 8 0 41 8 367 6 7 4 8 0 0 4 2 6 3 7 4 69X 8 7 2 4 3 9 3 8 5 5 6 0 6 9 0 3 8 6 74 I 6 7 7 7 6 7 4 1 4 764 6 9 0 81 6 4 7 0 780 77 5 85 7 44 3 39 1 771 8 8 9 4 5 9 403 8 0 0 9 0 9 4 6 3 41 0 81 6 91 8 4 6 7 41 0 8 7 6 97 8 4 7 5 41 8 86 I 9 6 2 48 3 4 2 2 88 I 98 7 49 I 4 3 0 8 9 7 9 9 5 4 9 5 4 3 0 8 9 7 9 8 3 4 8 7 4 2 6 74 7 85 3 44 3 39 1 8 9 7 98 3 49 1 4 3 0 9 8 7 106 5 1 6 4 5 5

106 117 5 4 0 4 7 5 I l l 117 5 5 6 487 117 119 5 6 0 491 117 127 5 7 7 507 I21 126 5 8 9 520 77 I 8 6 5 44 7 39 7 9 0 5 9 8 7 487 4 3 0 99 I 106 51 6 4 5 5

106 112 5 7 6 47 I I l l 116 552 487 117 121 5 6 8 5 0 3 120 124 58 1 5 1 6 127 127 5 9 3 5 2 0 126 129 5 9 7 5 2 8 I28 I72 6 0 9 536 170 172 6 0 9 540 172 174 61 3 544 1 7 1 132 6 0 5 536 82 8 9 0 9 45 9 40 5 9 7 9 104 5 0 8 447

108 117 5 3 6 47 I 115 119 5 5 6 487 I19 123 577 503 124 127 5 8 5 5 1 6 128 171 597 5 2 8 172 134 6 0 9 5 4 0 175 177 62 1 5 5 2 140 179 6 3 3 560 178 I38 62 1 556 I79 179 6 2 9 564 142 143 6 4 2 577 8 2 8 8 9 3 45 I 3 9 5 9 8 7 103 4 9 9 4 3 9

108 I 1 7 5 3 2 47 1 I16 119 556 4 8 7

Elemental production rates (10-10 cm3STP/(g x Ma)) *lNe from

Na Mg Al SI ~~-

52 8 53 2 3 2 6 25 2 585 5 8 1 3 4 1 2 6 3 61 7 6 0 9 349 269 63 7 6 2 9 356 2 1 3 6 5 4 6 4 2 3 6 1 276 6 7 4 6 6 6 37 2 284 6 9 4 6 9 0 3 7 8 2 8 8 711 7 0 2 374 2 8 8 8 0 0 78 8 397 304 8 5 3 8 4 5 4 1 4 317 90 1 8 8 9 426 3 2 6 9 3 0 9 2 2 43 4 33 I 9 6 2 95 0 44 7 3 3 8 99 1 9 8 7 4 5 9 3 4 9 8 2 4 8 0 4 7 9 6 3 0 6 9 2 6 9 0 1 4 2 6 327 9 9 5 9 7 0 4 4 3 34 I

105 110 113 I I5 1 I8 120 123 126 126 108 126 138 147 153 I55 161 169 112 128 139 148 155 162 168 170 I74 177 181 183 I80 1 I9 139 151 I60 166 171 177 I82 187 193 193 196 199 I20 I40 152 162

102 4 5 9 3 5 0 107 4 7 5 3 6 3 110 4 8 3 367 112 4 8 7 3 7 0 115 491 3 7 4 117 4 9 9 379 120 5 0 3 3 8 2 121 5 0 3 3 8 6 121 4 9 9 3 8 0 103 44 7 3 4 6 121 4 9 5 3 8 3 132 524 403 141 5 4 8 422 147 5 6 0 4 3 0 150 5 6 8 4 3 9 155 577 447 159 593 45 5 105 447 3 4 7 122 49 1 38 1 132 5 1 6 40 I 141 536 41 8 147 552 430 154 5 6 8 443 158 58 I 45 I 162 5 9 3 4 5 9 165 597 4 6 3 168 6 0 5 47 1 169 6 0 5 47 1 171 6 0 5 475 171 62 I 4 7 5 112 4 5 5 3 5 6 130 499 3 9 0 142 532 41 4 151 5 4 8 4 2 6 156 5 6 8 4 4 3 162 58 I 45 1 168 60 I 467 173 61 7 4 7 9 177 62 1 487 181 6 3 3 49 I 179 6 2 5 49 1 180 6 2 9 4 9 5 184 6 5 0 5 1 2 111 4 3 4 3 4 4 130 4 8 7 3 8 3 143 524 41 4 151 544 426

Ca

8 57 8 65 8 65 8 61 8 57 8 73 8 77 8 69 8 69 8 69 8 73 8 69 8 73 8 89 8 53 8 57 8 61 8 61 8 69 8 65 8 61 8 61 8 61 8 57 8 53 8 40 8 36 8 36 8 32 8 40 8 28 8 24 8 28 8 32 8 04 8 08 8 08 8 04 8 04 8 00 8 00 8 04 8 04 7 96 7 88 7 80 7 96 7 88 7 84 7 80 7 67 7 67 7 63 7 67 7 67 7 67 7 67 7 59 7 51 7 63 7 39 7 39 7 39 7 39

Fe Ni

2 0 3 1 9 6 2 0 3 1 9 5 201 I 9 3 199 I 9 1 1 9 6 1 8 8 1 9 9 1 9 0 I 9 9 I 9 0 197 I88 1 9 3 1 8 3 1 8 9 1 7 9 I 8 8 I 7 7

~ ~ - -

186 185 1 8 6 1 8 8 184 I 8 1 179 179 I 7 6

74 73 73 79 73 69 67 65 62

1 7 4 1 6 0 173 I 5 9 171 157 1 7 0 156 I 6 8 154 I 6 6 1 5 3 I 7 5 I 6 3 165 I 5 2 1 5 8 143 1 5 6 139 1 5 1 134 I 4 7 1 3 0 I 4 7 I 3 0 146 I 2 8 1 6 6 154 1 5 8 144 I 5 2 1 7 8

47 I 3 2 44 1 2 8 41 124 38 121 37 1 19 36 I 17 33 I 1 4 30 I I2 29 1 1 1

I 2 8 1 1 0 160 I 4 8 149 I 3 6 1 4 3 1 2 8 1 3 6 1 2 0 131 1 1 5 1 2 8 1 12 1 2 5 1 0 8 1 2 2 1 0 4 120 101 1 19 1 0 0 117 0 9 9 114 0 9 6 114 0 9 5 I 4 8 137 I 3 8 I 2 5 132 117 127 112

22Ne from

Na Mg

7 6 7 6 8 6 88 5 73 5 9 6 2 7 5 9

101 7 7 6 105 7 9 2 109 81 2 113 8 2 8 118 8 3 6 139 9 0 9 152 95 8 162 9 9 9 169 102 176 105 183 108 146 9 2 6 168 101 184 107 196 112 206 116 214 119 218 120 224 122 233 124 240 126 246 128 245 128 204 113 247 128 274 137 294 145 310 150 317 151 331 156 342 162 212 115 251 129 276 138 296 145 311 150 328 156 340 161 346 163 356 166 365 169 369 171 378 173 365 171 231 120 275 136 304 326 34 1 355 365 376 388 398 394 403 410 233 278 307 330

A1 SI Ca

3 8 7 301 1 0 8 4 1 0 31 5 1 0 8 4 2 2 32 I 1 0 8 4 3 0 3 2 6 1 0 7 4 3 9 7 3 I 1 0 6 45 1 3 3 9 1 0 8 4 6 3 3 4 5 1 0 8 4 5 9 3 4 3 1 0 7 4 9 5 7 6 2 106 5 2 0 3 7 7 1 0 6 536 3 8 8 1 0 6 5 4 8 3 9 1 105 5 6 0 4 0 1 1 0 5 581 4 1 4 1 0 6 4 9 9 7 6 3 104 5 4 0 3 8 7 104 5 6 8 4 0 4 1 0 3 5 8 9 4 1 4 1 0 3 61 7 4 3 0 1 0 4 6 2 5 4 3 4 1 0 3 6 2 9 4 3 9 1 0 2 6 4 2 4 4 3 1 0 2 6 5 0 45 1 10 1 6 5 8 4 5 5 101 6 6 6 4 5 5 1 0 0 6 6 2 45 I 9 8 7 585 4 1 0 1 0 0 6 5 8 451 9 8 3 702 4 7 5 9 6 2 7 3 9 4 9 9 9 6 2 7 5 9 5 0 8 9 4 6 77 I 51 2 9 3 4 7 8 8 524 9 3 8 8 1 6 5 4 0 9 3 8 5 8 9 41 0 9 5 8 6 5 8 4 4 7 9 4 6 6 9 8 471 9 3 4 73 1 491 9 18 7 5 9 5 0 3 9 1 4 7 8 4 5 2 0 9 0 5 804 52 8 8 9 7 81 2 5 4 0 8 9 7 8 2 8 5 4 4 8 9 7 8 4 0 552 885 8 4 5 5 5 2 8 7 3 8 4 9 5 5 2 8 6 5 8 5 7 5 6 0 8 7 7 6 0 9 41 8 9 3 4 6 8 2 4 5 9 9 0 9

~ - - -

Fe Ni

205 201 209 1 9 9 2 10 1 9 7 2 10 I 9 4 2 10 1 9 0 2 15 1 9 3 2 18 I 9 2 214 191 2 18 1 8 4 2 20 I 1 9 2 2 3 1 7 1 224 1 7 4 2 27 1 1 2 2 32 I 7 2 2 14 I80 2 I8 I 7 3 221 I 6 8 224 1 6 6 2 28 1 6 3 2 29 2 28 2 29 2 29 2 29 2 27 2 24 2 17 2 24 2 28

60 58 51 54 53 51 50 62 49 38

2 34 134 230 1 2 9 231 1 2 4 2 35 I 2 3 237 I 2 1 209 1 5 3 216 141 2 18 I 3 4 2 20 127 222 1 2 3 224 1 1 8 225 1 14 229 I I2 231 I10 2 2 8 I 0 6 2 2 3 1 0 4 222 103 232 I 0 0 2 0 6 1 4 6 2 12 1 3 2

146 73 I 4 8 7 8 8 9 2 15 1 2 3 153 7 5 9 5 0 3 8 6 9 2 14 I 14 158 7 8 8 5 1 6 8 5 7 2 1 6 1 0 8 I68 8 0 8 5 2 8 8 4 9 2 1 8 1 0 4 167 83 6 544 8 4 4 2 20 0 9 9 171 8 5 7 5 5 6 8 4 0 2 2 3 0 9 5 175 8 6 9 5 6 4 8 3 6 222 0 9 3 180 8 8 9 5 7 3 8 3 2 226 091 180 885 5 6 8 8 2 4 2 2 3 0 8 9 182 8 9 3 5 7 3 8 1 2 2 1 8 0 8 6 185 91 8 5 8 9 8 2 0 225 0 8 5 119 5 9 3 4 0 6 8 6 9 I 9 2 1 3 5 136 6 7 0 45 1 8 5 3 I 9 9 I 2 2 146 727 4 8 3 8 4 0 207 I I2 154 7 5 9 4 9 9 8 2 8 207 1 0 5

282 Leya et al.

TABLE A3. Continued.

Radius Depth (cm) d/R

50 020-025 0 25-0 30 0 30-0 35 0 35-0 40 0 40-0 45 0 45-0 50 0 50-0 55 0 55-0 60 0 60-0 65 0 65-0 70 0 70-0 75 0 75-0 80 0 80-1 00

65 000-004 0 04-0 08 0 08-0 I2 0 12-0 I5 0 15-0 I9 0 19-0 23 0 23-0 27 0 27-0 31 0 31-0 35 0 35-0 38 0 38-0 42 0 42-0 46 0 46-0 50 0 50-0 54 0 54-0 58 0 58-0 62 0 62-0 65 0 65-0 69 0 69-0 73 0 73-1 00

85 000-003 0 03-0 06 0 06-0 09 0 09-0 12 0 12-0 15 0 15-0 18 0 18-0 21 0 21-0 24 0 24-0 26 0 26-0 29 0 29-0 32 0 32-0 75 0 35-0 38 038-041 0 41-0 44 0 44-0 47 0 47-0 50 0 50-0 53 0 53-0 56 0 56-0 59 0 59-0 62 0 62-0 65 0 65-1 00

100 0 00-0 04 0 04-0 08 0 08-0 12 0 12-0 16 0 16-0 20 0 20-0 24 0 24-0 28 0 28-0 32 0 32-0 36 0 36-0 40

Na Mg Al Si

121 122 5 6 8 4 9 9 125 126 57.7 5 0 8 129 130 5 9 3 5 2 0 132 131 59.7 52.8 136 134 6 0 9 5 3 6 138 136 61 3 540 I39 136 61 3 5 4 0 141 136 61 3 544 140 136 61 3 5 4 4 141 137 61 7 5 4 4 141 137 61 7 544 138 138 61.7 544 142 139 6 2 5 54.8 81 6 8 6 9 4 3 4 3 8 3 95 8 9 9 9 4 8 3 4 2 2

105 I08 5 0 8 447 I l l 113 524 4 6 3 115 116 5 3 6 4 7 5 I20 120 5 5 2 49 I 124 123 5 6 0 4 9 5 127 124 5 6 8 49.9 130 127 5 7 7 51 2 132 129 58 1 51 6 134 130 5 8 5 5 2 0 135 132 5 8 9 5 2 0 134 129 58 I 51 6 136 130 5 8 9 524 136 131 5 8 5 520 136 131 5 8 5 5 2 4 135 130 58.1 5 2 0 136 132 5 8 9 524 140 133 5 8 9 53 2 134 128 5 6 8 51 2 7 6 3 8 0 4 4 0 6 35 7 8 8 9 91 8 4 4 3 3 9 0 9 7 9 99 1 4 6 7 41 0

104 105 487 4 3 0 109 109 4 9 9 43.9 I12 115 116 117 I I8 1 I9 120 I20 I I9 I I9

I I 5 0 8 447 13 51 6 4 5 5 15 5 2 0 4 5 9 I5 51 6 4 5 5 15 5 2 0 4 5 9 16 5 2 0 4 5 9 I6 5 2 0 4 5 9 16 5 2 0 4 5 9 15 51 6 4 5 5 I5 51 6 4 5 5

121 116 5 2 0 4 5 9 122 117 5 2 0 4 6 3 127 116 5 2 0 4 6 3 122 115 51 2 4 5 9 122 116 5 1 6 4 5 9 122 115 5 1 2 4 5 5 126 115 51 6 4 6 3 122 115 51 2 4 5 5 7 9 6 8 3 2 4 1 4 361 9 4 6 9 6 2 45 9 4 0 0

103 104 4 7 9 422 108 I08 487 4 3 0 110 109 491 434 110 I08 4 8 7 4 3 0 110 107 4 7 9 4 2 6 I l l 106 4 7 5 4 2 2 I13 107 4 7 9 4 3 0 112 106 4 7 5 4 2 6

-_______ -

Elemental production rates (lO-lo cm3STP/(g x Ma)) 2'Ne from

I69 173 179 182 187 190 193 I95 I94 193 195 I92 200 117 136 147 I55 162 I69 173 176 182 186 188 188 188 I89 190 I90 188 192 194 I83 110 I26 137 145 151 155 160 162 163 I64 165 167 167 I66 I67 I69 171 174 173 171 171 I79 170 115 134 145 152 154 156 I56 I58 160 I58

157 552 4 3 4 162 5 6 4 4 4 3 167 577 4 5 5 170 58 1 4 5 9 175 585 463 177 5 9 1 47 1 177 597 47 I 180 597 47 1 179 5 9 7 471 180 60 1 4 7 5 180 597 47 I 178 60 I 4 7 9 181 6 0 5 4 7 5 108 41 8 3 3 2 126 4 6 7 3 6 9 137 487 386 144 51 2 404 149 524 41 4 156 5 4 0 4 2 6 160 5 4 0 43 0 163 5 4 4 434 167 5 5 6 4 4 3 169 5 6 0 447 172 564 45 1 172 5 6 0 447 171 5 6 0 447 173 564 45 1 173 5 6 8 45 1 175 58 1 4 5 9 173 5 6 4 447 174 5 6 0 45 1 179 5 6 8 4 5 9 172 5 1 6 4 3 4 101 387 3 0 8 117 4 3 4 3 4 0 127 4 5 5 3 5 7 136 47 I 3 7 3 141 4 8 3 3 8 4 144 49 1 3 8 8 147 4 9 5 3 9 4 149 4 9 9 3 9 8 150 4 9 5 3 9 4 151 4 9 5 3 9 6 152 4 9 5 3 9 7 153 49 1 1 9 6 152 491 3 9 4 152 49 I 3 9 4 152 487 39 I 154 4 9 5 3 9 8 155 4 9 5 3 9 8 156 491 3 9 4 154 4 8 3 3 9 2 156 49 1 3 9 7 155 4 8 3 389 156 47 I 3 8 6 154 4 7 9 387 104 3 9 2 3 0 9 123 4 7 9 3 4 5 133 4 5 9 3 6 3 139 47 I 374 141 4 6 7 3 7 2 141 4 5 9 3 6 5 141 45 I 36 1 141 4 4 3 3 5 9 142 45 I 366 141 443 3 6 3

Ca

7 19 7 15 7 10 7 02 6 94 6 86 6 86 6 74 6 66 6 58 6 62 6 70 6 86 7 02 7 02 6 86 6 78 6 66 6 66 6 46 6 33 6 33 6 33 6 21 6 09 5 97 5 93 5 89 5 93 5 77 5 60 5 77 5 44 6 54 6 50 6 33 6 25 6 13 5 93 5 81 5 68 5 52 5 48 5 36 5 24 5 16 5 07 4 91 4 91 4 91 4 75 4 59 4 67 4 59 4 30 4 47 6 33 6 09 5 89 5 68 5 40 5 12 4 91 4 67 4 55 4 38

Fe NI ~~

I 2 1 I 0 4 117 I00 1 14 0 9 7 1 10 0 9 3 I 0 7 0 9 0 I 0 2 0 8 5 102 0 8 4 0 9 9 0 8 2 0 9 7 0 7 9 0 9 3 0 7 6 0 9 5 0 7 8 0 9 4 0 7 6 I 0 1 0 8 3 141 131 132 1 1 9 1 2 3 1 0 9 1 16 101 I10 0 9 5 I 0 6 091 101 0 8 5 0 9 6 081 0 9 5 0 7 9 0 9 3 0 7 6 0 8 9 0 7 2 0 8 7 071 0 8 3 0 6 7 081 0 6 6 0 8 0 0 6 4 0 7 8 0 6 2 0 7 5 0 5 8 0 7 2 0 5 6 0 7 4 0 5 7 0 6 9 0 5 3 I 3 2 I 2 2 121 110 I 13 101 I 0 6 0 9 7 I 0 0 0 8 6 0 9 4 0 80 0 8 9 0 7 6 0 8 4 0 7 0 0 8 0 0 6 6 0 7 9 0 6 5 0 7 6 061 0 7 3 0 5 9 071 0 5 7 0 6 7 0 5 3 0 6 4 0 50 0 6 3 0 4 8 0 6 2 0 4 8 0 6 0 0 4 6 0 5 7 0 4 3 0 5 8 0 4 4 0 5 6 0 4 3 0 52 0 4 0 0 54 0 4 0 1 2 6 117 1 10 0 9 8 0 9 8 0 8 6 0 9 0 0 7 7 0 8 2 0 6 9 0 7 6 0 6 3 0 7 0 0 5 7 0 6 4 0 52 0 6 0 0 4 8 0 56 0 4 4

~

**Ne from

Na Mg Al Si Ca Fe Ni ~~ ~

345 159 357 162 372 167 378 169 389 173 397 175 401 177 403 I78 403 177 404 177 405 178 406 177 418 182 231 116 273 131 301 140 318 146 330 151 346 157 356 160 365 162 374 167 382 169 389 171 395 171 389 170 391 171 394 171 393 172 391 170 403 173 403 175 384 167 214 108 250 121 278 130 297 136 312 141 323 144 333 147 338 149 340 149 344 150 346 150 350 151 351 151 347 150 349 150 352 152 355 154 359 155 356 153 356 153 354 152 363 157 352 151 227 I l l 272 127 299 135 315 141 323 141 326 141 325 141 326 141 330 143

- _ _ _ _ _ ~

776 51 2 8 0 0 2 0 3 0 9 7 7 9 6 5 2 0 7 8 8 2 0 2 0 9 3 81 2 5 2 8 7 8 0 2 0 3 0 8 9 8 2 4 5 3 6 7 6 3 202 0 8 4 8 3 6 5 4 0 751 201 0 8 1 8 4 9 5 4 8 7 35 I 9 8 0 7 7 8 5 7 5 4 8 7 3 5 202 0 7 5 85 7 54 8 7 19 I 9 7 0 73 86 I 54 8 7 10 I 9 8 0 6 9 86 I 55 2 6 9 4 I 9 2 0 6 7 85 7 55 2 7 02 86 I 55 2 7 06 87 3 5 5 6 7 31 5 7 3 3 8 9 8 2 8 6 5 0 4 3 4 8 0 8 6 8 6 45 1 7 80 71 9 47 1 7 5 9 7 3 9 4 8 3 7 3 9 7 6 7 4 9 5 7 2 7 7 7 6 4 9 9 7 0 2 784 5 0 3 6 8 6 8 0 0 51 6 6 8 2 81 2 5 2 0 6 7 4 8 2 0 5 2 0 6 5 8 8 1 6 5 2 0 6 4 6 81 2 5 1 6 6 2 5 8 2 0 5 2 0 6 17 8 2 4 5 2 0 6 I3 8 7 6 5 2 8 6 1 3 81 6 5 2 0 5 9 3 8 2 4 5 2 0 5 7 7 8 3 2 5 2 8 5 9 3 7 8 8 5 0 3 5 5 6 532 3 6 3 771 60 I 4 0 0 7 4 7 6 3 7 4 1 8 7 1 9 6 6 6 4 1 9 6 9 8 6 8 6 4 4 7 6 7 4

96 0 6 8 97 0 6 7 07 0 7 3 81 I 3 0 90 I 1 5 91 1 0 4 90 0 9 6 88 0 8 9 91 0 8 4 86 0 78 82 0 7 3 84 071 86 0 6 8 81 0 6 4 79 0 6 3 75 0 59 72 0 58 75 0 5 5 77 0 5 3 73 0 5 0 66 0 4 8 77 0 4 8 60 0 4 4 68 121 76 I 0 6 76 0 9 6 75 0 8 8 73 0 80

6 9 4 45 1 6 50 I 6 9 0 74 71 I 4 5 9 6 2 9 I 6 8 0 6 9 71 5 4 6 3 6 0 9 I 6 4 0 6 4 71 5 4 5 9 5 89 I 6 2 0 5 9 7 1 9 4 5 9 581 162 0 5 7 71 9 4 5 9 5 6 4 I 5 7 0 5 4 7 1 9 4 5 9 5 5 2 155 0 5 2 71 5 4 5 9 5 4 0 I 5 4 0 4 9 71 5 4 5 9 5 2 4 I 5 2 0 4 5 71 1 4 5 5 5 0 7 I 4 9 0 4 2 71 9 4 5 9 507 147 041 7 2 7 4 6 3 4 9 9 1 4 8 0 4 0 7 2 7 4 5 9 4 8 7 I 4 4 0 3 8 71 5 45 5 4 6 7 I 3 7 0 3 6 71 9 4 5 9 4 7 5 I 4 0 0 3 6 71 5 45 1 4 6 7 I 3 4 0 7 6 71 9 447 4 38 I 2 5 0 3 3 7 0 6 45 5 4 51 I 7 4 0 3 2 5 4 4 367 7 4 7 I 6 4 I 1 5 61 7 4 0 6 6 9 4 I 6 6 0 9 4 6 5 4 4 2 6 6 50 I 6 4 0 8 0 6 7 8 4 3 4 6 2 1 162 0 7 1 6 7 4 4 3 4 5 81 I 5 6 0 6 3 6 7 0 4 2 6 5 4 8 I 5 1 0 5 6 6 6 2 4 2 2 5 2 0 I 4 4 0 5 1 6 6 2 41 8 4 8 7 I 1 8 0 4 5 6 7 0 4 2 2 471 I 3 4 0 4 1

328 141 65 8 41 8 451 I 2 9 0 3 7

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

'FABLE A3. Continued

Radius Depth (cm) dlR

100 0 40-044 0 4 4 0 4 8

0 52-0 56

0 60 0 64 0 64-0 68 0 68-0 72 0 72-0 76 0 76-0 80 0 80 I 00

I20 0 0 0 0 0 2

0 48-0 52

0 56 0 60

0 0 2 0 0 4 0 04-0 06 0 0 6 0 0 8 008 0 10 0 10-0 12 0 12-0 15 0 15 0 17

0 19-0 21 021 0 2 3 0 21-0 25 0 2 5 0 2 7

0 2 9 031 031 0 7 3

0 35-0 37 0 37 0 40 0 40-0 42 0 42-0 44

0 46-0 48

0 17-11 1 9

0 2 7 0 2 9

0 3 3 0 35

0 44-0 46

0 48 0 50 0 50-0 52 0 52 0 54 0 54 0 56 0 56-0 58 0 5 8 0 6 0

0 6 2 0 6 5 0 6 5 Oh7 0 67-0 69 0 69-0 71

0 73-0 75 0 75-0 77 0 77-0 79 0 79-1 00

0 60-0 62

0 7 1 0 7 3

?ONe from

~~~ ~~- ~

Elemental production rates (IO-IO cm3STP/(g x Ma)) 2iNe from

Na Mg Al Si

109 104 4 6 3 41 4 108 102 4 5 5 4 0 6 107 100 447 3 9 8 105 9 7 9 434 3 9 2 102 9 6 6 4 3 0 3 8 8 102 9 4 2 422 38 I 102 9 5 0 4 3 0 387 101 9 4 6 41 8 377 101 9 4 6 4 2 2 3 8 5 9 7 0 9 0 9 4 0 4 362 9 7 0 8 8 5 3 9 5 3 6 0 6 8 2 715 3 6 5 3 1 9 8 0 8 8 2 4 4 0 2 354 8 7 7 8 8 9 4 2 2 3 7 0 9 2 6 9 3 4 4 3 4 382 97 0 9 6 6 44 7 393 99 I 97 4 44 7 3 9 4

101 9 9 1 4 5 1 398 102 9 9 5 45 5 403 102 9 9 5 45 1 3 9 9 104 99 I 45 I 3 9 8 101 99 I 447 3 9 6 101 9 7 4 4 7 9 389

999 9 5 0 4 2 6 378 9 8 7 9 4 2 4 2 2 370 9 8 7 9 4 6 41 8 772 9 7 9 9 3 0 41 4 3 6 3 9 7 4 91 4 4 0 6 362 95 8 90 5 40 3 35 7 9 3 8 8 8 5 3 9 1 347 9 3 4 8 6 1 7 8 5 3 4 6 9 2 2 8 5 3 3 8 5 742 9 0 1 8 3 2 7 7 2 336 9 0 5 8 3 6 7 7 2 3 3 3 8 9 3 8 2 8 3 6 8 3 3 2 8 9 1 8 1 6 3 6 5 332 8 6 9 8 2 0 3 6 2 322 86 I R O O 355 320 8 5 7 788 351 314 84 5 7 8 0 3 4 8 31 3 82 8 76 3 34 I 307 8 1 2 7 5 5 3 3 8 3 0 5 8 1 2 7 3 5 3 3 1 3 0 0 8 1 2 7 4 3 3 2 9 290 804 7 5 5 3 3 3 2 9 8 7 7 6 7 3 5 3 2 3 294 8 0 0 73 5 7 2 6 2 9 0 784 7 4 3 7 2 8 290 74 7 67 4 297 25 9

i n 1 9 7 4 434 3x5

Na

154 154 153 I50 148 148 I47 I45 145 139 143

I I7 I25 131 137 139 142 145 I43 I45 I44 142 143 141 I39 I39 I38 137 I34 131 132 I29 I28 127 126 I28 123

99 5

, I 22 19 I6 13 15 14 I5 13 18

I13 I09

Mg Al SI ~ ~

138 4 3 0 352 136 422 3 4 4 134 41 0 3 3 5 132 4 0 0 3 2 8 128 40 I 329 127 382 320 I28 3 9 3 3 2 9 126 3 8 0 31 7 127 38 1 320 121 3 4 0 2 9 3 121 3 6 5 3 0 2 8 9 3 3 3 9 270

105 3 8 0 3 0 2 114 3 9 9 31 8 119 4 1 4 3 3 0 125 426 337 127 426 3 3 9 129 4 2 6 3 4 0 130 4 2 6 343 131 4 2 6 34 I 132 4 2 6 3 3 9 131 4 2 2 3 3 9 128 41 0 332 128 402 328 126 3 8 8 3 1 8 125 3 8 3 31 I 125 39 I 31 6 123 382 3 0 8 122 3 7 6 307 121 3 7 4 307 119 36 I 299 117 3 5 8 292 117 3 5 5 2 9 0 114 35 I 285 114 3 4 8 282 113 3 4 4 280 112 3 3 3 277 109 3 3 3 272 109 3 1 5 270 107 3 2 5 264 106 32 1 265 105 31 5 260 103 31 7 265 102 31 8 259 102 31 5 25 1 101 314 2 5 0 9 7 9 31 2 249 9 8 3 2 9 3 236 9 7 9 299 24 3 9 0 1 2 5 5 209

Ca

4 18 4 02 3 84 3 72 3 64 3 33 3 42 3 30 3 39 2 90 3 20 5 93 5 77 5 60 5 48 5 32 5 20 4 99 4 83 4 75 4 59 4 51 4 30 4 14 3 86 3 75 3 79 3 64 3 54 3 45 3 31 3 24 3 25 3 18 3 09 3 00 2 95 2 90 2 94 2 83 2 85 2 79 2 71 2 61 2 60 2 63 2 75 2 25 2 36 186

~~

Fe Ni

0 5 4 0 4 2 0 5 0 0 3 9 0 4 7 0 3 6 0 4 5 0 3 5 0 4 2 0 3 2 0 3 8 0 2 9 0 3 8 0 2 9 0 3 6 0 2 7 0 3 8 0 2 8 0 3 2 0 2 4 0 3 7 0 2 7 I 2 3 I 16 1 10 I 0 1 101 0 9 0 0 9 4 0 8 3 0 8 8 0 7 7 0 8 3 0 71 0 7 8 0 6 5 0 7 3 0 6 2 0 7 0 0 5 8 0 6 6 0 54 0 6 3 051 0 6 0 0 4 8 0 5 5 0 4 4 051 041 0 4 9 0 3 9 0 4 8 037 0 4 6 0 36 0 4 4 0 3 4 042 0 3 2 0 4 0 031 0 3 9 0 2 9 0 3 9 0 2 9 0 3 7 0 2 7 0 3 5 0 2 5 0 3 3 0 2 5 0 3 4 0 2 5 0 3 2 0 2 4 0 3 3 0 2 4 0 3 2 0 2 4 0 3 2 0 2 4 031 0 2 2 0 2 8 0 1 9 027 0 19 0 2 7 0 19 0 2 8 0 2 0 0 3 0 021 0 2 2 0 15 0 2 3 0 16 0 1 7 0 1 3

*The data for *ONe, 2'Ne, and 22Ne from Na are from aprrorr calculations.

283

~

22Ne from

Na

320 318 317 309 306 302 300 299 296 295 286 I93 23 I 252 268 28 I 287 294 298 297 298 298 297 300 295 293 292 290 285 281 275 270 265 259 262 259 260 259 250 249 242 238 234 230 236 240 23 1 245 240 23 I

Mg Al Si Ca Fe Ni ~ ~~ - _ _ _ _ _ _ _

137 6 4 2 4 0 5 4 3 0 I 2 2 0 3 6 136 6 3 3 3 9 8 4 10 I 1 7 0 3 3 135 62 I 388 391 I I 3 0 3 0 I32 6 0 9 3 8 0 377 I l l 0 2 9 131 6 0 9 3 7 6 365 106 0 2 6 129 589 3 6 5 3 3 3 0 9 5 0 2 3 129 5 9 1 3 7 4 3 4 1 0 9 7 0 2 3 127 58 I 362 327 0 9 5 0 2 2 128 58 1 367 337 I 0 0 0 2 2 121 5 4 0 3 3 5 2 8 8 0 8 0 0 1 9 123 5 6 0 3 4 7 3 1 8 0 9 6 0 2 2 9 7 4 47 I 322 7 10 I 5 1 I 1 5

I l l 5 4 0 3 5 6 6 7 0 I 5 3 0 9 9 118 564 3 7 4 6 3 7 151 0 8 6 122 5 8 9 3 8 5 6 1 3 1 5 0 0 7 8 127 6 0 9 3 9 5 5 8 9 149 0 7 2 128 6 1 7 3 9 7 5 6 8 149 0 6 6 130 6 1 7 3 9 8 5 4 4 143 0 6 0 132 62 1 399 5 2 4 I 3 8 0 5 6 130 62 1 3 9 8 507 1 3 8 0 5 2 131 62 I 3 9 8 4 8 7 134 0 4 8 130 61 7 3 9 5 4 7 5 I 3 3 0 4 5 128 6 0 5 3 8 4 451 126 0 4 2 128 601 3 7 7 4 3 0 I 2 1 0 3 8 126 5 8 5 367 3 9 9 I I3 0 3 5 123 5 7 3 3 6 2 387 I 10 0 3 3 124 581 3 6 6 388 112 031 122 5 6 8 3 5 9 372 I 0 7 0 3 0 122 5 6 4 3 5 5 361 I 0 4 0 2 9 119 5 5 6 3 5 1 3 5 0 0 9 8 0 2 7 116 5 4 0 3 3 9 774 0 9 5 0 2 6 116 5 3 6 3 3 9 728 0 9 4 0 2 4 114 5 2 8 3 3 8 3 2 8 0 9 7 0 2 4 113 5 2 4 331 3 18 0 9 5 0 2 2 112 5 2 0 32 8 3 0 7 0 9 4 0 2 0 I l l 516 324 2 9 8 0 8 8 0 2 0 112 512 3 1 9 2 9 5 0 8 7 0 2 0 108 4 9 9 31 3 287 0 8 6 0 1 9 107 4 9 9 3 1 4 291 0 8 9 0 1 9 106 491 7 0 9 281 0 8 6 0 1 9 104 4 7 9 3 0 7 282 0 8 9 0 1 8 102 47 1 30 I 2 7 5 0 8 7 0 17

100 467 2 9 8 2 5 3 0 7 9 0 1 7 9 9 1 4 6 3 292 2 5 3 0 8 0 0 1 4

101 471 292 2 5 8 0 7 9 0 1 6 9 8 7 4 6 7 2 8 9 2 7 0 0 8 5 0 1 6

101 4 5 9 277 2 1 8 0 6 3 0 1 2 9 8 3 4 5 5 28 I 2 2 8 0 6 7 0 I2 9 2 6 4 1 0 2 4 4 I 7 9 0 4 9 0 1 0

100 467 300 2 6 3 0 x 1 0 1 4

- -

TABLE A4 Calculated elemental GCR production rates of 3He(c), 36Ar, and 3 8 A r as a function of radius r and shielding depth d/R inside stony meteoroids

~~~ ~ ~ __ tlemental production rates (10 * cm3 STP/(g x Ma)) Elemental production rates (1O-Io cm3 STP/(g x Ma))

Radius Depth 3He(c) from 36Ar from 38Ar from (cm) dlR

0 Mg Al Si Fe Ni Fe Ni Fe Ni - ~~ ~

5 0 00-0 10 I 4 6 I 0 4 1 16 130 0 8 0 0 9 8 0 10-0 20 I 5 3 1 08 I 1 9 132 0 8 0 0 9 9 0 20-0 10 I 5 6 1 1 0 I 1 9 132 0 8 0 0 9 9 0 10-0 40 159 I l l 119 133 0 8 0 0 9 9 0 40-0 50 160 112 1 1 9 132 0 7 9 0 9 8

564 447 7 3 9 6 5 0 5 6 8 4 4 3 7 4 3 6 5 0 5 6 8 4 4 3 747 6 5 0 5 6 8 4 3 8 7 4 3 6 4 6 564 4 3 0 7 4 3 6 3 7

284 Leya et al.

TABLE A4 Continued

(cm)

5

10

15

25

32

40

50

~- ~

Radius Depth dlR

0 50-0 60 0 60-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60-1 00 0 00-0 07 0 07-0 13 0 13-0 20 0 20-0 27 0 27-0 37 0 73-0 40 0 40-0 47 0 47-0 53 0 57-0 60 0 60-0 67 0 67-0 73 0 73-1 00 0 00-0 10 0 10-0 20 0 20-0 30 0 30-0 40 0 40-0 50 0 50-0 60 0 60-0 70 0 70-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 0 25-0 31 0 31-0 37 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00 0 00-0 06 0 06-0 12 0 12-0 19 0 19-0 25 025-031 0 31-0 37 0 37-0 44 0 44-0 50 0 50-0 56 0 56-0 62 0 62-0 69 0 69-0 75 0 75-1 00 0 00-0 05 0 05-0 10 0 10-0 15 0 15-0 20 0 20-0 25 0 25-0 30 0 30-0 3 5 0 75-0 40 0 40-0 45 0 45-0 50 0 50-0 55

~ ~ - ~ _ _ Elemental production rates ( I t 8 cm3 STP/(g x Ma))

3He(c) from

0

I 6 4 I 6 7 I 6 7 I 7 1 I 8 5 I 9 0 I 9 3 I 97 2 03 I 7 9 I 92 2 00 2 06 2 12 2 I6 2 18 2 20 2 24 2 26 2 28 2 26 2 06 2 28 2 40 2 52 2 58 2 60 2 67 2 75 2 08 2 28 2 40 2 51 2 58 2 66 2 72 2 77 2 80 2 84 2 86 2 87 2 85 2 15 2 36 2 5 1 2 60 2 68 2 73 2 81 2 87 2 92 2 97 2 94 2 98 3 04 2 10 2 34 2 50 2 59 2 66 2 71 2 77 2 81 2 85 2 89 2 89

1 1 4 I 1 7 1.15 1 20 1 2 4 I .27 1.28 1.30 I 3 4 1 2 0 I .26 1 3 0 I .33 1.37 1 3 8 1 3 9 140

42 43 43 41 30 41 47 53 55 56

I 5 9 162 1 2 9 1 3 8 I 4 4 1 4 8 152 1 5 5 1 5 8 I 6 1 I 6 3 1 63 1 63 1 62 I 6 7 1 3 0 1 4 0 I 4 7 1 5 0 154 I 5 7 I 6 1 1 6 5 1 6 6 1 6 9 167 1 6 6 172 1 2 4 I 3 5 I 4 3 147 1 49 1 5 1 1 5 7 154 1 5 5 1 5 6 I 5 8

Al

I 2 1 1 2 3 I 2 2 I 2 4 I 2 5 127 127 I 2 8

~ ~-

31 23 26 28 30 32 32 32 32 33

134 I 3 4 I 3 2 127 132 I 3 4 I 3 7 1 3 8 137 I 3 9 142 1 2 5 1 2 9 I 3 2 1 3 4 I 3 5 I 3 7 I 3 8 139 140 I 40 1 40 1 40 140 I 2 5 1 2 9 I 3 2 I 3 2 I 3 4 I 3 5 137 1 3 8 I 3 9 140 I 3 9 I 3 9 I 4 2 1 1 9 1 24 127 I 2 9 129 I 3 0 I 3 1 1 3 0 131 1 3 0 131

Si Fe

1 3 5 1 3 6 I 3 5 I 3 7 1 3 8 1 40 I 40 I 4 1 1 44 136 I 3 8 1 40 142 1 44 I 4 5 1 44 I 4 5 145 I 4 6 1 4 5 1 44 1 40 144 I 4 5 1 49 1 49 1 4 8 I 5 0 1 5 3 1 3 6 1 40 I 43 I 4 5 1 4 6 I 4 7 1 4 8 1 49 I 5 0 I50 1 5 0 I 49 I 5 0 1 3 6 1 40 I 4 2 I 4 3 I 44 1 4 5 1 4 6 147 1 4 8 1 49 1 4 8 I 4 8 I 5 0 1 3 0 1 3 4 137 1 3 9 I 3 8 I 3 8 1 4 0 I 3 9 I 3 9 1 3 9 1 3 9

0 81 0 81 0 80 0 80 0 80 0 80 0 80 0 80 0 81 0 79 0 79 0 19 0 79 0 80 0 79 0 79 0 19 0 79 0 78 0 78 0 17 0 77 0 77 0 76 0 77 0 76 0 75 0 76 0 76 0 74 0 74 0 74 0 73 0 13 0 73 0 73 0 73 0 73 0 73 0 72 0 72 0 72 0 73 0 72 0 72 0 71 0 70 0 70 0 70 0 70 0 70 0 70 0 69 0 69 0 70 0 69 0 68 0 68 0 68 0 66 0 66 0 65 0 65 0 64 0 63 0 63

Ni

I 00 1 00 0 99 0 99 0 99 0 99 0 99 0 99 101 0 98 0 98 0 98 0 98 0 99 0 99 0 98 0 98 0 98 0 98 0 97 0 96 0 96 0 96 0 95 0 96 0 95 0 94 0 95 0 95 0 93 0 93 0 92 0 92 0 92 0 91 0 91 0 92 0 92 0 91 0 90 0 89 0 90 0 91 0 90 0 90 0 88 0 88 0 87 0 88 0 88 0 87 0 88 0 86 0 86 0 87 0 85 0 85 0 85 0 85 0 83 0 82 0 82 0 81

0 79 0 79

a 80

~ ~ ~ _ _ ~ _ _ _ ~ - ~~

Elemental production rates (IO-IO cm3 STP/(g x Ma)) 36Ar from 3 S A r from

Fe Ni Fe

5 77 5 77 5 72 5 72 5 72 5 77 5 68 5 72 5 85 5 64 5 64 5 64 5 68 5 72 5 72 5 64 5 64 5 64 5 64 5 64 5 48 5 48 5 48 5 44 5 52 5 44 5 40 5 40 5 44 5 28 5 28 5 32 5 24 5 28 5 24 5 24 5 24 5 28 5 24 5 12 5 07 5 20 5 16 5 12 5 07 5 03 4 99 4 99 5 03 4 99 4 99 5 03 4 99 4 87 4 99 4 83 4 83 4 83 4 83 4 67 4 63 4 63 4 59 4 51 4 43 4 47

4 38 4 38 4 34 4 22 4 18 4 14 4 10 4 06 4 10 4 14 4 06 4 00 3 95 7 94 3 89 3 84 3 82 3 79 3 77 3 74 3 68 3 85 3 65 3 50 3 44 3 34 3 26 3 24 3 22 3 66 3 50 3 38 3 27 3 21 3 14 3 08 3 06 3 02 2 97 2 93 2 88 2 88 3 53 3 31 3 17 3 02 2 93 2 86 2 80 2 73 2 71 2 66 2 63 2 59 2 57 3 27 3 07 2 94 2 84 2 70 2 61 2 55 2 47 2 39 2 31 2 29

7 55 7 59 7 51 7 51 7 51 7 55 7 51 7 55 7 67 7 39 7 43 7 47 7 47 7 55 7 55 7 47 7 41 7 47 7 47 7 43 7 71 7 27 7 27 7 23 7 31 7 23 7 19 7 19 7 23 6 98 7 02 7 02 6 98 6 98 6 98 6 98 7 02 7 02 6 98 6 94 6 82 6 98 6 86 6 82 6 78 6 70 6 70 6 70 6 74 6 74 6 74 6 74 6 66 6 62 6 74 6 37 6 41 6 46 6 46 6 29 6 21 6 21 6 17 6 05 6 01 6 01

Ni

6 50 6 50 6 46 6 37 6 33 6 33 6 25 6 25 6 33 6 25 6 11 6 17 6 13 6 13 6 09 6 05 6 01 6 01 5 97 5 93 5 81 5 97 5 81 5 64 5 64 5 52 5 44 5 44 5 44 5 68 5 56 5 48 5 36 5 32 5 24 5 20 5 20 5 20 5 12 5 03 4 95 5 07 5 52 5 32 5 20 5 03 4 95 4 91 4 87 4 83 4 79 4 79 4 71 4 63 4 71 5 I2 4 95 4 87 4 19 4 59 4 51 4 47 4 38 4 26 4 18 4 I8

_ _

The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles

TABLE A4. Continued.

Radius Depth (cm) d/R

-

Elemental production rates (lo-* cm3 STP/(g x Ma)) 3He(c) from

~- . -~ ~ - - ~~

Elemental production rates (1O-Io cm3 STP/(g x Ma)) 38Ar from

0

50 0 55-060 0 60-0 65 0 65-0 70 0 70-0 75 0 75-0 80 0 80-1 00

65 000-004 0 04-0 08 0 08-0 12 0 12-0 15 0 15-0 19 0 19-0 23 0 23-0 27 0 27-0 31 0 31-0 75 0 35-0 38 0 38-0 42 0 42-0 46 0 46 0 50 0 50-0 54 0 54-0 58 0 58-0 62 0 62-0 65 0 65-0 69 0 69-0 73 0 73-1 00

85 000-003 0 03-0 06 0 06-0 09 0 09-0 12 0 12-0 15 0 15-0 18 0 18-0 21 0 21-0 24 0 24-0 26 0 26-0 29 0 29-0 72 0 32-0 35 0 35-0 38 0 38-0 41 0 41-0 44 0 44-0 47 0 47-0 50 0 50-0 5 3 0 53-0 56 0 56-11 59 0 59-0 62 0 62-0 65 0 65-1 00

100 0 00-0 04 0 04-0 08 0 08-0 12 0 12-0 16 0 16-0 20 0 20-0 24 0 24-0 28 0 28-0 32 0 32-0 36 0 36-0 40 0 40-0 44 0 44-0 48 0 48-0 52 0 52-0 56

0 60-0 64 0 64-0 68

0 56-0 60

2 91 2 89 2 92 2 92 2 90 2 94 2 03 2 25 2 36 2 46 2 53 2 60 2 64 2 67 2 74 2 76 2 78 2 78 2 76 2 80 2 78 2 81 2 78 2 79 2 83 2 72 1 90 2 07 2 19 2 29 2 35 2 39 2 43 2 45 2 44 2 44 2 46 2 47 2 46 2 45 2 45 2 48 2 49 2 49 2 47 2 48 2 46 2 50 2 48 I 92 2 14 2 25 2 30 2 31 2 29 2 27 2 26 2 29 2 28 2 22 2 18 2 14 2 I I 2 07 2 05 2 09

Mg ~

157 157 I 5 6 I 5 6 157 1 60 1 1 9 1 3 0 I 3 4 I 3 8 1 40 144 1 4 3 I 44 1 4 6 I 4 7 I 4 8 1 47 145 1 46 1 4 8 1 5 0 I 4 6 1 4 5 147 1 3 8 1 1 0 1 2 0 1 24 I 2 7 1 7 0 I 3 0 131 131 I 3 0 1 3 0 1 29 1 2 8 127 127 126 127 1 2 8 127 1 2 3 1 2 5 1 2 3

21 23 I I 20 24 25 23 21 19 16

I 17 1 1 4 I 10 1 0 8 105 1 0 3 102 0 96 0 98

Al

I 3 0 1 2 9 I 2 8 129 I 2 9 132 114 1 1 9 I 2 0 I 2 1 121 1 2 3 122 I 2 1 122 I 2 3 I 2 2 I 2 1 119 1 20 I I9 I 2 0 I 1 7 1 17 1 19 1 1 3 1 0 6 1 1 0 1 1 1 I 1 2 I 1 2 I I I I 10 1 10 1 0 8 1 0 8 1 06 1 06 1 0 5 104 102 1 0 3 1 0 3 102 0 99 101 0 99 0 98 0 98 I 0 5 I 07 I 07 I 07 104 I 0 1 0 98 0 96 0 95 0 93 0 90 0 88 0 86 0 84 0 82 0 79 0 80

si

1 3 8 137 1 3 6 I 3 7 I 3 6 140 1 24 1 2 8 1 29 I 3 0 130 131 1 3 0 I 29 I 3 0 1 3 0 1 3 0 I 2 8 I 2 6 127 126 1 2 6 1 24 1 2 3 I 2 5 I I9 1 16 1 19 1 19 1 20 1 1 9 1 I8 I 18 I 16 I 14 1 14 113 112 1 I I I 09 1 08 1 0 8 1 0 8 107 105 1 06 1 0 5

04 04 14 16 15 14 I I 07 04 01

101 0 98 0 95 0 93 0 90 0 88 0 86 0 82 0 84

Fe

0 62 0 61 0 60 0 60 0 61 0 63 0 66 0 65 0 64 0 63 0 62 0 61 0 60 0 59 0 59 0 58 0 58 0 56 0 55 0 55 0 55 0 55 0 53 0 52 0 54 0 51 0 61 0 60 0 59 0 58 0 56 0 5 5 0 54 0 53 0 51 0 51 0 50 0 49 0 48 0 47 0 46 0 46 0 45 0 45 0 43 0 44 0 43 0 41 0 42 0 60 0 57 0 54 0 53 0 50 0 48 0 46 0 43 0 43 0 41 0 40 0 38 0 37 0 35 0 35 0 33 0 33

~~

Ni

0 78 0 77 0 76 0 76 0 76 0 79 0 81 0 81 0 79 0 78 0 77 0 77 0 75 0 73 0 73 0 73 0 72 0 71 0 69 0 69 0 68 0 69 0 66 0 65 0 67 0 63 0 76 0 75 0 73 0 72 0 71 0 69 0 67 0 66 0 64 0 63 0 62 0 61 0 60 0 58 0 57 0 57 0 57 0 56 0 54 0 55 0 54 0 52 0 52 0 74 0 71 0 68 0 66 0 63 0 60 0 57 0 54 0 53 0 51 0 50 0 48 0 45 0 44 0 43 0 40 0 41

~

Fe .

4 38 4 34 4 26 4 26 4 34 4 47 4 59 4 59 4 47 4 43 4 34 4 34 4 18 4 10 4 10 4 10 4 04 3 95 3 84 3 82 3 82 384 373 3 63 3 74 3 52 4 26 4 26 4 14 4 06 7 97 3 86 3 77 3 68 3 58 3 54 3 45 339 3 34 3 27 3 19 3 15 3 I5 3 07 2 94 3 00 2 94 2 75 2 88 4 14 398 3 82 3 69 3 5 1 3 33 3 17 3 01 2 94 2 81 2 69 2 58 2 46 2 38 2 32 2 10 2 16

NI

2 24 2 18 2 13 2 15 2 15 2 24 3 12 2 91 2 72 2 59 2 46 2 38 2 27 2 18 2 14 2 09 2 02 197 1 8 8 1 8 6 1 81 I 7 8 171 167 171 1 6 0 2 92 2 70 2 51 2 38 2 24 2 12 2 01 191 I 8 1 177 I 7 1 I 6 5 1 6 0 1 5 3 1 4 5 1 4 3 142 137 I 3 0 I 3 3 I 3 2 122 I 2 3 2 81 2 45 2 20 2 02 185 1 7 0 I 5 8 1 4 5 I 3 8 I 2 9 123 1 1 6 1 09 I 04 0 99 0 90 0 92

Fe Ni

5 93 5 89 5 81 5 81 5 93 5 97 6 09 6 17 5 97 5 93 5 85 5 85 5 68 5 56 5 56 5 56 5 48 5 36 5 24 5 20 5 24 5 28 5 12 4 99 5 I2 4 79 5 68 5 68 5 52 5 44 5 36 5 20 5 07 4 99 4 83 4 79 4 67 4 59 4 51 4 43 4 30 4 34 4 34 4 22 4 04 4 18 4 06 3 81 3 97 5 56 5 32 5 12 4 95 4 71 4 5 1 4 30 4 10 4 02 3 84 3 69 3 55 3 39 3 26 3 24 2 95 3 05

4 06 4 02 3 91 3 96 4 00 4 14 4 87 4 71 4 5 1 4 38 4 26 4 18 4 01 3 88 3 86 3 82 3 73 3 63 3 51 3 47 3 46 3 44 3 33 3 23 3 32 3 I I 4 55 4 38 4 18 4 02 3 87 3 70 3 57 3 44 3 32 3 26 3 16 3 09 3 02 2 93 2 83 2 79 2 79 2 70 2 56 2 63 2 58 2 39 2 49 4 38 4 03 3 76 3 54 3 31 3 1 1 2 93 2 77 2 63 2 48 2 38 2 26 2 15 2 05 I 9 9 1 79 I 8 3

285

286 Leya et al.

TABLE A4 Continued. ~~ ~

Radius Depth (cm) d/R

-

100 0 68-0 72 0 72-0 76 0 76-0 80 0 80-1 00

120 000-0 02 0 02-0 04 0 04-0 06 0 06-0 08 0 08-0 10 0 10-0 12 0 12-0 15 0 15-0 17 0 17-0 19 0 19-0 21 0 21-0 23 0 23-0 25 0 25-0 27 0 27-0 29 0 29-0 31 0 31-0 77 0 33-0 35

0 37-0 40 0 40-0 42 0 42-0 44 0 44-0 46 0 46-0 48 0 48-0 50 0 50-0 52 0 52-0 54 0 54-0 56 0 56-0 58 0 58-0 60 0 60-0 62 0 62-0 65 0 65-0 67 0 67-0 69 0 69-0 71 0 71-0 77 0 77-0 75 0 75-0 77 0 77-0 79 0 19-1 00

0 75-0 77

~

~ ~~~ -~

Elemental production rates cm3 STP/(g x Ma)) Elemental production rates (1O-Io cm3 STP/(g x Ma)) 3He(c) from 36Ar from 3 8 A r from

0

2 03 2 07 I 9 4 1 9 4 1 7 0 1 8 8 1 9 8 2 04 2 10 2 10 2 13 2 16 2 13 2 14 2 12 2 08 2 05 2 03 1 9 9 1 9 9 1 9 6 I 9 5 1 9 3 187 1 8 8 1 8 6 1 x 2 1 8 0 1 7 9 1 7 9 1 7 4 1 7 3 171 171 167 1 6 6 1 6 4 1 5 9 1 6 0 157 I 5 7 1 5 7 1 4 0

Mg

0 96 0 97 0 86 0 93 0 98 1 0 6 1 0 9 112 1 14 I 14 I 1 7 1 I2 112 1 I I 1 1 0 1 0 6 104 I 0 0 0 99 101 0 98 0 96 0 94 0 91 0 91 0 90 0 90 0 89 0 87 0 85 0 84 0 86 0 81 0 82 0 80 0 78 0 78 0 78 0 80 0 80 0 74 0 74 0 64

Al

0 78 0 80 0 73 0 75 0 97 0 99 0 99 0 99 0 99 0 98 0 96 0 95 0 94 0 92 0 91 0 89 0 86 0 83 0 81 0 82 0 80 0 78 0 77 0 74 0 73 0 73 0 71 0 70 0 69 0 69 0 61 0 67 0 66 0 66 0 64 0 63 0 62 0 61 0 62 0 62 0 58 0 58 0 51

SI

0 81 0 83 0 76 0 79 1 06 107 I 0 7 1 06 I 06 I 04 I 03 I 0 1 0 99 0 98 0 91 0 93 0 91 0 88 0 86 0 86 0 84 0 82 0 81 0 78 0 77 0 77 0 75 0 74 0 73 0 12 0 70 0 10 0 69 0 69 0 67 0 65 0 65 0 63 0 65 0 65 0 60 0 61 0 53

-~ ~~ ~

... . ..

Fe

0 32 0 33 0 29 0 31 0 56 0 54 0 52 0 51 0 50 0 48 0 47 0 45 0 44 0 43 0 42 0 40 0 39 0 37 0 36 0 36 0 35 0 34 0 33 0 32 0 31 031 0 30 0 29 0 29 0 29 0 28 0 28 0 27 0 27 0 26 0 26 0 25 0 25 0 25 0 26 0 23 0 23 0 19

~~~

.~

Ni Fe

0 40 2 09 0 41 2 16 0 36 182 0 38 2 04 0 69 789 0 67 3 77 0 65 7 65 0 63 3 56 0 62 3 47 0 60 3 38 0 58 3 26 0 56 3 13 0 55 7 07 0 53 2 97 0 52 2 92 0 50 2 77 0 48 2 66 0 45 2 46 0 44 2 41 0 45 2 44 0 43 2 35 0 42 2 28 0 41 2 20 0 39 2 12 0 39 2 08 0 39 2 08 0 38 2 05 0 37 199 0 36 I 9 3 0 35 I88 0 35 I 8 5 0 35 I 8 8 0 34 I 8 1 0 34 I 8 1 0 37 I 7 7 0 32 170 0 31 166 031 165 0 31 169 0 32 1 7 9 0 28 1 44 0 29 1 5 1 0 24 1 I8

-

Ni

0 86 0 89 0 77 0 84 2 74 2 45 2 26 2 I I I 9 8 I 8 7 I 7 5 I 66 I 5 7 I 4 9 I 4 7 I 3 5 1 2 6 I 16 I 12 I 10 I 06 I 0 1 0 99 0 93 0 91 0 90 0 85 0 81 0 80 0 79 0 76 0 76 0 14 0 13 0 70 0 64 0 62 0 63 0 67 0 69 0 56 0 57 0 46

Fe Ni

2 91 2 98 2 54 2 81 5 16 4 99 4 87 4 79 4 67 4 55 4 38 4 22 4 18 4 04 3 96 7 78 7 62 7 77 3 71 3 77 1 24 7 14 1 08 2 94 2 88 2 87 2 82 2 75 2 68 2 60 2 58 2 63 2 52 2 51 2 44 2 38 2 31 2 34 2 19 2 46 2 07 2 14 I 7 1

1 7 7 1 8 3 1 5 3 I 7 2 4 22 3 91 3 70 3 54 3 39 3 26 3 10 2 96 2 87 2 74 2 67 2 53 2 39 2 20 2 15 2 15 2 07 1 99 1 92 1 8 2 I 7 9 1 7 9 1 7 5 1 6 8 1 6 3 I 6 0 I 5 6 1 5 9 1 5 4 1 5 2 1 4 8 1 3 8 1 3 4 1 3 6 141 1 49 1 1 8 1 2 2 0 95

~

The radioactive precursor '"CI is taken into account for the "Ar data