331
UREG/CR 0452 NL NUREG-50914 " !. I of 11 USERS' MANUAL. FOR THE SSC-l. CODE A.K. AGRAWAL, Principal Investigator Date Published - October 1978 ENGINEERING AND ADVANCED REACTOR SAFETY Dl'il510N DEPARTMENT OF NUCLEAR ENERGY, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973 Prepared for Division of Reactor Safety Research "* - *,13 3 U.S. Nuclear Regulatory Commission * , ' ' | OfBce of Nuclear Regulatory Research * >d4 ie Contract No. EY-76-C-02-0016 ^ 'l ['I , '' a v. . n ' .. 7904oco #

"Users' Manual for SSC-L Code."

Embed Size (px)

Citation preview

UREG/CR 0452

NL NUREG-50914

" !. I of 11

USERS' MANUAL. FOR THE SSC-l. CODE

A.K. AGRAWAL, Principal Investigator

Date Published - October 1978

ENGINEERING AND ADVANCED REACTOR SAFETY Dl'il510N

DEPARTMENT OF NUCLEAR ENERGY, BROOKHAVEN NATIONAL LABORATORY

UPTON, NEW YORK 11973

Prepared forDivision of Reactor Safety Research

"* - *,13 3U.S. Nuclear Regulatory Commission

*

,' '

| OfBce of Nuclear Regulatory Research*

>d4 ie Contract No. EY-76-C-02-0016^

'l ['I ,''

a v. . n'

..

7904oco #

NUREG/CR-0452

BNL-NUREG-50914

Vol. I of ||

R-7

USERS' MANUAL FOR THE SSC-L CODE

A.K. AGRAWAL, Principal Investigator

Contributors

S.F. Carter I.K. Madni

E.G. Cazzoli T.C. Nepsee

J.G. Guppy R. Pyare

R.J. Kennett K.E. St. John

M. Khatib-Rahbar E.S. Srinivcson

W.L. Weaver

Manuscript Completed - August 1978

Date Published - October 1978

ENGINEERING AND ADVANCED REACTOR SAFETY DIVISION

DEPARTMENT OF NUCLEAR ENERGY, BROOKHAVEN NATIONAL LABORATORY

UPTON, NEW YORK 11973

PREPARED FOR THE UNITED STATES NUCLEAR REGULATORY COMMISSION

OFFICE OF NUCLEAR REGULATORY RESEARCH

Washington, D.C. 20555

NRC Fin No. A-3015

NOTICL

This report was prepared as an account of work sponsored by an agency of theUnited States Government. Neither the United States Government nor any agencythereof, or any of their employees, makes any warranty, expressed or implied, orassumes any legalliability or responsibiby for any third party's use, or the results ofsu(h uw, of any information, apparatus, praiuct or prm ess disciised in this report, orrepresents that its use by such third party would not infringe privately awned rights.

ne views expresard in this report are not nn enrily those of the U.S. NuclearRegulatory Comminion.

Available fromU.S. Nuc! car Regulatory Commis= ion

Washington, D.C. 20555

Available fromNational Technical Information Senice

Springfield, Virginia 22161

FOREWORD

As part of the Super System Code (SSC) development project for simulating

thermohydraulic transients in LMFBRs, the SSC-L code was developed at Brook-

haven. This code simulates thennohydraulic transients in loop-type designs.

This report is Volume I of II of the Users' Manual for the SSC-L code as it

existed on September 22, 1978. The second volume of this report will include

description of the Plant Control and Protection Systems.

This work, covered under the budget activity No. 60-19-20-02-1, wa s

performed for the Office of the Assistant Director for Advanced Reactor Safety

Research, Division of Reactor Safety Research, United States Nuclear Regulatory

Commi ssion.

- lii -

TABLE OF CONTENTS

Page

FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES vii...................... . . .

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

11. ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32. CODE DESCRIPTION . . . . . , . . . . . . . . . . . . . . . . .

2.1 Guidelines 3........................

32.2 Code Structure and Data Management . . . . . . . . . . . .

42.3 Symbolic Naming Convention . . . . . . . . . . . . . . . .

2.4 Flow Chart 9........................

3. DATA DICTIONARY 47................. . . . . . .

4. INPUT /0UTPUT DESCRIPTION . . . . . . . . . . . . . . . . . . . 189

4.1 Description of Input ..................189

4.1.1 In-Vessel Data . . 1 94. . . . . . . . . . . . . . . ,

2014.1.2 Sodium Loop Data . . . . . . . . . . . . . . . . . .

4.1.3 Steam Generator Data . . . . . . . . . . . . . . . 207

4.1.4 Opera ti ng Data . . . . . . . . . . . . . . . . . . 219

4.1.5 Material Properties Data . . . . . . . . . . . . . 221

4.1.6 Transient Data . . . . . . . . . . . . . . . . . . 227

4.1.7 Program Control Data . . . . . . . . . . . . . . . . ?32

4.2 Sample Problem 1 . . . . . . . . . . . . . . . . . . . . 238

2384.2.1 Problem Description . . . . . . . . . . . . . . .

. 2394.2.2 List of Input Cards . . . . . . . . . . . . . . .

4.2.3 Data Verification 246. . . . . . . . . . . . . . . .

. 2484.2.4 Steady-State Output . . . . . . . . . . . . . . .

4.2.5 Transient-State Output . 274. . . . . . . . . . . . .

-v-

TABLE OF CONTENTS (Cont)

Page

4.3 Sample Problem 2 . . . . . . . . . . . . . . . . . . . . . 300

4.3.1 Problem Description . . 300. . . . . . . . . . . . . .

4.3.2 List of Input Cards . . . . . . . . . . . . . . . . 300

REFERENCES 306............................

APPENDIX A: CONVERSION FACTORS . . . . . . . . . . . . . . . . . . 307

APPENDIX B: SUBROUTINE CROSS-REFERENCE TABLE . . . . . . . . . . . 308

APPENDIX C: SEGMENTED LOADER DIRECTIVES 321. . . . . . . . . . . . .

- vi -

LIST OF FIGURES

Figure Title Page

1 Three Main Driver Programs of SSC-L. . . . . . . 10

2 MAIN 9R Flow Diagram. . 10.............

3 MAIN 95 Flow Diagram. . 11.............

4 MAIN 9T Flow Diagram. . 12.............

5 INIT9T Flow Diagram. 12..............

6 DRIV 9T Flow Diagram. . 12.............

7 FUELST Flow Diagram. 13..............

8 C00L6T Flow Diagram. . . . 13...........

9 LOOP 1T Flow Diagram. 14..............

10 LOOP 2T Flow Diagram. 14..............

11 DRIVIT Flow Diagram. . . . . . . . . . . . . . . 15

12 STGN3T Flow Diagram. . . . . 16..........

13 Schematic Diagram of a Portion of SteamGenerating System. . . . . . . . . . . . . . . . 212

- vii -

LIST OF TABLES

Table Title Page

I Initial Letters Used to Indicate Type ofQuantity and Units. . . . . . . . . . . . . . . . . 6

II Digits Used to Indicate Major Modules(or Regions). . . . . . . . . . . . .

. . . . . . 7

III Final Letters Used for Routine Names. . . . . . . . 8

IV Special Characters Used'in the InputProcessor . . . . . . . . . . . . . . . . . . . . . 1 91

V Required and Optional Data for SteamGenerator Components. . . . . . . . . . . . . . . . 21 0

VI First Three Data Items of Geometric DataRecords for System of Figure. . . . . . . . . . . . 21 3

VII Key Parameters Used in the Sample Problem 1. . . . 240

- viii -

1. ABSTRACT

A computer code, SSC-L, has been written on the CDC-7600 computing systems.

This code simulates thernichyd aulic transients in the entire liquid metal fast

breeder reactor (LMFBR) plant. Physical models for various processes that may

be encountered in preaccident and transient conditions are described in a sepa-

rate report.III This report provides for all information related to the us-

age of this computer code to the potential users. It, together with the above

mentioned report (BNL-NUREG-50773), provides a complete description of modeling

details and usage instruci. ions with the exception of a generalized Plant Control

and Protection Systems (PCS and PPS). These have also been modeled. These func-

tions are needed to apply SSC-L for simulating operational transients. Volume

II of this report will include modeling details as well as users' instructions

for PCS and PPS.

-1-

2. CODE DESCRIPTION

2.1 Guidelines

A set of practices intended to insure uniform and concise notation as well

as to simplify code conversions and modifications has been maintained throughout

SSC-L. These guidelines were developed so as to adhere to the formal standards

of the American National Standards Institute ( ANSI) and the American Nuclear

Society (ANS). The SSC standards adhere closely to the language specifications

of(2) " USA Standard FORTRAN," ANSI X3.9-1966 and to the recommendations set

forth in the following documents:

ANS STD. 3-1971 " Recommended Programming Practices

to Facilitate the Interchange of

Digital Computer Programs"(3)

ANSI Standard N413-1974 " Guidelines for the Documentation of

Digital Computer Programs"(4)

ANSI Standard X3.5-1968 " Flow Chart Symbols and Their Usage

in Infomation Processing"(6)

Additionally, practices set forth in the preliminary draf t of RDT F 1_4(6)

were considered. Whenever possible, many of the recommendations contained in

this pending standard were implemented into the SSC-L coding.

The system of units used in this advanced code is Systeme International

d' Uni te's (S. I. Units). To aid 4 conversion from/to SI units to engineering

units, a set of conversion factors is provided in Appendix A.

2.2 Code Structure and Data Management

SSC is a deliberately structured ensemble of modules each of which performs

a well-defined set of tasks. Each module is broken down into submodules such

-3-

that each submodule perfonns a single task. Submodules are designed so that

they may be easily replaced or exported from the code. As much as possible, all

data linkage is maintained via labeled common blocks. To assure agreement of

data definitions, all nonexecutable statements defining variables in a given

common block are identical in every routine using that common (exception is made

for a number of well-defined data management routines).

A variable dimensioning (dynamic allocation) scheme is used throughout the

program. Data transfer of dimensional arrays is accomplished by passing a large

container array via labeled common. The starting location and length of each

drray in the container are also passed in labeled common. For greater user

understanding and readability, equivalence statements are employed at the module

and submodule level to maintain the naming convention for variables stored in

the container array (discussed later).This particular scheme of variable dimen-

sioning was selected because of its data transfer efficiency and minimization of

in-core storage.

A symbolic naming scheme was adopted for SSC and used throughout. This was

done to avoid the problems caused by naming ambiguities and degeneracies preva-

lent in other large system codes. Symbolic names are restricted to six or fewer

characters and are used for several different types of entities, specifically:

Variables used by several modules via lOeled common,

Common block names,

Routine names, and

Statement functions.

2.3 Symbolic Naming Convention

The naming convention attempts to c.onvey as much information as possible ab-

-4-

out an entity while maintaining the final label as mnemonic as possible. To

this end, SSC names reserve two (and occasionally three) characters to identify

general entity type and purpose and leave four characters to be assigned

mnemonically. Specifically, the symbolic naming convention is as follows:

- LOCAL VARIABLES (including those shared via scratch COMMON):

May not contain embedded digit; i.e. , digits only at end.

First character should conform to Table I.

- GLOBAL VARIABLES:

First character is a letter specifying the type of quantity,

e.g. , P for pressure. See Table I.

Second character is a digit indicating module which alters the

value (i.e., region of reactor system). See Table II.

Remaining characters (up to four; at least one) are assigned

mnemonically, with no embedded digits (digits may occur

at end).

Examples: N1 LOOP, T5 FUEL, L6 CLAD, L3DNB, Y1 PIPE.

- ROUTINE NAMES:

First two to four characters are mnemonically assigned, except

that second may not be a digit.

Next character is a digit indicating module (or region). See

Table II.

Last character (s): one or two letters, indicating overlay name.

See Table III.

Examples: READ 1R, VRFY7R, MAIN 9S, FUEL 5S, PBAL9S.

-5-

Table I

Initial Letters Used toIndicate Type of Quantity and Units

A Area m2

B Mass kg

C Material properties; constants (See Table 6-2.)

D Density kg/m3

E Energy; enthalpy J; J/kg

f Fractions, factors -

G Mass flow rate per unit area kg/s m2

H Heat Transfer Coefficient W/m2K

P pressure; power N/m2; y

Q Surface heat flux; catch-all W/m2; __

R Reactivity; angular measure Ak/k; radians

S Time s

T Temperature K (not C)

U Velocity, ang !ar velocity or speed m/s ; rpm

V Volume m3

W Mass flow rate kg/s

X' Distance (length or radius) m

Y Distance (width or diameter) m

Z Distance (height or axial) m

I,J,K Used for index values of dimensioned arrays (used in order).

L Contrcl flags, counters, etc.

M Maximum compiled dimensions, other int.eger constraints

N Actual dimensions used (e.g., number of channels used).

-6-

Table II

Digits Used to IndicateMajor Modules (or Regions)

1 Primary loop.

2 Secondary loop.

3 Tertiary loop and steam generator (but not turbine, condenser).

4 Turbine, condenser.

5 Fuel (and blanket) rods.

6 Reactor core coolant volumes.

7 Reactor vessel, structure, etc.

3 Plant protection and control systems.

9 Global or general quantities, not pertaining to a specificmodule or modules (or regions).

NOTE: For entities pertaining to more than one region, the digit usedis determined by whichever module creates or alters it.

For material properties constants (first character is "C"), the digits have aslightly different meaning:

1 Sodium. 2 Sodium vapor.

3 Water or steam. 4 Reactor fuel blanket.

5 Reactor fuel 6 Cladding of fuel rods.

7 Steel, other structuralmaterial.

Also, for material properties constants, the third character is meaningful;for example:

A Coefficient of thermalexpansion.

C Specific heat capacity. K Thermal conductivity.

D Density. N Dynamic viscocity.

E Emissivity. P Pressure.

H Enthalpy. T Temperature.

-7-

Table III

Final Letters Used for Routine Names

R Routines of the data reading and restart segment.

S Routines of the steady-state calculation.

T Routines of the transient time-stepping segment.

U Utility routines used by more than one programsegment.

F Functions other than those calculating materialproperties.

The final letters of material properties functions*

generally correspond to those used for the thirdcharacter for material properties constants (SeeTable

-8-

2.4 Flow Chart

The modularized structure of the SSC-L code lends itself to a natural sub-

division. The code is divided into three sequenti. ally disjointed processes as

shown in Figure 1. These routines are the main driver programs and are called

in successior by the. controller routine. Each performs a unique set of tasks

and is executed only once for any given case. It should be noted that this

program structure is compatible with over-layed loader procedures found on most

large computer systems (e.g., OVERLAY and SEGLOAD). Contained in Appendix B is

a creas reference table listing all the routines in SSC-L. A set of sample

segmented loader directives formulated for the CDC 7600 SEGLOAD utility is given

in Appendix C. The flow chart of each of the drivers, along with its associated

subroutines, is shown in Figures 2 through 12. A brief description of all

subroutines used in SSC-L follows. They are listed alphabetically according to

which of the three main drivers they are called from.

.

-9-

M AIN9R

SSC-L - MAIN 9S

M AIN9T

Figure 1. Three main driver programs of SSC-L.

y REST 9R

READIR GENRD

M READ 3R GENRD,

CRDR9R READ 7R ' GENRD

READ 8R GENRD

M READ 9R GENRD

VRFYlR LI ST l R,

NKEY 3R

hM A!N 9R CHEx9R VRFY3RLIST 3R

VRFY7R LIST 7R

VRFYOR LIST 8R

VRFY9R | LIST 9R

CALCIR

M CALC 3R IN IT 3 R

INIT9R h CALC 7R

CALC 8R

d TYPESRSAVE9R

Figure 2. PMIN9R flow diagram.

- 10 -

M ST MP3S

H SFLO3S

d PIPE 3S INIT3S

d lHXISPBAL9S HX3S'

d STGN3S hd PUMP 3S

d PIPEIS d VOL3Sd HYDRIS

d CVALIS__] RITE 2S

LOO Pl 3 PUM PIS d PIPE 2S

PRESIS d SPHT2S

d RESls H EVAP2S

M -j ENDIS d PUMP 2SA

RITEIS d TANK 2S,

LOOP 2S9 i

d PRES 2SS

d RES2S

d END2S' L 6S

COOL 6S OPTN6S hd CORE 6S

d PRESS

d FRAD5S

d ALFA 5S

FUEL 5S

d GROSS

d TEMP 5S GAMASS

d STEM 5S

d PUT5S ]d TSAV5S

d PRNT5S

SAVE9S,

,PRNT9S

Figure 3. MAIN 9S flow diagram.

- 11 -

,INIT9TM AIN9T b

, DRIV]9

Figure 4. MAIM 9T flow diagram.

' READ 9T H GENRD

|VRFY97 H List 9T

,1NITIT H INIT2T

INIT9T | | PRETIT

| INIT3T H INTF3T

|lNITST

INIT6T

Figure 5. INIT9T flow diagram.

H FUEL 5T

H COOL 6T

H LOOPIT

H LOOP 2T

ORIV9T ' H FLOwli

d 091VIT ' H FLOW 2T

H STGN3T

H SAVE9T

H INTF9T

H PRNT9T

Figure 6. DRIV 9T flow diagram.

- 12 -

d PRMTSTH POW 5T REACST | | APPL 5T

--{ PRESTH VOID 5T

H DOPP5T

M AD5TFUEL 5T | ' ALFAST

H XPAN5T

H COEFST | | GAMAST

Q'AP5TM STEM 5T , ,ALFAST

H PUT5T

H LEAK 5T

H TSAV5T

Figure 7. FUEL 5T flow diagram.

| POW 6T

|LPLNGT

COOL 6T H| COE F6T

| FLOW 6T M CLAD 6T'd{E6] -j DVOGER

| BUBB6T | ,DFUN6T

H OETA6T

8016T

H INTF6T

Figure 8. COOL 6T flow diagram.

- 13 -

H ENDIT |

LOOPIT | |IHXIT

H PIPEIT

Figure 9. LOOPlT flow diagram.

| END 2T

LOOP 2T | |IHXIT

| PIPE 2T

Figure 10. LOOP 2T flow diagram.

- 14 -

d INTGli

H EQlVIT

d EQtV2T

d STORITFUNCIT

PRESIT d GVSLIT

H FLCWIT ' | VESL IT | BREKIT hd VJIT

|PLOSp d TORKIT

' PUMPIT | HEADIT

DRIVIT H | RESIT H CVALIT'

M HYDRITI

DEFNIT H PIPWITi

' EQlVIT

| UPLN6T

,FUNC2T

H FLOW 2T , PRES 2Ti

'BREK2T' | VJIT

,PLOS2T H TORK2T

PUMP 2T' HEAD 2T

H EVAP2T#

H SPHT2TI

PDFG2TH HYDRIT

'DEFN27 H PIPw2T_|

EQiV2T

Figure 11. DRIVIT flow diagram.

- 15 -

PLOP 3T! |PSFW3T| | FEED 3T

--l i x r S 3 T| ,WSTE3T PSTB3T'

--l DPFG3T | |DPAC3T

H DPFT3T ---l FR I C 3 T

H WSTE3T ---l T P M P3 T

--] H X 3 T , ,SFLO3T

--] PST B3h --]STMP3T

H ERR 3T

--jPLOP3T| | PSF W3T| IFEED3T

--]IKFS3T] |WSTE3T --l P ST B 3T

--4WSTE3T

-l F S E G 3 T | |lNFS3T| | FEED 3T

STGN3T H --IPSTB3T

--j PUM P 3T , , WST E 3 T

--] DP F G 3T | I DPAC3T

--{ PI P E 3 T | ,WSTE3T. -] F R I C 3 T

---| T MSG 3T ---l D P F T 3 T H TPMP3T

H ERR 3T ~{HAFB3T| |5RR3T

--l S F L O 3 T ---|H NFC3T

-l xC R T 3 T ----{ H W N B 3 T

-] TUBE 3T, ,HWS3T, ,H WSC 3 T

-lWST E 3 T

-] PLOP 3T, ,PSFW3T , , FEED 3T

--{P S T B 3T

--j HN A 37, ,HNAF3T

-j ACC M3T, |WSTE3T

-lSOLV3T]

Figure 12. STCN3T flow diagram.

- 16 -

Input Processor Subroutines

MAIN 9R

This routine is the main driver for the input-initialization module. It

calls the three input processor submodules (CRDR9R, CHEX9R and INIT9R).

CALC 1R

This routine manipulates certain primary and secondary loop input data and

initializes subsequent loop structures where the user has chosen to default

these values to those entered for the primary loop.

CALC 3R

This routine loads the input data into the data arrays, using the com-

ponent order information generated by VRFY3R.

CALC 7R

This routine sets slice-type cependent arrays and determines normalized ax-

ial and radial power distributions.

CALC 8R

This routine interprets the coded iterative scheme designated by the user

for establishing the initial plant balance.

CHEX9R

This routine calls the verification routines.

- 17 -

CRDR9R

This routine is the primary controller for the processing of initialization

data. It calls the free-format reader routines.

GENRD

This is a general purpose reader routine as developed by the Los Alamos

Scientific Laboratory (7) and modified for current usage.

INIT3R

This routine initializes certain steam generator constants.

INIT9R

This routine calls a series of intermediate data management routines.

LIST 1R - LIST 9R

These routines list the data processed by the corresponding READ routines.

NKEY3R

This routine assists in the decoding of steam generator input.

READ 1R

This routine processes free-format card-image input for the initialization

of the primary and secondary loop modules.

READ 3R

This routine processes free-format card-image input for the initialization

of the steam generator modules.

- 18 -

READ 7R

This routine processes free-format card-image input for the initialization

of the in-vessel nodules.

READ 8R

This routine processes free-format card-image input for the initialization

of the plant balance routine.

READ 9R

This routine processes free-format card-images input for the initialization

of the material property parameters.

REST 9R

This routine reads a program generated file for the re-initialization of

labeled commons in the event of a restart.

EAVE 9R

This routine generates an ordered file for a re-initialization restart.

TYPESR

This routine loads channel-dependent parameters for use in the slice-type-

dependent in-vessel modules.

VRFY1R - VRFY9R

These routines validate the data processed by the corresponding READ

routines against the criteria established in the data dictionary.

- 19 -

Steady-State Subroutines

MAlH9S

This routine is the main driver for the steady-state calculations.

ALFASS

This module calculates the coefficient of thermal expansion for each node

in the fuel slice.

C00L6S

This is the driver module for in-vessel coolant calculations.

CORE 6S

This is the core coolant module. It calculates axial temperatures, en-

thalpy gradients, friction factors, heat transfer coefficients and pressures at

each node in each channel.

CVALIS

This routine computes the steady-state pressure drop over the check valve.

ENDIS

This routine calculates the temperature boundary conditions for the sub-

pipe in the primary loop and, in doing so, accounts for the temperature rise

across pump, as well as IHX plena temperatures at the proper locations.

- 20 -

END2S

This subroutine sets the inlet temperature and mass flow rate boundary con-

ditions for pipe (J+1) in the intermediate coolant loop. Additionally, it

accounts for temperature rise across pump and mass flow rate division due to

branch lines for coolant flow at the steam generator.

EVAP2S

This subroutine calculates the pressure drop or loss coefficient on the

shell side of the evaporator.

FRAD55

This module calculates the average power generation for all radial nodes in

any core channel slice.

FUELSS

This is the driver module for fuel heat conduction calculations. It treats

a fuel slice as the basic computational element, calls all major fuel computa-

tional modules, and controls convergence.

GAMA55

The module calculates the thermal conductivity for fuel and clad nodes for

the slice and heat transfer coefficients for the interfaces.

GROSS

This module sets pointers for restructuring in the slice.

- 21 -

HX35

This routine performs the heat exchanger model calculations. It determines

the pressure drop in the inlet plenum of the heat exchanger, calls the routines

which determine the enthalpy and pressure distributions in the heat transfer

tube, and calculates'the pressure drop in the outlet plenum of the heat

exchanger. In addition, it determines the location of the DNB point and adjusts

the total heat transfer area to produce specified outlet conditions.

HYDR 15

This subroutine solves the steady-state hydraulics momentum equations for

both primary and secondary sides of the IHX.

IHX1S

This routine solves the steady-state energy equations for the IHX. IHX1S

and HYDR 1S are the only interface between the primary and intermediate loop

modules.

LOOPlS

This routine drives the primary loop steady-state calculation. In parti-

cular, it interprets the logical variables in order to select the proper calling

sequence to the various subroutines. This routine also copies the results of

the computations for loop 1 into the arrays for the rest of the loops.

LOOP 2S

This routine drives the intermediate loop steady-state computation. The

rest of the description is the same as for LOOP 1S.

- 22 -

LPLN6S

Coolant lower plenum module. It initializes values of temperature, en-

thalpy, and pressure for the first axial nodal interface of each channel, it

calculate ~ pressures at the botta'. of the core.

OPTN6S

This routine computes the steady-state channel ficw rate distribution or

pressure loss coef ficients, depending on user specified option.

PBAL9S

This routine performs the global thermal balance for the whole plant.

PIPE 15

This routine solves the f.teady-state energy and momentum equations for pipe

J in the primary coolant loop. It is assumed that the pipe diameter is con-

stant, and the pipe wall is in thermal eq. L 's eium with the coolant.

PIPE 2S

This routine solves the steady-state energy and momentum equations for pipe

J in the intermediate coolant loop.

PIPE 35

This routine computes the pressure at the exit of a oipe from the pressure

losses for each node in the pipe and the fitting at the end of the pipe.

- 23 -

PRESS

This module performs the initialization for FUELSS by obtaining data com-

puted by other modules. Amoung others, it sets the NR nodal temperature to

T6C00L(J,K), places the heat transfer coefficient for the slice in a local vari-

able HC00L, initializes tags for restructuring, and calls PREX5S to initialize

nodal distances XI at temperature TSREF.

PRESIS

This subroutine determines the pressures at pipe endpoints around the pri-

mary loop.

PRES 2S

This subroutine determines the pressures at pipe endpoints around the in-

tennediate loop.

PREX5S

This module Initializes nodal distances XI for either equal radius incre-

ments or equal area increments of the fuel slice.

PRNT55

This routine prints steady-state results for the fuel calculations.

PRNT9S

This routine prints a plant-wide steady-state summary of results.

- 24 -

PUMPlS

This routine determines pump pressure rise by matching it with overall load

in the primary circuit. It then sets up the polynomial equation for pump head

and calls R00Tlu to calculate pump operating speed..

PUMP 2S

This subroutine determines pump pressure rise by matching it with overall

load in the intermediate circuit. It then sets up the polynomial equation for

pump head and calls R00110 to calculate pump operating speed.

PUMP 3S

This routine computes either the pump outlet pressure at rated pump speed

or the pump speed if the pump outlet pressure is specified.

PUTSS

This module moves the calculated steady-state values for the slice into

storage locations.

RESIS

This routine computes the height of cooolant in the primary pump tank, and

the mass of cover gas above the coolant level.

RES2S

This routine computes the height of coolant in the intennediate pump tank,

and the mass of cover gas above the coolant level.

RITE 15

This routine prints the primary loop steady-state solution.

- 25 -

RITE 2S

This routine prints the secondary loop steady-state solution.

SAVE9S

This routine creates an ordered file containing information necessary to

re-initialize all common blocks to computed steady-state values.

SFLO3S

This routine determines the sodium flow rate per tube.

SPHT2S

This subroutine calculates the pressure drop or loss coefficient on the

shell side of the superheater.

STEMSS

This module calculates the temperature of the fuel rod structure and fis-

sion gas plenum for steady-state.

STGN3S

This routine is the main driver for the steam generator calculations. In

particular, it calls the various subroutines in the order in which the respec-

tive modules appear in the steam generator loops and copies the results of the

computation for the intact loop into the arrays representing the damaged loop.

STMP3S

This routine determines the sodium inlet temperature.

- 26 -

TANK 2S

This subroutine computes the pressure in the loop at the location of the

surge tank, and further, calculates the mass of gas in the surge tank.

TEMPSS

This module calculates the steady-state radial temperature distribution in

the rod and cladding for any slice.

TSAV5S

This routine determines the average temperature in each rod slice (except

fission gas plenum slices).

UPLN6S

This upper plenum coolant module calculates the upper plenum temperatures,

the exit enthalpy, outlet, and top of core pressures and finds pressure loss

f actors for each channel .

VOL3S

This routine calculates the mixed mean enthalpy in a volume based on the

liquid level in the volume and the pressure specified in the volume.

XPAN5S

This module adjusts radii due to thennal expansion for each node in the

fuel slice.

- 27 -

Transient Subroutines

MAIN 9T

This is the overall driver routine for the transient calculations.

ACCM3T

This routine calculates coefficients for accumulators, eliminates flow

segment terms from accumulator equations, and advances the accumulator varia-

bles.

ALFAST

This module calculates coefficient of thermal expansion for each node.

APPLST

This module calculates the applied reactivity contributions (e.g., those

due to scram and/or control rods) during the transient.

BETA 6T

This program calculates plenum and bubble critical pressure ratio between

fission gas.

80lL6T

This routine calculates liquid and bubble temperatures in upper and lower

slugs.

BREK1T

This routine computes pressures at eventual break in primary loop.

- 28 -

BREK2T

This routine computes pressures at eventual break in intermediate loop.

BUBB6T

This is the main driver for the sodium boiling / fission gas release cal-

culations.

CLAD 6T

This program provides cladding boundary conditions for sodium boiling /fis-

sion gas release calculations.

COEFST

This module calculates appropriate coefficients for the transient temper-

ature calculations of fuel rod.

COEF6T

This routine calculates coefficients for the various pressure loss terms

used in F10W6T.

C00L6T

This module is the driver for the transient coolant claculations. It pro-

vides initial conditions; determines step size; and then employs several sub-

modules to calculate temperature, pressure, enthalpy, and mass flow rate of the

coolant in all axial nodes of all channels. It then stores values for fuel cal-

cul ations.

- 29 -

CORE 6T

This module calculates the enthalpy, temperature, and pressure of liquid

sodium for single-phase flow at all axial nodes of all channels. it also acts

as a subdriver 'or two-phase flow and directs calculations to the bubble model.

CVALIT

This routine computes the pressure loss across the check valve.

DEFN1T

This routine defines pipe flow rates, and input and output pump flow rates

for primary l oup.

DEFN2T

This routine defines pipe flow rates, and input and output pump flow rates

for intermediate loop.

DFUN6T

This program calculates derivatives for DV0GER during sodium boiling /

fission gas release calculations.

DOPPST

This module calculates the reactivity feedback due to the Doppler effect.

DPAC3T

This determines the coefficients of momentum flux pressure loss in control

volume.

- 30 -

DPFG3T

This determines coefficients of total flow resistance in control volume.

DPFT3T

This routine detennines coefficients of pressure drop in a fitting using

form loss coef ficient.

DRIVIT

This routine is the driver for heat transport system transient hydraulics.

DRIV 9T

This routine is the driver routine for the transient calculations. It also

handles the overall timestep control.

DV0GER

This is an ISML routine (0 which integrates a system of differential

equations according to Gear's method.

ENDIT

This rotitine sets transient thermal boundary conditions from one pipe to

the next in primary loop.

END2T

This routine sets transient thermal boundary conditions from one pipe to

the next in intennediate loop.

- 31 -

EQIVIT

This routine equivalences the names of primary loop variables and their

time derivatives in terms of names used in the integrating subroutine.

EQIV2T

This routine equivalences the names of intennediate loop variables and

their time derivatives in terms of names used in the integrating subroutine.

ERR 3T

This writes error message.

EVAP2T

This routine computes pressure loss across the shell side of evaporator.

FEED 3T

This routine determines coef ficients for feedwater flow rate.

FLOW 1T

This routine sets proper calling sequence to primary 1000 hydraulic compu-

tation submodules.

FLOW 2T

This routine sets proper calling sequence to intermediate loop hydraulic

computation submodules.

FLOW 6T

This module simulates the flow redistribution model. It calculates the

mass flow rate in each channel and bypass channel.

- 32 -

FRAD5T

This module calculates average power for all radial nodes in any rod slice.

It also calculates the power generation multiplier to be used later in calcu-

lating the transient volumetric power generation.

FRIC3T

This determines friction factor as function of Reynolds number and surface

roughness.

FSEG3T

This is a main driver for flow segment calculations.

FUELST

This module ii the driver for the fuel rod and structure calculations. By

calling series of modules in succession; it calculates, quantities such as tem-

perature and radii of the fuel, cladding, and structure nodes.

FUNC1T

This routine calculates t ae time derivatives of differential equations

(other than pump and reservoir) for primary loop hydraulics.

FUNC2T

This routine calculates the time derivatives of differential equations

(other than pump and reservoir) for intermediate loop hydraulics.

- 33 -

GAttA5T

This module calculates the thermal conductivity and emissivity for fuel and

clad nodes and also computes the heat transfer coefficient for gaseous mixtures

in the gap.

GROWST

This module calculates the reactivity feedback due to axial expansion.

GVSL1T

This routine computes coolant level in guard vessel, pressure external to

break, and time derivative for accumulated volume of coolant in the guard

vessel.

HEAD 1T

This routine computes head of primary pumps and defines its operational re-

gion.

HEAD 2T

This routine computes head of intermediate pumps and defines its opera-

tional region.

HNA3T

This routine computes overall sodium side heat transfer coefficient.

HNAF3T

This routine computes sodium side surface heat transfer coefficient.

- 34 -

HWFB3T

This routine determines heat transfer coefficient in film boiling.

HWFC3T

This routine determines heat transfer coefficient in forced convection to

liquid.

HWN33T

This routine determines heat transfer coefficient in nucleate boiling of

sub-cooled or saturated water.

HWS3T

This routine is the main driver for overall heat transfer coefficient cal-

culation on water side of heat exchanger.

HWSC3T

This determines heat transfer coefficient in forced convection to super-

heated steam.

HX3T

This determines coefficients for energy and flow equation for water side of

heat exchanger and advances sodium temperatures.

HYDRIT

This routine computes transient hydraulics in IHX.

IHX1T

This routine solves transient energy equations in the IHX.

- 35 -

IKFS3T

This routine determines pointers for all arrays needed in the flow segment

calculations.

INIB1T

This routine calculates cladding temperature and cladding inside and out-

side radii for the new nodalization required by BUBB6T.

INIT1T

This routine sets variables needed for the first call to the primary loop

hydraulic integration scheme.

INIT2T

This routine sets variables needed for the first call to the secondary loop

hydraulic integrating routine.

INIT3T

This routine initializes transient variables used by the steam generator

modul es.

INIT5T

This routine initializes variables used in the fuel and reactivity calcu-

lations.

INIT6T

This routine initiates variables used by the in-vessel coolant hydraulics

modules.

- 36 -

INIT9T

This routine is the intermediate controller for the transient initializa-

tion routines.

INFS3T

This determines coefficients of inlet enthalpy and flow rate of a flow seg-

ment in terms of accumulator conditions.

INTF3T

This routine interf aces the required boundary conditions between all inter-

mediate sodium loops and all steam generator heat exchangers.

INTF6T

This program calculates temperatures at upper and lower sodium vapor / liquid

interface during sodium boiling / fission gas release calculations.

INTF9T

This routine checks the adequacy of all extrapolated interface conditions.

INTGIT

This routine advances the hydraulic equations using the predictor-corrector

method of the Adams type.

LEAKST

This routine tests for cladding rupture due to fission gas pressure for

each axial fuel slice in current channel. Cladding rupture conditions exists if

difference between fission gas pressure and coolant pressure exceeds critical

- 37 -

value defined by cladding dimensions and material yield point for the calcula-

ted cladding temperature.

LIST 9T

This routine lists the data processed by READ 9T.-

LOOPlT

This routine is the main driver for transient thermal computations in prim-

a ry l oop.

LOOP 2T

This routine is the main driver for transient thermal computations in in-

termediate loop.

LPLN6T

This module performs transient lower plenum calculations. It extrapolates

boundary conditions. It terminates its procedure by calculating coolant and

metal temperatures and pressures at the bottom of the core.

PDC \ST

This module handles the advancement in time of the decay heat power genera-

tion.

PDFGIT

This routine sets the logic to compute pressure losses across different

elements of primary loops.

- 38 -

PDFG2T

This routine sets the logic to compute pressure losses across different

elements of intermediate loops.

PIPE 1T

This routine solves transient energy equations in the primary loop piping.

PIPE 2T

This routine solves transient energy equations in the intermediate loop

piping.

PIPE 3T

This routine determines coefficients for energy and flow equations for a

pipe.

PIPWIT

This routine computes pressure losses in pipe sections in primary loops.

PIPW2T

This routine computes pressure losses in pipe sections in intermediate

loops.

PLOP 3T

This routine determines reference pressure for a flow segment.

PLOSIT

This routine computes pressure losses in appropriate sections of primary

loop from the losses in individual components.

- 39 -

PLOS2T

This routine computes pressure losses in appropriate sections of inter-

mediate loop from the losses in individual components.

POW 5T

This module serves as the driver for the rod transient fission power gen-

eration calculations.

POW 6T

This routine calculates power to coolant for use in C00L6T.

PREST

This module transfers the temperature from storage arrays into local

scratch arrays for the particular slice in question, at the start of each time-

step.

PRES 1T

This routine sets inlet and outlet pressures of uniform mass flow rate

sections in primary loops.

PRES 2T

This routine sets inlet and outlet pressures of uniform mass flow rate

sections in intermediate loops.

PRETIT

This routine initializes the primary and secondary loop variables for the

thermal calculations.

- 40 -

PRMTST

This module handles the advancement in time of the fission power genera-

tion.

PRNT9T

This routine is the main printing routine for the transient.

P30P6T

This rcutine calculates all properties used in the in-vessel coolant energy

and fluid dynamics subroutines.

PSFW3T

This determines reference pressure for a flow segment.

PSTB3T

This determines turbine inlet pressure.

PUMPlT

This routine computes primary pump variables and time derivative for pump

speed.

PUMP 2T

This routine computes intennediate pump variables and time derivative for

pump speed.

PUMP 3T

This determines coefficients for energy id flow equations for a pump.

- 41 -

PUTST

At the time this module is invoked, all formal calculations of the fuel and

clad and structure have been completed for that timestep and for the given axial

node. This module then moves all temperatures and radii so far calculated from

local scratch variables into storage arrays for subsequent timestepc.

REACST

This module initiates calls to other modules to obtain the various applied

and feedback reactivity contributions.

READ 9T

This routine reads free-format card-image input for the initialization of

transient parameters.

RESIT

This routine computes variables and time derivatives for level in primary

pump reservoir.

RES2T

This routine computes variables and time derivatives for level in inter-

mediate pump reservoir.

SAVE9T

This routine creates an ordered file containing information necessary to

re-initialize all common blocks to a given master clock solution.

- 42 -

SFLO3T

This routine determines mass flow rate from input boundary conditions.

50LV3T

This routine solves accumulator equations by Gaussian elimination with

pivoting..

SPHT2T

This routine computes pressure loss across the shell side of superheater.

STEM 5T

This module calculates the temperature of the structure and the fission gas

plenum at any axial slice.

STGN3T

This is the main driver for the steam generator calculation. It calls

routines which computes accumulator conditions, backsubstitutes accumulator con-

ditions to advance flow segment variables, and determines the maximum char,ge in

water side variables during this step.

STMP3T

This routine determines sodium temperature at heat exchanger inlet from

boundary conditions.

STORIT

This routine stores the intermediate updated values of flow rate.

- 43 -

TANK 2T

This routine computes pressures and time derivative for level in surge tank.

TEMP 5T

This module calculates the radial temperatures for rod and cladding of any

axial slice for the new timestep.

TFUN5T

in this module, the previous temperature of the fuel and cladding are extra-

polated to the present time to evaluate material properties.

TMSG3T

This calculates timestep in the steam generating system.

TORK1T

This routine computes hydraulic and friction torques for primary pumps.

TORK2T

This routine computes hydraulic and friction torques for intermediate pumps.

TPMP3T

This determines two-phase friction multiplier on the water / steam side of the

steam generator.

TSAV5T

This module calculates certain fuel slice dependent quantities required in

GROW 5T, DOPP5T, and VOIDST.

- 44 -

_

TUBE 3T

This calculates surface heat fluxes and tube wall temperatures in heat ex-

changer.

UPLN6T

This routine updates the time derivatives for: sodium level; temperature of

sodium in two mixing zones; temperature of cover gas; and temperatures of the

inner structure, thermal liner, and the vessel closure head. It terminates by

calculating the pressure at the vessel outlet.

VGSL1T

This routine retrieves information to interface with reactor vessel and sets

calling sequence to compute pressures at eventual break in primary loops.

VJ1T

This routine determines velocity of jet out of a pipe break.

V0105T

This module calculates the reactivity feedback due to sodium voiding.

VRFY9T

This routine validates the data processed by the READ 9T routine against the

criteria established in the data dictinary.

WSTE3T

This determines water properties as function of enthalpy and pressure.

- 45 -

XCRT3T

This routine determines water quality at DNB point as function of pressure,

and flow rate.

XPANST

This module recalculates the radii of the fuel and cladding, necessary be-

cause of the thermal expansion of the radial nodes. Two methods are employed in

calculating radii, equal area increment, and equal radii increment. calculating

radii; equal area increment, and equal radii increment.

- 46 -

.

3333!33 3

33333

11

3 33 3

333333

I CCCODDO AA TTTTTTYT AAD C A A TT A A

D D D A A TT A A

D C A A TT A A

D D AAAAAAAA TT AAAAAAAAg

C C A A TT A A

N A A TT A A

00C0000 1111111! CCCCCC TTTTTTTT !!!!!!Il OOOOCO NN N AA - Y Y

D D II C C TT 11 O 00 NN N A A R R Y Y

D D 11 C TT II O OO N N N A A R R Y Y

D C 11 C 7T il C O C N N N A A AWAR9R YY

D D I| C TT II O O O N NN AAAAAAAA A R YY

D C !! C C TT 11 C0 0 N NN A A R R YY

COCOCCD I1111111 CCCCCC TT 111Itill OCCOOC N N A A R R YY

_ _ _ _ . .

CU D EP 5Y 5TE" CCDE

CC"FU'EA CCOE FCG PEACTCA S AFE * r ANa 15!S OFm

%ELu;u,CAAy,[C TRAN5'iNTS IN T-E E NT I REL|Cu|0 META. FAST ELE i _.E P AEACTCW i t "F E d ir;AN'

LEkE CFEC SY:THE COCE CE LEuCP"E *,' ANO iE 4 i r ! C A T | CN OR0t'PENG:NE ER! NG AND AD ANCE D PE AC TCR C ArE T Y Dl.!SIONEACCuA.E N A 7 | P' A LAPCRA7CPV.FCR THE U. S ' 'C J A R LE M ATCev CCNI!3!ON.( NC E P CCNTAACT NC. EY N -C-C2-CC16

I

FOR r L A T HE R Dt' T A I L S . PErER T o T sE F OL L N ! NG DOC U"E ? T A T I ON :

1 11) AN ACV ANCE O T HE R'"OH Y DW AJL I C 51 M' !L A T I CN CCOE FCo T 9 ANS IE N15I N L "r Fa 's t 55C-L CODE I

rf L - QGF $L 77 3 IFEPPCARf 19,'81

( c' : FRE AC C I DE N T "ODELIN3 CF AN L MF ha PL AN T FOR CC-L6% -NuPE G- SCE C2 ( CE C E MUE H 1976)

(31 SSC AD's ANC E D THEP''0HY DP A 'L ! C T G ANG ; E.N T CODE r C9 L W i+ 5CU AR T E RL Y PEPORTS:

EN'- 50,07

ENL -NU* E G - S C 5 C 2BNL-NUPEG- SC527Ei-NUPEG- 5C5* 3BNL-NUPEG- EL637EN. -NUPE G- 5:02wBNL -t(JPE G - 5C f61E'L - NJFE G- SCF 6 3E<NL -NUPE G - 50737fat -NuGE G- 50785BNL-NUREG- 5C820

. . _ . _ . _ _ _ _ _ _ . . . . _ _ _ _ ... . _ _ _ _ _ . . . _.. . .

s : D 1 N G " C N E ! N 5' 's

- - - - . - . - - - - - - - .

I'. CEVELOP:NG A LA%E SYSTE" . ODE. i ' 15 AOviSAELE : E .E N r.E CEC 5 A;- r J

TO DEwELCP FCOGAA""iNG STANCAR 5 A'.D C N'.E NT I ON5 TO '' i PE L'!rCRMANO CONCISE NOTATICN. SIN E AN LNCERST AND:% Cr SUCH C CN.E N! ! CNS 'SALSO U>EFUL 'O THOSE L A TER PdA IN' A IN NG 09 *aCDirYIN TH LOCE, MY ALE

015CUSSEO BELCW. ALC?G WI TH CTHEA TA.' TORS ArrEC';NG PCRTABIL!Tv.

....................... ............................ ..................

GL C2 AL GUANT i T IES, C AT A CErINITICNS:------ ---------- ---- ...--------

SSC CCOING STANCAkOS PEOUIRE THAT ALL NON-L OC AL OU A N T I T I E S EECEF l *E O IN A CENTRAL CATA CICTIONA4Y. PEFOPE DEING INTRODUCED. THISINSUPES THAT COCFPS USING THESE OuANTITIES USE T HE M W I T H T HE S A"ECfFINITION. AN ABBREVIATED NERSION OF THESE CATA DICTICNARY E NTR IESLPPEARS IN THE BLCCK CATA SUBPROGPAM DEFINING EACH L ADE LL E D C C""ONAND CPTIGNALLY E L SE eHE PE .

COM*"ON EiOCK5 :g--_-- _-----

>@ SEPARATE LABELLEO COM"ON BLOCnS CONTAIN CATA PELEVANT TO SrEC!rlC

PEGIONS Or THE REAC'OR SYSTEM AND/OR TO P ART IO JL AR C AL CLL A ',10N ALgMODULES. EXCEPT F OR POU T INES C AmLED FROM SE V E R AL PLACES. AL L l ** ADEIS VIA THESE CC* MONS. TO ASSURE AOPE EME NT OF CATA DE F I N I T I CN . ALLNONEXECUT ABLE ST ATEMENTS DEF IN]NG V ARI ABLLS IN A GlkEN CLW UN MUST EEIDENTICAL IN E V ER Y ROUTINE USING THAT CCF"ON.

SCPATCH AAEAS. FOR DAT A LOCAL TO A GPECIFIC **COULE BUT NOT S A '. E DBETWEEN C ALLS TO THAT MODULE ARE CEF INEO AT THE END OF BL A% C C"C*.

................................................................. 3. ..

CODING PRACTICES. STATE *ENT SEJUENCES. CO* ENTE--.... ---------- .. .----- ---------- ------..

FCR PEACABILITY (AND CONCISENE551 CEPTAIN Ul!FDLM CCOING PAACT!CESHAVE GEER. EST ABL I SHEC . THESE ARE M"fE MORE F CPMALL Y DESCRIEMD INPPOGRAM WR1TEUPS AND CTHE R DoctNE NT A T ! DN (55C.1 AND A"O 16.9.71

- CODE 15 H I GHL Y MODUL AP l ZE O . MOS T POU T I NE S C ONT A I N F EW[ H 'HAN 100EXECUT ABLE ST A TEME NTS. LtGTPUC T URED GO TO ST A TE HENT S ARE A' C : OE D

- FOLLOWING THE HE ADER CARD Or EACH SUPPROGRAM 15 A C O*ME N T CARDSTATING THE PPOCRAM VERSION AND D A T E . F OLL CnED G Y COM"L NT CARDSG!v!NG THE CAT [, AUTHO4, AND PUW OSE OF EACH COO !NG CH ANGE .

- CCDE IS PAA AME TET,! ZED. (USE OF P AR Aa*E TER S T A TEtaENT IS ANTICIPATED.r

- ALL SPEC IF I C A T ! ON S T A TE"ENTS Ff R T A ; N N3 'O ?J A SIWE LA6E L LE DCO""CN Ar.E GR3UPEC TCot THER TIN A C C*CE C w - EEE L.POA'E, BELO 3SCRATCH C TA AREAS ARE CEFINED AT T"E E NO Cf PL A% CC""ONCC""E N T S DE SC A I B I NG C A T A IN L ABELLED CL%S APCE AR iN PLOCK CATA.

- CCOE S T RUC TLFE IS CESCPISEC PFECEEOl%G r %T E*ECUT ABLE ST ATE"ENT- S T ATE 4NT to"E{RS CO% E Y INFCR"AT!ON 100UT CCCE STPUCTURE.- F CE" A T ST ATE"ENTS USUALLY FOLLOW T{ l/C STATE"ENT USING T"E".

..... .................................................................

SYNOL IC NAM;NG COMENT !CN -- SUERRCORA"$:________ ______ __________

SUBROUTINE NA"ES CCNS!ST OF LP TO w ARBITRARY C-ARAC'ERS r1 LogoBf A DIGli FROM T ABL E II |NDICATING A PCRTICN CF inE bE AC T OR SYS'EM,FOLLOWED BY A LETTER FROM TABLE IV. INO! CAT |NG T{ TYPE Of R''u T ; NE -FUNC T I ONS ARE N A"ED S I M I L AU . E xCEP T THAT FCR "A 'ER ! A- FRCPE R T I E b .THE FINAL LETTER 15 FROM TABLE I:I.

SYMUCLIC NAMING CONiENTIONS - GLOGAL iARIAPLES:________ ______ ___________

GLCGAL VARI A9LES 4 IN L ABELLED COmCNSI HAVE UNI OL-E NAT S , Or A FCcM

g NOT USED FOR ANY CTHER NAME S. EXCEPT FCR MODUL E S WH I C H REAO CATA.EQU!v ALENCE ST ATE"ENTS ARE NE bER USED TO CPE ATE DEGENEP ATE NAMES .

* LOCAL VARIABLES AND OTHER ENT I T IES SHOUL D NOT HA VE SUCH N AME S ;O ! .E . DO NOT USE A CIGli AS E I THER SECONO OR NE x T-TO-L AST CHARACTER.I

SYMBOLIC NA"CS OF GLOBAL VAR! ABLES FIN LABELLED CO" MONS) DEGIN WITHA LE T TER WHICH INOICATES TYPE Dr GUANTITY. FOLLOR D BY A DIGIT WHICHSPECIFIES A REGICN OF THE REACTOR SYSTEM. IFOR INST ANCE . PRESEL@ESDEGIN WITH LETTER P: V ALUES FCR FUEL RCOS HAiE THE DIGli 5 AS SECC*(CHAAACTER. SEE TABLES 1. ANO 11.1 MA TE R I AL P90 PERT IES P AR AME TERS( BE G IN WI TH Cl ALSO USE A LE T TER F ROM TA9LE !!!. AS TH!RC CHARACTER.

TABLE I. INI T I AL LET TERS 70 INDICA TE T YPE Cr QUANT I TY (St UNITSI._______

A APEA M28 MASS KG- "':ERIAL PROPERTIES: CONSTANTS IEEE T ABLE 11-0)-

C CENSITY KU / M3E ENERGY: ENTHALPY JOULE J / KGF FACTORS: FRACTIONS -

G MASS FLCW RATE PER UNI T ARE A KG / t M2*5 )H HEAT TRANSFER COEFF ICIENT W / < M2*k iP PRESSUPE: POWER P ASC AL WATTSQ SURFACE HEAT FLUX: CATCH-ALL W / M2 --

R REACTIV!TY: ANGU,_ AR ME ASURE DELTA-k/K RAO!ANS5 TIME SECONDT TEMPERATUPE KELVIN INGT C.)U VELOCITY M / 5V VOLUME M**3W MASS FLOW RATE AG e Sx OISTANCE (LENGTH OR RADIUS) MY DISTANCE (WlCTH OR O!A"ETER) M

Z DISTANCE tHEIGHT CR Ax!AL1 M

1.J.< UEED FOR INCEx VALLES Or DIMENSIONED ARRnS ( USE D I N ORDE R ) ,L CONT ROL F L AGS . CCuN'7 75. E TC .M MAtlMUM COMPILED G. .NSIONS. OTHER INTEGER CONSTRAINTS.N ACTUA- DIMENSICNS UsED (E.G. NvMOER Or CHANNELS USED).

TABLE Il-A. DIGliS USED TO INDICATE MAJOR REGIONS CF THE REACTOR SYS__________

1 FRIMARY LCOP (NCT INCLUDING lHX NOP VESSEL).2 SECJNDARf LOOP. INCLUDING IHX (BUT NOT STEAM GENERATOR).3 TERTIARY LCOP AND STEAM GENERATOR IBUT NOT TURBINE. CONDENSER)4 TJRB1NE. CONDENSER,5 FUEL AND BL ANk E T RODS .6 RE AC TOR CORE COOL ANT VOLUMES.7 REACTCR VESSEL. PLENA. STRUCTURE. ETC.8 - (NOT YET ASS I GNE D ) -9 GLOBAL OR GE NE R A L VALUES. NOT PERTAINING TO A SPECIFIC REGION.O USED FOR DATA T ABLES ONLY

NOTE: FOR ENTITIES PERTAINING TO MORE THAN ONE REGION. THE DIGITUSED 15 DETERMINED BY WHICHE'vER MODULE CRE ATES OR AL TERS I T .

TABLE 11-8. FOR MATERI AL PROPERTIES. DIGITS HAVE DIFFERENT ME ANING:I __________

Ln 1 SODIUM LIOUID 2 SODIUM VAPORbd 3 WATER OR STEAM. 4 RE ACTOR FUEL 8L ANKE T .

S PEACTOR FUEL. 6 CLADDING OF FUEL RODS.I 7 STEEL. OTHER STRUCTURAL . 8 GAS (REACTOR COVER GAS. ETC

9 CONSTANTS: C9Pl.3.14

TABLE 111. LETTERS USED FOR MATERIAL PROPEPTIES:--------- (AS 3RD CHAR. OF V ARI ABLE . OR F I NAL LE T TER OF F UNC T I ON. )

A COEFFICIENT OF THERMAL EXPANSION.C SPECIFIC HEAT CAPACITY. D DENSITY.E EMISSIVITY. F FACTORS.H HEAT TRANSFER COEFF. K THERMAL CONDUCT!vlTY.N DYNAMIC VISCOSITY.

TABLE IV. F INAL LET TERS USED FOR ROUT INE NAMES:_________

R SUBROUTINES OF THE DAT A RE AOlNG AND REST ART OVERL AY.S SUBROUTINES OF THE STE ADY-ST ATE C ALCUL AT I ON OVERL AY.T SUBROUTINES OF THE TRANSIENT TIME-STEPPING OVERLAY.U UTILITY ROUTINES USED BY VARIOUS OVERL AYS, RESIDENT IN ROOT.

F FUNCTIONS OTHER THAN THOSE CALCULATING MATERIAL PROPERTIES.SEE T ABLE 11! FOR FINAL LET TERS OF MATERI AL PROPERTIES FUNCTIO*

.......................................................................

F OR T R AN TYPE DErlNITION UNITS LAEELLED REF E RE NCED DEFI.ED INPUT REC.NAME C CWN

Al8PEV A BREA< ALEA IN PPIMAR) RIPE M2 VD9', BREKl! READ 9T T-1003'. RC Y 9 7RiTIT

LIST 9T

AIGAP A y-SECTICNAL AREA BE TWEEN BROAEN PRIMARY M2 VD9V LIST 97 READ 97 T-!CO3PIPE AND GUARO VESSELICR PIPE) BREvlT

WRITlivRFY97

AllHX S ^> APEA ON PRl"ARY SIDE OF IHY M2 DATXIV IHulT C ALC I R N-100NYDR15 READIRLISTlRX11TIHX15C AL C IRHYDRIT

A I P l PE A x-SECTIONAL ARE A FOR FLOW THROUGH EACH P M2 VD9V RSETIT RSETITIPE OF EACH PRIMARf LOOP Xili CALCIR

PIPEITPRE T I T

| HYDRISPIPWIT

Ln ORE K I TbJ P I PE 15g C ALC l R

HYDRifRITEIS

AIRES S X-SL'TIONAL AREA 0F PRIMARY PUMP TANK M2 DATA!V RITE 15 READIR N-ll2LISTlRPESISRESIT

AITHEL S HEAT TRANSFER AREA OF IHX SHELL M2 A!TCV LISTIR READlR N-100PRETIT

AlWAuL A PRIMARr PIPE WALL HEAT TRANSFER AREA PER M2 VD9V PIPEli PRETITCONTROL VOLUME

FORTRAN TYPE CCFINITICN UNITS L ABELLED ''E F E RE NCE D der l f.E D INPUT REC.NAME CCMMCN

A2BREK A BREAK AREA IN SECONDARY PIPE M2 VD9V WR1T27 REA09T T-1231VRry9T

LIST 9TBREA2T

A2DOWN 5 X-SECTIONAL AREA FOR FLOW THROUGH CENTRA M2 OAT 12V RITEli CALCIRL DOWNCOMEA IN IH4 Hv0RIS

HYDRlT

A2EV 5 FLOW AREA THROUGH SHELL SIDE OF EVAPORAT M2 DATE2V RITE 25 C AL C I ROR EVApps

RITEliEVAP2T

A2 GAP A X-5ECTIONAL AREA BETWEEN BROKEN SECONDAR M2 VD9V DREA2T READqi T-1201Y PIPE AND GUARD PIPEIIF ANY) WRIT 2T

VRFY9TLIST 9T

A2|HX 5 FLOW AREA THROUGH IHX TUBE BUNCLE M2 DAT12V IHXIT CALCIRIHX15

g PRETITRITEIT

(1t HYDR 15W HYDR 1T

I

A2tNHX S X-SECTIONAL AREA OF IHX SECONDARY INLET M2 DAT12V HYDRIS CALCIRPIPE HYDR 1i

A20UHX S X-SECTIONAL AREA OF IHX SECONDARY OUTLET M2 DAT12V HYDRIS C AL C I RPipe HYDRIT

FCATRAN TfPE CEFINITION N TS LAEELtED REFERENCEO CEF:'r IN"UT REC.NAME c;ycq

A2P!PE A x -SE C T l cr4 AL AREA FOR FLCW TW OLGM EAC4 D M2 09v PRETIT RSET2TIPE CE E ACH I N T E R*E C I A T E L OOP

.

CALCIRPIPE 2TR1TE2SEVAP2TP!PW2TSPHT2SRSET2TBREK2TEVAP2SPIPE 2SSPHT2TCALCIRR1TElT

A2RE S S X-SECTIONAL APEA CE INTER'TCIATE PUMP TA M2 OATA2V PES 2T READlR N-122Nk RITE 2$

RES25LIST 1R

A2SH S FLOW AREA T AOUGH SHELL 5IDE Or SUPEPHEA M2 DATS2V SPHT2T C AL C 1RTER R TE25

RITElTSFH T 25

I(n A2 TANK S X-SECTIONAL AREA "E SURGE TANK M2 DATA 2V RITE 25 RE ADIR N-122D TANK 2T

g LISTIRTANK 25

A2 WALL A SECONDARY PlPE WALL HEAT TRANSFER AREA P M2 VD9V PlPE2T PfE T I TER CONTROL VOLUME

A3CONV 5 REL AT IVE AREA CONVERGENCE CRITERlON FOR - DAT13V TUBE 3T CALC 3R S-1002HE AT E XCHANGER ARE A CPT I ON

A3NA A TOTAL SODIUM FLOW AREA IN HEAT EXCHANGER M2 DATG3V HX35 INIT3R $-301TUBE BUNDLE TUBE 3T CALC 3R

CALCIR

A6 FLOW A COOL ANT FLOW AREA PER ROD FOR C ACH CHANN M2 VD9V STEM 55 CALC 7REL ( SE T EOU AL TO A6RODI STEM 5T

FORTPAN TY7E CEF]NITION LNIT5 L ADELLED REFERENCED DEFINED INPUT REC.NAME C;wMON

A6GL 5 ARE A EE TWEEN GAS AND L 10VID IN V ESSEL LP M2 CAT 2SV UPLN65 READ 7R V-28PER PL E NUM UPLN6T

LIST 7RINIT6iCALC 7R

AGGMI S AREA BETWEEN GAS AND METAL 1 !N NESSEL U M2 DAT2SV LIST 7R READ 7R V-28PPER PLENUM UPLN65

INITST

A6GM2 S ARE A BETWEEN GA5 AND ME T AL 2 IN VESSEL U M2 DAT26V UPLN65 REA07R V-28PPER PLENUM INIT6T

LIST 7R

A6GM3 S ARE A DETWEEN GAS AND ME T AL 3 IN VESSEL U M2 DAT26V INIT6T READ 7R V-28PPER PLENU*4 LIST 7R

A6 JET S ARE A OF CCRE JET FLOW M2 DAIN6V LIST 7R REA07R V-28IN!T6TUPLN67

I

u A6L FDP S FLOW AREA OF LOWER REG!CN OF BYPASS CHAN M2 DAT26V INIT6T READ 7R V-29* NEL LIST 7R

FLOW 6Tg

UPl>J65CORE 6T

AGL MI S AREA DETWEEN LICUlO AND METAL 1 IN VESSE M2 DAT26V LIST 7R READ 7R V-28L UPPER PLENUM INIT6T

UPLN65

A6LM2 5 AREA BETWEEN LlCUID AND METAL 2 !N VESSE M2 DAT26V LIST 7R REA07R V-28L UPPER PLENUM INIT6T

UPLN65

A6LPLF S x-SECTIONAL FLOW AREA CF LOWER PLENUM M DAT26V L I S T'?R READ 7R V-29INIT6T

FCRTAAN TYPE DEFINIT;ON UN!TS LAE>ELLED PEFEFENCED CCF I NE D INPUT REC.NAME C C-ON

AGROD A SCO!UM FLOW A;EA PER RCD IN EACH CHANNEL M2 VO9V P40P6T v-7INIT6TLIST 7RVOIC5TCPTN65CALC 7RCCHESSCCEF 6T

AEAF BP S FLOW APEA CF UPPER PEGICN OF BYPASS CHAN M2 DAT2EV INIT6T RE AD7H V-29NEL UPLN6S

LIST 7RF L od>TCORE 6T

AGUPLF S X-SECTIONAL FLOW AFEA CF UPPER PLENUM M2 CAT 2GV IN!T6T CALC 7R

BIGAS A MASS OF COVER CAS PRESENT IN EACH PRIMAR KG VO9V RITE 15 RESISY PUMP TANK LOOPIS LOOPIS

RESITI

U BISHEL 5 MASS OF IHX SHELL KG AITCV LISTlR READlR N-100* PPE T l TI

BlWALL A MASS OF PRIMARY PlPE WALL FOR A CGNTROL KG VD9V PIPEli PRETITVOLUME

B2RES A MASS OF COVER GAS PRESENT IN EACH | N1 F RM KG VD9V LOOP 25 RES25EOlATE PUMP TANK R1TE25 LOOP 2S

PES 2T

B2 TANK A MASS OF COVER GAS PRESENT IN EACH 9JRGEt KG VD9V RITE 25 LOOP 2SEXPANSICN) TANK LOOP 25 TANK 25s

TANK 2T

B2 WALL A MASS OF INTERMEDIATE PIPE WALL FOR A CCN KG VD9V PlPE2T PRETITTROL VOL UME

FDRTRAN TYPE CEFINITl?4 UN I T C~ L ABELLED PEFEPENCED DE F I NE D INPUT REC.NAME Co-MON

855TRC A MASS CF STPUCTUPEIE.G. HE x C A',1 ASSOCIA KG VC94 S T E "55 V-19TED Win EACH CHANNEL LIST 7R

STEMST

B6CGAS S MASS CO COVER GAS IN SESSEL OU TL E T Ft ENU AG CAINGV EQlVIT INIT6TM UPL N6 T EQlVIT

D6L PMC 5 Ma55 CF "E . . IN VESEEL LOWER INLET PLEN KG CAIN6V Ll5T7P READ 7R V - 2%UM L PLNti T

B6UMCI S MASS v{ A T C AP AC I T Y CF ME T AL , IN UFPER P J/K DAINEV LOLN6T RE AD7R V-28LENUM LIST 7R

BE>UMC2 5 MASS HEAT CAPACITY Or METAL 2 IN UFFER P J/K DAIN6V UPL NC T ifAD7R V-28L E NUM L1517R

g B6UMC3 5 MASS HEAT CAPACITY OF METAL 3 IN UFPER P J/V CAlN6V UI'L N6 T READ 7R V-28LENUM L15T7R

U1N

'CICO 5 ADD; :VE CGNS T ANT F OR L IQU I D SOC I UM SPEC J/(kG'K) DATACI IHVlC OLKDAT M-10

HEAT CAP. FUNCTIONi5-301 REF.I HCAPIC READ 9RLIST 9R

CICI 5 FIRST CRDER COEF. FOR L!CULO SCDIUM SPEC J/(KG'K21 DATACl Ll5T9R READ 9R M 10HEAT CAP. FUNCTIONt5-303 PEF.! IHXIS BLVDAT

HCAPIC

CIC2 5 SECOND ORDER CCEF. FOR LIQUID SODIUM SPE J/(kG*<31 DATACI HCAPIC BLVDAl M-10C. HEAT CAP. FUNCTION (5-301 REF.1 IHX15 READ 9R

LIST 9R

ClDTI 5 LOWER SATURATED LIQUID 5001UM T E MP . BOUN k DATACI LIST 9R READ 9R M-10D FOR EQUATION (5-381 REF.I DLvDAT

CIDT2 5 UPPE R S A TUR A T E D L I QU I D SOD I UM TEMP. BOUN k DATACI L15T9R BLKDAT M-10D FOR EQUATION [5-381 REF.1 PEADSR

FORTRAN TYPE CErtN!T!DN UNITS LABELLED REFE RE' CED DEFINED IN#UT PE C .NAME COMMDN

CIDO S MOI T ! vE CONST ANT FOR SATLP ATED L 10VID 5 KG/IM31 DATAC1 i A'#25 READOR M-Ifi.,iUM OtNSI!Y Ft/4C T I ON (5-281 REr.1 CENSID DLADAT

PUMP 1SRESISPIPEISSPHT2SENAP2SPUP 2SCv4LISRES?SLIST 9RHYORISPIPE 25ALF A1 A

CICI 5 F I PST _PDER C CEF . FOR SATUR ATED L IQUID S K 3 / I M 3 * v. I DATACl HYDRIS BLKDAT M-10ODIUM DENS I TY FUNC T ION (5-381 PEF.1 RES!S READ 9R

SPHT25EVAP25PUMP 15PIPE 15LIST 9RTANK 2SRES2S

g CVALISALF AI A

LFt PUMP 2500 pgpgpg

g DE NSIDDRHO1R

FDRTRAN TYPE CEFIN!I!CN UNITS LAOCLLED REFEPENCED DEF I NED INPUT REC.N'T C OPON

CID2 S SECOND ORDER COEF . FOR CATLeATED LlDUID * S / ( M 3 ' *21 CATACI DRHOIR BLe0AT M-10SCDIUM CENS I T r F UNC T I ON (5-381 REF.1 PUMP 2S RE A09R

CvAtl$PUMP 15SPHT25ALFAIAEVAPPSPIPElsP l PE 2$RES25DE NSIDLIST 9RTANK 25HYDRISRESIS

CID3 S THIPD CRDER COEF. FCR S A T UR A TE D L I Qu l D 5 KG/(M3 k31 CATACI P!PE25 RE AD9R M-10ODIUP OENSITY FUNCTION (5-38) PEF.1 SPHT25 BLkDAT

ALFAIAEVAP2SDRHOIRPUMPISHYDRISRES25

I DENSIDLIST 9R

h$ TANK 25P l PE I S

I CVAllsPUMP 25RESIS

CIHO S ADDI T IVE CONSTANT FOR SATURATED L 10UlO S J/KG DATACI LIST 9R BLKDAT M-10DDIUM ENTHALPY FUNCTION (5-31) REF.1 ENTHlH READ 9R

CIHI S FIRST ORDER COE F . FOR SATURATED LIQUID S J/ :'G'Kl DATACI LIST 9R READ 9R M-10ODIUM ENTHALPY FUNCTION 15-31) REF.1 ENTHlH BLKDA T

ClH2 S SECOND ORDER CCEF. FOR SATURATED LIQUID J/ (k. ,'k2 3 CATACI ENTHlH BLKDAT M-10SODIUM ENTHALPY FUNCT ION 15-31) REF.1 LIST 9R READ 9R

FORTRAN T6E CEr!NITICN L% TS LAEELLED REFERENCED CE F .' NE D INPUT REC-NAME COMMCN

ClH3 C TulpD CADER COEF. rCP SA TLP ATED L |OJ;D 5 s tx0%3) CATACI ENTHlH READ 94 M-10CDitM ENT" ALP < Fi>CT!CN (5-314 REF.1 LIST 9R B;ADAT

Civ0 S ADDI T ! vE CONST ANT FOR LIOUID SODIUM TdR Wi(M*ki CATACI COto l k BL AD A T M-10MAL CCt.DUC * f v I T Y FUNCTICN 15-291 PEr.1 t|ST9R READgp

IHXIS

CIVi 5 F I RS T ORDER C CEr . FCP L!OUiD SCDIUM TrE R W/(M*k21 DATACI CONDik DLADAT M-lOMAL CONDUCTivlTY FU*.CT CN (5-291 REF.! LIST 9R READ 9R

IHX15

CIV2 S SECOND CRDER COEF. F OR L I QU ; D SCD I UM T{ W'(M*k31 DATACI |HXI5 RE AD'1H M-10RMAL CONDUCTivliv FUNC?lON (5-231 REF.! LIST 9R DLKDAT

CONDIK

CINI S ADD I T I VE CONST AN T F OR L 1001 D SOD I UM CYNA LN(N'S/M21 DATACl HYDRl5 REA09R M-10MIC VISCCSITY FUNCTION 15-411 REF.1 LIST 9R BLkDAT

PIPE 2SVISCINEVAP25

| SPHT25IHX|S

@ PIPEISO

'CIN2 S FIRST CROER COEF . FCR LIQUID SCDIUM CYNA LN(N'S/M2)*K CATACl VISClN BLKDAT M-10

MIC VISCOSITY FUNCTION (5-41) REF.1 HYlRIS READ 9RIHFlSEVAP2sPIP 25PIPt'15c'.3T9RYA125

CIN5 5 FIRST ORDER COEF. FOR L'CUlO SODIUM DYNA LNtN'S/IM2*K)) CATACI SPHT25 RLVDAT -10MIC V I SCCS ! T Y F UNC T I ON 15-41) FEF.1 IHtlS REAO9R

PIPE 25VISCINLIST 9RHYORI5EVAP25PIPE;S

CIPT! S SATURATED EODIUM VAPOR PRESSURE TEMP. CR K DATACI SVPSIP READ 99 M-10I T E R I CN F OR E CU A t l 0N ( 5 - 35 ) AND (5-36) RE L!ST9R BLKDATF.1

FORTRAN TfPE der! NIT CN gN,Ts LAgEttEC REFERENCED DE F I NE D INPU' REC.NAFE CCMMON

CIP' S ADDITIVE CONSTANT FCR SCDIUM SATURATEC V LNCN M2) DATACI LIST 9R BLkDAT M-!0APDP PRES 5URE F UrC T ! DN (5-351 CEF.1 SWPSIP READ 99

CIP2 S FIRST OPDER COEF, FCA SCO!UM SATURATED v LN(N *21'K DATACl LIST 9R READ 9R M-lOAPOR PPESSURE F U' C T I ON (5-351 REF. SkPSlP 6LkDAT

CIP3 S FIRST DPDER CCEr. FOR SCD!UM SA TUR A TED .V LNIN/(M2*K): CATACI SiPSIP DLkDAT M-10APOR PRE 55UPE F UNC T I ON 45-351 REr.1 LIST 9R READ 94

CIP9 5 ADDITIVE CONSTANT FOR SCDIUM SATL5ATED s LNtN/M21 DATACI LIST 9R READ 9H M-10APOR PRE SSUPE F UNC T I ON (5-361 PEF.1 SiPCIP OLkDAT

CIP5 S FIRST ORDER CCEF. FOR SODIUM SATURATED v LNINeM2)*k DATAC' SNPSIP READ 9R M-10APOR PRESSUPE FUNCTION (5-361 PEF.! LISTER BLkDAT

CIP6 S FIRST ORDER COEF. FOR SODIUM SATURATED V LNfN/(M2'k)) DATACl LIST 99 RLkDAT M-10g

APOR PRESSURE FUNCTION (5-36) PEF.1 SVPSIP READ 9RON>*

ICITSO 5 CONSTANT USED IN C ALCUL AT ING SODIUM SATU k'LNIN/M2) DATACI LIST 9R BL KDA T M-10

RATION TEMP. AS A FUNCTICN CF PRESSUPE f SATTIS PEAD9R5-37) REF..

CITSI S CONSTANT USED IN CALCU ATING SODIUM SATU LNtN/M23 CATACI SATTIS BLkDAT M-lORATED TEMP, AS A FUNC T ION OF PRESSJPE (5 LIST 9R PEAD9R-37) REF.i

CITT! S INITIAL GUESS FOR SATURATED SODIUM TEMP. k DATAJ.! TEMPli DLVDAT M-10C ALCUL AT ION LIST 99 PEAD9R

CITI S FRACTION OF INITIAL T E MP . GUESS TC INCRE - DATACl LIST 99 PEAD99 M-lOMENT FOR SECOND PASS IN CA'URATED SCDIUM TEMPli BLKDAT

TEMP. ITERATION

C1TP S PEL ATIVE CONVERGENCE CRITERlON FCR SATUR - DATAC1 LIST 99 BLvDAT M-10ATED SOOlUM TEMP. CALCULATION TEMPIT PEAD94

FORTRAN TYPE DEFINITICN UN!TS LABELLED REFERENCED DEF I NE D INPUT PEC.NAME COWON

C2E V A MUL T I PL I E R F OR FL cW APEA OR P;ESScGE LOS - 'vD9V R!TEli WGHT2TSES IN EVAPORATOR PL CS2T

WGHT2T

C2 PIPE A FLOW ARE A MUL T I PL IER F OR BR ANCHI NG PI PES - VD9v DEFN2 T WGHT2TRITEli

CPSH A MUL TPIPL l[R FOR FLOW AFE1 09 PRESSUPE LO - VD9v RITEIT WGHT2TSSES IN SUPERHE ATER E S) WGHT2T

PLOS2T

C9ATO A PEFEPENCE TEMPERATURE FOR C9 AO K OATAC9 CALC 7R READ 9R M -4 0LIST 9R BLKOTR

C4ATI A LOWER BL ANkE T MATERI AL TEMP. BOUND r' t K CATAC4 CALC 7R READ 9R M-40CUATION (5-9' REF.1 LIST 9R BLKDTR

C9AT2 A UPPER BL ANKE T MATERI AL TEMP. DOUND FOR E K DATAC4 L!ST9R RE AD9R M-90I OUATION (5-9) PEF.1 C ALC7R BL KDT R0%IJ

I CHA3 A ADDI T i vE CONST ANT F OR BL ANKE T MATERIAL C M/(M*K) DATAC9 LIST 9R READ 9R M-90OE F . OF T HE RM AL EXPANSION FUNCT!ON (5-10 C AL C 7R BLKDTR) REF.1

C9Al A FIRST ORDER COEF. FOR BL ANKET MATERI AL C M/(M*K2) DATAC9 LIST 9R BL kD T R M-40OEF. OF THERMAL EXPANSION FUNCTICN (5-10 CALC 7R PEAD9R> REF.!

C4A2 A ADC' tvE CONSTANT FOR BLANKET MATERIAL C M/(M*K) DATAC4 LIST 99 PEAD9R M-40OEF. OF THERMAL EXPANSICN FUNCTION [L -11 CALC 7R BL KOTR) REF.1

C4CTI A LOWER BLANvET MATERIAL TEMP. BOUND rOR E K CATAC4 LIST 99 BLKOTR M-90CUATIONS (5-21 IsRU (5-91 REF.1 READ 9R

C9CT2 A UPPER BLANKET MATERIAL TEMP. BOUND FOR E K DATAC9 LIST 9R BLKDTR M-90QUATIONS (5-2) THRU (5-9) REF.! PEAD9R,

F OR T R AN TYPE DErlNIT|CN U 41 TS L ADELLED RE F E RE NC ED DE F I NED INPUT REC.NAME CC W N

C4CO A A3DlitvE CONSTANT rCR BL ANxE T MATERI AL 5 J/tx0*x! DATACw CALC 74 READ 3R M-90PEC. HE A T C AP . F UNC T I CN t5-21 REr.1 LISTER B:.NDTR

C4Cl A FIRST CRCER COEF. FOR BLANvET MATER |AL 5 t/K CATAC4 L!ST9R READ 9R M-40PEC . F{ A T CAR. F UNC T I CN 15-2> REF.1 CALC 7R BL KD T R

C4CP A SECOND ORDER COEF. FOR BLANKET MATERIAL 1/v2 DATAC4 LIST 9R READ 9R M-40SPEC. *(AT CAR. FUNCTION iS-21 REF.I C ALC7R BLKDTR

C4C3 A THIRD ORDER COEF. FOR BL ANKE T MATERI AL 5 1/K3 DATAC9 CALC 7R BLKDTR M-40PEC. HEAT CAP. FUNCTION (5-2) REF.1 LIST 9R READ 9R

C4C4 A ADDITIVE CONSTANT FCR BLANVET MATERIAL S J/(KG*KI DATAC4 CALC 7R READ 9R M-40PEC. HE A T C AP . FUNCTION 15-wl REF.! LIST 9R BL KD T R

C4C5 A FIRST ORDER COEF. FOR BLANKET MATERIAL S J/(KO*K21 DATAC4 LIST 9R READ 9R M-40IPEC. HE A T CAP. FUNCTION (5-4) REF.1 CALC 7R ELVDTR

ChW

'C4C6 A INVERSE SECOND ORDER COEF. FCR BLANvET M K2 DATAC* LIST 9R BL KD TR N-40

ATERIAL SPEC. HEAT CAP. FUNCTIONt5-2) RE CALC 7R READ 9RF.1

C400 A FIRST ORDER CCCF. FOR BLANvET MATERIAL D KG/M3 DATAC4 LIST 9R READ 9R M.-40ENSITY Fl:NC T I ON 85-15) REF.1 CALC 7R BLKDTR

C4DI A ADDITIVE CONSTANT FOH OLANVET MATERIAL D KG/M3 QATAL4 LIST 9R READ 9R M-40ENSITY FUNCT!ON (5-161 REF.1 CALC 7R BLKDTR

C4ETO A OLANkET MATERIAL TEMP. CRITERICN FOR EOU K DATAC4 LIST 9R READ 9R M-40ATIONS (5-17) AND (5-18) REF.! CALC 7R BLKOTR

C4E0 A ADD I T I V - CCNST ANT FOR BL ANKET MATERI AL E - DATACs CALC 7R READ 9R M-40MISSIV iY FUNCTION 15-17) REF. LIST 9P BLVDTR

F CMP AN 'wE CEr1NtT;DN UNITS LABELLED REFERENCED DEFINFO INPUT REC.NAN C OMM0 <

C%El A FIRST Opg R CCEr, FCR 9 AV ET MATERIAL E 1/a CATAC% C ALC7P BLKCTR M-*OM|ES!v!Ty rVNCT|cn 15-[g3 AEF. LIST 9R REA09R

C4VG A ADDITIVE CCNSTANT FCR BLANAET MATERIAL T W IM*K) DATACw LIST 9R READ 9R M-90HEPMAL CONOUCTIVITY FUNCTION r5-15 PEr.1 CALC 7R BL k D T R

C4/l A FIR 5T CRCER CCEF. FOR BLA:#ET HATERIAL T - DATAC% CALC 7R READ 9R M-9CHERMAL CONDUCTlvlTy FUNCTION 15-11 REF.! LIST 9R RLKDTR

C4(2 A SECCND ORCER CCEF. FOR BL ANKE T MATERI AL 1/K DATACH LISTSR BLnDTR M-91THERMAL CONDUCTIVITYFUNCTION (5-1) REF. CALC 7R READ 9R

C9K3 A THIRD GRDER COEF. FOR BLAakET MATERIAL T liK3 DATAC9 C AL C 7R OLKDTR M-40HERMAL CONDUCTIVITY FUNCTION 15-1) REF.I LIST 9R READ 9R

g C4V9 A FIRST CRDER COEF. ON PCROSITY FOR EL ANKE - DATAC4 LIST 9R BLKDTR M-90T MATERIAL THERMAL CONDUCTIVITY FUNCTION CALC 7R READ 9R

Ch (5-1I REF,1&

IC4K5 A SECOND ORDER CCEr. CN POROSITY FOR BLANK - DATAC9 CALC 7R BLKDTR M-90

E T MATERI AL THE RM AL CONDUCflVITY FUNCTIO LIST 9R READ 9RNf5-11 REF.!

C9TCGG A TEMPERATURE AT CNSET OF COLMNAR GRAIN GR K DATAC9 LIST 9R BLKDTR M-40OWTH FCR OLANKET MATERI ALS C AL C7R READ 9R

C9TEGG A TEMPERA TURE A T CNSE T Or ECu l - AXED GRA I N K DATAC9 CALC 7R DLKOTR M-90GROWTH FOR BL ANKE T MA TER I ALS LIST 99 READ 9R

C4TMLT A DLANKET MA(ERlAL MELTING TEMP. K CATAC9 L1ST99 GLKDTR M-90CALC 7R READ 9R

CSAF A PARAME TERS USED I N C ALCUL A T I NG FUEL THER VD9V GROW 5T CALC 7RMAL EXPANSION CCEF. FOR EACH SLICE ALFA 55

ALFA 5T

FCRTRAN itPE C(FINITION UNITS L ABELLED PErEcE*CED CEr ! NE D INPUT REC.NAME C CPDN

CSATO A REFERENCE TE-PER ATURE FOR C5 AO K CATAC5 LIET9R READ 9R M-50CALC 79 OLKC?R

CSATI A LOWER FUEL MATERIAL TEMP. DOUND FOR COUA K CATAC5 LIST 99 BLxDTR M-50TION f5-9? REF.1 CALC 74 READ 9R

CSAT2 A UPPER FUEL MATERIAL TEMP. BOUND FOR EOUA K DATAC5 CALC 74 DLkDTH M-50TION (5-91 REF.1 LIST 9R READ 9R

CSAO A ADDI T INE CONST ANT FOR F LEL MATERIAL COEF M/(M*K1 DATACS CALC 74 BL*DTR M-50OF THE RMAL E)PANSIGN (5-101 REF 1 LIST 99 READ 9R

C5Al A FIRST GRDER COEF. FOR FUEL MATERIAL COEF M/(M*K21 DATAC5 CALC 7R PEAC9R M-50OF THERMAL EXPANSION c5-101 REF.1 LIST 94 BL*DTR

I C5A2 A ADDITIVE CCNSTANT FOR FUEL LTERIAL COEF M/(M*ki DATACS CALC 7R BLkDTR M-50OF THERMAL EXPANSION (5-6 ,1 REF.1 LIST 99 PEAD3Rm

vi

iCSCF A PARAME TERS USED IN T ALCUL AT ING FUEL SPEC VD9V ALT A5 T CALC 7R

If iC HE AT FOR E ACH SL ICE

CSCT! A LOWER FUEL MATERIAL TEMP. BOUND FOR EOUA K CATACS LIST 9R BLKDTR M-50TIONS 15-21 THRU (5-9) REF.1 PEAD9R

C5CT2 A UPPER FUEL MATERIAL TEMP. BOUND FOR EQUA k OATACS LIST 9R BLKDTR M-50TIONS (5-2) THRU (5-4) REF.! READ 9R

C 5CO A ACDI T ivE CONST ANT FOR FUEL MATERI AL SPEC J/tKG'K) CATACS CALC 7R REAC99 M-50HEAT CAP. FUNCTIONIS-2) REF.I LIST 9R DLKDTR

C5Cl A T1RST ORDER COEF. FOR FUEL MATEP!AL SPEC 1/K DATAC5 CALC 7R DLKDTR M-50HEAT CAP. FUNCTION (5-2) REF.1 LIST 9R READ 9R

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DEFINEO INPUT REC.NAME COMMON

C5C2 A SECOND ORDER COEF. FOR FUEL MATERIAL SPE 1/K2 CATACS LIST 9R READ 9R M-50C. HEAT CAP. FUNCTICN (5-2) REF.1 CALC 7R BLKOTR

C5C3 A THIRD ORDER COEF. FOR FUEL MATERIAL SPEC 1/K3 DATAC5 LIST 9R BLKOTR M-50HEAT CAP. FUNCTICNf5-21 REF.1 CALC 7R PCA09R

C5C4 A ADDI TIVE CONST ANT FOR FUEL MATERI AL SPEC J/(KG'KI DATACS LIST 99 BLKOTR M-50HEAT CAP. FUNCTION (5-4) REF.1 CALC 7R READ 9R

C5CS A FIRST OADER COEF. FOR FUEL MATER]AL SPEC J/(KG'K2) CATACS CALC 7R BLKDTR M-50HEAT CAP. FUNCTION (5-9s REF.1 LIST 9R READ 9R

CSC6 A INVERSE SECOND ORDER COEF. FOR FUEL MATE K2 DATACS LIST 9R BLKOTR M-50R!AL SPEC. HEAT CAP. FUNCTION (5-2) REF.1 CALC 7R READ 9R

I CSDCG A THEORETICAL DENSITY OF COLUMNAR GRAIN GR KG/M3 VD9V ALFA 5T CALC 7ROWTH FUEL FOR EACH SLICE TYPE CALC 7R

mmi

C50EG A THEORETICAL DENSITY OF ECUIAXED GRAIN GR KG/M3 VD9V ALFAST CALC 7ROWTH FUEL FOR EACH SLICE TYPE CALC 7R

CSDF13 A C50VNiC50CG - VD9V xPAN55 CALC 7RTEMP 55COEF5T

C5DF23 A C50EG/C5DCG - VD9V COEFST CALC 7RXPAN5STEMP 55

C50F A PARAMETERS USED TO CALCULATE FUEL DENSIT VD9V ALFAST CALC 7RY FOR EACH SLICE GROW 5T ALFAST

C50UN A THEORETICAL DENSITY OF UNRESTRUCTED FUEL KG/M3 VD9V ALFAST CALC 7RFOR EACH SLICE TYPE CALC 7R

FORTRAN TYPE CEFINITION UNITS LABELLED REFEPENCED der l NED INPUT REC.NAME COMTN

C500 A FIRST OPDER CDEF. FDR FUEL MATERIAL OfNS KG/M3 CATACS CALC 7R READ 9R M-50ITY FUNCTION (5-151 REF.! LIST 9R BLADTR

CSDI A ADDITIVE CONSTANT FOR FUEL MATERIAL DENS KG/M3 CATAC5 CALC 7R READ 9R M-50ITY FUNCTION (5-161 PEF.1 LIST 9R BL KDT R

CSEF A PARAMETERS USED IN CALCULATING FUEL EMMI VD9V GAMASS CALC 7RSSlviTY FOR EACH SLICE TYPE GAMA5T

C5ETO A FUEL MATERIAL TEMP. CRITERlON FOR EQUATI K DATAC5 CALC 7R BLKDTR M -50ONS 15-17) AND (5-18) REF.1 LIST 9R READ 9R

CSCO A ADDITIVE CONSTANT FOR FUEL MATERIAL EMIS - DATAC5 CALC 7R READ 9F M-50SIVITY FUNCTION (5-17) REF.i LIST 9R BLKOTR

I CSE1 A FIRST ORDER COEF. FOR FUEL MATERIAL EMIS 1/K DATAC5 CALC 7R BLKDTR M-50SIVITY FUNCTION (5-18) PEF.1 LIST 9R READ 9R

&N

1

CSFGAS A CONSTANT FACTOR USED IN CALCULATING FISS N'M/K VD9V FUEL 55 FUELSSION G45 PRESSURE IN EACH CHANNEL FUELST

CSKF A PARAMETERS USED IN CALCULATING FUEL COND VD9V GAMASS CALC 7RUCTivlTY OF EACH SLICE TYPE CALC 7R

GAMAST

C5KGAP A PARAMETERS USED TO CALCULATE CONDUCTIVIT VD91 GAMA55 CALC 7RY OF EACH FISSION GAS IN EACH CHANNEL GAMA5T

CSKPOR A FRACTIONAL POROSITY OF FUEL OF EACH SLIC - VD9V CALC 7R CALC 7RE TYPE

C5KO A ADDITIVE CONSTANT FOR FUEL MATERIAL THER W/(M*K) DATAC5 CALC 7R READ 9R M-50MAL CONDUCTIVITY FUNCTION (5-1) REF.1 LIST 9R BLKDTR

_ _ _ _

YM

FORTRAN TYPE DEFINITION UNITS LADELLEO RErERENCED DErtNED INPUT REC.NAME COMMON

CSK1 A FIRST ORDER COEF. FOR FUEL MATERIAL THER - DATACS CALC 7R REAC9R M-50MAL CONOUCTIVITY FUNCTIOf: 15-1) REF.1 LIST 9R BLKOTR

CSK2 A SECOf0 OROER COEF. FOR FUEL MATERIAL THE 1/K DATACS CALC 7R BLKOTR M-50RMAL CONOUCTIVITY FUNCTIGN (5-11 REF.1 LIST 9R REA09R

C5k3 A THIRD OPDER COEF. FOR FUEL MATERIAL THER 1/K3 OATACS CALC 7R BLKDTR M-50MAL CONOUCTIVITY FUNCT|ON (5-11 FEF.I LIST 9R REA09R

CSK4 A FIRST ORDER COEF. ON POROSITY FOR FUEL M - DATACS LIST 9R READ 9R M-50ATERIAL THERMAL CONDUCTIVITY FUNCTION (5- CALC 7R BLKDTR1) REF.1

CSKS A SECONO ORDER COEF. ON POROSITY FOR FUEL - DATACS LIST 9R READ 9R M 50MATERIAL THERMAL CONOUCTIVITY FUNCTlONt3 CALC 7R BLKOTR-1) REF.1

i C5LMOA A DECAY CONSTANT OF l-TH DELAYEO NEUTRON G 1/S DATDSV LIST 9r READ 9T T-5009ROUP INIT5T

$ PRMTST

|CSLMD2 A C5LMDA*C5LMOA I/52 DATDSV PRMT5T INIT5T

C5LN S PROMT NEUTRON GENERAT!ON TIME S DATD5V INITST READ 9T T-5001LIST 9TPRMT5T

CSTPcG A TEMPERATURE AT ONSET OF COLMNAR GRAIN GR K DATAC5 LIST 9R READ 9R M-50OWTH FOR FUEL MATERIALS CALC 7R BLKDTR

CSTEGG A TEMPERATURE AT ONSET OF ECUIAXED GRA!N G K DATACS LIST 9R BLKDTR M-50ROWTH FOR FUEL MATERIALS CALC 7R READ 9R

CSTMLT A FUEL MATERIAL MELTING TEMP. K DATAC5 CALC 7R BLKDTR M-50LIST 9R READ 9R

-- . _ _ ____ _ _ . . ._ . . . _ _ _ _ _ _ . _ _ . .

FORTRAN TYPE DEFINITION UN'TS L ABELLEO REFERENCED CEF I NE D INPUT REC.NAME COMMCN

C6AF A PARAMETERS USED IN CALCULATING CLADOING VO9V ALFAST CALC 7RTHERMAL EXPANSION COEF. FOR EACH SLICE T ALrASSYPE

C6ATO A REFERENCE TEMPERATURE FOR C6AO K DATAC6 CALC 7R BLKDt1 M-60LIST 99 READA

C6ATI A MAXIMUM TEMP. RANGE FOR CLADDING COEF. O K DATAC6 CALC 7R OLADTR M-60F EXPANSION LIST 9R READ 9P

C6AO ADDITIVE CONSTANT FOR CLADDING MATERIAL M/(M*K) DATAC6 LIST 9R BL KO TR M-E0-

COEF. OF THERMAL EXPANSION FUNCTION (5-2 CALC 7R READ 9R11 REF.1

C6Al A FIRST ORDER COEF. FOR CLADDING MATERIAL M/(M*K2) DATAC6 LIST 9R READ 9R M-60COEF. OF THERMAL EXPANSION FUNCTION (5-2 CALC 7R BLkDTR11 PEF.1

: C6A2 A SECOND ORDER COEF. FOR CLADOlNG MATERIAL M/(M*K3) DATAC6 CALC 7R BLKOTR M-60COEF. OF THERMAL EXPANSION FUNCTION (5- LIST 9R READ 9R$ 211 REF.!

|C6CF A PARAMETERS USED IN CALCULATING CLADDING VD9V ALFAST CALC 7R

SPECIFIC HEAT CAPACITY FOR EACH SLICE S TEM 5 T

CCCO A ADDITIVE CONSTANT FOR CLADDING MATERIAL J/(KG'kl DATAC6 CALC 7R RE/.D9R M-60SPEC. HEAT CAP. FUNCTION (5-20) PEF.! Ll5T9R BLKDTR

C6Cl A FIRST ORDER COEF. FOR CLADOING MATERIAL J/(KG'K2) CATAC6 CALC 7R BLKDTR M-60SPEC. HEAT CAP. FUNCTION (5-20) REF.1 LIST 9R READ 9R

C6C2 A SECOND ORDER COEF. FOR CLADOING MATERIAL J/(KG'K3) DATAC6 CALC 7R BLKDTR M-60SPEC . HE AT C AF . FUNCTION (5-20) REF.! LIST 9R READ 9R

C6C3 A THIRD ORDER COEF. FOR CLADDING MATERIAL J/(KG'K4) OATAC6 LIST 9R BLKDTR M-60SPEC. HEAT CAP. FUNCTION (5-201 REF.! CALC 7R READ 9R

FORTRAN TYPE CCFINITION UNITS L AE4ELLED REFERENCED DEFINED INPUT REC.NAME COMMON

C6DF A PAA AT TERS USED IN C ALCUL AT [NG CL ACDING %D9V AmFA5T CALC 7R

CENSITY FOR EACH Sc!CE STE9T

C600 A ADDITIVE CONSTANT FCR CLADDite P"ATERIAL vG/M3 CATAC6 LIST 9R bad T P M-60DENSITY FUNCTION f5-22) REF.1 CAuC7R RE AD9

C6EF A PARAMETERSUSED IN CALCUL ATING CL ADOING E VD9/ GA"A53 CALC 7RMISSivlTY FCR CACH SLICE TYPE GAMAST

C6ETO A REFERENCE TEMPERATJF. FCA C6E0 K DATAC6 LIST 9R BLkD TR M-60CALC 7R READ 9R

C6EO A ADDITIVE CONST ANT FOR CL ADO!NG MATERI AL - CATAC6 CALCTR BLKDTR M-60EMISSivlTY FUNCTION 15-23) AND (5-293 PE LIST 9R READ 9A

F.1

: CECl A FIRST CRDER CCEF. FOR CLAD 01NG MATERIAL 1/K DATAC6 CALC 7R READ 9R M-60EMISSivlTY FUNCTION 15-29) REF.1 LIST 9R BLKOTR

NO'

CSKr A PARAMETERS USED IN CALCULATING CLADDING VD9V GAMAST CALC 7R

THERM AL CONDUC T 1 V I T Y FOR E ACH SLICE TYPE GAMA55

CEx0 A ADDITlvE CONSTANT FOR CLACD!NG MATERIAL W/tM*KI CATAC6 LIST 9R BLkDTR M-60THERMAL CONOUCT1VITYFUNCT1ON t5-19) REF. CALC 7R READ 9R

I

C6K1 A F IRST ORDER COEF . FOR CL AD0 LNG MATERI AL W/tM*K2) DATAC6 LIST 9R GLKDTR i:-60

THERMAL CONDUCTlvlTYFUNCTION (5-191 REF. C AL C7R READ 9R

I

C6K2 A SECONO OnOE1 COEF. FCA CLADOING MATERIAL W/(M*K3) DATAC6 LIST 9R BLKDTR M-60THERMAL CONDUCT!V!TY FUNCTION (5-191 PE CALC 7R READ 99

F.1

C6K3 A THI RD ORDE R COEF . FOR CLADDING MATERIAL W/(M*K9) CATAC6 CALC 7R BLKDTR M-60THERMAL CONDUCTIVITY FUNCTION (5-19) REF L15T9R REA09R.I

f- S CRITICAL REYNOLCS NUMBER AT REGIME TRANS - CATF6V FRIC6C BLKDAT1 TION

FORTRAN TYPE CEFIN! TION UNITS LABELLED REFERENCED DE F I NED INPUT REC.NAME COmON

C6TMLT A CLADDING MATERIAL MEL T I NG TEP"P . K CATAC6 CALC'R BLADTR M-60LIST 9R READ 94

C7AF A PARAMETERS USED IN CALCULATING STPUCTURA VC9V ALFA 55 CALC 7RL THERMAL EYPANSION COEF. FCR EACH SLICE ALFAST

C7AO A ADOITIVE CONSTANT FOR STRUCTURAL MATERIA M/(M*K) DATAC7 AL F A7A REA09R M-70L COEF. OF THERMAL EXPANSION F T ION (5-21 LIST 9R OLkDAT) REF.1 CALC 7R

C7Al A FIRST ORDER COEF. FOR STRUCTURAL MATERIA M/tM*K21 DATAC7 LIST 9R READ 9R M -70L COEF. OF THERMAL EXPANSION FTION (5-21 ALFA 7A BLkDAT1 REF.I CALC 7R

C7A2 A SECONO ORDER COEF. FOR STRUCTURAL MATERI M/(M*K3) DATAC7 LIST 9R BLKDAT M-70AL COEF. OF THERMAL EXPANSION FUNCT!ON ( CALC 7R READ 9R5-21) REF.! ALFA 7A

I C7CF A PARAMETERS USEO IN CALCULATING STRUCTURA VD9V STEM 5T CALC 7RL SPECIFIC HEAT CAPACITY FOR EACH SLICEy

F-*

IC7CO A ADDIT IVE CONST ANT FOR S?R'f TURAL MATERI A J/(KG'K) DATAC7 LIST 9R READ 9R M-70

L SPEC. HEAT CAP. FUNCTION (5-20) REF.1 CALC 7R BLKDATHCAP7C

C7C1 A FIRST ORDER COEF. FOR STRUCTURAL MATERIA J/(KG'K23 DATAC7 CALC 7R READ 9R M-70L SPEC. HEAT CAP. FUNCTION (5-20) REF.1 HCAP7C OLKDAT

LIST 9R

C7C2 A SECOND ORDER COEF. FOR STRUCTURAL MATERI J/(KG'K3) DATAC7 CALC 7R BL KDAT M-70AL SPEC. HEAT CAP. FUNCTION (5-20) REF.1 HCAP7C READ 9R

LIST 9R

C7C3 A THIRO ORDER COEF. FOR STRUCTURAL MATERIA J/lKG'K9) DATAC7 LIST 9R READ 9R M-70L SPEC. HEAT CAP. FUNCTION (5-20) REF.! HCAP7C BLKDAT

CALC 7R

C7DF A PARAMETER USED TO CALCULATE STRUCTURAL D VD9V STEM 5T CALC 7RENSITY FOR EACH SLICE TYPE STEM 55

FORTRAN TYPE DEFINITION UNITS LAE,ELLED REFERENCED CEFINED INouT REC.NAME COPON

C7DTO A TEMP. AT WHICH REFERENCE DENSITY 15 SPEC K OATAC7 CALC 7R REAC9R M-70fr!ED !5-221 REF.1 L I S T 9*a BLKDAT

DE NS7D

C700 A ADDI T IVE CONST ANT FOR STRUC TUR AL MA TERI A MO/M3 CATAC7 CENS7D BLADAT M-70L DENSITY FUNCTION (5-22) REF.! CALC 7R READ 99

L|ST94

C7KF s. PARAMETERS USED TO CALCULATE STRUCTURAL VD9V STEM 55 CALC 7RTHERMAL CONOUCTIVITY FOR EACH SLICE TYPE STEM 5T

C7KO A ADDIT!VE CONSTANT FOR STRUCTURAL MATERIA W/IM*K) DATAC7 CALC 7R BLKDAT M-70L THERMAL CONDUCT!VITY FUNCTICN (5-19i R lHXIS READ 9REF.1 CONO74

LIST 9R

C7Kl A F IRST ORDER COEF . FOR STPUCTURAL MATERIA W/(M*K2) DATAC7 IHXIS '_KDAT M-70L THERMAL CONDUCTIVITY FUNCTIO *' (5-19) R LIST 9R WAD 97EF.1 COND7K

CALC 7RI

N C7k2 A SECONO ORDER COEF. FOR STRUCTURAL MATER! W/(M*K3) DATAC7 CONO7K READ 9R M-70N AL THERMAL CONN)CTIVITY FUNCTION (5-19) CALC 7R BLKDAT| REF.1 IHXIS

LIST 9R

C7K3 A THIRO ORDER CCEF. FOR STRUCTURAL MATERIA W/(M*K4) DATAC7 CALC 7R READ 9R M-70L THERMAL CONOUCTI/1*Y FUNCTION <5-19) R COND7K BL KD A TEF.1 lHXIS

LIST 9R

COFCVG S CONVERGENCE CRI TERlON WI THIN WHICH F5 GAS - BNDS7R VRFY7R BLKOTRFOR EACH CHANNEL MUST ADD UP TO

C8K1 A FIRST ORDER COEF. FOR COVER GAS THERMAL W/(M*K) DATAC8 CALC 7R READ 9R M-80CONDUCTivlTY FUNCTION LIST 9R BLKDTR

C8K2 A SECONO ORDER COEF. FOR COVER GAS THERMAL W/(M*K2) E A ' ' '. 8 LIST 9R BLKOTR M-80-

CONDUCT!VITY FUNCTION CALC 7R READ 9R

FORTRAN TYPE DErlNITION UNITS LABELLEO PEFERENCED CEFINEO INPUT REC.NAME CO*0N

CGK3 A THIRD ORDER COEF . FOR COVER GAS THERMAL W/(M*K3s DATAC8 C AL C7R BLkDTR M-80C #OUCTIVITY FUNCTION LIST 9R READ 9R

C980LZ 5 STEFAN-BOLTZMANN CONSTAN' W l M2* kw ) DATC9V GAMA55 BiKDATGAMAST

I

wLa)

I

FOATRAN TYPE DEFINITICN UN!!S LABELLED REFERENCEO CEFINED INPUT REC.NAME COWON

C9GRAV S GRAVITATIONAL ACCELE% TICN M/S2 CATC9V RESIT BLKDATUMP 1i

PIPW1TRES25UPLN67UPLN65HYORITLPLN6TTANK 2SCORE 65FLOW 6TSPHT25RES2iPIPE 25PUMP 2TLPLN65PIPW2TCOE F 6TPUMP 2STANK 2TPE.S I SSPHT2TPINTISoUMP1SEVAP2T

g INITITHYDRIS

y PUMP 3TDPFG35

g DPF T 35GVSL1TPUMP 33DPFG3TDPFT3TPIPE 15HX3TEVAP25OPTN6SINIT2T

FORTRAN TYPE DErtNITION UNITS L ABELLED REFERENCED DEFINED INPUT REC.NA**E COMPON

C9P1 5 PI - DATC9V DPF G 35 BL AD A TP!PE35IHxisINITITVJITPRETITFRIC6CCALClRIN!T6TPUMP 1TTUDE 3THx3iPIPE 3TCOEFSTHA35FUEL 5STSAV5SFRADSSNOf 6Tt.# T

STEM 5TDOPP5TSTEM 55FRAD5TGPOWST

| COPE 65

N

C9RGAS S CAS CONSTANT FOR COVER GAS M2/(52*K? CATC9V UPLN6T BLKDATI RES2i

TANK 25PIS25INI16TRES1TINIilTTANK 2TRESIS

DIRHOT S DENSITY OF lHX TUBE MATEPlAL KG/M3 AITCV PRETIT PRETIT

DIRHOW S DENSITY OF PRIMARY PIPE WALL KG/M3 AITCv PPETIT PRETIT

FORTRAN TYPE CC F I N I T I C*4 04175 LAE*CLLEO REFERENCEO CErtNEO I W T REC.NAME CCMMCN

DIPHO A COOLANT CENSITY AT PRI"ARY PW I NL E T kO/"3 VD94 #ITlf INITlfPlPEli AESITINITITPLFFITPESIT

C2RHOW S DENSITY CF SECONCAaf P!PE HALL AG/M3 A2TCv PRETlf PGETtT

C2 RHO A COOLANT CENSITY AT INTEP"ED I ATE PLMP INL KG/M3 VO9V plt *P2 T PES 2TET PES 2T INIT2i

INIT?T

02 TANK A COOLANT DENSITY IN SLAGE T ANK KG/M3 %C9V IN!T2T INIT2TTANA2T TANK 2T

DSCOOL A SCOIUM DENSITY AT AX!AL NOCAL INTEPFACES KG/M3 VC9V DOPPST INITSTFOR VOlO REACTIVITY CALCULATIONS

I

N 06 COOL A DENSITY Or SOOl'N IN EACH COPE CHANNEL A KG/M3 ND9V COE F 6T PROP 6T* T EACH NOCAL INTEAFACE COPE 6TI

ElBYP A ENTHALPY CF IHX PPl"ARY GYPASS rLOW J/vG VD9v IHXIT PPETITINX1T

E!DOWN A COOLANT ENTHALPY [N !HX CCWNCC"EA J/KG VC9V IHXIT lHXITPRETIT

E!!NHX A ENTHALPY OF COOLANT ENTERING IHX PAIMARY J/KG VD9/ ENDIT ENDITSICE 1HXIT LOOPIS

IHXIT

EllNP A CCOLANT ENTHALPY AT PRIMARY PUMP 1NLET J/KG VD9V RESIT

EINAS A ENTHALPY OF COOLANT AT EACH NODE OF SECO J/kG VO9 v' lHXIT lHXIINOARY SICE CF IHX LOOPIS

FORTRAN TYPE DErlNITION U*.lTS LA9ELLED PErERD+CED DEFINED INPUT REC.NAME C O-CN

EINA A PR! MAR ( COOL ANT ENTHALP f AT E ACH NCOE J/(O VD9/ LCOPIS LCOPISEND!T RSET]?RSE T I T P I PE I TPIPE 1I IHXITIHXITLOOPlT

EIOUHX A ENTHALPY OF COOL ANT EXI T ING IHX PRIMARY J/KG VD9V IHXIT IH41TSIDE ENDIT ENDIT

LOOPIS

ElPNAS A TEMPORARY ARRAY USED TO STOPF ADVANCED T J/KG VD9V IH(it [HX1TIME COOLANT ENT HALPY ]N IHX b[CONDARY S1CE

EIPNA A TEMPORARY ARRAY UcED TO 'iTORE ADVANCED T /KG VD9/ ENDIT LOOPITIME PRIMARY COOLANT ENTHALPY PlPEli ENDIT

lHXIT PIPEli1HXIT

EIPUMP A ENTHALPY RISE ACROSS PRIMARY PUMP J/kG VD9/ PUMP 1T Ftt4P 1 TI ENDIT LOOPISy WR1TlTN

I E21NEV A ENIHALPY OF COOLANT ENTERING EVAPORATOR J/KG VD9V LOOP 2T LOOP 2SSHELL SIDE END2T LOOP 2T

E2iNHX A ENTHALPY OF COOLANT ENTERING IHX SECONDA J/KG VD9V IHXIT LOOP 2SRY SIDE ENO2T lHXIT

ENO2T

E2iNP A COOLANY ENTHALPY AT SECONDARY PUMP INLET J/KG VO9V PES 2T

E2iNSH A ENTHALPY OF COOLANT ENTERING SUPERHEATER J/KG VD9V ENO2T LOOP 2SSHELL SIDE LOOP 2T LOOP 2T

E2NA A SECONDARY COOL ANT ENTHALPY J/KG VD9V LOOP 2S LOOP 25PIPE 2T PIPE 2TLOOP 2T RSET2TEND2TRSET2T

FORTF".N TYPC CEr;N[ TICS JN:iS LAEELLEO REFE;E4 EO DEF I NE O INPJT REC.NAME CONN

E20UEV A ENTHAePY Or CCCL AN' E x l T tNG E 5 APCA A TC4 5 J/wG V O9 .' LOCD2T LOOP 27{LL S!OE !NTF3T

LOOP 25

E20VHX A ENTHALPY OF CCOLAN7 Ex! TING IHx SECONCAR or -:G VO9i LOOP 2T LOOP 2TY SIDE IMxlT IHxlT

LOCP25

E20USH A ENTHALPY CF COOLANT EX1 TING SUPEP{ ATER JNG VD9. L O^P2 T INTF37SefLL 51CE LOOP 2S

E2PNA A TEMPCPARY AGGAY USEO TG STCRE INTER *EDIA JmG VC9V P!PE2T PIPE 2TTE COOLANT ENTHAuPy AT ACVA'RE TIME LOOF 2T LOOP 2T

ENC 2T E tC2 T

r.cM A ENTHALPY A [ $C AC ROSS I N T E R **E C ! A T E PU@ J/KG VO9/ HRIT2T LOCF25ENO27 PUMP 2TPUaP2T

I E 3CONV S AEL AT ! VE CONVERGENCE CR! TEP!ON FOR STE A" - CAT!3/ HX33 C ALC 3R S-1C02GENERATCR ENTHALPY CALCULATION T L*JE 3 T

j HxNO33

8

E 30SGN S DESIGN TUP 81NE INLET E NTHALPY J/KG [Hf33/ LISTOR REAOG4 C-1FEEC35

E 3F ILL A FEEOWATER ENTHALPY FCA EACH STEAM GENEAA J/KG VC9V STMPIS FEED 35TCR PPNT9S STMP3s

STGN?S STGN35

E 3FWMN 5 MIN! MUM FEECWATER ENTHALPY J/KG DATP3/ I Nr S 3 T C AL C 3R S-wC1FEED 3T

EJINSL A INLET WATER SiOE ENTHALPY OF EACH * LOW S J/KG CAtl?/ WFLO35 STMP33EGK NT FOR EACH SOO!UM LGOP INIT33

E 30T A WATER SIDE OUTLET ENTHALPf CF HEAT EXCHA J/KG CATI 3V Hr35 INIT3R S-301NGER CALC 3R

e

FORTRAN T YFE CEF I N I T I ON tA I T S LABELLEO REFERENCfD DEFINEO INNT REC.NAME CWON

E 3OUTC S C ALCUL ATED T'F91NE INLE T ENTHALPY JewG IHa35s STGN35 STGN35F8At95FRNT9S

E 3TURO C DESIRED TUPBINE 'NLE T ENTHAL PY J/KG CATI 3 PBAL95 P9AL95 0-2CALC 8R CALC 8RFEE 035 PEA 08RLIST 8RSTGN35HX35%RFYBR

E 3 /OL A SFECIFIC ENTHALPY IN EACH ACCUMULATOR J/ KG VC9V INFS3T STGN3TACCM3T VOL35STMP35 STGN3sSTON3TPRNT3TSTGN35

E3WSSG A WATER SIDE ENThALPY IN EACH NOCE O. EACH J/KG VO9V PRNT3T STON3TFLCW SEGMENT IkFS3T INIT35

PRNT9S STGN35i PIPE 3T VOL 35

HX3T PUMPISj PUMP 3T HW35IP4 53T PIPE 35

i STGN3TINIT35STGN35ACCM3TVOL35PRNT35WFL O 35TUBE 3 T

E 3WST O A ENTHALPY OF STEAM IN EACH NCOE OF THE TU J/kG VC9V STGN3T STGN3TRBlNE FLOW SEGMENT INIT35 INIT35

PRNT35 1 35VOL 35 PIF E 35ACCM3TSTGN35PRNT95IvFS3TPRNT3iPIPE 3T

CER

I

NNI

CE 57 5T T5 TT 5T 5S T i T TT TTNI

66 66 66 66 h6 6E 66 6 66 6GNE NE EN TE ? E NL T L T

RC PO OPIR LR LO LI O IN T NP

P LR RL L LF

C LC UC CU INO PO PO PN O INP INPEC UC UC LI C U I U

DECN

R EE6 66 66E2T 5TT 55T T T TE T TT 57 TT 56 666 666 6 6 S

E NTE NE NEP N net NLT N N NF 1!R LP LRL L LRL LOI L L LE NC PO POP P POP PON P P PG +L IC UC LCU U UCU UCI L U U

DE

. V V V V V V V VL%L

3 3 1

6 6 6 6 6 6E 6 61 1 3 TEM T W I

NNE T T T T T TAO A A A A A A A C A

I

ALC C C C O D C V C C"

S!

3 G G G G G G G 2 2T

t.K k w < K

/K / / /

kk K K. / / /

L o /e J J J J J J J J

E A S S S U OP S S S N L E. E

N T A S A Y E * NI

S P A P D L H 0 OLY P Y A P C 2 Z

C r B Y B E AO C B T R E G G

R R S E N NSa C R C L C l ly!

w E T C T x xf r.

C P b A L i !l

G L P U r M MxE E U Y L P

P O C P E L R RE T F T L S A E E

N H A O A S H P WC C E T T H E T P OI C w E T' O L l

E T V N U Lt N E M M

I E L N x N J

I A NI E 1

EI T INU I;U*

N S N NT E E E

F C I T T T E M L ML MLY I U lUPA A A L U T VPE E.D

A' D Y Y Y l D C LOT OTt

g P P P O CE CED A L L L M S M SL SLE H A A A U U T TT T H H H !

Cl FU FUF

G"NL T T T O O OO OC

l

EE N N N O ON E E E S Y S YR YR

Ef EN N N P PE PEWP GA MO MN MO L L L LP LP

L A HI G SE H S HU HUWA PC IUI IUO lUI E A E AP AP

GCH E CE DG GE ST T S T TLT VS OR CE OP EA N EP NF NFFN AS S SP S VT EM VO EC EO

EPYT S S S 5 S S S A 5 S

NA R S I E I T

A L U U L N V A BAE.- P P P P N P P A ATE

RM A 8 B B 8 1

6 6 6 6L L N N

OA 6 6 6 6 6 6FN E E E E E E E E E E

g 0C |0

FCA TP AN TvPE DEFINITION UNITS LABELLEC REFERE'.CEO CEFINEO INPJT FEC.NAME C Ca~y,

E E,NOCE A SOO!UM ENTHALPY A T E ACH AXIAL NOCA, INTE J/AG SO94 LPLN6T CCCE E SprACE IN EACH CHAYE- COOLES CORE 6'

CCRE65 LPLN65COPE 6TPGNT6TLPLN65

E60VTL 5 VESSEL SOO!UM OUTLET ENTHALPY J/KG CAT 16V UPL N65 LPLN65COOL 65! NIT 67

FIBETA A PR IMARY B rPASS FP ACT IC+4 THPOUG t EACH IHX - %D9V HYORIT C ALC IR N-ICO2HYCRIS READIRCALCIRIHX1TLISTlHIvXIS

FIC%AL A CHECK "f ALVE CHARAC TER!ST lf. COEFFICIEN's m CATA!V CVALIT READIR N-lliCVAtl5LIST 1R

IFIEMXA G REL A TIVE DEVI ATION ACCEPT ANCE L IMI T FOR - TLUPlv VPFY9T PFAD9T T-9CC?

% LOOP THEPMAL CALCULATIONS LIST 9T

I

FIEPST A RELATIVE ACCURACY CF'lTERlON FOR TRANSIEN - VO9V INTGIT INITITT COOLANT HYORAULICS VARIABLES P9NT9T

FIEPS S ROUGHNESS CF PRIMARY LOOP PIPING M OATAIV PIPWli '?E ADI R N-ICSLISTlRPIPEIS

FIGvP A PUMP G.V. VOLUME TO LEVEL COEF. ( l 1. - GVSLIV LIST 91 READ 9T T-ICO3=

3) INITIT

FIGVR A R.V. G.V. VOLUME TO LEVEL COEF . ( l 1. - GV5Lli LIST 9T READ 97 T-TCO3=

31 INITIT

FIGVX A lHX G.V. VOLUME TO LEVEL COEF. ( l 1. - GVSLIV LIST 9T READ 4T T-1003=

3) INITIT

.

FORTRAN TYPE OEFINITICf4 L?el T S LAEELLEO PEFE RENCEO DE F I *EO INPUT REC.NAME CMN

FIGV A CUARC VESSEL VOLLM TC LEVEL CCFFICIENT - NO9v G .'SL I T INITIT

FlHCO A PRIMARY PUMP HEAD COFFICIENTS - AITCV HEADIT BLADAT

Fl!CDA S RELAT!kE INTERFACE CCNDITIOP. ACCEPTANCE - TLUP l v LIST 9T READ 97 T-9003LIMIT FOR LOOP HYDRAULIC C'.LCULAT!ONS

FilNR S LOSS COEFFICIENT FOR IHX Ph: MARY INLET I - AITCV HvDRIT CALCIRREVERSE FLOW)

rilN S PRIMARY INLET LCSS COEFF ICIENT FOR IHX - DATxlV t!SilR READlR N - 101H.ORITHYDRIS

g FILOSS A LOSS COEFFICIENT FOR EACH P!PE IN EACH P - VD9V RSETIT RSETIT N-1101RIMARY LOOP PIPWIT READIR

CD VRFY97 LOOPISN LISilR HYDRISy VRrYlR

R1TElsINITITHYDRITLOOPISHYDRISPIPEls

FILSBK A LOSS COEFFICIENT AT PRitaARY BRE AK - VD9V INITIT REA09T T-1003VRFY9T IN! TITRSET1TLIST 9T

FILUMP A NUMBER OF ACTUAL LOOCPS IN EACH SIMULATE - VD9V STORIT CALCIRD LOOP VESL I T

DRIV 9TCOOL 6T

FORTRAN TYPE CEFINITION UNITS LADELLEO PEFEREMEO CEFINEO INPUT DEC.NAME Co mCN

FIMAXO 5 max! MUM RELATIVE CEVIATION OF ANY LOOP T - TLUPtv IH.1T IHx1THE RMAL VARI ABLE DURING THE CURRENT TIMES P!PEIT PIPEITTEP PlPE2T P!PE2T

DRIV 9T ORik9T

FIMAXN S NAME OF LOOP Td RMAL ARRAY CURRENTLY PES - TLU>l. ORiv9T PIPE 2TTRICTING SlOELT PIPEli

IHXIT

F IMxC64 5 MAX! MUM RELATikE CEV!ATION CF ANY LOOP H - INTG9V INIT97YORAULIC VARIABLE DURI M CURRENT TIMESTEP

FIOUTR S PRIMARY OUTLET LOSS COEFFICIENT FOR IHX - AITCV HYORIT CALCIR(REVERSE FLOW 1

FLOUT 5 PRIMARY OUTLET LOSS COEFFICIENT FOR IHX - DATXIV CALCIR REAOIR N-101HYDRISLISTlRHYORIT

I

$ FIPOO S PITCH-TO-DIAMETER PATIO FOR IHX TUBE BUN - DATXIV LISTlR PCAOIR N-100OLE ANUSIU

l CALCIR

FIPUMP A COEFFICIENTS IN POLYNOMIAL COUATION FOR - DATAIV LISTIR READlR N-110PRIMARY PUMP HEAD PUMPIS

CALCIR

FITFRI A PUMP FRICTIONAL TORQUE COEFFICIENTS - AITCV TORKli OLKDAT

FITHIK A COEFFICIENTS OF FUNCTION FOR OVERALL HEA - VD9V PIPEli PRETITT TRANSFER

FITORK A PRIMARY PUMP TORQUE COEFFICIENTS - AITCV TORKli BLKDAT

FIUNCG A TIMC RATE OF CHANGE OF V1GV M3/S VO9V EQ1V1T GVSLlT

FORTRAN TYPE DEFINIT!CN UNITS LABELLED REFERENCED DEFINED !*PUT REC.NAME CO % N

FIUNCL A TIME RATE Or CHANGE OF 21 RHO KG/(M2*S1 VD9V EOlvlT RESIT

FIUNCP A TIME RATE OF CHANGE OF PRIMARY PU"P SPEE RPM /S VD9V PUMPli PUa91TD EO!VIT

FlUNCl A TIME RATE OF CHANGE OF WlONE kG/52 VD9V FUNCIT FUNCITEQ!VIT

FlUNC2 A TIME RATE CF CHANGE OF WITWO KG/52 ND9V EQ1VIT FUNCITFUNCIT

FlUNC3 A TIME RATE OF CHANGE OF W1THRE KG/52 VD9V FUNCIT FUNCITEQlVIT

I FlWMXA S RELATIVE DEVIATION ACCEFTANCE LIMIT FOR - TFLCiv LIST 9T READ 9T T-9002LOOP HYDRAULIC CALCULATIONS VRFY9Tg

p VJIT

IFCCONT S LOSS COEFFICIENT FOR CONTRACTION FROM IN - CAT 12V HYDRIT REAOIR N-101

LET PLENUM TO TUBES IN lHX LISTlRHYDRIS

FPEPS S R')UGHNESS OF INTERMEDIATE LOOP PIPING M DATA 2V LISilR READIR N-lOSPIPING PIPE 25

PIPW2T

FPEV A LOSS COEFFICIENT FOR SHELL SIDE OF EACH - VD9V LOOP 25 LOOP 25 N-1003EVAPORATOR EVAP2T READIR

EVAP2S EVAP2SVRrYlRRITE 25LISilR

F2EXPN S LOSS COEFFICIENT FOR EXPANSION FROM TUBE - DAT12V LISTtR READIR N-101S TO OUTLET REGION IN lHX HYDRIT

HYDR 15

F2HED A INTERMEDIATE PUMP HEAD COEFFICIENT - A2TCV HEAD 2T BLKDAT

FORTRAN TYPE DEFINITION UNITS LABELLED RE FERE NCED der i NE D INPUT REC.NAME COPCN

FalHXR S INLET LOSS CCEFFICIENT TO IHX SECONDARY - A2TCv HYDRIT CALCIRSIDE (PEVERSE FLOW)

F2iNEV S INLET LOSS COEFFICIENT TO EVAPORATOR SHE - DATE2V EVAP2T READIR N-12C-LL SIDE RITE 25

LIST 1REVAP25

F21NHX S INLET LOSS COEFFICIENT TO !Hx SECONDARY - DAT12V CALC 1R READlR N-101SIDE HYDR 1T

HYDRlSLISTIR

F21NSH S INLiT LOSS COEFFICIENT TO SUPERHEATER SH - DATS2V RITE 25 READlR N-121ELL SIDE SPHT2T

LISTlRSPHT2S

F2 LOSS A LOSS COEFFICIENT FOR EACH PIPE IN EACH I - VD9V LOOP 2S LOOP 2S N-1201NTERMEDIATE LOOP PIPE 25 RclT2T

g RITE 2S READ!RRSET2T

CD INITITLISTIR

g VRFY9TPIPW2T

F2LOSX A LOSS COEFFICIENT FOR SECONDAar SIDE OF E - VD9V LISTlR REA. 1 N-LOO 3ACH IHX HYDPIS HYD.a5

HYDRIT LOOPISLOOPISVRFY1R

FPLSOK A LOSS COEFFICIENT AT SECONDARY BREAK - vD9V INITIT READ 97 T-1201VPFY9T INITliRSET2iLIST 9T

F2OHXR S OUTLET LOSS COEFFICIENT OF IHX SECONDARY - A2TCV HYDRIT CALCIRSIDE (REVERSE FLOW)

FORTRAN TYPE OEFINIT!l>> UNITS LABELLED RErERENCE D CEriNED INPU. 7EC-NAME C Oe**ON

F20VEV S OUTLET LOSS COEFFICIENT FOR EVAPORATOR S - OATE2V LISTlR READIR N-120HELL SIDE EVAA25

EVAP2TRITE 25

F20UHX S OUTLET LOSS COEFFICIENT FROM !HX SECONCA - CAT 12V Ll5flR REaDIR N-lClRY SIDE CALCIR

HYDRISHYORIT

F20VSH S OUTLET LOSS COEFFICIENT FOR SUPERHEATER - OATS 2V SPHT2T READIR N-121SHELL SICE R1TE2S

LISTlRSPHT2S

F2 PREV A ARRAY TO STORE CERTAIN PREVIOUSLY CONVER PREV 2V CALC 8R PG AL 95GEO STE ADY ST ATE RESULTS FOR A SUBSEOUENT RESTART

F2 PUMP A COEFFICIENTS IN POLYNOMIAL EQUATION FOR - DATA 2V Pt #1P2S CALCIRPUMP HEAD

I

co* F2SH A LOSS COEFFICIENT FOR SHELL SIDE Or EACH - VD9V RITE 2S LOOPES N-1003g SUPERHEATER SPHT2T RE AOIR

LOOP 25 SPHT25VRFY1RLIST 1RSPHTM

F2TFRt A PUMP FRICTIONAL TORQUE COEFFICIENT - A2TCV TORK2T BLKO A T

F2THlK A FUNCTION FOR OVERALL HEAT TRANSFER COEFF - VD9V PIPE 2T PRETITICIENTS

F2TORK A TORQUE COEFFICIENTF - A2TCV TORK2T BLKOAT

F2UNCL A TIME RATE OF CHANGE OF PUMP SPEEO RPM /S VD9V EQiV2T RES2T

FGRTRAN TvPE DEFINITION UNITS LABELLEO RErEoENCEO DEFINED INPUT RECNAME C 0**'ON

FPUNCP A TIME RATE OF CHAP 4E OF 22R*C KG/ m2*S) VD9V PUMP 2T PUMP 2TECIV2T

F2VNCT A TIME RATE OF CHANGE OF Z2RTNK KG/tM2iS1 VC9V EQlV2T TANK 2T

F2UNCl A TIME RATE OF CHANGE OF W2ONE KG/52 VD9V FUNC27 FUNC2TE0lV2T

FPUK 2 A TIME RATE GF CHAP 4GE OF W2TWO KG/S2 VD9V FUNC2T FUNC2TEQIV2T

F2VNC3 A TIME RATE OF CHANGE OF W2THRE KG/52 VD9V FUNC2T FUNC2TEQiV2T

| F3AQ A AREA CORRECTION FACTOR FOR HEAT EXCHANGE - DATG3V HX3T HX35 S-301RS HX35 C ALC 3R

OD PRNT95 INIT3RNTUDE 3T

I

F3DEWP S MAXIMUM FRACT!ONAL CHANGE IN ENTHALPY DU - CATT3V TMSG3T INIT3TRING PREVIOUS TIME STEP TMSG3T

F3 DEWS S MAXIMUM FRACTIONAL CHANGE IN ENTHALPY OU - CATT3V TMSG3T INIT3TRING TIME STEP PRNT3T STGN3T

F3DPSP S MAXIMUM FRACTIONAL CHANGE IN PRESSURE DU - DATT3V TMSG3T TMSG3TRING PREVIOUS TIME STEP INIT3T

F3DPS S MAXIMUM FRACTIONAL CHANGE IN PRESSURE DU - DATT3V PRNT3T INIT3TRING TIME STEP TMSG3T STGN3T

F30WWP S MAXIMUM FRACTIONAL CHANGE IN FLOW RATE D - DATT3v TMSG3T INIT3TURING PREVIOUS TIME STEP TMSG3T

a

FORTRAN TYPE CEFINITION UNITS LASELLED REFERENCED OEFINED INPUT REC.NAME CO*aMON

F30WWS S MAXIMUM FRACTIONAL CHANGE IN FLOW RATE D - CATT3v PRNT3T INIT3TURING TIME STEP TMSG3T SIGN 3T

F 3EMX A S PELATIVE DEFLATION ACCEPTANCE LIMIT FOR - DATT3V STGN37 READ 9T T-9002STEAM GENEPA'OR ENTHALPY CALCULATIONS INIT37

LIST 9T

F 3ENFW A COEFFICIENTS OF POLYNOMIAL FIT OF FEEOWA - DATP3V ACCM37 INIT3R S-401TER ENTHALPY AS A FUNCT ION OF NORMAL IZED INFS3T CALC 3R

FEEDWATER FLOW FEED 3TFEED 3SSTMP35

F31CDA 5 PELATIVE INTEPFACE CONDITION ACCEPTANCE - DATT3V LIST 9T READ 9T T-9003LIMI T FOR STE AM GENERATOR CALCUL AT IONS

F 31 NLV A RELATIVE HEIGHT OF K-TH EXIT NOZZLE - DATG3V INFS3T CALC 3R S-101STMP3S INIT3R

I

C0 F31PMP A TWO-PHASE MULTIPLIER FOR INLET PLENUM LO - DATG3V HX35 CALC 3R S-301* SS COEFFICIENT FOR EACH STE AM GENERATOR HX3T INIT3Rg HEAT EXCHANGER

F3JUNC A JUNCTION PARAMETER AT EXIT OF PIPE - VC9V P IPE 35 INIT3R S-1PIPE 3T CALC 3RWFLO35

F3L OLV A RELATIVE LIOUlO LEVEL IN ACCUMULATOR - *DAT!3V PRNT35 CALC 3R S-101PRNT9SSTMP35VOL35

F30PMP A TWO-PHASE MULT IPL IER FOR OUTLET PLENUM L - DATG3V HX35 C a L C 3R S-301OSS COEFFICIENT FOR HEAT EXCHANGER HX3T ; NIT 3R

F3PMXA S RELATIVE DEVIATION ACCEPTANCE LIMIT FOR - DATT3V INIT3T READ 9T T-9002STEAM GENERATOR PRESSURE CALCUL ATIONS LIST 9T

STGN3T

FORTRAN TYPE CEFINITI(N Lt4! TS LABELLEO RErERENCED CEFINEC INPUT REC.NAME COM*0N

F3PSFW A CCCFF ICIENT OF POLYNOMI AL F I T OF FEEDWAT - CATP3V STMP35 CALC 3R S-w01ER PRESSURE AS A FUNCT ION Cf NORMALIZED PRNToS ! NIT 3RFEECWATER FLOW FEE 03T

PSFW3T

F 3PWIP A INLET PLENUM PRESSURE LOSS CCEFFICIENT F - DATG3V HX35 HX35 S-301OR HEAT EXCHANGER HX3T C AL C 3R

PRNT35 INIT3R

F3PWMP A TWO PHASE MULTIPLIER FCR LOSS COEFFICIEN - VD9V PIPE 3T CALC 3R S-1T OF FITTING AT Exli OF P!Pr P IPE 3S INIT3R

F3PHOP A OUTLET PLENUM LOSS CC FFICIENT FOR HE AT - DATG3V PRNT35 INIT3R S-3C1EXCHANGER HX3T CALC 3R

HX35 H(35

F3PW A PRESSURE LOSS COEFFICIENT FOR FITTING AT - VC3V PRNT35 IN113R S-1EXIT OF PIPE P l PE 3 T CALC 3R

PIPE 35 PIPE 3S

IF 3OLCV S RELATIVE CONVERGCNCE CRITER10N FOR STEAM - DAT13V HX35 CALC 3R .5-1002@ GENERATOR WATER QUALITY CALCULATION

I

F 3OUAL A WATER SIDE OUTLET QUALITY OF HEAT EXCHAN - DAT13V HX35 CALC 3R S-301GER INIT3R

F 3TBPD A PITCH TO OUTER DI AMETER '4AT IO FOR TUBE B - DATG3V HX35 INIT3R S-301UNDLE IN HEAT EXCHANGER TUDE3T CALC 3R

CALC 1RHX37

F3WMxA S RELATIVE DEVIATION ACCEPTANCE LIMIT FOR - DATT3V INIT3T READ 9T T-9002STEAM GENERATOR FLOW CALCULATIONS STGN3T

LIST 9T

F32W S COEFFICIENT OF PUMP HEAD VARIATION WITH - DATP3V PUMF 3T CALC 3R S-201FLOW PUMP 3S

_ _ . . _ . . . . . . .

FORTRAN TYPE DEFINITICN LA I T S L ABELLED PEFEAENCED CEr i NED I NPU T FE C .

NAME C O*CN

F 37Y A SURFACE ROUCA*ESS TO CIAMETER PATIO rOR - ND9V TLCE37 CALC 3R S-1P! PES AND HEAT EXCHANGER TUGES HX35 INII3R

P!PE35P!FE3THT3T

F5AWGT A MESH WElGHTED FUEL Ax!AL EXPANSION PEACT R/kG VC9V GROW 5r READ 9T T-5501.COEF. FOR CHANNEL K LISi9T

F5800P A MESH WEIGHTEO DOPPLER REACT.COEF. WITH S R VD9V DOPPST READ 9T Y-5201ODIUM PRESENT FOR CHANNEL K LIST 9T

FSDETA A (PACTION OF 1-TH EFFECTIVE DEL AYED f fUTR - DATD5V LIST 9T PEAD9T T-5003ON GROUP PRMT5T

IN!T5T

F5DETT 5 SUMMATION OF F5GETA(II - DATD5V PRMT5T INIT5TINITST

I

* FSCREF S RELATIVE CONVERGENCE CRITERION FOR STEAD - DAT25V C AL C7R BLKDATC Y STATE FUEL CALCULATIONS

1

F5 CRIT A CONVERGENCE CRITERlON FOR EACH SLICE TYP - VD9V FUEL 55 CALC 7RE (SET EQUAL TO F5CREF)

F50AFC A FRACTIONAL COLUMNAR GRAIN DENSITY OF ACT - VD9v LIST 7R READ 7R V- 01IVE FUEL FCP EACH ROD TYPE REPT9R

TYPErp

CALC 7R

F50AFE A FRACTIONAL EQU! AXED GRAIN DENSITY OF ACT - VD9V CALC 7R READ 7R V-101IVE FUEL FOR EACH POD TYPE TYPE 5R

REPT9RLIST 7R

F50AFU A F R AC T I ON AL UNS T RUC T URE D GR A I N DE NS I T Y OF - VD9/ LIST 7R READ 7R V-101ACTIVE FUEL FOR EACH ROD TYPE PEPT9R

CALC 7RTYPE 5R

--

_ . _ _ _ _ _ _ _ _ _ . . _ . _ . . _ _ _ _ _ _ . . _ _ .

FORTRAN TYPE DEFINITICN LNITS LAE,ELLED RE FERE NC E D OE F INE D INPUT REC.NAME cowCN

F5DLOC A FRACTIONAL COLUMNAR GRAIN CENSITY CF LOW - sD9V LIST 7R READ 7R V-lCIER BL ArWE T FOR E ACH RCO TYPE FEPT94

CALC 7RTYPE 5R

F5DLBE A FRACTIONAL EQUIAxED GRAIN DENSITY OF LOW - VD9v CALC 7R READ 7R V-101ER BL ANKE T FOR E ACH ROD TYPE REPT9R

T Y PE SRLIST 7R

F5DLBU A FRAC 110NAL UNSTRUCTUPED GRAIN DENSITT OF - VD9V TYPE 5R READ 7R V-101LOWER BLANKET FOR EACH ROD TYPE Ll5T7R

CALC 7RREPi9R

F5DSLC A ARRAY FOR STORAGE OF FRACTIONAL DENSITIE - VD9V CALC 7R REPT9RS ON A SLICE TYPE BASIS GAMA55

GAMAST

F50VOC A FR AC T IONAL COLUMNAR GRAIN DENSITY OF UPP - VD91 REPTSR READ 7R V-101ER BL ANKET FOR E ACH ROO TYPE TYPE 5R

I LIST 7RCALC 7R

H

I F5DUGE A FRACTlONAL EQUXIAXED GRAIN DENSITY ,)F UP - VD9V LIST 7R READ 7R V-101PER OL ANKET FOR E ACH ROD TYPE CALC 7R

TYPE 5RREPT9R

FSDUBU A FRACTIONAL UNSTRUCTURED GRAIN DENSITY OF - VO9V CALC 7R READ 7R V-101UPPER BL ANkET FOR E ACH RCD TYPE LIST 7R

REPT9RTYPESR

F5 GAS A MOLE FRACTION OF EACH FISSION GAS IN EAC - VD9V GAMA5T READ 7R V-501H CHANNEL VRFY7R

LIST 7RGAMA55

F5 GOOP A MESH WE IGH TED DOPPLE R RE AC T . COEF . W/O SO R /09V DOPP5T READ 9T T-5301DlUM PRESENT FOR CHANNEL K LIST 9T

_

_ _ . _ . . _ . . _ . .

FORTRAN TYPE DEFINITION L*J I T S LABELLED RE FEPENCED DEFINED INPUT REC.NAME C O**'CN

F5MAXA 5 RELATIVE CEv!A!!CN ICEPTANCE LIMIT FOR - TruL5V t|ST9T READ 97 T-9002FUEL CALCULATIC'NS DR1V97

FLfL5TINITST

F5MAXD S MAXIMUM RELATIVE CHANGE OF ANY FUEL VARI - TFUL5V MAxD5T MA kD& TABLE DURING CUM ENT TIMESTEP DRIV 97 DRIV 9T

FSMINA S SET EQUAL TO F5MAXA/2 - TFUL5V DRI%9T INIT97

F5 NORM A FUEL POWER NORMAL!ZATICN FACTOR FOR EACH - VD9V COEF5T CALC 7RCHANPEL TEMP 55

r5 PAX A AXlAL POWER FRACTION FOR EACH NODE IN EA - VD9V CALC 7R READ 7R V-201CH CHANNEL LIST 7R CALC 7R

FRAD55FRAD5T

|

@ FSPBPO A FRACTIONAL TRANSIENT DECAY POWER IN BYPA - VD9V POW 6T READ 9T T-5006N SS ( PAIRED WITH 55PBPO ) LIST 9TI

F5PCOT A TIME RATE OF CHANGE OF F5PREC 1/5 DATD5V INIT5TPRMT57

F5PDCY A FRACTIONAL POWER IN EACH CHANNEL DUE TO - VD9V POW 6T VRFY9TDECAY HEATING

F5PD A FRACTIONAL TRANSIENT DECAY POWER IN CHAN - VD9V POW 6T READ 9T T-5101NEL K t PAlRED WITH 55PD 1 LIST 9T

F5PFIS A FRACTIONAL POWER IN EACH CHANNEL DUE TO - VD9V LIST 9T READST T-5002FISSION HEAT!NG VRF Y9 T

POW 6T

F5PMPL 5 VALUE OF F5PRMT AT PREVIOUS TIMESTEP - DATDSV PRMT5T POWSTMAxDST IN!T5T

FUELST

.__ _ _ _ . . .

FORTRAN TYPE DEFINITICN LtJ I T S L ADELLED REFERENCED DEFINED INPUT REC.NAME Cv M

FSPRAD A FUEL POWER FRACTION IN EACH RADIAL FUEL - VD9V FRAC 55 READ 7R k-301NODE IN EACH CHANNELINO AxlAL DEPENDENCE FRADST C ALC 7R1 LIST 7R

CALC 7R

FSPRMT S NORMALIZED REACTOR FISSION POWER - TFULSV PoMT5T PRMT5TPOW 6T FUEL 5iMADDST INIT5TMOVL9TFUEL 57INIT57POW 5TAPPLST

F5PTOT A FRACTION OF TOTAL POWER IN EACH FUEL CHA W kD9V FRADST CALC 7RNNEL (SET EQUAL TO F6TPOW1 FRAD55

PRNT5T

F5PWR1 A FRACTION OF POWER GENERATED IN EACH CHAN - VD9V VRFY7R READ 7R V-401NEL DEPOSITED O!RECTLY INTO THE COOLANT LIST 7R

CORE 6T

IF5PWR5 A FRACTION OF POWER GENERATED IN EACH CHAN - VD9V VRFY7R RE AD 7R V-901

8 NEL DEPOSITED DIRECTLY INTO THE FUEL FRAD55FRADST

I LIST 7R

F'5PWR6 A FRACTION OF POWER GENERATED IN EACH CHAN - VD9V FRAD55 READ 7R V-401NEL DEPOSITED DIRECTLY IN THE CLADDING LIST 7R

FRADSTVRFY7R

FSPWR7 A FRACTION OF POWER GENERATED IN EACH CHAN - VD9V FRA05T VRFY7RNEL DEPOSITED DIRECTLY INTO THE STRUCTUR FRAD55E

F5VWGT A MESH WE!GHTED SODIUM VOID REACT.COEF. FO R/KG VD9V VOIDST READ 9T T-5901R CHANNEL K LIST 9T

F74fT A WEIGHTING FACTOR WHEN MAKING CORRECTIONS - VD9V TE MP55 CALC 7RDURING FUEL TEMPERATURE ITERATIONS

F6CNVG S RELATIVE CONVERGENCE CRITERION FOR CERTA - BNDS7R BLK3 TRIN INPUT DATA

FORTRAN TYPE DEFINITION UNITS L A9ELLEC FEFERENCEO CEFINED INPUT RECNAPE C C'**CN

F6CONV 5 PEL AT I VE (.ONVERGENCE CRI TERION FOR CHANN - CAT 26V OPTNES RE AON =-23EL FLOW FRACTION OPTION LIST 7R BJD A T

F6 FLOP S FRACTION OF TOTAL CORE FLOW IN BYPASS CH - CAT 26V INIT6T CPTN65ANNEL OPTN65 V4FY7R

UPLN65 F_CwEIPRNT6TCOOL 6TCORE 6T

F6 FLOW A FRACTION OF TOTAL CORE FLOW IN EACH CHAN - VD9w INIT6T F_OW6T \-%NEL 'iRFY7R 03TN65

LIST 7RPRNT55OPTN65PRNT6TCOOL 6TCORE 63

FEERC l S FRICTION FACTOR CORRELATION COEF. FOR SO - DATF6V LIST 7R READ 7R V-30DIUM FLOWING IN VESSEL FRIC6C B.kDAT

1

eF6FRC2 S FRICTION FACTOR CORRELATION COEF. FOR 50 - DATF6V LIST 7R FEAD7R V-30

i OlUM FLOWING IN VESSEL FRIC6C ELKOAT

F6F RC 3 S FRICTION FACTOR CORRELATION COEF. FOR 50 - DATF6V FRIC6C ELKOATCIUM FLOWING IN VESSEL

F6FRC4 S FRICTION FACTOR CORRELATION COEF. FOR 50 - DATF6V FRIC6C GLKCATDlUM FLOWING IN VESSEL

F6FRIC A FRICTION FACTOR FOR EACH AX1AL NODE IN E - VD9/ PRNT6T COEF 6TACH CHANNEL COE F 6T COPE 65

COOL 65CORE 65

F6FRNO 5 LOCAL FROUOE NUMBER USED IN UPPER PLENUM - OATT6V UPLN6TJE T PENETR A'!ON C ALCUL AT IONS

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED CEr : NE D INPUT PEC.NAME C CMP *0N

F61CDA 5 PELATIVE INTEPFACE CONDITION ACCEPTANE L - T CUL E V LIST 9T READ 9T T-9003IMIT FOR I N-'v E SSE L COOLANT CALCULATIONS

F61tEP S FLOW LOSS COEFFICIENT AT BYPASS INLET - CAT 26v LIST 7R READ 7R V-29UPLNGSFLCb6T

F 6LE AK S FRACTION OF FLOW LEAKING DIRECTLY INTO U - DAIN6V CORE 67 RE AD7R V-29PPER PLENUM FROM LOWER BYPASS REGION LIST 7R

IN!T6TUPLN65

F6LSA4 A TOTAL LOSS COEFFICIENT AT TOP OF EACH CH - VD9V OPTN6S UPLN65 V-23ANNEL COEF6T

COOL 65LIST 7R

F 6LSA A LOSS COEF. FOR AREA EXPANSION IN EACH CH - VD9V COE F6T V-10ANNEL, AREA CONTRACTION IN EACH CHANNEL LIST 7RAND ORIFICE OF EACH CHANNEL CORE 65

1

@ F6LSOP S BYPASS FLOW LOSS COEF. - DAT16V COOL 65 REA07R V-23# FLOW 6T UPL N6S

3UPLN65LIST 7R

F6MAXA S PELAT IVE DEV! AT ION ACCEPTANCE L IMI T FOR - TCUL6V LIST 9T READ 9T T-9002IN-VESSEL COOLANT CALCULATIONS FLOW 6T

INIT9TCOOL 6T

F6MAXD 5 MAXIMUM RELATIVE DEVIATION OF ANY IN-VES - TCUL 6V ORIV9T DRIV 9TSEL COOLANT PARAMETER DURING CURRENT TIM COOL 6T COOL 6TESTEP

F6MINA S SET EQUAL TO F6MAXA/2 - TCUL 6V COOL 6T INIT9T

F6NAME S NAME OF IN-VESSEL COOLANT PARAMETER CURR - TCUL6V ORIV9T COOL 6TENTLY RESTRICTING 56DELT

FORTRAN TYPE CCFINITION UNITS LABELLED REFERENCED DEFI'ED !*PJT REC.NAME CC +0N

F 6f 9WA A NORMA.! ZED AxlAL POWER DISTRIBUTION FOR - ND9V CORE 67 CALC ~"AEACH NOCE Cr rACH CHANNEL CORE 65

CALC ~R

F6NUCI 5 CORPELATION CONSTANT FOR NUSSELT NUMBER - CATN6V LIST 7R READ 7R V-3]FNUS6C DLADAT

F ONUC2 5 CORREL AT ION CONST ANT FOR NUSSE'LT NUME1ER - CATN6V FNUS6C BL ADA T V-30LIST 7R READ 7R

F6NUC3 S CORPEL AT ION CONSTANT FOR NUSSELT NU"8ER - DATN6V FNUS6C BLADAT V-30L1ST7R REAO?R

F6NUC4 S CORRELATION CONSTANT FOR NUS$fLT NUMBER - DATN6V LIST 7R BLkOAT V-30FNUS6C READ 7R

3 FEPD A PITCH TO DIA"ETER RATIO FOR EACH ROO TYP - VD9V LIST 7R READ 7R V-101E COEF6T* PROP 6T*

CORE 65I

F6PTOT A TOTAL NORMALIZED POWER FRACTION IN EACH - VD9V STEM 5T POW 6TCHANNEL FROM F ISSION AND DECAY HEATING COE FS T

CORE 6T

F6PWD A PITCH TO DIAMETER RATIO FOR WIRE WRAP OF - VD9V COEF6T READ 7R V-101EACH ROO TYPE LIST 7R

CORE 65

F6REOP A REYNOLDS NUM3ER IN BYPASS REGIONS - Flx6T FRNT6T FLOW 6T

F6RE NO A AVERACE REYNOLDS NUMOER IN EACH CHANNEL - VD9V PRNT6T COEF6T

F6TPDP S FRACTION OF TOTAL POWER DEPOSITED IN BYP - DAT36V VRFY7R VRFY7RASS CHANNEL CORE 6T

UPLN65

, _ . .

FORTRAN TYPE DErlN!TICN UNIT 3 LABELLEO PEFERENCED C'E F I NE D INPUT REC.NAME CCWON

F6TPOW A FRACTION Cf TOT AL PO4R DEPOSI TED IN E AC - tO9v % RF CR kRFYM V-3H CHANNEL CORE 6T

PRNT55COGE65LIST 7ROPTN65F AL C7R

F6WSTP S MAXIMUM FLOW FRACTION CHANGE ALLOdD PE 4 - CAT 26V OPTN65 BLADAT V-23FLOW FRACT ION OPT ION ITERATION LIST % READ 7R

F9MAXA S REL AT IVE DEV l AT ION ACCEPT ANCE L IMI T FOR - TLUPts INIT97 VRFY9TLOOP THEPMAL AND HYDRAULIC CALCULATIONS Driv 9T

F9MINA 5 SET EQUAL TO F9"AX A/2 - TLUPlV DRIV 9T INIT9T

F9PWRZ S FRACTION OF REFERENCE POWER AT T=0 - DATA 0V L I S T 854 READOR O-1CALCORPPN!95

@N

3 G61 A MASS FLOW RATE PER UNIT AREA OF E ACH CC' VG/tS*M2) VD9V UPLN65 CORE 65LANT CHANNEL CORE 67 GPi rf;S

CORE 6SOPT PES

HIFLP S FOULING RESIST ANCE ON CUTER (PR!P* arf) SUR (M2-Kl/W DATXIV LIST 1R READIR N-100FACE OF TUBES lHXIT

IHX15

HIFLS S FOUL ! NG RES IST ANCE ON INNERISECONDARfi S (M2-K)/W DATXIV IHXIS READIR N-100URFACE OF TUDES LIST 1R

IHx1T

H3 FOUL A WATER SIDE FOULING HEAT TRANSFER CCEFFIC W/tM2*K) C A'. G 3V HV3T CALC 3R S-301IENT FOR HE AT EXCHANGER HX35 INIT3R

TUBE 3 T

H5NOOP A EAT TRANSFER COEF . F 06 FUEL-CLAD CONTACT W/(K*M2) VD9V GAMASS V-20FOR EACH CHANNEL GAMAST

LIST 7R

FORTRAN TYPE OEFINITION UNITS LABELLEO REFERE NCEO DErlNEO INPUT REC.,

NAFT C MO*4

H6ADP S 0.EPALL HEAT TRANSFER COEFICIENT BE NEN W/K OAT 25< COFE6T REA079 V-29UPPE R B Y P A SS RE G i ON SOC l u*1 ANO L I NER UPLN65

LIST 7ROPtNST

H6CAS S HEAT TRANSFER COEF. FCR COVER GAS IN UPD W/lK'"2) CAT 2SV INIT6T REA07R V-28

ER PLENUM LIST 7RUPLN6S

H61NF S HEAT TRANSFER COEF. AT INTERFACE Or Two W/tK*M2) OrIN6s LIST 7R REA07R v-28

SCO ILt1 ZONES IN UPPER Pt Et#JM INIT6T

H6LNA 5 HEAT TRANSFER COErlCIENT BETWEEN SOOil.M W/IK+M21 CAT 26V UPLN65 REA07R v-29AND METAL IN UPPER PLENUM INIT6T

LIST 7R

H6LPUA 5 HEAT TRANSFER COEFFICIENT IN LOWER PLENU W/tk+M23 OAIN6V LPLN6T REAO7R V-2%M LIST 7R

1

H6 NODE A HEAT TRANSFER COEF. FOR EACH AxlAL NOCE W/(k'M21 v09V TFUN57 F90P6T* OF EACH CHANNEL PRNT6T CORE 65

PRESSCOOL 65

|

!! FAIL 5 MODE OF PRIMARY CHECK SALSE - A!TC! LISTlR PEAD1R N-ll!0-WORKING; l-F A ! LEO CVALIT

llTYPE 5 TYPE OF PRIMARY CHECK NALvE - AITCl LISilR READIR N-ill

13DNO A CONTROL FLAG FOR ONO CALCULATION IN HEAT - DAT!3! HX35 INI T 3R S-301EXCHANGER C ALC 3R

13EISL A CONTROL FLAG FOR CALCULATION OF ENTHALPY - CATG31 ItF53T INIT3R S-101OF FLOW THRU EACH Exli NOZZLE 51MP35 C ALC 3R

13 MOWS A INDEX OF HEAT TRANSFER CORPEL ATION ON WA - VO9/ PRNT35 HX35TER SiOE OF EACH HEAT EXCHANGER PRNT3T TueE 3T

FORTRAN TYPE DEFINITION UNITS L ABELLED PEFERE NCED DErtNED input REC.NAME CO TON

13PRNT S CONTROL FLA3 FOR STEAM GENERATGR PRINT C - Im3SI LIST 9R REAO9RPT1ONS PRNT35

PG.t 95

13581N A POINTER '^R r!PST NGCE IN E ACH FLOW SEGM - VO9V !KFS31 CALC 3R,

ENT OF EA H STEAM GENERATOR ACOM3TSTON3TC ALC 3RFEED 3TINFS3T

13500T A POINTER FOR LAST NOCE IN EACH FLOW SEGME - kD9V CALC 3R C AL C 3RNT OF EACH STEAM GENERATOR FEE 03T

STON3TACCM3T

15EG A trOEX OF INNER MOST ECUlAxED GRAIN GROWT - VD9V PREST PUTS $H RADIAL NCOE OF EACH AXIAL SLICF OF EACH CHANtEL

15MAXT S INDEX NUMGER Or 15 FUEL ELEMENT CURPENTLY - TFULSI DRIV 9T MAXDSTI RESTRICTING 55DELTewI 15UN A INDEX OF INPER MOST UNSTRUCTED RAO! AL NO - VD9V PRE S T PUTSS

DE OF EACH AXIAL SLICE OF EACHCHANNEL PRNT55PRNT5T

J18 REM A PRIMARY LOOP PIPE NUMBER CONTAINING BREA - VD9V GVSLIT READ 9T T-1003K WRITli

RSETITE HV1iVRFY9TLIST 9TBF<E ,C I T

FUNCITVESLITPRESITPLOSITSTORITINITliDEFN1iX11TDRIV 97

FORTRAN TYPE DEFINITION L's:IS L AGELLED PEFERENCED Ct r :NE O [Npy; REC,NAME C&CN

J2BPEK A I N T E Pa*E D ! A T E L OCP P ! PE NUf'f 4E P CCN'AIN!NG - 4D7 [N|T]? READ 3? T-120|BLE AK LISTAT

PLCS2TWRIT 2TEOl%2TR'ET2TCE F N'TRITEITBREA2TPRES 2TFUNC2T4RFY9T

JSTYP A INCE X CENOTING TTPE Cr EACH AXlAL SL]CE vo9v e LIE L5S T YPE53R-

GF EACH CHANNEL TYPE *RPRE 5TPRESSGRCuST

LICLEG S CONTROL FLAG INDICATING IF PRIMARY PUMP - CATAOI PEAL 95 C AL C ENIS IN COLO LEG 0-NO l-YES

1

LICV A PlPE NUMOER PPECEDING CHECK VALVE IN EAC - %D9/ WRITIT C AL C IR N-1001go H PRIMARY LOOP LIST!R RSETITo NRFYlR READIR

CALCIR3

PRE SI SRSET1TPLOSITRITE 15CVAL1SCVAllT

LIECAL S FLAG TO CALL LOOP THERMAL CALCULATION - TLUP l l LIST 9T READ 97 T-900%0-NO: 1-YES

LIEPRT S CONTROL FLAG FOR PRIMARY AND SECONCARY L - CATLil MAIN 95 PEAD97 O-5OOP DETAILED PRINT O-NO. 1-YES PRNT9T PCADOR

PEACORINITliLISTHRLIST 9TLOOP 1S

--'

. _ _ . .

FORTRAN TYRE OEFINITICN L*. ! TS L ABE LL E D FEFERE' ED DEFINED P#UT RE--

NAME C0""CN

LIERR S EPROR FLAG - CATLil !Hels !Hw!SPU"plS L ON I G

P WISt

LIFDIR S lHX FLCW INDICATOR I FCR PARALLEL FLOW - CATL1! latlT PEADIR N-iO!IN lHX; -1 FCN COUNTER FLOW ,pryiR

RIT[lT!Hx15HYCRITHYORISLIST 1R

LIFLOR S trOEX COUNTER USED IN PRIMARY LOOP TO %E - TFLOl! C OC '. ' STOwlTSSEL INTERFACE CALCULATIONS COOLET

LIFLOT S INDEX COUNTER USED |N PRI?*ARY LOOP TO %E - TFLOli ORIV97 DRIV 97SSEL INTERF ACE C ALCUL AT IONS STORIT STORIT

LIGV A GUARO VESSEL OPTION FL AG C NO GUARD VE - VO9/ CWSLli REA09T T-ICC33 SSEL I-RV OUT. 2-RV IN. 3-P IN, %-P OUT. IN!Tlf

H 5-1HX IN. 6-lHX OUT LIST 9ToW

LllHX A PIPE NUMBER OF IHX IN CACH PRIMARY LOOP - VO9/ IHxli READIR N-lC01gPRETIT RSETITPRNTIT CALCIRIHW15LISTIRHYOR15RITEITPRNTSSRSETITLOOP 1iX11TRITEISCALCORCALCIREto l TPDFG1TENDIS%RFY1RLOOPISWRITITHYORIT

_ _ _ _ _ _ _ _ . _

FORTRAN TYPE CU INI T I ON UNITS LABELLEO PEFERENCEO DEF INE O I V'U T REC.NAME COP *"ON

LliP S INPUT OPTION 1*CICTOR 0 tr PIPO*x GlvE - DATLil kRFy1R READlR N-1;l

N. 1 IF FILOSStJ1HX.11 GIkEN HTORIS.ISTlR

LlkS S INPUT OPTION INDICTOR O IF P2Powx GivE - DATLil LIST'A READIR N-lCIN. 1 IF FPLOSxI13 GIVEN varyip

HTORIS

LIMAXO S INDEX NUMBER WITHIN FIMAyN ARRAY OF ELE" - TLUPl! OR!k97 PIPEITENT CURRENTLY PESTRICTING SIDELT PIPE 2T

IHxtT

LINOOC A OFFEET INDICATORS WITHIN CERTAIN PRIMARY - VO9 ' LOOPIS FEADlRLOOP ARRAYS REAOlR

CALCIRINITlTLISTlR

L1 PIPE A OFFSET INDICATORS WITHIN CERTAIN PRIMARY - VO9V CALCIR READIRLOOP ARRAYS VRFYST

RE ia? ! R,

HO LIPONY S CONTPOL FLAG FOR PRIMARY PONY MOTOR 0- - OATA!| LIST 97 PEA 09T T-1001N OFF; l- ON PUMP 17

I

LIPORS lHX COMPUTATION INDEX O! RECT!NG TO PRIMA - AITCl WYORIT LOOP 2TRY OR SECO*CARY SLOE lHxlT PDFG2T

LOOP 1TPDF G1 T

FCRTRAN TYPE CCFINITION L*. ! T S LA9ELLEO GE FE RENC E O CEFINEC INPUT PEC.NAME C C***CN

LIDUMP A PIPE P W ER PPECECING PU** IN EACH Pol"A - 409w LOOP 15 RSETIT N-lC21R Y L OOP INITIT PEAOIR

BREvli CALCIRwE5ctTPPESITRSETIT6#< l ' 1 TRESISPPNi9SPLCS1TFUNC1iVRFyIRCALCOR*11iCALCIAENDISCEFN1TPUMPiSR1TEISE NOl TLISilRh151iPRESIS

I LISEPR S FL AG TO PRINT LOOP THERMAL CPU TIMING DA - TLUP11 LIST 9T READ 9T T-90C6TA 0 -FO : 1 vES Driv 9Tg

OwI LISEXT S FLAG INDICATING IF SILCOP=59PSTR - TLUPl! Driv 97 INIT9T

CRIV97PPNT9T

LISTEP S NUMGER OF TIMESTEPS TAKEN BY LOOP THERMA - TLUPil CRIV9T ORiv9TL MCDULES PPNT97 INIT9T

LISTRC S PRIMARY LOOP STRUCTUR AL MATERI AL 10 - CATLil IHilS READlR N-100LISTIR PPETITlHxlTPPETITVRFYlRPIPE 2TPIPEIT

iJ(,6 tD y d) -

O(L iJ f1 (> O< . F> O ry

> 0)1 Q T') + n o e

(y " > & Z ?..

()- - * - if p a >- a y~w . *

-/ .

d1 ..T T. (JrJ ~%~%

l') >p r y ,_ g gu 4 4 4 -- 8 a w .c 4w w w a2 6 40w w() a cr 2 o- a v2a a

fJw4

9'

- --* ei v- Q *ru bo % k % m- N - N - Q"|01 'O $> > > HH Q R 3[ | 5 Y W ff O V- WQHW>

.?' VGb 8-F-'7 (T.

.Om- e.; -Crtr J J

4 - a w $' o w u>. c *- -. -- -o a- ru a > w *-[ e&wm >6goro-a:02>a, s cr - -

uu s -- m / / *- 4 7- M u - tnw ~4 - a ri z a4 .'

C.)-

J i 1 u uf .1 w a .I J w 1 > w & 3 w>2J+I .Jt) .J & L-

()Lh

9 - -j~) * * $-

- - -

J'

D D r)L.a | \) G ')' t,0 e .J%

tle 4 ) ,, J 6 V V- T W[ / 4 O 4"I 4 > i s. Ls.- - u .- o_s u * s

f f

O-.

9

) 1 1 0 I f I

1*

O 7 0s t,

: t> + a 4- e a

-

3 F w .*w -

- t - 1 7-

>* ,J d - L.)

) l C,L. Q1 L) () T G

h'l& .1 0 O %u -i > J > a

v 4<). tb > 'l L-- U - [D 0 -

,) -- J ft

| r .~) U a O2() 4 i * w > ta

J 4 3 a Ls.J >F"- C 's Q O 4- r L) * H (3 QQ-?. I > I

Z- O-e 3 p .O b @ 1 Ob O-L-d >J Q C L.) W WOLJ

u oe O O* * uO- * -

O>1 Ji wJ Z . .;.J- O )- w & -NJW

& w +- 3. & L.; 6

-.*(i .J> / - LA F- 7

I . 4 --O >- LJ G< 0 Lt..2 i

J7 g O y- --

6o o a t. J 4

x k). d ba b~s

(o ao o 2L~ > : ~

i w 1 w s .C4 QO Q LL W D n J >- DZ

u -24 4 *K }7 - & Co. - C. G,J*L

&.- t}. 7,; _J aeLC w L4 IJ w a ~~

v1o>b C O LO @ (O 4E @

?4 $ J W Aa G. *1 Q. >- 1 >> .L 3

^

T % > wO% -

l 3 w L.; .s& W- - c, N N

u. 7 _J J > J J J

- 104 -

FORTRAN TYPE DEF I N I T I C*4 UNITS L AGELLED FEFE RE NCE O DE F I NEO INPUT REC.NAME COW 4

L2KSH S INPUT OPTION INO!CTOR r IF R2PDSx: 1) G - CATL21 LISilR REAblR N-121!vEN: I !F F2 Shill G l 'w E N RITE 25

'. RF Y l RSPHT25

L2NOOE A OFFSET INO!CATOR$ WITHIN CERT ~lN INTERME - VO94 INITIT READIRDIATE LOOP ARRAYS LOOP 25

RE ADl RLIST!RCALCIR

L2 PIPE A OFFSET INDICATORS WITHIN CERTAIN INTERME - %O9V READIR READlRDIATE LOOP ARRAYS C AL C I R

VRFY9T

L2 PONY S CONTROL FL AG FOR SECONDARY PONY MOTOR - DATA 21 LIST 9T READ 9T T-10020-OFF; l- ON Ft*1PP T

L2 PREV S FLAG, INIT!AL CUESS FROM PREVIOUS CASE - PREV 21 LIST 4 READ 8R O-30-NO: 1-YES CALCbR,

F*Ou L2PRNT S SET EQUAL TO L IPRNT - CATL21 LOOP 25 READ 6R

|

FORTRAN TYPE CC F I P. l T I ON L*.l?5 LASELLED REFEPENCED CEFINED INPUT REC.NAME C h''N

LcPUMP A R I PE PAME R PRE CE0 ! NG PUMP IN EACH INTER - D9v PCCS2T RSET2T N-!CCIMEDIATE LOOP RSET2T C AL C 1R

PRES 2S READIRRES25LIST 1RF 1TA .5PRNT9SkRryla

LOOP 2SDE F M TOREK2TCALC 1RINIT2TEPC27ENGMRES2TPUMP 25~atC2Tplt,52 T

L2SH A PIPE NUMBER PRECEDING SUPERHEAT[R IN [ AC - VD9V ENC 25 C AL C I R N-1001H INTERMEDI ATE LOOP LOOP 2S RSET2T

PPES2S REAO1RI SPHT2Tp WR1T2To PRNTIT@ ENC?T

WGHT27g

PRNT95RtTE25CALCIRPSET2TLIST!RLOOP 2ISPHT25VRF r 14

__

- - - -

FORTRAN TYPE DEFINITION UNITS LADELLED REFERENCED DEFINED INPUT REC,NAME COMMON

L2 TANK A PIPE NUMBER PRECEDING EXPANSIG:4 T ANK IN - VD9V RITE 25 RSET2T N-1001EACH INTERMEDIATE LOOP PLCS2T CALCIR

RSE T2 7 READ 1RLISTlRBREK2TTANK 2TDEFN2TRITEITPRES 25FUNC2TWRIT 2TCALCIRTANK 25VRFY1RINIT2T

L 3C ALL S FLAG TO CALL SG CALCULATION 0-NO: 1-Y - DATT31 (HIV9T READ 9T T-9009ES LIST 9T

L 3CONV S CONTROL FLAG INDICATING CONVERGENCE OF S - PREV 21 MAIN 9S STGN35TEAM GENERATOR CALCULATION 3 PBAL95 PBAL9S

1

o L 3DMEN 5 CONTROL FLAG USED IN INPUT PROCESSOR TO - BNDS3R READ 3R BLKOTRN INDICATE WHETHER THE STEAM GENERATOR DlM READ 3R

ENS!,JNS HAVE BEEN SET,

L3DNQ A NODE IN WHICH DNB OCCURS IN EACH SG SODI - VD9V HX3T HX35UM LOOP PRNT3S STGN35

PRNT3T TUBE 3TSTGN35TUBE 3T

'

L 3F ILL 5 LOCATION OF FILL JUNCTION IN STEAM GENER - DATG31 WFLO35 VRFY3R^j ATOR LOOP PIPE 3T

CALC 3RPlPE3SSTMP35

L? ST S MODULE NUMBER TO WHICH THE FIRST MODULE - DATG3! STMP35 VRFY3RIN lHE STEAM CENERATCR LOOP 15 CONNECTED CAL 73R

a

,

' - - -

---m-i---mm------ mi -

FORTRAN TYPE CEFINITION LNITS L ABELLED REFERENCED DEFINED INPUT FEC.NAME CCmON

L 3HX I A NOCE NUMBER IN CERTAIN SG VD ARRAYS DENO - DATS3! PRNT3T C AF C3RTING START POINT OF E ACH HE AT EXCHANGER PRNT95

TL6E3T

L3HxO A NOOE NUMBER IN CERTAIN SG VD ARRAYS DENO - DATS31 PRNT95 CALC 3RTlNG END POINT OF EACH HEAT EXCHANGER PRNT3T

L 3HX A MODULE NUMBER OF EACH STEAM GENERATOR HE - DATG3! HX3T VRFY3RAT EXCHANGER CALC 3R

EVAP25SPHT25WFLO35LOOP 25EVAP2TTUBE 3TPRNT3TP!PE35SPHT2TSTGN35PIPE 3TINTF3TFSEG3T

I PRNT35pa CALCIRCD STGN3TCD PRNT95

1

L3ORD A ARRAY USED IN SG INPUT PROCESSOR TO CORR - VD9V VRFY3R VRFY3RECTLY ORDER THE USER SUPPLIED INPUT CALC 3R

L 3PRNT S FLAG TO PRINT SG DATA 0-NO; l-YES - DATT31 STGN3T READ 9T T-9005PRNT9TLIST 9T

L3PUMI S NODE NUMBER IN SG VD ARRAYS DENOTING PUM - DATS31 PRNT95 CALC 3RP INLET

i 3 MJMO S NODE NUMBER IN SG VD ARRAYS DENOTING PUM - DATS31 PRP.T93 C AI C 3RP OUTLET

FORTRAN TYPE DErtNITION UNITS L AE4ELLED RErERENCED der l NE D INPUT REC.NAME COMMCN

L3 PUMP S MODULE NUMBER OF STEAM GENERATOR PUMP - DATG31 PIPE 3T '. PF Y 34STGN35WFLO3SPlPE35

L3SOLP A MODULE NUMBER OF FIRST MODULE IN EACH FL - DATG31 WFLO35 VPFY3ROW SEGMENT OF BOTH SG AND TURSSINE LOOPS STMP3S

PlPE35PRNT35CALC 3RPIPE 3TINIT35

L 3SPRT S FLAG TO PRINT SG CPU TIMINb DATA 0-NO. - DATT31 LIST 9T READ 97 T-9006l-YES DRIV 9T

L35YDM S NODE NUMBER IN CERTAIN SG VD ARRAYS DENO - DATS31 PRNT9S CALC 3RTING STEAM DRUM LOCATION

3 L3 STEP S NUMBER OF TIME STEPS TAKEN BY STEAM GENE - DATT31 PRNT9T STGN3TRATOR MODULE STGN3T INIT9Tg

C3 DRIV 9Tc

I L3 TYPE A TYPE DESIGNATION OF EACH MODULE IN BOTH - VD9V WFLO35 CALC 3RSG AND TUR8 FLOW SEGMENTS; != PIPE, 2=Hx, PRNT35 INIT3R

3= PUMP. '4 = VOL FSEG3TCALC 3RP!PE35P!PE3T

L3\ 3L A MODULE NUMBER Or EACH ACCUMULATOR IN BOT - DATG31 CALC 3R VRFY3RH SG AND TURO LOOPS STGN3S

PRNT35STMP35

L5AFMT A INDEX OF ACTIVE FUEL MATERIAL FOR EACH R - VD9V TYPE 5R RE AD7R V-101OD TYPE VRFY7R

LIST 7RREPT9R

L5 CALL S FLAG TO CALL FUEL CALCULATION 0-NO, 1- - TFUL51 LIST 9T READ 9T T-9009YES Driv 9T

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DEFINED INPUT REC,NAME COMMON

L5CLMT A INCCX OF CLADDING MATERIAL FOR EACH ROD - VD9V REPT9R READ 7R V-101TYPE LIST 7R

VRFY7RCALC 7RTYPE 5R

L5CAS A INDEX Or EACH FISSION GAS TYPE IN EACH C - VD9V CALC 7R RE AD 7R V-501HANNEL LIST 7R

VRF Y7If

L5tPDY A COUNTEPS USED IN DECAY HEAT CALCUL ATIONS - ND9V POW 6T POW 6TINIT6T

L5LBMT A INDEX OF LOWER BL ANKET MATERI AL FOR E ACH - VD9/ TYPESR READ 7R V-101ROD TYPE VRFY7R

REPT9RLIST 7R

L5 MESH S INDI ATOR FOR FUEL RADI AL MESH: 0-EQ - DAT251 PUT5T READ 7R V-25UI-RADi S. 1 -E QU I - ARE A XPANSSI

GROW 5Tps PUT55Ed XPANSTCD

PREX5S, LIST 7R

DOPPST

L5POPT S TRANSIENT POWER FLAG; 0-PROMT JUMP APP - DATD5I LIST 9T READ 9T T-5001OX. 1-EXACT PRMT5T

L5PRNT S CONTROL FLAG FOR DETAILED IN-VESSEL TEMP - DAT251 FUELSS READ 8R O-5DISTRIBUTION PRINT LISTOR READ 9T

PRNT9TLIST 9T

L5 REST S RESTRUCTURING CONTROL FLAG - DAT25! CALC 7R

LSSEXT S FLAG TO INDICATE IF S5 FUEL =59MSTR - TFUL51 DRIV 9T DRIV 9TINIT9T

FORTRAN TYPE CEFINITION UNITS LABELLED REFERENCED DEF!NED INPUT REC,NAME COMMON

L55PRT S FL AG TO PRINT IUEL CPU TIMING DATA 0-N - TFUL51 LIST 9T READ 9T T-90C60. 1-YES Driv 9T

L5 STEP S NUMBER Or TIMESTEPS TAKEN BY FUEL HEAT C - TFUL51 PRNT97 DRIV 9TONOUCTION MODULE DRIV 9T INIT9T

LSS1MT A INDEX OF STRUCTURAL MATERIAL FOR EACH RO - VD9V REPT9R READ 7R V-101D TYPE VRFY7R

LIST 7RTYPE 5R

L5THLF S POINTER TO MlD POINT IN T5 FUEL ARRAY - TFUL5I PROP 6T INIT5TMAXDST

L5LBMT A INDEX CF UPPER BLANVET MATERIAL FOR EACH - VDW TYPE *R REA07R V-101ROD TYPE REPT9R

LIST 7R| VRFY7R

HH LEATYP A INTEGER VALUE INDICATING M. HOD TYPE OF - VD9V COOL 6S V-2#

EACH CHANNEL CORE 6Tg LPLN6T

LIST 7RTYPESRINIT6TVRFY7RCORE 65OPTN65PROP 6TREAD 7RCOEF6TPRNT6TCOOL 6TUPLN65CALC 7R

L600ll A FLAG TO INDICATE IF OOILING HAS OCCURED - VD9V INIT6TIN A CHANNEL 0-NO l-YES

L6 CALL S FLAG TO CALL IN-VESSEL COOLANT CALC. 0 - TCUL61 DRIV 9T REA09T T-9009-NO, 1-YES LIST 9T

CE 2 1 1 6R 0 0 0 0

0 0 0 0T 6 6 6 5 9U - - - - -P T T T O TNI

DE 7 RT 7T T T T RT TT TT TT TN 9 76 6S 9 6 9 89 69 69 99 9I D CT T M D L D DD PV LV

D R CI INE E O E EE RR OR RNID

E E ANIA A O A AA OI OI IVTF A LI A

EL R C R RR PD CD DI R

DECNE TT T7 TTT T 77 TTSR T T T TTR 69 66 966 9 96 9968 6 6 9 99E NT PT TWL

I SL SNOS O O I SIV TN T1 LT P L V TV

F LS OI SOOE PI RN ILO R

ILUIP ROI R O R RR UL PI LFC D LPCL P C D ILD

DE

1 1 1 1 1

6 6 6 6LNLO 6 6 6 6 6

1 1 1 1

EMI 9 9 I U I T U U U UN V V N L N A L L L LBM

AO A D D A C A A C C C CLC D V V D T D D T T T T

STI

NU - - - - - - - - - - -

!B H E OO M C E- UD OT / C E NI F I TD J N APD A B - T O E M E N - TOE C 0U T N A LS SA 0 AE SS B YL O N EU AH DN AE I AE Z Y U HTEF

I HY ;R RD D FE , GFLT - NT R6 E B TR L NSN J S1 OS A5 N O R LES ESA N A IE O l ED EHE U

I

MET I G . TR EG1

US HL DTY F I-RS D O U MN LE TU 6O- 5 TPN C NN BW AI FY EO 5 1 SO A O- IO NT - HH S = USC L I0 RL EC , Ll WS FN , L PN A - C S TF FI E E OO O C

IC2 S- S- R PG S ES

I

O SN OF IL I

T R O FE D1 ET YN SO TN GA - C LHS TI EN AOI ES N E TE X V - CI INE0 6 E

R S SN VS 0 FN RN R GI 0

F CM1 IA C N N

IT T SI OA

E Y EC OT IHLINM I

DA AE-l

EFH W! Y NLIFO -CON v

XE IP DOD RT T T LU TT

IMO ON OA NDRl E NN RTON R AA FB IN TFA E C I WE Z FI TR IEE A

I

T P IN RR R R R TS GT CGS O DI OT WR OO GP GXE GNI I

TSAN R N FS EU FW A AEY AAR D INEYLO P N R-FCE

ID I BC T LD L - LHCI PlE RD M R- FE FE1 FCT LL OS OE US O2 L R NLlA

O R IAE TA TF NT T LI LU ,OEI TE TOLNO OS ON E A N A OA OTOR RN GL CW XE CG RT RAN RET Y NT D EA AE IO EM IDI ND NEO N Al A0

N TE TR - TBAONE AC F O OP OTVI

G- G-N;E T H LR DL DECOL M N INF INL INXI C5 CM CSE F F

L LN E

EPYT S A A S 5 5 S S S S

NA S D S W 0 T P G T TR A A A O x X N O H X RTE G L G L A I R R C E PRM C C F F M M P P S S SOA 6 6 6 6 6 6 6 6 6 6 6FN L L L L L L L L L L L

I PEN Iad

FORTRAN TYPE DEFINITION UNITS LABELLED REFEPENCEO DEFINED INPUT REC.NAMC COMMON

L6 STEP S NUMBER OF TIMESTEPS TAKEN BY IN-VESSEL C - TCUL61 PRNT9T INIT9TOOLANT OYNAMICS MODULE DR!v9T Driv 9T

PROP 6T

L6 WORT S INDICATOR FOR FLOW FRACT ION OPTION O FRA - DATA 61 CORE 65 BLKDAT V-23CTIONS KNOWN 1 FRACTIONS UNKNOWN COOL 65 READ 7R

UPLN65OPTN6SLIST 7R

L90MP1 5 FLAG TO PRINT COMMON BLOCK DATA AFTER IN - INTG91 INIT9T READ 9T T-9008ITIALIZATION 0-NO. 1-YES LIST 9T

L90MPL S FLAG TO PRINT COMMON BLOCK DATA AFTER TR - INTG91 LIST 9T READ 9T T-9008ANSIENT 0-NO. 1-YES MAIN 9T

L90MPZ S FLAG TO PRINT COMMON BLOCK DATA BEFORE I - INTG91 INIT9T READ 9T T-9008NITIALIZATION 0-NO. 1-YES LIST 9T

I

HH L9MWRD S CONTROL FLAG INDICATING COMPUTER MAINFRA - DATA 9 MAIN 9R MAIN 9RW ME TYPE l-SIX OR MORE CHARACTERS PER READ 9T BLKDAT

g WORD: 2-FOUR CHARACTERS PER WORD PPNT9RGPNT9R

L90PT S CONTROL FLAG INDICATING WHICH STEADY STA - DATABI PBAL95 CALCBRTE INITIALIZATION OPTION HAS BEEN SELECT CALCBRED

L9 TOLD S FLAG TO PRINT CONTAINER ARRAY TABLE INFO - INTG91 LIST 9T READ 9T T-9008RMATION 0-NC, 1-YES INIT9T

MILOOP S MAXIMUM NUMBER OF PRIMARY LOOPS SIMULATE - DATMll CALCIRBLKDAT

MIORD S MAXIMUM ORDER (+1) OF PRIMARY PUMP POLYNO - DATM11 VRFYlR BLKDATMIAL READlR

M2 LOOP S MAXIMUM NUMBER OF INTERMEDIATE LOOPS SIM - DATM21 BLKDATULATED CALCIR

.

_ _ _ _ _ _ _ . . . .

FORTRAN TYPE DEFINITION UNITS LAGELLED REFERENCED CEF I NED |NPUT REC.NAME CCPCN

M3 TYPE A ID NUMOCR OF HEAT TRANSFER TUDE MATERIAL - DATG31 HX3T INIT3R S-301HX35 CALC 3RTUDE 3 T

M5RNOO S MAXIMUM NUMBER OF RADIAL NODES SPECIFIED - DAT151 INIT5T FUEL 55FOR ANY CORE AXIAL SLICE (USED FOR SCRA FUEL 55

TCH ARRAYS)

M9AUS! S MAXIMUM NUMBER OF PAIRED POINTS ALLOWED - DATC91 POW 6T BLKDATFOR VARIOUS INPUT FUNCTIONS (SET AT 251 CALC 7R

LIST 9TREAD 9TINIT6TCALC 3RINIT5T

NIACTV A NUMBER OF ACTIVEtVNPLUGGEDI TUDES IN IHX - VD9V PRETIT READlR N-1002OF EACH LOOP CALC 1R CALCIR

VRFYlR VRFYlRLISTlRIHXIS

I

p NIOREK S TOTAL NUMBER OF BREAKS IN PRIMARY SYSTEM - AITCt PRNTIT READIRF4 RSETITb WRtT2T

WRITIT,

NIEQ S NUMBER OF O.D.E.tS TO BE INTEGRATED FOR - AITCI UPLN6T READIRPRIMARY LOOP HYDRAULICS EQlV2T

CALCIREQlVIT

N;rLQT S NICQ + N2EQ - AITCl CALCIR CALCIRIN!TliINTG1TPRNT9T

- - -

. m_ . _ _ _ _ _ _ _ . . .._

_ . _ _ ..

_

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DEFINED INPUT REC.NAME COMMON

N1 LOT S NUM6ER OF PRIMARY LOOPS SIMUL ATEC - CATMll LIST 9T READIR N-1FSEG3T(RFY9TCALC 3RIKFS3TSTGN3TINTF3TPLOP 3TPRNT3THX3TREAD 9TCALC 1RINIT1TREADlRPRETITRSETITGVSL1TWR[ TITINIT3TX11TINF S3TINIT6TEQlVITLOOP 1TCOOL 6T

1 LPLNGTpa FLOWITbd DEFNITM STORIT

LOOP 2Sg

INIT3RACCM3TPLOSITBREKITCALC 7RFEED 3TCVALITFUNC1TCALC 8RPDFG1TLISTlRPRNT95RES!TPBAL95VESL1TSTGN3SPUMP 1TPRESITVRFY8RSTMP35DRIV 9TVOL35PRNT1TLOOPISTUDE3TVRFYlR

. . _ _ _ _ _ . . . . _ .

FORTRAN TYPE CEFINITidN L*N I T S LAGELLED REFERENCED DEFINED INPUT REC,NAME COMMCN

NINBPK A NUMBER OF NOCES IN BROKEN PRIMARY P|PE - VC9V !NITIT INITli T-1003LISTOT READ 9TVRFY9TPUMP 1TRSET1THEA0li

NINOCE A NUMBER Or NODES IN EACH PIPE OF EACH PRI - VD9V ENDIS READlR N-1MAP" t OOP LIST 1R RSET!T

PRNT95RESITIHXiSHYORISIHXITLOOPISPRNTITPRET1TBREKITREADIRINITITGVSLITPIPE 15RESISRSET|T

3 LOOPITPUMP 1Sg

pa HYDRITCB P!PWIT

VRFY9TI P1PEIT

CVALITENDITRITElsCALCIRCVALIS

_.._.

___

FORTRAN TYPE DEFINITION UNITS LABELLED REFEPENCED DEFINED INPUT REC.NAME CCMMON

N1 PIPE A NUMBER OF PlPES IN E ACH PRIMARY LOOP - VD9V LOOPIS READ 1R N-1IHxt7 RSETITPIPEISHYDRisENDISCALCIRPRNTITGv5L 1 TPUMP 1SPRESISCVALISRITElsWRITITDEFNITLOOP 2TVRFY1RRITEITPRETITPIPEITLOOP 1TPDFG2TDREKITINIilTPLOSITCVALIT

I HYORITF4 PIPWITbd PDFG1TN ENO1T

g LISTIRRESITPRESITFUNClTREADlRRSETITXIITRESISPRNT95

N! PUMP S NUMBER OF COEFFICIENTS IN POLYNOMIAL FOR - DATAll PUMPlS READlR N-110PRIMARY PUMP HEAD CALCIR

LIST 1RVRFY1R

---

. _ . _ .

FOR TR A*1 TYPE DEFINITION UNITS LASELLED REFERENCEO DEFINED INPUT REC.NAME COMMON

NITUGE S NUMBER OF TUBES IN !HX - DATX11 CALCIR PEADIR N-!OOVRFY1RLISTlR

N28REK S TOTAL NUMBER OF BREAKS IN INTERMEDIATE S - A2TC) WRIT 27 READlRYSTEM RSET2T

INIT2TPRNTIT

N2EQ S NtrsER OF O.D.E.75 TO BE INTEGRATED FOR - A2TC! CALCIR READIRINTERMEDIATE LOOP HYDRAULICS

N2EV S NUMBER OF EVAPORATORS PER SUPEPHEATER - DATE21 SPHT2T CALCIRWGHT2TENTESSPHT25RITE 2S

N2 LOOP S NUMBER OF INTERME01 ATE LOOPS SIMUL ATED ( - A2TC! FLOW 2T READlR=NILOOP) PLOS2T

I EVAP2TPRES 2Tpa

pa RITEITm PDFG2T

RESPTBREK2TPUMP 2TSPHT2TFUNC2TTAtW2TWR1T'TEOlV2TINIT2TRSET2TDEFN2T

N2NGRK A NUMBER Or NODES IN OROKEN SECONDARY P!PE - VD9V RSET2T INITIT T-1201LIST 9T READ 9TVRFY9TINITlT

. . . .

FCATRAN TYPE DEF INI T I ON UNITS LASELLED PEF ERE NCED DEF I NED INPUT REC.NAME CO m

N2 PIPE A NUMBER OF P! PES Ir. EACH INTEP'"EDIATE LOO - VD9V READ 1R READlR N-!P PLCS2T RSET2T

FRNT95PRES 2TEND2TBREK27CALCIRSPHT2SPRETITPIPE 25IHXITEVAP2TSPHT27END2SPDFG2TLOOP 2SRSET2TPIPE 2TRES2TLOOPITINIT2TFUNC2TVRFYlRPIPW2THYDR 1TgEVAP2S

Fa WRIT 2TH RITE 2S* TANK 2Tg LOOP 2T

RE525DEFN2TPRES 2SLISTlRTANK 2SPRNTITPUMP 2SAlTElT

N2 PUMP S NUMBER OF COEFFICIENTS IN POLYNOMIAL FOR - DATA 21 PUMP 25 CALCIRINTERMEDIATE PUMP HEAD RITE 2S

--

_ _ _ . . . . _ _ _ _ . _ .

CERT 1

U -

P NNI

DE TRN 2lI TDF EAE SED RR

OECNE 5TSRTTTS5T TTT 5TRT TTRT5S5R 222I222222TI2252219STI2II229E EPPTWKTKTE2TTT2EPOY22TKCTPPTr TO1SPNINHPSNEHDPAAFSOEELIOANtOLI!ANAPIERSPNIVERENRRANOVRE I

R HLPLPTITSPRPRSEPERVREPOCILEP

DELNLOEM VBM 9AO CLC V

STI

NU -

TNI

HCAE

ECEPI

N POI HT CI ANI

E

F NEC

I

SEPOOCONLFEOT

ARIEDBEMMURNE

EPYT A

NA ER CTE ORM NOA 2FN N

aI FNO I

FORTRAN TYPE DErlNITION UNITS LABELLED REFEPENCED DEFINFO INPUT REC.NAME COMMON

N2SH S NUMBER OF SUPEPHCATERS PER INTERMEDIATE - DATS21 WGHT27 CALClRLOOP RITE 25

ENO25CALClR

N2TPTS S NUMBER OF TEMPERATURE DATA POINTS FOR LO - BCTEMP STMP3T INTF3TOP - SG INTERRACE EXTRAPOLATIONS INTF3T

N2WPTS S NUMBER OF FLOW RATE DATA POINTS FOR LOOP - BCWFLO INTF3T INTF3T- SG INTERFACE INTEPPOLATIONS STGN3T

PRNT3TENAVGTMSG3T

N3 FMLP A MODULE NUMBER OF F1RST MODULE OF EACH FL - VD9V IKFS3T CALC 3ROW SEGMENT OF EACH STEAM GENERATOR STGN3T

N3FWLC A INDEX NUMBER OF FLOW SEGMENT CONTAINING - VDSV FEED 3T CALC 3RFLOW SENSOR FOR FEEDWATER FLOW CONTROL,

HPJH N3FWNC A INDEX NUMBER OF NODE WHERE FEEDWATER FLO - VD9V FEED 3T CALC 3R, W CONTROL SENSOR IS LOCATED

N3 HON 8 A MODULE NUMBER OF HX WHERE ONB OCCURS - VD9V STGN35 HX35HX3T STGN35TUBE 3T CALC 3RPRNT35 TUBE 3TPRNT3T

N3HMOD A NUMBER OF PHYS! CAL UNITS REPRESENTED BY - DATG31 SFLO35 INIT3R S-301EACH HEAT EXCHANGER CALCIR CALC 3R

TUDE3T

N3HXI S NUMBER OF HX-S TO BE INITIALIZED ON INPU - DATR31 VRFY3R READ 3R S-1001T CALC 3R

READ 3RLIST 3R

FORTRAN TYPE DEF INI T LCN UNITS LABELLED REFEPENCED DEF INED INPUT REC.NAME COMMON

N3HXR S NUMGER OF HK-O WHOSE GEOMETRIC OATA WILL - CATR3! READ 3R READ 3R S-1001BE READ ON INPUT CALC 3R

NKEY3RVRFY3RLIST 3R

N3HX S NUMBER OF SG Hx-5 SIMULATED - DATG31 FSEG3T VRFY3RPIPE 3SSTGN35VRFY3RPRNT3TCALC 3RINTF3TSTGN3THX35SFLO35PRNT35STMP3TINIT3RPIPE 3TWFLO3S

N 31 TER S MAX NUMBER OF ALLOWED ITERATIONS FOR ANY - DAT!31 HX3S CALC 3R S-10023 ITERATIVE CALCULATION STGN3T

FEED 3Gp.bJ INIT3TN

IN3 KEY A ARRAY CONTAINING INFORMAT|ON RELATING TO - VD9V VRFY3R NkEY 3R

ORDER OF INTERCONNECTION OF MODULES CALC 3R

N3LMLP A MODULE NUMBER OF LAST MODULE OF EACH FLO - VD9V STGN3T CALC 3RW SEGMENT OF EACH STEAM GENERATOR IKFS3T

N3LV IN A MODULE NUMBER OF ACCUMULATOR AT INLET OF - VD9V STGN3T CALC 3REACH FLOW SEGMENT INFS3T

FEED 3TACCM3TPLOP 3T

FORTRAN TYPE DEFIN!TICN UNITS LADELLED PEFERENCED CCFINED INPUT REC.NAME COMMON

N3LVOT A MODULE NUMBER OF ACCUMULATOR AT OUT'_ET O - VD91 FEE 03T CALC 3RF EACH FLOW c.iGMENT I NFS 3 T

ACCM3TSTON37PLOP 3T

N3 MOD A NUMBER OF MODULES IN EACH FLOW SEGTNT - CATG31 VRFY3R VRFY3RPIPC35WF L O 35CALC 3RSTGN35STMP35[KFS3T,

INIT3RPRNT3s

N3NOOE A NUMBER OF CONTROL VOLUMES 'N EACH MODULE - VD9V CALC 1R INIT3R S-1EVAP2T CALC 3RTUDE3TSPHT2TPIPE 3TPRNT35PIPE 35gHX3T

Fa INTF3TN LOOP 25W HX35g PRNT95

CALC 3REVAP2SSPHT25PRNT3T

N3 PIP! S NUMBER OF PIPES TO BE INITIALIZED ON INP - DATR31 LIST 3R REA03R S-1001UT VRFY3R

READ 3RCALC 3R

N3P[PR S NUMBER OF PIPES WHOSE GEOMETRIC OATA IS - DATR31 LIST 3R REA03R S-1001TO BE READ ON INPUT NKEY3R

CALC 3RVRFY3RREAD 3R

FORTRAN TYPE DEFINITION UNITS LAEELLED REFERENCED DEFINEO INPUT REC.NAME CO* HON

N3PNPI 5 PUMP INITIALIZATION CONTPOL FLAG - DATR31 LIST 3R READ 3R S-100tREAD 3RCALv3RkRFY3R

N 3PTRB 5 NUMeER OF ENTRIES IN TABLE Or TUR91NE IN - DATT31 LIST 9T READ 97L ET PRESSURES VS, TIME READ 97

FEED 3T

N358LP A NUMBER OF FLOW SEGMENTS IN SG LOGP THEN - DATG31 ACCM3T VRFY3RTURB LOOP CALC 3R

INIT3SINFS3TP I PE 35STMP35PRNT3SVRFY3RTUBE 3iSTGN35STGN3TFSE G 3 TPLOP 3TPRNT3T

I INIT3Tp. FEE 03Tta IKFS37e WFLO35

i

N3STGN A NUMBER OF PHYSICAL SG LOOPS TO BE REPRES - VD9V VRFYlR READIR N-2ENTED BY EACH SIMULATED SG LOOP ( SUMMAT LISTlRlON MUST EQUAL N9 LOOP l ACCM3T

CALCIR

N3TUGE A NUMGER OF TUBES IN EACH HEAT EXCHANGER - DATG31 CALCIR INIT3RSFLO35 CALC 3RHX35WFLO35T UBE 3TCALC 3RH;(3i

N3UMT S TOTAL NUMBER OF MODULES PER SG + TURO FL - DATR31 NKEY3R NKEY3ROW SEGMENTS VRFY3R

FORTRAN TYPE DEFINITION UN!TS LABELLED REFERENCED DEF I NE D INPUT REC.NAME COMMON

N3VISO A SCOUENCE NUMBER OF FLOW SEGMENT DISTHARG - VD9V ACCM3T CALC 3RING IN'O ACCUMULATOR

N3VLIN A NUMBER OF FLOWS INTO ACCUMULATOR ACCUMUL - VD9V CALC 3R CALC 3RATOR ACCM3T

N3VLOT A NUMBER OF EXIT NOZZLES - VD9V ACCM3T CALC 3R S-101CALC 3R

N3VOLR S NUMBER OF ACCUMULATORS WHOSE GEOMETRIC D - DATR31 NKEY3R READ 3R S-100:ATA ARE TO BE READ OlNPUT (SAME NUMBER M VRFY3RUST BE INITIALIZED) LIST 3R

READ 3RCALC 3R

N3VOL A NUMBER OF ACCUMULATORS IN BOTH SG AND TU - DATG31 STMP35 VRFY3RR8 LOOPS INIT3T

ACCM3TI StGN35g PRNT35bJ PPNT3TU VOL35

CALC 3RgVRFY3R

N3VOS8 A 10 OF MODULE ATTACHED TO EACH EXIT NOZZL - VD9V ACCM3T CALC 3R S-101E

N5AFUL A NUMBER OF AXIAL NODES IN ACTIV( FUEL REG - VD9V TYPESR TYPE 5R V-10]ION OF EACH ROD TYPE CALC 7R

N5ASEC A NUMBER OF AXIAL NODES OF EACH ROD TYPE - VD9V VRFY7R VRFY7R V-1TYPE 5RREAD 7RCALC 7RLIST 7R

FORTRAN TYPE CEFINITION UNITS L ABELLED REFEPE NCE D DEF1*ED INPUT REC.NAME C OP*CN

NSCHAN S ,NUrd8ER CF CHANNELS BE ING SIMUL ATED - DAT151 1.1ST97 CALC 7RCALC 7RPRNTSTPRNT55REA09TGROW 5TIN!T5TIN!T6TVOIDSTDOPP5TFUELSSFUE L5T

N50NGP S NUMBER OF DEL AYED PLUTRON GROUPS t MAX 1M - DATD51 POW 5T READ 9T T-5001UM OF 6) INIT5T

VRFY9TLIST 9TPRMT5T

N5 GAS A NUMBER OF FISSION GASES PRESENT IN EACH - VD9V LIST 7R READ 7RCHANNEL GAMAST

CALC 7RGAMASS

gVRFY7R

H READ 7RN@

N51TER A MAXIMUM NUMBER OF ITERATIONS ALLOWED DUR - VD9V FUELSS CALC 7RgING STEADY STATE TEMP, CALCULATION FOR EACH SLICE TYPE

N5JK A T5 FUEL ARRAY SU8CRIPT FOR EACH AXIAL SLI - VD9V PRNT55 FUEL 55CE IN EACH CHANNEL PRNT5T

PROP 6TPUT5TMAXD5TPUT55INIT5TPRESTLEAK 5T

N5LOLK A NUMBER OF AXlAL NCOES IN LOWER BLANKET O - VD9V CALC 7R TYPESR V-101F EACH ROD TYPE TYPE 5R

F OR TR AN T(PE GEr !NI T I C*4 UNITS L ABE|. LE D REFERENCED CEFINED !NPUT REC.NAME CO* MON

NSLFSF A NUMBER CF A x l AL NOCES I N L OWER G AS PL ENU - VD9v FUEL 55 CALC 7RM OF EACH ROD TYPE F UE LS T

PROP 6i

N5eTR A NUMBER OF RADIAL FUEL NODES IN AN AX1AL - VD9V PREST V-1SLICE OF EACH CHANNEL FUEL 5T

CALC 7RPRNTSTLIST 7RDOPP5TREA07RGROWSTVRFY7RPRESSPRN!55FUEL 55

N5 ROOS A NUMBER OF RODS ASSOCIATED WITH EACH CHAN - VD9V FRADST C AL C7RNEL GROW 5T

FRADSSDOPP5T

I N5SLIC A TOTAL NUMBER OF NODES AXIAL IN EACH CHAN - VD9V DOPPST CALC 7R

H NEL FUEL 5TFO PRNT55N GROW 5T

INIT5TI INIT6T

PEAD9TFUEL 55PROP 6TPRNTSTVOID 5T

NSUOLK A NUMBER OF NOCES AXtAL IN UPPER BLANKET R - VD9/ CALC 7R TYPESR V-101EGION OF EACH 900 TYPE TYPE 5R

NSUFGP A NUMBER OF NODES IN AXIAL FISSION GAS PL - VD9V FUEL 5T C ALC7RENUM OF EACH ROD TYPE FUEL 55

PROP 6i

FORTRAN TYPE DErtNITION UNITS LABELLED PErERENCED DEFlif0 INPUT REC.NAME COMMOh

tEAFUL A NUME4ER OF AXIAL NODES IN ACTisE FUEL REG - VD9V LIST 7R READ 7R V-101ION OF EACH ROD TYPE TYPE 5R

READ 7RVRFY7RCALC 7RCORE 65

N6ASEC A TOTAL NUMBER OF AX1 AL NOOES FOR E ACH ROO - VD9V LPLNGT VRFY7RTYPE COOL 65 READ 7R

UPLN65CORE 6TC AL C7RVRFY7R*

COEF6TCORE 65INIT6TPROF 6TOPTN65PRNT6TCOOL 6T

N6CHAN S NUMBER OF CHANI ELS BE ING SIMUL ATED - DATA 61 COOL 6T READ 7R V-1POW 6T

I TYPE 5Rpa VRFY7Rto CORE 6500 PRNT6T

INIT1TgLPLN6TREAD 7RUPLN65COEF6TFLOW 6TCALC 7RCORE 6TCOOL 65PROP 6TOPTN65LIST 7RINIT6T

N6 CHI 5 RUNNING 1NDEx ON CHANNEL BEING CACULATED - DAT36I OPTN6S OPTN6SCOPE 65

FORTRAN TYPE der!NITION UNITS LABELLED REFERENCED DEF INE D INPUT REC.NAMECCMMON

P6FLMX S MAXIMUM ITERATIONS FOR FLOW FRACTION OPT - DATA 61 LIST 7R READ 7R V-23ION CALCULATION OPTNGS BL kD AT

P6L8LK A NUMOER OF AXI AL NODES IN LOWER BL ANkET R - VDS TYPESR READ 7R V-101EGION OF EACH ROO TYPE VRFY7R

CORE 6SREAD 7RLIST 7RCALC 7R

PSLFGP A NUMBER OF AX!AL NOOES IN LOWER FISSION G - VD9V TYPE 5R READ 7R V-101AS PLENUM REGION OF EACH ROD TYPE CORE 65

VRFY7RLIST 7RCALC 7RREAD 7R

N6PMAX S MAXIMUM ITERATION FOR PRESSURE CALULATIO - DATA 61 OPTN6S BLKDAT V-23N LIST 7R READ 7R

1

>-a N6 ROOS A NUMBER OF ROOS ASSOCIATED WITH EACH CHAN - VD9V CALC 7R V-5y NEL LIST 7RVOID 5T

| COEF6 TPROPSTCORE 65| NIT 6TOPTN65

P6LE. K A NUMBER OF AXIAL NOOES IN UPPER BLANKET R - VD9V CORE 65 PEAD7R V-101EGION OF EACH RCD TYPE VRFY7RREA07RCALC 7RTYPE 5RLIST 79

NSUFGP A NUMBER OF AXIAL NODES IN UPPER FISSION G - VD9V LIST 7R READ 7R V-101AS PLENUM REGION OF EA CH ROD TYP READ 7R TYPE 5RE CALC 7R

COPE 6STYPESRVRFY7R

FGRTRAN TYPE CEFINITION Lt41 TS LABELLED RErERENCED DEFINED INPUT REC.NAME COmON

N90SGN S NUMBER OF PHYSICAL LOCPS PRESENT IN PLAN - CATA81 FEED 35 READOR O-1i LIST 8R

iSLOOP S NUMBER OF CFERAT ING LOOPS PPESENT IN PLA - CATABI WFLO3S READ 64 0-1NT P8AL95

VRFY1RsRFYORLISTORFEED 35

P181N A UPSTREAM OREAK PPESSURE N/M2 VD9V PRESIT BREKITWR]T1TBREKIT

PIBOUT A DOWNSTREAM OREAK PRESSURE N/M2 VD9V PRESIT BREKITVESLITWRXTlT

P10ENM S CONSTANT IN PUMP SPEED ECUATION KG/M2 RV PUMPli INITIT

1

HWO PIEXTR A PRESSURE OUTSIDE BREAK N/M2 VO9V WR1 TIT GVSLIT

BREKIT,

PlGASI S INITIAL COVER GAS PRESSURE IN ALL PRIMAR N/M2 BNOSOR LIST 8R READOR O-4Y LOOPS CALC 8R

PlGAS A COVER GAS PRESSURE IN EACH PRIMARY PUMP N/M2 VD9V RESIT RESITTANK CALCOR CALC 8R

REGISWRITITRITEISINITIT

PIINLT S PRESSURE AT PRIMARY LOOP INLET N/M2 DATBlV UPLNGT UPLN6TLOOPIS INITlTPINTIS PINTIS

L, 4 f T S LASELLED REFERENCED DEF!NED INPUT REC.FORTRAN TYPE CEF IN I T I C14 T

NAME COPCN

P i l t() A PUMP INLET PPESSURE N/M2 VC9V INIT!T RESITPUMP 1T INITITWRITITPRESIT

PilN A INLET PRESURE TO EACH PIPE IN EACH PRIMA N/M2 VD9V WRITIT PRESITRY LOOP RITE 15 R5ETIT

FUNC1T PRES:SRSET1T LOOPISPRESISINIT17PRNT95 ,

LOOPIS

PILOSI A PRESSURE LOSS ACROSS LOOP SECT 1ON GETWEE N/M2 VD9V FUNC1i PLOSITN PUMP AND TANK (CR OREAK) BREKIT

PILOS2 A PRESSURE LOSS IN LOOP SECTION AFTER PUPP N/M2 VD9V BREKIT PL OSI TAND DEFORE TANK (OR BREAK) FUNCIT

VESL1T

IPILOS3 A PRESSURE LOSS IN LOOP SECTION AFTER BREA N/M2 VD9V VESLIT PLOSITg

w K FUNCITH

I

PIOUTL S PRIMARY LOOP OUTLE T PRESSURE N/M2 RV STORIT VESLITDRIV 9T INITli

P10UTP A PUMP OUTLET PRESSURE N/M2 VD9/ PRESIT PUMPlTWRITIT INITITBREKITVESLIT

PlOUT A OUTLET PRESSURE FROM EACH P!PE OF EACH P N/M2 VD9V PRESIS PRESISRIMARY LOOP RESIS PRESIT

RITEls LOOP 15INITlT RSETITLOOP 15RSETITFUNC1TWRITITPRNT95

' ' 4 '

I q

- - ' '

_.

FCHTRAN TYPE DEFINITICN LN!TS LADELLEO REFE RE NCED DEF I FED INPUT REC.NAME CC**+0N

PIPCV 5 BACKPPESSUPC 70R CHECK VALVE TO CLOSE N/M2 AITCV LIST 1R READIR N-lli

PlPDCV A PRESSURE CROP OVER CHECK VALUE IN EACH P N/M2 VD9V LOOPIS LOOPISRIMARY LOOP PUMPIS CVALIT

PRE S IS CVALISPL OSI TWRITlT

P IPDFG A TOTAL PRESSURE LOSS IN PRIMARY PIPE OR I N/M2 VD9V PL OSI T HYDoliHX WRITIT PIPWli

PIPDHX A PRESSURE DROP OVER IHX PRIMARY S19E N/M2 VD9V HYDRIS READlR N-1000VRFY1R HYDRISLISTlR LOOP 15LOOPIS

PIPORV 5 PRESSURE DROP OVER REACTOR VESSEL N/M2 CATBlv PUMPIS PINTIS

I

>-*(4N otRISE A PRESSURE RISE ACROSS PUMP N/M2 VD9V WRtTIT WRITITg PUMP 1T PUMPIT

Pl S PRESSURE AT REACTCR VESSEL OUTLET NOZZLE N/M2 RV PRESIT UPLN6TORE K ! T

P20!N A UPSTPEAM BREAK PRESSURE N/M2 VO9V BREK21 BREK2TWRIT 2TPRES 2T

P2 BOUT A DOWNSTPEAM BREAK PRESSURE N/M2 VD9V PRES 2T BREK2TWR1T2T

P2DENM S 2*C9P1*02NRTA/60 KG/M2 RV PUMP 2T INITlT

P2GASI S INITIAL COVER GAS PRESSURE IN ALL |NTERM N/M2 BNOSBR CALCBR REA08R O-4EDIATE LOOPS LISTBR

._. __.. _ . .

FORTRAN TYPE DEFINITION UNITS LABELLED REFEPENCED DEFINED INPUT REC.NAME gW;

P2 GAS A COVER GAS PRESSURE IN EACH INTERMEDIATE N/M2 VD9V RITE 2S CALC 8RLOOP WRIT 2T RES2i

RES2T LOOP 2SRES2SLOOP 25TANK 25INIT2T

P21NP A PUMP INLET PRESSURE N/M2 VC9V PUMP 2i RES2TPPES2T INIT2TWR1T2TIN!T2T

P21N A INLET PPESSURE TO EACH PIPE IN EACh INTE N/M2 VD9V FUNC2T RSET2TRMEOlATE LOOP RSET2T TANK 2T

PRNi95 PRES 2SRITE 2S PRES 2TPRES 25 LOOP 25LOCP25BREK2T

P2LOSI A PRESSURE LOSS ACROSS LOOP SECTION BETWEE N/M2 VD9V BREK27 PLOS2TI N TANK AND PUMP (OR BREAK 1 FUNC2THWW

P2LOS2 A PRESSURE LOSS IN LOOP SECTION AFTER PUMP N/M2 VD9V FUNC2T PLOS2TIAND BEFORE TANK (OR BREAK) BREK2T

P2LOS3 A PRESSURE LCSS IN LOOP SECTION AFTER BREA N/M2 VD9V FUNC2T PLOS2TK

P20UTP A INTERMEDIATE PUMP OUTLET PRESSURE N'M2 VD9V WRIT 2T INIT2TBREk2T PUMP 2TPRES 2T

CE 3 3 3R C O 0

C O 0T 1 l 1

U - -

P N N NNI

DSTS5T S5TR T TSsR TR55 TTE T

N 2l22 22I

222222 222l 2 IItI

TDTP TPSSTKPK PPPD W RRPDE RRSAOA VOVE I

DDOA HAHO IMF EEENON AOAA PYYOE PEPO RU

C PPRTLT ELER P HHLR SRSL WP

OECNE 5 TSiT55T 5SR5TT5SR TT STR5s5R T55RR5T55 TiR 252222292 22l22222l 22 22!2i1 222l12222 22E S2TPKCETT PPTET5PSY ST SSTPRPYl SSETYTTPP TPF E5EONNT N1 AOSTX0MEr OI EOSMDOF OETSFHtOM ME RL3OAUiRR VOIIRLURR LR RLIUYOR LRiIRPROU IRUR PRRLTFRPW ELLRWPPPV PW PPLPHLV PPRLVSWLP WP

DELNLOEM V V V V V VBM 9 9 9 9 9 9AO D D D D D DLC V V V V V V

SI

2 2 2 2 2 2TM M M M M M

N /

h' N N N N/ / / /

U N

I L E X DL P H I

C H! I SH EP

A S F LE E O L

R T EF O A E HO T ! D S

A D I

E R C S RP O M EI P R Y TP A E R A

V T A EN H E N D H PO N R MI

C I

O E UA HN C P PT E CI

S S SA E UI

M ENI O S SF R R S R R OE F E O E E RD P V L V V C

EO O O O APO EUL P R P P ES O U O O SSE R S R R I

ET O S D D RRA EPI E R E E E

D R P R R RTE U U U UEM SE L S S SLR SD A S S STE Ei T E E EUT R5 O R R RON P T P PE P

EPYT A A A A A A

N

Nc1

A V G X ER T E F H STE V D D DRM 0 P P P ROA 2 2 2 2 2FN P P P P P P

1 HWD g

FORTRAN TYPE DEFINITiCN fe l T S .ASELLED REFERE NCED DErlNED INPUT REC.NAME C 0%N

P3CONV 5 RELATIVE CDmERGENCE CRITERICN FCR SG PR - DAT!3v C AL C 3R S-1002ESSUPE CALCULATIGNS

PIDPlP A IPLET PLENUM PRESSURE DROP IN M A: EYCha N<M2 CAT!3V HM35 INIT3R S-301NGER C ALC 3R

P3DPOP A OUTLET PLENUM PRESSURE DROR IN HE AT EXCH NeM2 DAT13V HX35 C ALC 3R S-301ANGER INi 3R

P3DSGN 5 DESIGN PRESSURE AT TURBINE INLET N/M2 DATA 8V LISTOR READ 8R O-1CALCBR

P3tNSL A WATER SIDE INLET PRES $UPE OF E ACH FLOW S N/M2 DAT13V WFLO35 STMP35E GME NT INIT35

I P30T A OUTLET PPESSURE W ';DO.E N/M2 VD9V PUMP 35 SIMP 35 S-1PIPE 35 C AL C 3Rg

4.,J HX3S INif3Rvi

I P 3P TRO A TUROINE INLET PRESSUPC ( PAIRED WITH S3P nim 2 VD9V FEED 3T READ 9T 1-3001TR8(t) I LIST 9T

P3SBLP A REFERENCE PRESSURE FOR FLOW SEGMENT N/M2 DATl3V INIT35 STMP35WFLO35

P3TOTC S C A'.CUL ATED POWER TR AN5FERRED PER SG ICOM W lHX35V STGN35 STGN35PARED TO P3 TOT 1 PGAL95

P3 TOT S DESIRED PCWE4 TRANSFERPED PER SG (=F9PWR W IHX35V STGNIS CALC 8RZ*P90SGN/NILOOP) FEED 35

PGAL95

P3TURB S TURBINE INLET PRE''SURE N/M2 DAT!3v PPNT95 C ALC8RSTMP35

FORTPAN TYPE CEFINITION UNITS LABELLEO REFERENCEO CTFINED I'#'U T REC.NAME Cv %

P 3VOl t A PCESSUPE IN EACH ACCU M ATOR OF BCTH STE N'M2 OAT 13v N OL 35 C AL C3RAM GEf.ERATCA ANO TUP 91NE LOOPS STMP35 INIT3a

P3VOL A PPESSURE IN EACH ACCUMULATOR N/M2 %O9V STGN35 STGN35 5-101ACCM37 VOL 35PLOP 3T STGN3TSTGN37INFS3TPRNT3T

P3WSSG A WATER SifE PRESSUPE IN EACH NOCE OF EACH N,M2 VD9V PRNT9S PUMP 3SFLOW SE(' TNT STGN35 VOL 3S

PRNT3s HX3SINIT35 SIGN 35

INIT3SPIFT 3G

P3WSTB A WATER SIDE PPESSURE IN EACH NOOE OF TUP 8 N/M2 VO9/ INIT35 PI PE 3SINE FLOW SEGMENT PRNT35 [N!T35

FHNT9S VOL351

g PSFGAS A FISSION GAS PPESSURE FOR EACH CH W.EL NeM2 VDS/ VRFY7R FUE L5T V-21w FUEL 55 F LEL55ChLEAKST

g LIST 7R

PSTOT S TOTAL POWER IN FUEL W DAT25V PBAL95 POAL95FRAD55FRADSTINITST

P52 S INITIAL VALUE OF P5 TOT W TFUL5V INIT5T

P6BCOR S PRESSUPE AT BOTTOM OF CORE N/M2 DATI6V CORE 65 LPLNGTPRNT6i L PLN65UPLN6S

P68PE S PRESSURE AT BYPASS CHANNEL ExlT N/M2 DAT26V OPTN6S UPLN6S

FORTRAN TYPE CEFINITION UNITS LABELLED REFERENCED DEF INE D INPUT REC.NAME COMMON

PGCGAS S COVER GAS PRESSUPE AT UPPER PLENUM N/M2 CAT 26V OPTN65 LPLN6TUPLN67 C AL C8RPINTl5INIT6TFLOW 6TPRNf6TUPLN65MOVE 9 T

P6CGFB S COVER GAS PRESSURE CHANGE REOUIRED TO AC N/M2 DAIN6V LIST 9T RE AD9T T-6002TUATE FEED /8LEED VALVE

P6CGLB S INI T I AL COVER GAS PRESSURE MINUS P6CGFB N/M2 DAIN6V UPLN6T

PGCGUB S INITIAL COVER GAS PRESSURE PLUS P6CGFO N/M2 DAIN6V LPLN6T

I P6DSGN S DESIGN CORE PRESSURE DROP N/M2 OAT 26V LIST 7R RE AD7R V-23w OPTN65LJ CALC 7Rw

IF6GSTY S STEADY STATE COVER GAS PRESSURE (USE D I N N/M2 DV0G6V INIT6T

CONSTANT MASS OPTION 1

PGINLT S VESSEL INLET PRESSURE N/M2 DAT26V OPTNGS C"T P6SINIT6T COOL 65COOL 65LPLN65MOVE 9TINIilTP9NT95

P61NVL S PARAMETER USED IN INTERPOLATION FOR VESS N/M2 TFLOlt CA6T COOL 6TEL PRESSURE STORIT

P61NVN S PARAMETER USED IN INTERPOLATION FOR VESS N/r"2 TFLOlv COOL 6T SirRITEL PRESSURE C00L6T

FORTRAN TYPE CEFINITION UNITS LASELLEO REFERENCED DEF I NED INPUT REC.NAME COMMON

P61NVR S PARAMETER USED IN INTERDOL AT ION FCR iESS N/M2 TFLOlv COOL 6T COOL 67EL PRESSURE

P61NV A CUPPENT VALUE OF VESSEL IP4 ET PFESSURE N / **2 TFLOlv COOL 6T OR!b9TDriv 9T STORITSTORIT

P6NOOE A PRESSURE IN E ACH AXIAL COOLANT NCOAL INT N'M2 VD9v COOL 65 CORE 6TEPFACE IN EACH CHANNEL OPTN65 LPLN65

CORE 6 T CORE 65PRNT6TUPLN65PUTSTVO! DSTLEAASTCORE 65

P60UTL 5 VESSEL OUTLET PPESSURE N/M2 DAT16V PRNT95 PINTISUPLN65 * UPLN65PRNT6T ODTN6SOPTN6S UFUJ6 T

I LFLN6Tg MOVE 9Tw COOL 65CD CORE 6T

INITITIFLOW 6i

r% STEP S MAXIMUM PRESSURE CHANGE ALLOWCO PER ITER N/M2 DAT26V LIST 7R BLKDAT V-23ATION OPTN6S REAU7R

P6TCOR S PRESSURE AT TOP OF CORE N/M2 DAT16V OPTN65 OPTN65UPLN65 UPLN6S

P6 TERM S USED TO INTERFACE IN-VESSEL PRESSURE DRO N/M2 RV INIT6T INIT6TP INFORMATION WITH LOOP HYDRAULICS CALCU VESLIT FLOW 67LATIONS FLOW 6T

P6TPOW S TOTAL POWER TRANSFERREO INTO COOLANT W DAT26V COPE 65 PB AL95COPE 6TP8AL95UPLN65

n

._

__

FORTRAN TYPE der!NITION UNITS LABELLED PEFERENCED DEFINED INPUT PEC.NAME CO % N

P6 VIN S CUPPENT VALUE Or VESSEL INLET PPESSURE I NeM2 CATT6v CORE 6T COOL 6TNTEPPOL ATED FPOM LCOP HYORA'JL ICS CAT A L PLN6 T INIT6T

FLOW 6T

P70 ROP S PEACTOR VESSEL PRESSUPE CROP N/M2 CATA9V PINilS CALC 7R O-5COOL 65 COOL 6S

P9ATM S ATMOSPHERIC PRESSURE N/M2 DATC9/ Gv5 LIT OLADAT

P90SGN S DESIGN REACTOR POWER W IHX35V FEED 35 READ 8R O-1CALCBRLISTOR

OlFLOR S RATED VOLUMETRIC FLOW RATE OF PRIMARY PU M3/S AITCV LISTlR READIR N-il2MP FCADIT

WRITITPUMP 15TORK1ig

HW OILOSS A HEAT RATE LOST BY PRIMARY COOLANT IN IHX W VD9V LOOPIS LOOP 15* PBAL95 IHXIS

g IHXIS

OlNRTA S PRIMARY PUMP INERTIA KG-M2 AITCV LIST 9T READ 9T T-1001INITIT

Q2 FLOR S RATED VOLUMETRIC FLCW RATE OF INTERMEDIA M3/S A2TCV LISTlR READIR N-122TE PUMP PUMP 25

HEAD 2TTORK2T

C2 GAIN A HEAT RATE GAIN BY SECONCARY COOLANT IN 1 W VO9V IHXIS lHXISHX LOOPIS LOOPIS

Q2NRTA S SECONDARY PUMP INERTIA KG-M2 A2TCV INITIT PEAD9T T-1002LIST 9T

--

_ _ . . _ . . . . . . .. .

FORTRAN TYPE CErlNITICN LNITS LASELLED REFERENCED CEr!NED INPUT REC.NAME COWOP

030TG1 A TEMPORARY ARRAY USED IN SG INPUT PROCESS VD9v NkE Y 3R REA03ROR CALC 3R

%RFY3RREAC3RLIST 3R

Q30TG2 A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V LIST 3R READ 3ROR NkEY3R

CALC 3R\RFY3R

Q3DTG3 A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V CALC 3R REA03ROR VRFY3R

NkEY3RLIST 3R

Q30TCA A TEMPORARY APRAY USED IN SG INPUT PROCESS CATR3V CALC 3R READ 3R S-101OR LIST 3R

VRFY3RNkEY3R

I Q3DTGS A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V VRFY3R READ 3R

H OR LIST 3R** C ALC 3RO NkEY3R

I

Q30T10 A TEMPORARY ARRAY USE D IN SG INPUT PROCESS DATR3V C ALC 3R READ 3ROR LIST 3R

Q30Til A TEMPORARY ARRAY USED IN SG INPUT PROCESS VD9V LIST 3R READ 3ROR VRFY3R

PEAD3RCALC 3R

Q30T12 A TEMPORARY ARRAY USED IN SG INPUT PROCESS CATR3V VRFY3R PEAD3ROR LIST 3R

C AL C 3R

Q3DT13 A TEMPORARY ARRAY USED IN SG INPUT PROSESS OATR3/ VRFY3R REA03ROR CALC 3R

LIST 3R

FORTRAN TYPE der!NITION UNITS L ABELLE D REFERENCED DEFINED INPUT REC.NAME COMMON

030T14 A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V % RF Y 3R REA03R S-101OR CALC 3R

LIST 3R

030TP3 A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V C AL C 3R READ 3ROR LIST 3R

%RFY3R

Q3DTP5 A TEMPORARY ARRAY USED IN SG INPUT PROCESS DATR3V VRFY3R READ 3R S-901OR LIST 3R

CALC 3R

Q3NA A SURFACE HEAT FLUX ON SODIUM SIDE OF HEAT W/M2 VD9V STGN35 STGN35EXCHANGER TUBE 3 T HX35

TUBE 3 T

03WS A SURF ACE HE AT FLUX ON WA TER SIDE Or HE AT W/M2 VD9V STCY45 STGN35EXCHANGER PRNf31 HX35

TUGE 3 T TUEE3THX3T

1

p OGCGCP S SPECIFIC HEAT CAPACITY OF COVER GAS J/(KG*k) DA!N6V UPLN6T INIT6TkH

l

06CGF B S IN-VESSEL COVER GAS FEED / BLEED RATE ILE KG/S DAIN6V LIST 9T READ 9T T-6002CGAS=21 UPLN6T

RIPLEN A THE ANGLE Or FLOW IN !HX PRIMARY PLENA ( U DATXIV HYDRIS CALCIR N-1031 1. 2 i HYDRli READIRa

CALCIRLISTIR

RISBRK A ANGLE OF NODES IN BROKEN PIPE D VD9V RSETIT INITIT

FORTRAN TYPE DEFINITIC,N UNITS L ABELLED PERE 9ENCED DEF I NE D INR)T REC.NAME COMMDN

RISIN A THE ANGLE OF PRIMARY FLOW AT EACH NODE I D VD9v INITli RSET!T N-llc 1N EACH PIPE OF EACH LOOP RSETIT READIR

PIPWIT CALCIRHYDR 15HYDRITPIPE!SLIST 1RCALCIR

R2DOWN S THE ANGLE OF FLCW IN THE IHX CENTRAL DOW D OAT!2V HYORIS CALCIR N-IC9NCOMER LISTlR PEADlR

CALC 1RHYCR I T

R2CV A THE ANULE OF FLOW IN THE EVAPORATOR SHEL D VD9V EVAP27 CALC 1R N - 120L SIDE EVAP2S

R2tNEV S THE ANGLE OF FLOW AT INLET PLENUM OF EVA D DATE2V EVAP2T READIR N-120F#ATOR SHELL SIDE L!STlR CALCIR

EVAP25g CALCIR

>*A R21NSH S THE ANGLE OF FLOW AT INLET PLENUM OF SUP D DATS2V SPHT2T READlR N-121N ERHEATER SHELL SIDE CALC 1R CALCIR| LIST 1R

SPHT25

R20VEV S THE ANGLE OF FLOW AT 1HE OL 'ENUM O O DATEdv EVAP2T READIR N-120F EVAPORATOR SHELL SIDE LIST 1R CALClR

CALCIREVAP25

R20USH S THE ANGLE OF FLOW AT OUTLET PLENUM OF U D DATS2V LIST!R CALCIR N-121PERHEATER SHELL SIDE CALCIR READlR

SPHT2TSPHT2S

RPPLEN A THE ANGLE OF FLOW IN lHX SECONDARY PLENA D DAT!2V HYDRIT CALCIR N-lO3( l= 1. 2 ) CALCIR READIR

LIST 1RHYDRis

R2SORK A ANGLE OF NODES IN BROKEN PlPE D VD9V RSET2T INITIT

FORTRAN TYPE DErlNITION UNITS LABELLED REFERENCED DEFINED INPUT REC-NAME CCmON

R2SH A THE ANGLE Cr FLCW IN SUPERHEATER SHL L 5 D 509/ SPHT27 C ALC 1 R N-121IDE SFHT25

R2 SIN A THE ANGLE OF INTER'*EDIATE rLC.4 AT CACH N D VD9V PIPW2T CALClR N-12ClCDE OF EACH PIPE OF EACH LCOP CALCIR RSET2T

RSET2T READIRPIPE 2SLISTlRINITli

R3 PUMP A SPEED RATIO Or SG PUMP IN EACH SODIUM LO - %D9V STGN35 STGN3$OP PUMP 3S P(*1P 35

PRNT95 PUMP 3I

R5CL A ARRAY USED TO STORE PREVIOUS VALUES OF F - DATDSV PRMT5T INITSTSPREC POWST

R500PP S DOPPLER FEEDBACK REACT!v1TY R DATDSV MOVE 9T INIT5TREAC5i DOPPSTIDOPPST

>-4%~w R5 GROW S AXI AL EXPANSION FEEDGACK RE ACT IVI T V R DATD5V RE ACST INIT57i ' ''

RSPLNM A RESISilVITY OF F ISSION GAS PLENUM MATERI M2*K/W VD9V PROP 6T PROP 6TAL STEM 5T

RSPHLL 5 VALUE OF TOTAL REACTIVITY AT TIMESTEP K- R DATDSV PRMT5T POW 5T2 INIT5T

R5RHOL S VALLE OF TOTAL REACTIVITY AT TIMESTEP K- A DATD5V PRMTST INIT5TI REACST POW 5T

POWST

R5 RHO 5 CURRENT VALUE OF TOTAL REACTIVITY R DATDSV POW 5T INIT5TPRMT5T REAC5T

FCATRAN TYPE CEFINITICN UNITS LAE4ELLED PEFEPENCED DErlNED liPJT REC .NAME CCmON

RSSROD A SCRAM F,JD PEACTiv!TY INSERTICN t PAIPED R VD9V INIT5T INIT57 T-5005WITH 555R00 ) APPL 5 T READ 9T

LIST 9T

R5STR A RESISTIVITY OF IN-VESSEL RCD STRUCTURE M M2*K/W VD9v STEM 5T FUEL 5SATERIAL PROP 6T FLELST

R5 VOID S SOOlUM VOlO FEEDBACK REACT!vlTY R DATDSV REAC5T INIT5TMOVE 9T VOIDSTVOID 5T

SIGREK A TIME OF PRIMARY PIPE GREAK S VD9V SREKIT READ 9T T-1003VRFY9TLIST 9T

SIDELA S ALLOWED VALUE OF SIDELT S TL UP l v PRNT9T INIT97DRIV 9T DRIV 9TINTG1Y

I SIDELP S PREVICVS VALUE OF SIDELT S TLUPlV Driv 9TFa INIT97kV

I SIDELT S LOOP THE RMAL TIME STEP S TLUPlv INIT9T INIT9TDRIV 9T DRIV 9TPRNT9TlHXITMOVE 9TPIPEIT

SI DEL W S LOOP HYDRAULIC TIMESTEP S TFLOlv PRNT9T INIT9TINTF3T DRIVliINITITMOVE 9TDRIV 9T

SI DL WL S USED IN IN-VESSEL INTERFACE CALCULATICNS S TFLOlV COOL 6T COOL 6TSTORIT

SIDLWP S PREVIOUS VALUE OF SIDELW S TFLOlV DRIVIT DRIVITINITli

- .

-

__

FC9TRAN TYPE DEFINITICN UNITS L ADELLED REFERENCED DEFINED INNT REC.NA"E CC"*CN

SIFLOL S USED IN IN-VESSEL INTERFACE CALCa ATIONS S TFLOlv COCL67 COOL 6TSTORIT IN!T9T

STOR1i

SIFL OR S USED IN IN-VESSEL INTEnrACE CALCULATIONS S TFLCIV STORIT INIT97COOL 6T STCRIT

COOL 67

SIFLOT A ARRAY USED TO STORE IN-VESSEL INTEAFACE S TFLOlv DRIV 9T DRIV 9rDATA COOLET STORIT

57 7 ''

SIFLOW S CUPRENT LOCP HYDRAUL IC ' TIME S TFLOlv STORIT DRIVITDRIV 9T INIT97INIT9TINTF3TOREk2TPUMP 2iGPEK1TPUMPITPRNT9T

l

H StLOOP S CUPPENT LOOP T HE R* AL T!ME S TLUPIV PRNT1Y DR1V9TD DRIV 9I IN)T9T* WRIT 1ii

SI POf f A PUMP MAIN MOTOR SHUTOFF TIME IN E ACH PRI S VD9V PUMP 1i PEAD9T T-9007MARY LOOP VRFY9T

LIST 9T

S2OREK A T IME OF SECONDARY PlPE OREAK S VD9/ VPFY9T READ 9T T-1201LIST 9TBREK2T

S2 DEL T S SAME AS SIDELT S TLUPlV IHXIT DRIV 9TP!PE2T

S2FLOT A ARRAY TO STORE STEAP CENERATOR FLOW INTE S BCWFLO STGN3T INTF3TRFACE DATA ENAVG

TMSG3T

S2 LOOP S SAME AS SILOOP S TLUPlV WRIT 2T DRIV 9T

FORTRAN TYPE DEFINITION UNITS LADELLED RE F E RE NCED CEF INE D INPUT REC.NAME CCMMON

S2POFF A PUMP MAIN MOTOR SWTOFF TIME IN EACH SEC 5 VD9V VRFY97 READ 97 T-9007ONDARY LOOP LIST 9T

Pte*P2T

c2 TEMP A ARRAY USED TO STOPE STEAM GENERATOR INTE S BCTEMP STMP3T INTF3TPFACE DATA INTF3T

S3DELP S PREDICTED TIME STEP FOR STEAM GENERATOR S DATT3V TMSG37 TMSG3TCALCULATIONS INIT3T

S3 DEL T S CURRENT TIME STEP FOR STEAM GENERATOR CA 5 DATT3V DRIV 9T INIT3TLCULATIONS PRNT9T TMSG3T

MOVE 9TTMSG3T

S3DMN MINIMUM T IME cJEP FOR STEAM GENERATOR C A S DATT3V TMSG3T IN!T3TLCULATIONS

IS3DMX S MAXIMUM TIME STEP FOR STEAM GENERATOR CA 5 DATT3V TMSG3T INIT3Tg

c LCULATIONScs

iS3DTPV S PREV IOUS STE AM GENE RA TOR T | ME STEP S DATT3V TMSG3r

INIT31

S3PCST S PUMP COASTDOWN TIME CONSTANT S DATP3V C ALC 3RINIT3R

53POFF A TIME AT WHICH PUMP IN EACH STEAM GENERAT S vD9V PUMP 3T READ 9T T-9007OR IS SHUT OrF VRFY9T

LIST 9T

S3PTR8 A TIME I PAIRED WITH P3TRB 1 5 VD9V FEED 3T READ 9T T-3001LIST 9T

S3STGN S CURRENT TIME IN STEAM GENERATOR K DATT3V DRIV 9T STGN3TPRNT3T INTF3TSTCW3T

FORTPAN TYPE DEFINITION UNITS L ABELLED REFEREN ED Tr i NED INPUT REC.NAME C O**dCN

S50ELA 5 ALLOWED V ALUC OF S5DELT S TFUL5v PRNT9T PRNT9TORIV9T DRIV 97COOL 6i INIT97

55DELP S PREV 1OUS VALUE OF 55DELT S TFUL5V PROP 6T OR1%9TDOPP5TVOID 5TGROWatTFUNST

55DELT S CURRENT TIMESTEP FOR FUEL C ALCUL A T I ONS S TFUL5V STEPTST INIT97COE F 5T DR]V9TTFUN5T PRNT9TDRIV 97PRMT5TVOIDSTPRNT97MOV E 9 TDOPPSTGROWST

55FWL S CURRENT TIME FOR FUEL CALCULATICNS S TFULSV PRNT6T INIT9TIAPPL 5T Driv 9T

p COOL 6T45 LEAKSTN

PROP 6T, DRIV 9T

55PAST S PREV 1OUS VALUE OF S5 FUEL S TF UL5V PROP 6T INIT9iPOW 6T DRIV 9T

55POPD A TRANSIENT POSTSCRAM TIME FOR DECAY POWER S VD9y POW 6T READ 9T I-5006IN BYPASS ( PAIREDWITH F5POPD ) LIST 9T

55PD A TRANSIEN. POSTSCRAM TIME FOR DECAY POWER S VD9V POW 6T READ 9T T-5101IN CH8' AEL ( PAIRED WITH F5PD 1 LIST 9T

SSSCRA 5 REACTOR SCRAM TIME S INTGSN* APFLST REA09T T-9007DRNT9TLIST 9TPOW 6T

,

_ . _ . . . _ _ _ _ _ _ . . . . . . . . . . . . . . .

FORTRAN T Y Pt DEFINITION UNIT 5 LABELLEO GEFEPENCED DEFINED INPUT REC.NAME C ONC*4

555 ROD A POSTSCRAM T IME S F CR SCRAM ROD INSERTION 5 '. 03 v APPL 5T READ 9T T-5005( PAIRED WITH FSSRODt!) i LIST 9T

SfLOOL 5 CURRENT T!ME FOR IN-VESSEL COOLANT CALCU S TCUL6V COOL 6 T DRii97LATIONS POW 6T INIT9T

PRNT6TPROPSTCOFE6TDRIV 97FLOW 6T

S6DELA S ALLOWEO V ALUE OF 560ELT S TCUL6V PRNT97 PRNT9TDRIV 97 DRIV 9TCOOL 6T COOL 6T

INIT9T

S6DELP S PREVIOUS VALUE OF 560ELT 5 TCUL 6V PRNT67 DHIV9TCOOL 6T[ NIT 9T

I S6DELT S LeRRENT TIMESTEP FOR IN-VESSEL COOLANT C S TCUL6V LPLNGT DRIV 9TALCULATlONS DRIV 9T INIT9Tg

ss MOVE 9T PRNT9TCD CORE 6 T COOL 6T

INIT97I FLOW 6T

PRNT9TCOOL 67

59 CPU S TOTAL .PU TIME USED 5 DATA 9 PAGE90

590ELZ S INITIAL VALUE OF $90ELT AT START OF TRAN 5 INTG9V INIT9T IN!T97SIENT PRNT97

591NOW S CURRENT VALUE OF PRINT INTERVAL 5 INTG9V DRIV 9T PRNT9TINTG1TPRNT9T

- - -

_ . _ _ _ _ . . . . _ _ . _ . . . .

FORTRAN TYPE CEFINITICN UNITS LABELLED REF E RE NCE D CEFINED INPUT REC.NAME CCMMON

59LAST S PROBLEh $ 1 **UL A T ! CN T i r'E 5 INTG9/ FR4T97 READ 9T T-9001LIST 9TDRIV 9TINIT!T

59MAXA S MAXIMUM TIMESTEP ALLOWED S INTG9V INIT6T REA09T T-9001DRIV 97INIT3TLIST 9TIN!TlT

59MINA S MINIMUM TIMESTEP ALLOWED S INTG9V PRNT9T REA097 T-9001COOL 6TkRFY9TINIT9TORIV9TLIST 9TINIT3T

59 MIN 2 S SET EQUAL TO SGMINA/2 S INTG9V CRIV9T INIT3.PRNT9T144i61 T

I DRIVITFa C00L6T>c

59MSTR S CURRENT MASTER CLOCK TIME S INTC9V PRNT9T INIT9T,MOVE 9T DRIV 97INIT9TTMSG3TDRIV 9TFLOW 6TINTF 3TDRIVITCOOL 6T

59PAST S PREVIOUS VALUE OF $9MSTR S TFLOLV DRIVIT Driv 9T

59 PINT A PRINT INTERVAL 5 INTG9V LIST 9T READ 9T T-9001PRNT9TINIT9T

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DEFIPEC INPUT REC.NAME COMON

59PRNT S NEXT VALUE OF 59% TR AT WHICH RESULTS AR S INTG9V PRNT97 PRNT9TE PRINTED / STORED STGN37 IN!79T

ORl%97

5951NT S TIME INTERVAL AT WHICH A TRANSIENT RESTA 5 INTG9/ DRIV 9T READ 9TRT WILL BE CREATED LIST 9T

TIBYP A TEMPERATURE OF PRIMify BYPASS FLOW ENTER K VD9V PRETIT PRElliING OUTLET REGION OF !HX LOOP!S LOOPIS

IHXIT IHXITIHX15 lHXISPRNilT

TICONV S CONVERGENCE CRITERlON FOR TEMPERATURES I K DATAlV IHXIS READ 1R N-iCSN IHX LISilR

TIDOWN A COOLANT TEMPERATURE IN DOWNCOMER K VD9/ PRETli PRETITIHXIT IHXIT

I

wTIFRCR S RATED FRICTIONAL TOROUE OF PRIMARY PUMP N-M AITCV CALCIR

1

TIFRIC A FRICTIONAL TOROUE OF PRIMARY PUMP N-M VD9V WRITlT PUMP 1T

TlHYD A b:YDRAUL IC TORQUE OF PRIMARY PUMP N-M VD9V WRITIT PUMPIT

TilNHX A TEMPERATUPE OF COOLANT ENTERING IHX PRIM K VD9V PRNTIT IHXITARY $!DE lHXIT ENDIS

PRETIT PGAL95HYDRIT LOOPISPOAL95 ENOlTLOOP 1SPRNT95IHXIS

FORTRAN TYPE DEFINITION UNITS L ABEL LED RErEPENCEO C.C F I NE O Ir#UT REC.NAME C Ot-ON

TilNLT S TEPCER ATURE C' COOL ANT A T INLET OF oRIMA K CAldiv LOCPIS PRETITRY LOOP tOOP1T COOL 6T

PRNT1T LOCA1IPINT 15

TilNP A COOLANT TEMPERATUPC AT PRIMARY PUMP I NL E K VO9/ INITIT INiTITT

'

PESIT RESIT

TIIN A COOLANT TEMPERATUPE AT IHx PR! MARY INLE T K VO9V IH41T IHX1iAT PREvlOUS TIME PRETIT

TINAS A TEMPERATURE OF COOL ANT AT E ACH NODE OF S K VC9V HYORIT LOOPl$ECONARY SIDE OF lHX LOOPIS IHXIS

RITEl5 lHXt'IHX15lHXITHYORISPRNTIT

l TINA A PRIMARY COOLANT TEMPERATURE AT EACH NODE K VO9V IHXIS IHXISIN EACH PIPE OF EACH LOOP CVALIT LOOPISg

u LOOPts IHXliH BREKIT PIPEIS

IHxtT ENDIS1 PRNTIT PI PE li

PIPEls RSETITPIPWITHYOR15ENDISOVSLITHYDR 1TPIPEliPRETITINIT1iPSETITPRNT95PUMP 15RESISCVAllSRITElsPESITLOOP 1T

___.

- - . . _ . . .

FORTPAN ??PE DEFINITION LNITS L AGEL LED REFEM NCED CE F I NEO INPUT REC-NAME CC"*0N

TIORvR S RATEC MfDRAULIC TOROUE Cr PqlMAay pump N-M AITCv CALCIA READIR N-112TCm'lTL1571R

TIOUHX A TEMPERATURE Or COOL ANT Ex l T ING IHX PRIMA K VD9/ PRETIT LOOP 15pY SIDE HYDRIT ENClI

LOOPIS |H417PBAL9S IHM15ENQ15PRNT95PRNTITlet!T

TIOUTL A COOLAN' IEMPERATURE AT CUTLET OF PRIMARY K VC9W LPLNt3 T LOOPliLOOP PRNTIT PRETli

TIOUTP A COOLANT TEMPERATURE AT GUTLE T OF PRIMARY K VD9V INITliPUMP

I TlOUT A COCLANT TEMPERATURE AT IHW PRIMARY OUTLE K VD9i IHuli PPETITT AT PPEVIOUS TlW IHX!Tg

UsN

I TIPIN 5 COOLANT TEMPERATURE AT !HX INLET AT ADVA K SCRHIV !HX|T [HxlTNCED TIME

TIPMPI $ INITIAL VALUE OF TIPUMP K BNCSSR CALC 8R REACOR O-4LISTOR

TIPNAS A TEMPORARY ARRAY TO STORE ADVANCED TIME T K VD9/ lH(li (H(ITEMPERATURES IN IHX SECONDARY SIDE

T1PNA A COOLANT T E MPE R A TURE A T ADVANCED TIME K VD9V IHxlT IHxli

TIPOUT S CCOL ANT TEMPERATURE AT |HX PRIMARY OUTLE K SCRHIV IHXIT IH<!TT AT ADVANCED TIME

- - . . . . . -- - m.-. - . . . . . . - - - . -..

FORTRAN TYPE CEFINITICN UNITS L APELLE D REF E RE NCED DEF!'4D INPUT REC.NAME COMMCN

TIPSH A TEMPOPARY APRAY TO STCRC IHX SHELL TEMPE K VD9s lHMIT !stlTR/ TURE AT AOV AP.CED T IME

TIPTUG A TEMPORARY ARRAY TO STORE IHX TUBE TEMPER K VO9V IHXI lHx1TATUPE AT ADVANCED TIME

TIPUMP A TEMPERATURE RISE ACROSS PRIMARY PUMP K VD9V PDAL95 CALC 89ENDIS

TIPWAL A PIPE WALL TEMPER A T URE A T ADV ANCED T I ME k VD9V P] PELT PIPEli

T!SHEL A IHX SHELL TEMPERATURE AT PREVIOUS TIME K VD9V PRETIT PRETITIHxlT IHX]T

ITITUDE A TUDE WALL TE MPER A T URE IN EACH WALL NODE K VD9V LOOPlS LOOPIS

Fa OF IHX [HxlT IHxlT(n RITE 15 lHX15to

'TlWALL A PIPE WALL TEMPER A TURE A T PRE V IOUS T I ME K VD9V PlPEli PRETIT

PIPElf

T2F RCR S RATED FRICT ION TCRQUE FOR INTERMEOlATE P N-M A2TCV CALCIRUMP

T2FRIC A FRICTIONAL TOROVE OF INTEPMEDI ATE PUMP N-M VD9V WRIT 2T PUMP 2T

T2HYD A HYDRAULIC TORQUE OF INTERMEOlATE PUMP N-M kD9V WRIT 2T PUMP 2T

T21Hxt S GUESS OF IHX SECONDARY SODIUM t rte T TEMP K DATA 8V PB AL 95 PGAL95 0-3(IF KNOWN) LIST 8R READ 8R

CALC 8R CALC 8"

T2|HXO 5 GUESS OF IHX SECONDAR/ SODIUM OUTLET TEM k DATA 8V LISTOR READ 8R O-3P. (IF KNOWN)

FORTRAN TYPE CEF NITIO?e UNITS LA'ELLED nErE EN ED CE r lNE D I NF'U i RE C .NAT CC""DN

T21HX S INTER"EDI ATE LOOP sTE AM GENERATOR OUTLE T K IHw35V ST"P35 PBAL95T E MPE R A T URE (USED IN STEADY STATEi PGAL9S CALC 9A

T21NEV A TEMPERATURE OF COOL ANT ENTER ING EVAPCR Ai v V09i EVA25 EVAP2SCR SHELL SIDE EVAP?T EVAP2T

RITE 2S LOOP 25INTF3T LOCP2TLOOP 25

T2fNHX A TEMPERATURE OF COOL ANT ENTERING IHX SECO K VD9V HYDRIS lHxlSNOARY SIDE PRNT95 ENO2T

IHx1T !HXITPRNTli LOOPISLOOPISPRETITLCOP2SHYDR 1TPOAL95

T21NP A COOL ANT TEMPERATURE AT SECONCARY PUMP IN K VD9V ! NIT 2T INIT2TLET RES2T RES27

,

t-*viD T21NSH A TEMPERATURE OF COOL ANT ENTERING SUPERHE A K VD9V LOOP 2S LOOP 25

TER SHELL SIDE PRNTIT LOOP 2Tg

R1TE25 SPHT2TSPHT2T SPHTPSSPHT2SINTF3T

T21N A SECONDARY IHX INLET TEMPERATURE K VD9V IH<li IHxlTPRETIi

T2MXCG S MAXIMUM ALLOWED CHANGE IN T21NHY PE R ITE K PREV 2V FD AL95 READOR O-3RATION LISTOR

FORTPAN TYPE Ef F I N I T I C+4 LS TS L A6ELLEO RE FE AEPCEO CfflNED INPUT RfC.NAME Co m s

T2NA A INTER *EDI A TE COOL ANT TEMPERATURE K kC9. LOOP 25 L C2P25|N!T2T RsET2TBREK2T P!PE2sSPHT2T E ND2SR!TE2s P | PE 2 TTA*#2TPIPCTPRET1iRSE T2 TEkAP2TPR$T95EkAP25PUMP 25TAM 2SPE525SPHTPSPIPE 25EPC2SP ! F12 TPRNTITPES 2Y

T20RKR S RAlED H(DRAULIC TORQUE OF INTEArtD! ATE P N-M A2TCV TDPV27 PEADIR N-122UMP CALC 1R

I

Huu T20UEV A TEMPERATURE OF COOL ANT E x ! T IP.G EV APOR ATO K VD9V PRNTIT EVAP2T

R SHELL SIDE EVAP2T INTF 37I|NTF3T EVAP25EVAP2S LOOP 25LCOP25RITE 2SEND25

T20UHX A TEMPERATURE OF CCOL ANT Ex 1T ING IHx SECON K VC9/ PRNT95 LOOPISDARY SIDE LOOPIS IH<li

IHWlT PBAL95PPET1T LOOP 2TPGAL9SIHxlSRITE 15HYDR 1TLOOPPSPRNT1T

FORTRAN TYPE CEFINITICN * I IS L AEELLEO FEFERENCED Or F I NE O I NP4J T REC,NAME CC" MON

T20USH A TEMPERA TURE Or COOL ANT Ex! TING SUPER" EAT K VD9/ SPHT25 SPHT25ER SHELL SIDE IN rr 37 INTF3T

SPHT2T SN T2TRITE 2S LOOP 2SENO25LCC P2S

T20UTP A COOL ANT TEMPERATURE AT OUTLET CF INTEPME K VD9V INIT2701 ATE PUMP

T20UT A COOLANT TEMPERATURE AT IHX OUTLET SE COND K VC7/ THt1T lHXITarf SIDE PRE /lOUS T!ME PRE T I T

T2PMPI 5 INIT|AL VALVE OF T2 PUMP K BNOS8R CALCOR READOR O-9LIST 6R

T2 PUMP A TEMPERATURE RISE ACROSS INTEPMEO! ATE PUM K VO9V PGAL95 CALC 8RP R!TE25 LOOP 25

8 END25CALCORg

u LOOP 25&

I T2PWAL A PIPE WALL TEMPERATUPE AT ADVANCEO TIME K VO9/ PIPE 2T PIPE 2T

T2 TEMP A ARRAY USED TO STORE STEAM GENERATOR INTE K VO9V (NTF3T INTF 3TRFACE DATA STMP37

T2 WALL A PIPE WALL TEMPEPATUPE K VC9/ P IPE 2 T P IPE 27F9EilT

T 3CONV 5 RELATIVE CONVERGENCE CRITER ON FOR TEMPE - DAT13V TUBE 3T C AL C 3R S-1002RATURE I TERAT I VE C ALCUL AT ICNS HMO3S

HX3S

T3NAIN A SOOlUM I NL E T TEMPERATURE OF HEAT EXCHANG K OAT!3V HX35 INIT3R S-301ER C ALC 3R

FORTRAN TYPE CErlNITICN Lt. I T S LA9ELLED RE EPENCEO CEF I NE D INPUT REC.NAME CO~~CN

T3NAOT A SODlUM OUTLE T TE"PERAitRE Cr HEAT EmCHAN K CATI 3v !N!T3R S-3ClGER C AL C 3a

T3NA A CR IUM TEMPERATURE IN EACH NODE CF EACH K VO94 PWT37 TL0E3TSG HX OF EACH SCO!UM LOOP EVAC 2S Ht35

ST+35 STGN35EtAP2TTUBE 3 TPRNT95PRNT35H(35SPHT25STGN35INTF3TPBAL95SPHT2T

T3TWDN A TUeE WALL TEMPERATURE FUR PORT!ON OF TUB K VD9V PRNT35 HY35E WALL ABOVEfDOWNSTREAMI OF DNB LOCATION STGN35 STGN3S

TUBE 3T TUDE3TPRNT3T

|g T3TW A TUPE WALL TEMPERATURE OF EACH NODE Or EA K v09v PANT 35 H135(n CH SG HX OF EACH SCOIUM LOOP TUBE 3T TUBE 3r*4 PRNT3T SIGN 3Sg STGN35

T5CG A TEMP. THRESHOLD FOR COLUMNAR GRAIN GROWT K V09V GROSS CALC 7RH OF FUEL FOR EACH SLICE TYPE

T5CMLT A MELTING TEMP. OF CLADDING MATERIAL FOR E K VO9/ ALFA 55 CALC 7RACH SLICE TYPE ALFAST

TSDPAV A VOLUME- AVER AGED FUEL TEMPERATURE IN EACH K VD9V DOPP5T TSAVSTAXIAL SLICE TSAV55 TSAV55

GROW 5T

T50REF A PREVIOUS VALUES OF T50PAV K vo9v DOPPST TSAV55GROW 57 GROW *j T

T5E G A TEMP. THRESHOLD FOR EQUIAxED GRAIN GROWT K VD94 GROSS CALC 7RH FOR FUEL OF EACH SLICE TYPE

FGRTRAN Tv0E CEFINIT;CN L*. I T S LA6ELLED LEFERENCED CEr l *.ED 11PUT 7E C .NAME CC T .

T5FMLT A T LTING TEMP. Or FUEL OF EACH SLICE TYPE K '.094 FLEL55 CALC 7

T5F UEL A ARRAY OF FUEL, CLAODING A*.D STRUCTURE TE A '. 2% FREST PUT5TMPER A TURE S PRJ'6 T F"JT55

FRNTSSLEAwSTP' A x OS T

PRNT5T

T5REF S TEMP. AT WHICH THE POD C;MENSIONS ARE PE K C A T2% STEM 55 EEA07R V-25FERENCED STEM 5T

XPANSSXPANSTFUEL 55L[ST7R

T6 AVER S FLOW WE IGHTED AVERAGE AC T IVE CORE COOL AN k DATT6/ PRNT6T INIT6TT OUTLET TEMFERATUAE UPLNGT COPEST

MC'w l9 T

ITE,OPAS S AVARAGE COOLANT TEMPERATUDE IN LCWER "EG K DAT36V IN!T6T COPE 6Tg

u ION OF BYPASS CHANNEL FLOW 6T UPLN65CD COOL 6 T

PRNT6T,COOL 65CCRE6TUPLNES

TEBPE S COOLANT EXIT TEMPERATURE FRCM UPPER PEGI k DAT16s MOVE 9TON OF BYPASS

T6Eh K S PREVIOUS VALUE OF T6BPAS K CATTEV COOL 67 INIT67C oot 6 T

T6BPL! 5 SCOlUM TEMPERATURE AT INLET TO LOWER BYP K OAT 16V UPLN65ASS PEGION CCRE6T

-. . . .

_

FORTRAN TYPE CE F I N I T I ON U++'IS L M LLEO bEFERE'EEC ZIITO I'EUI REC-NAPT C C"C N

T6 BPM S MEAN COOLANT TEMPEAATURE IN LFPER PEGICN = CATIEi C CFE 6 * C C+;E 6 T

CF GrPASS F L C4 T L9t %SUPLPaisLR @Pc 5

Cha

T6GPUE S 300 lum TEMPER AT URE AT E x l T Of UPPER BYPA K CATI 6V UPLN65 UPLMSSS PEGICN FL OW T CORE 6T

COPE 6TCOOL 65INIT67

T60PUI S SOOluM TEMPERARuRE AT INL E T T O UPPE R B r P K CAT 16v UPLN65 UPLNf;S

ASS REGION COFE67 CORE 6TFLCMT

T6CGAS S COVER GAS TEMPERATURE < CAT 16v UPtN65 UPL PES**C k E fli ECivliPPN T FiiUPL Nt.iTCOOL 65

1 INIT67EClv1Tg

onC

T6GSTY S STEADv ST ATE COVER GAS TEMPEPATURE (USED x O v 0C(;v INIT6TI IN CONSTANT MASS OPTIOPa

T61NLT S VESSEL COOL ANT INLET TEMPERATURE AT STEA k DAT26V PPETIT PE A089 O-2Dr STATE Move 9T CALCbR

VRFYOR PGAL95PRNT6TCORE 65COOL 65CALCBRPRNT95PGAL95UPLN65LPLN65INIT6TL I S TEN

T6LK S PREVICUS VALUE OF T6LPN K DATT6V COOL 6T INIT6TCOOL 6T

- - _ _ _ _ _ _ _ _ _ . . . .

FCATRAN TYPE [[f[N'T!CN UNji$ L ABELLED P[iE R[*d E O DE F IN{D !NPUT R[C.NAME COPCN

T EL?'K S pro 1OLG 'wALLE C# % MT A CA T TE V COOL 6I! nit 6i

T6LMT S TE"FERATURE CF "ETAL IN L CwER !?tLE T PLEN k DATT6, rRNT6T LPLM TUM C 00L 6 T int.ET

L PL N6 T

16L PN 5 TE MPE R A TUGE CF SOCIU" ! N L OnE R INLET PLE K CATT6/ **0'. E 3 7 L PL N6 TNUM COOL 6T INIT6T

FRNT67L PL N6 TCCHE 6 TFLOW 6TCOEF 6T

T6MXCG S MAxlMUM ALLC4 D CHANSE I N PR i t' AR Y LOOP C K PREVJV PBAL95 READOR O-3CRNE R TE MPE R A T URE S PE R ITE7ATION LISTBR

TbM1 S TEW'CRATURE AT UPPER INTERNAL STRUCTUPE K CATIEV P"C w E 97 EGivlTI PRNT6T UPL PESpa CGivli@ tFUh5O UPLN6T

INIT6Ty

C OCL ES

T6MJ S 1 "PERATURE OF THERMAL LINER K CAT 16V UPLN6T UPLt65UPLN65 ECiv!TINIT6TMOVE 9TCCPE6TCOOL 65PRNT6TEQIv1T

TOM 3 5 TEMPERATUPE OF VESSEL HEAD K DAT16v !N1T67 ECivtTCOOL 65 UPLN65MGvE9TUPL N6 TF9NT6T

FCATGAN TYPE CEFINITION UNITS LEELLEO PEFEAENCEO CCFINEC INPUT REC.NAME CC-*0N

T6NAA 5 TEMPERATUPE OF SCO!UM | N UMT R M I X !NG 20 k CATT6v MC.E9' IN!!6TNE Cf UPDER OUTLET PL E NJM UPL%T EOlv!T

EO!51TPRNTET

TE/4AB S TEMPERATUCE OF SCOlUM IN LOM R M!x[NG 20 K CATTE/ COCL6T EQivliNE OF UPPER OUTLET PLENU" UPL N6 T INIT6T

E G ! '< ! TPRNT6T?"O v E 9 T

T6 NODE A COOLANT TEMPERATURE AT EACH AW!AL NOCAL K VC9/ CORE CT CORE 6TINTERFACE CF EACH CHANNEL DCf95T CORE 65

UPLN65 LPLFES%O!O57PRESSTF LtJ5TPPNi55PRNTSTC OE F6TP90P6TINIT6T

ICCOL6T

bd LPLN65@ COOL 65hd INITSTg PRNTET

TENOOK A PREVIOUS VALUES OF T6 NODE k VD9V v0!O5T INIT6TCORE 6T COOL 6TDOPP5iCOOL 6T

FORTRAN TYPE DEFINIT!CN L/41TS LABCLLEO REFERENCEO CErlNED INPUT REC.NAME CCPON

T600TL 5 VESSEL SODIUM OUTLET TEMPERATUPE K CAT 26v COOLES CA:.CSR O-2COOLET PEAreRCALCPR iPLN67OPTN65 PGAL95PPNT6T UPL P45P*CN E 97LIST 6RPPE T I TDBAL95PINTISUPLN65NRFv8RPRNT95

T65UPH S SUPER HEAT TEMPERATUPE (CHANGE ABOVE SAT K OAIN64 CORF67 REAO97 T-6COIURATION TEMPERATURE WHERE BO! LING OCClar45 LIST 9TI

UlOMGA A OPERATING SPEED OF PRIMARY PUMP RPM VD9V EQlVIT EQIVITPUMP 1i PUMP 1TFCAOli LOOPISPPNT95 PUMP 1SPRNT9T

3 LOOPISp. RITEISCh WRXTITN

I UlOMGR S RATED SPEED OF PRIMARY PUMP RPM OATAIV VRFY9T READIR N-ildLIST 1RHEADITWlTlTTORKlTPRNT95PUMP 15

UlPONY S PRIMARY PUMP MOTOR OPERATING SPEED RPM OATA1V PUMP 1T Vprygy

FORT R/ N TYPE DEFINITION UNITS L ABELLED REFERENCED DEFINED INPUT REC.FAAME COMMON

U20MGA A OPrRATING SPEED OF INTERMEDI ATE PUrdP RPM VD9V WRIT 2T LOOP 25RITE 25 EQlV2TLOGr25 PUMP 25EQIV2T PUMP 2TPRNT95PUMP 2TPRNT9T

U20MGR S RATED SPEED OF INTERMEDI ATE Pt m1P RPM 'ATA2V VRFY9T PEADIR N-122'

HEA02TPUMP 2SRITE 25TORK2TLISTIRPRNT95

UDPONY S INTERMEDIATE PUMP OPERATING SPEED RPM DATA 2V PUMP 2T VRFY9T

VIBYP S VOLUME OF SOOlUM IN IHX PRIMARY BYPASS M3 A!TCV IHXIT READlR N-100LIST 1R

1

H

VIGV A VOLUME OF SODIUM IN GUARD VESSEL M3 VO9V GVSL1T INITITEQiVli EQIVlii

VllHX S VOLUME OF SOOlUM IN IHX PPIMARY HEAT ExC M3 A I T C .' LISTlR READlR N -100HANGC REGION PRETIT

VIMAX 5 MAXIMUM VOLUME THAT CAN BE F ILL ED IN G.V M3 GVSLIV GVSLIT REA09T T-1003IN ANY LOCATION LIST 9T

VlMORK A DISCHARGE VELOCITY AT PREVIOUS TIME STEP M/S VD9V GREkli BREKli

VIMINP S VOLUME AT LEVEL WITH LOWEST ELEVATION OF M3 GVSLIV INIT!T READ 9T ? '903PIPE IN AUMP G.V. LIST 9T

FORTRAN TYPE DEFINITION UNITS LABELLED FEFERENCED DEFINED [NPUT REC.NAME COM**CN

VlMINA 5 VOLUME AT LEVEL WITH LOWE ST EL E V A T I ON OF M3 GVSLiv l '. PEAD9T T-ICO3P PE IN R.V. G.V.

V1 MINX S VOLUME AT LEVEL WITH LOWEST ELEV ATION CF M3 GVSLIV LIST 9T PLAD9T T-lCO3PIPE IN lHX G.V. [NITIT

VlMIN A VOLUME REOUIRED TO FILL _ TO LOWEST ELEVAT M3 VDOV GVSL1T INITITION OF PIPE IN GUARD VESSEL

VINA S COOL ANT VOLUME DE TWEEN TWO ADJACENT NOCE M3 SCRHIV IHXIT PRETITS IN [HX PRIMARY SIDE

VIOLNA A VOLUME OF PRIMARY COOLANT DETWEEN TWO AD M3 VD9V PIPEIT PRETITJACENT NODES

I VIPLEN A SODIUM VOLUME OF IHX PRIMARY PLENA ( l M3 AlTCV LIST 1R READIR N-102=

Fa 1, 2) IHXITCh XllTk

IV2DOWN S VOLUME OF COCLANT IN IHX DOWNCOMER M3 SCRHit IHXIT PRETIT

V21NEV S SODIUM VOLUME OF EVAPORATOR INLET PLENUM M3 A2TCV LisilR READIR N-120R1TElT

V2iNSH S S001UM VOLUME OF SUPERHEATER INLET PL ENU M3 A2TCV LIST 1R READIR N-121M RITE!T

V2MORK A DaHC5tARGE VELOCITY PREV!OUS TIME STEP M/S VD9V OREK2T GREK2T

V2NA S COOLANT VOLUME BETWEEN TWO ADJACENT NODE M3 SCRHIV IHXIT PRETIT5 IN IHX SECONDARY S!DE

V20LNA A VOLUME OF INTERMEDIATE COOLANT BETWEEN T M3 VD9V P!PE2T PRETITWO ADJACENT NODES

-

__

FORTRAN TYPE CEFINITION UNITS LAGELLEO REFEPENCEO DEFINED INPUT PEC.NAME COM"CN

v20UEV 5 SOO!UM VOLUME OF EVAPCRATOR OUILET PLENU M3 A2TCV LISTlR REAO!R N-120M RITE!T

V20USH S SOOlUM VOLUME OF SUPERHE ATER OUTLET PLEN M3 A2TCv RITEIT READIR N-121UM LISilR

V2PLEN A SOOlUM VOLUME Or IHX SECONDARY PLENA ( l M3 A2TCV LISTIR READlR N-lO21, 2 ) RITEXT=

IH(1T

V3|P A VOLUME OF INLET PLENUM OF HEAT EXCHANGER M3 OATG3V HX35 INIT3R S-30!HX37 CALC 3R

V30P A VOLUME OF OUTLE T PLENUM OF HEAT EXCHANGE M3 OATG3V HX3T CALC 3R S-301R HX35 INIT3R

I V3VOL A VOLUME OF ACCUMULATOR M3 OATG3V ACCM3T CALC 3R S-101W@ut

I V6CGAS S VOLUME OF COVER GAS ABOVE SOOlUM IN VESS M3 OATT6V UPLNGT UPLNGTEL UPPER PLENUM INIT6T IN!T61

V6LP S VOLUME OF LOWER PLETUM M3 OAIN6V LPLN6T REA07R V-24LIST 7R

WIFLOL A ARRAY USEO 10 STORE PRIMARY LOOP HYORAUL KG/S TFLOlV COOL 6T COOL 6TIC INTERFACE DATA STORIT

WIFLON A ARRAY USEO TO STORE PRIMARY LOOP HYDRAUI. KG/S TFLOlv COOL 6T STORITIC INTERFACE DATA COOL 6T

WlFLOR A ARRAY USED TO STORE PRIMARY LOOP HYORAUL KG/S TFLOlv COOL 6T COOL 6TIC INTERFACE OATA

. .. . .. _ _ _ _ _ .

FORTRAN TYPE CEFINITION UNITS LABELLED REFERENCED DEFINED INPUT REC.NAME COMMON

WIFLOT A ARAAY USED TO STOPE PRIMARY t,, COP HYORAUL KG/S TFLOlV DRIV 97 Driv 9TIC INTERFACE DATA STORIT STORIT

COOL 6T

WilNL 5 USED IN INTERPOLATION GF LOOP HYDRAULICS KG/S TFLOlV COOL 67 COOL 6TDATA AT THE VESSEL OUTLET INTERFACE STORIT

WilNN S USED IN INTERPOL AT ION Or LOOP HYOR AUL ICS KG/S TFLOlv COOL 6T STORITDATA AT THE VESSEL OUTLET INTERFACE COOL 6T

WilNP A PRIMARY PUMP INLET FLOW RATE KG/S VD9V RESIT DEFNIT

WilN A USED IN INTERPOLATION OF LOOP HYL;3AULICS KG/5 TFLOlV COOL 6T DRIV 9TDATA AT THE VESSEL OUTLET INTERFACE DRIV 9T STORIT

STORIT

I WILOOP S SOO lVM F L OW R A TE IN PRIMARY LOOP KG/S DATA 8V CA' COR DRIV 9T O-2H PBAL9S CALC 8R@ VRFYBR P8AL95* LIST 8R READ 8RI

WlONE A FLOW RATE BEFORE PUMP AND PIPE BREAK KG/S VD9V DEFNIT INITliFUNCIT EQlVITWRITlTvESL1TSTORITPRNT9TDRIV 9TEQ1VIT

WlOUTP A FLOW RATE AT PUMP OUTLET KG/S VD9V RESIT DEFNtiPUMP 1T

FORTRAN TYPE DEFINITION UNITS LAGELLED REFERENCED DEFINED INPUT REC.NAME COMMON

WIPIPE A PRIMARY PlPC FLOW PATE KG/S VD9V BREKIT PIPEliPIPElT ]HxtTEND1T PRETITWRITIT DEFNITLOOP!THYDR 1YIHX1TP!PWITCVALITPRNT1TPRET1TGVSL1TDEFNIT

WIREF A PEFERENCE MASS FLOW RATE IN PRIMARY LOOP KG/S VD9V IHXIS PBAL95CVALIS LOOPISPUMP 1SHYDR 1SINIT1TPIPEISPRNT95R1TE15CVAL1TWRIT 1T

I LOOPtsH@N WITHRE A FLOW RATE DOWNSTREAM OF PIPE DREAK KG/S VD9V DRIV 9T EQlVIT

VESL1T [NITITg

FUNC1TWRIT 1TSTORITDEFN1TE01VIT

WITWO A FLOW RATE DOWNSTREAM OF PUMP KG/S VD9V VESLIT INITITPUMPIT EQ!VITDEFNITDRIV 9TSTORITWR1T1TPRNT9TE0lVITFUNClT

FORTRAN T(PE DEF IN I T I ON UNITS L AE4ELLED REFERENCED CEFINED INPUT REC.NAf f COMMON

W2FL O T A ARRAY USED TO STORE INTERMEDI ATE LCCP HY AC/S VD9V INTF3T INTF3TDR"'ilt INTERFAEE CATA PRNT3T

ENAVG

W21NP A INTERMEDI ATE PUMP INLET FLOW OATE kG/5 VD9V RES2T DEFN2T

W2 LOOP S GUESS OF SOUlUM FLOW RATE IN INTERMEDIAT KG/S IHX35V PGAL95 CALCOR O-3E LOOP (IF KNOWN1 SFL O 35 PBAL95

READ 87

W2MXCG S MAXIMUM ALLOWED CHANGE IN W2 LOOP PER ITE KG/S FEV2V LIST 8R READOR O-3RAllON PBAL95

W2NOW 5 LOCAL MAS 5 FLOW RATE IN INTERMEDIATE LOO KG/S DATA 2V SPHT2S END25P EVAP25 LOOP 25

LOOP 25PIPE 2S

t

H W20NE A FLOW RATE AFTER SURGE TANK AND BEFOPE PU KG/S VD9V FUNC2T EOlV2T@ MP EQlV2T INIT2TU PRNTUT| INTF 3T

OEFN2T

N20UTP A FLOW RATE AFTER P!PC OUTLET KG/S VD9V RES2T DEFN2TPUMP 2i

W2 PIPE A INTERMEDIATE P!PE FLOW RATE KG/S VD9V WRIT 2T DEFN2TDEFN2T P!PE2TLOOP 2T PRETITHYDRIT |HXITPRNTITPIPE 27PRET1TENO2TEVAP2TTANK 2TlHXITBREK2TPIPW2TSPHT2T

'~

..

FORTRAN TYPE CEFINITION UNITS LABELLED REFERENCED DEF I NED INPUT REC.NAME COMMON

W2REF A REFERENCE MASS FLOW RATE AT INTERMEDIATE KG/S VD9V RITEls LOOPISLOOP HYDRIS PDAL9S

PRNT95LOOP 25LOOPISPUMP 2SINIT2TEND25IHX!S

W2THRE A FLOW RATE DOWNSTREAM OF PIPE GREAk KG/5 VD9V DEFN2T INIT2TEQiV2T EQiV2TFUNC2T

W27WO A FLOW RATE BETWEEN PUMP AND SURGE TANK KG/S VD9V FUNC2T INIT2TPUMP 2T EQiV2TECIV2TDEFN2TPRNT9T

W30AR A AVERAGE FLOW RATE IN EACH FLOW SEGMENT O KG/S VD9V FSEG3 T STGN35F EACH STEAM GENERATOR AND TURBINE LOOP HX35 STGN3Ty

PRNT3T INIT35Fa STGN35cb STGN3TM3

PIPE 35g PUMP 35

TUBE 3 T

W3CONV S RELATIVE CONVERGENCE CRI TE RlON FOR SG I T - DATl3V FEED 35 LALC3R S-1002ERAT IVE FLOW CALCUL AT1ONS

W3FWRP S FEEDWATER FLOW RATE AT RATED POWER PER S KG/S DATS3V PSFW3T FEED 35G ACCM3T

STMP35PRNT95INFS3TFEED 35FEED 3T

FORTRAN TYPE DEFINITICN UNITS LABELLED REFERENCED DEFINED INPUT REC,

NAtC COMMON

W3FW A FEEDWATER FLOW RATE IN EACH SG KG/S VD9V FEEC3T STGNTTACCM3T STON35PRNT3T F EE D 35INFS3TSTMP3SSTGN35PRNT95FEED 35WFLO35

W3NA A SOOlUM FLOW RATE IN E ACH SG HX IPER .,. KG/S VD9V HX35 INIT3RUM LOOP) STGN35 STGN3S

SF L O35

W3REF S REFERENCE PUMP FLOW RATE KG/S DATP3V PUMP 3S C ALC 3R S-201PBAL95WF L O3RPUMP 3T

W3SDLP A WATER SIDE FLOW RATE IN E ACH FLOW SEGMEN KG/S DAT13V PRNT95 WFLO35

T OF DOTH SG AND TURB LOOPS OF EACH SODI STMP35UM LOOP WLO35

,

WN W31DRP S STEAM FLOW RATE INTO TURBINE AT RATED PO KG/S DATS3V FEE 035 FEED 35O WER

1

W3TD S STEAM FLOW RATE TO TURBlNE (PER SGI KG/S DATS3V FEED 35 FECO35

W3WSSG A FLOW RATE IN EACH NODE IN EACH STEAM GEN KG/S VD9V PRNT3T PUMP 35

ERATOR FLOW SEGMENT INF S3T STGN3TPUMP 3T INIT35TUBE 3T v0L35PIPE 3T STGN35STGN35 PIPE 35IKFS3T HX35FEED 3THX3T

FORTRAN TYPE CEFINITION UNITS LABELLED REFE RENCE D der!NED INPUT rCC .NAMC C OW"ON

W3WSTb A FLOW RATE IN EACH NOCE IA TUPG1NE FLCW 5 KG/S VO9V PIPE 3T PIPE 35EGMENT IkFS3T PIPE 3T

PRNT3T IN!T3550L35STGN3T

W3WS A WATER SIDE FLOW RATE IN EACH MODULE OF B KG/S VD9V PUMP 35 WFLO3SOTH SG AND TURO FLOW SEGMENTS OF EACH SO P!PE35DluM LOOP WFLO3S

STGN35HX35

W6DPAS S MASS FLOW RATE IN BYPASS CHANPil KG/S DAT16V UPLNGT FLOW 6TFLOW 6T UPLN6SPRNT6T COOL 6TUPLN65MOVE 9T.

INIT6TL PLN6TCOOL 67CORE 67COOL 65

i

H WGOPK S PREVIOUS VALVE OF W6BPAS KG/S DATT6V COOL 6T INIT6TN COOL 6TW

l

W6CHAN A MASS FLOW RATE IN EACH CHANNEL KG/S VD9V PROP 6T COOL 6TCOOL 6% OPTN6SCOOL L FLOW 6TCORE 6T CORE 65LPLNGTUPLNGSOPTN65PRNT6TCOEF6TFLOW 6TCORE 65INIT6T

WGCHK A PREVIOUS VALUES OF W6CHAN KG/S VD9V COOL 6T INIT6TCOOLET

FORTRAN TYPE DEFINITION UNils LAGELLED REFERENCED DEFINED INPUT REC.NAME COMMON

W6CT S MASS FLOW THROUGH CORE KG/S DAT36V UPLN6T COOL 6TUPLN65 UPLN6T

UPLN65

W60SGN 5 DESIGN CORE FLOW RATE KG/S DAT26V LIST 7R REA07R V-23OPTN65

W6 TOT S TOTAL IN-VESSEL COOLANT MASS FLOW RATE K'i S DAT26V INIT6T VESLIT/

UPLN67 PBAL9SPBAL95 COOL 6TOPTN65CORE 65UPLNGSCOOL 6TFLOW 6T

W6 VIN A VESSEL INLET FLOW RATE FROM EACH LOOP KG/S VO9V LPLN6T INIT6TCOOL 6T COOL 6T

I W6VOUT S VESSEL OUTLET FLOW RATE TO EACH LOOP KG/S OAIN6V UPLN6T COOL 6Tg VESL1TNN

8 XtBREK A LENGTH OF PRIMARY PIPE UPSTREAM OF BREAK M VD9V VRrY9T REA09T T-1003Rel iiTWRITITLIST 9T

XIONE A FLUID INERilA IN LOOP SECTION UPSTREAM O 1/M VOGY xilf x11TF PUMo AND P!PC BREAK .UNCIT

-

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DEF INED INPUT REC.NAME COMMON

X1PlPE A LENGTH OF EACH PIPE IN EACH PRIMARY LOOP M VD9V HYDRis READIR N liClPIPEIS CALCIRHYDR 1T RSETlTCALCIRRSETITRITElTLISTlRPRETITRITEISXllTlHvisVRFY9TPIPWIT

1, 2 ) M DATXIV HYDRIT READIR N-102XIPLEN A LENGTH OF IHX PRIMARY PLENA i i =

LISTlRXIITHYDRlS

XITHRE A FLUlO INERTIA IN LOOP SECTION BETWEEN BR 1/M VD9V FUNCIT XllTEAK AND REACTOR VESSEL (OR PUMPI VESLIT

Xili

I

XITWO A FLUlO INERTIA IN LOOP SECTION BETWEEN PU 1/M VD9V VESLli X11Tgq MP AND REACTOR VESSEL INLET (OR PIPE BRE X11TW AK1 c' 'NC 1 T

1

X2BREK A LENGTH OF PRIMARY PIPE UPSTREAM OF BREAK M VD9V VRFY9T READ 9T T-1201RSET2TWRIT 2TLIST 9T

X2DOWN S LENGTH OF 19X CENTRAL DOWNCOMER REGION M DAT12V RITEIT READlR N-109HYDRISPRETITLISTlRHYDRIT

X2EV S ACTIVE LENGTH OF EVAPORATOR SHELL SIDE M DATE2V RITE 25 CALCIREVAP2TEVAP25RtTEXT

- _ _ _ _ _ . . _ _ . . . . ..

CE 1

R 0 1 0 1 0 22

T 1 21 21

2 0

U - -

1

21 1

- - - -

P N N N N N NNI

DRTR RE Rl R i R Rl I2IN t

I D 0ll

D D CTD DlEF A A T A A LEA AE E E I E E ASE ED R R R R R CRR R

DECN

iT S5RTT TTRS5 Ri5TTTRT5 irsE RTTS5 5RTTSl2 22l2l 12122 Il229Il22 llR lI222 2l2!2

E TEPEP ETTET EC PETPE ETTET CEETYTiWE ETRiTN ATSAT T HST H LTTEFESPP TSDF STIV1V lSHT H IU VIIVi IPI1P AIISRRII IY

ATA T

RIP1PE ILRERE ALSRS RF ERLER RSLRS CRRRVPLPPI IRLH

DELN V V V V VLO 2 2 2 2 2EM E S V E S V 1

DM T T 9 T T 9 TAO A A D A A O ALC D D V D D V D

STl Mh /

L M M 1 M M M M

E H U H S P 1

H S S S OS R O =

9 N R E LR E E O T l

O T E T A Y(A E RT A W

)

O RI N

A E T R H AR H EK M AO R BA P EP E E A P R EA P NR V U P L

E S I

E S PV U OBH

TE N r, C EN N F CP O O A TO AI

O O EI EISP M M

T N DI

M M U UI EU U PR N N

N N N OO E E MI E E O( L L E RF L L L P P P EE P P P I T

ND INMT T P

[T T U E EE E P L L HL L A T T C XN N ID U U A HI I TN O O E l

RAr F E F FE F FO OE INK OE OD O O

E D N D I

HD HI A HI HS H HTI TS DT TS T T Ti

G GL G GGS G IUE NL NL N N2N NLEL EL LG EL EE E ELL LE FR LE LH L L

EPYT S S A S S A A

NA V H V H E NR E S E E S P E

V U LRM

t N tTEl 1 0 O 0

I

PPOA 2 2 2 2 2 2 2FN x X X x X X X

5I gq4 I

_ _ _ _ _ __

FORTRAN TYPE DEFINITION UNITS LADELLED REFERENCED DEF I NE D INPUT GEC.CGMMGNNAME

XSH S ACTIVE LENGTH OF SUPERHEATER SHELL SIDE M CATS 2V SPHT25 CALCIRSPHT2'R1TEITR1TE25

X2THRE A FLU!D INERTIA IN LOOP SECTION DOWNSTREAM I/M VD9V 5;WC2T RITElf

OF OREAK RITEli

X2TWO A FLU!D INERT I A IN LOOP SECTION BETWEEN PU 1/M VD9V RITE!T RITElf

itP AND SURGE T ANK flNC2I

X3FSSG A ARRAY CONTAINING O! STANCE FROM INLE T OF M VDOV PUMP 35 VOL 35

FLOW SEGMENT TO DOWNSTREAM END OF EACH C PIPE 35 PUMP 3SONTROL VOL, IN EACH FLOW SEGMENT OF SG HX35 PIPE 35

STGN35 INIT35HX35SIGN 3S

X 3FSTB A ARRAY CONTAINING DISTANCE FROM INLET OF M VD9V PlPC3S P I PE 35I FLOW SEGMAENT TO DOWNSTREAM ENO OF EACH VOL 35

CONTROL VOLUME IN TUROINE FLOW SEGMENT INIT3Sp.NU1

X31NER A AVERAGE (LENGTH / AREA) OF E ACH FLOW SEGMEN - VD9V FSEG3T HX35I T OF EACH STEAM GENERATOR AND TURBINE LO HX35 INIT3S

OP SIGN 3T PIPE 3SPIPE 3S

X3]P A FLOW PATH LENGTH IN lt M T PLENUM OF HEAT M DATG3V Hx3T CALC 3R S-301EXCHANGER HX35 INIT3R

X30P A FLGW PATH LENGTH IN OUTLET PLENUM OF HE A M UATG3V HX3T INIT3R S-301T EXCHANGER HX35 CALC 3R

X3 PIPE A LENGTH OF PIPE OR HEAT EXCHANGER TUEE M VD9V CALClR CALC 3R S-30]HX3T INIT3RHX35TUDE3TPIPE 3TPIPE 35

-

_ _ _ _ _ _ _ _ . . . . ..

FORTRAN TYPE DEFINITION UNITS LABELLED REFERENCED DErINED INPUT REO.NAME COMMON

CLlR A CLADDING INNER RADIUS OF EACH CHANNEL M VD9V VRFY79 V-13TYPE 5RLIST 79REPT9R

X5CLOR A CLADDING OUTER RADIUS OF EACH CHANNEL M VD9V TYPE 5R V-19REPT9RVRFY7RLIST 7R

X5COR A CLADDING OUTER RADIUS FOR EACH SLICE OF M VD9V PROP 6T PUT5SEACH CHANNEL DURING TRANSIENT STEM 5T PUT5T

X5 FIR A FUEL INNER RADIUS OF EACH CHANNEL M VD9V VRFY7R V-llTYPE 5RLIST 7RREPT9R

X5FOR A FUEL OUTER RADIUS OF EACH CHANNEL M VD9V TYPE 5R V-12REPT9R

I VRFY7RFa LIST 7RN0%

X51COR A INNER CL ADDING RADIUS FOR E ACH SLICE OF M VD9V PROPGT PUTSSIEACH CHANNEL DURINS TRANSIENT PUT5T

XSL D I R A LOWER DLANKET INNER RADIUS OF EACH CHANN M VD9V TYPE 5R V-15EL REPT9R

LIST 7RVRFY7R

X5LDOR A LOWER DL ANKET OUTER RADIUS OF EACH CHANN M VD9V VRFY7R V-16EL REPT9R

LIST 7RTYPE 5R

X5REF A DIMENSIONS OF FUEL INSIDE. FUEL OUTSIDE, M VD9V PREA55 REPT9RCLAD INSIDE AND CLAD OUTSIDE RADIUS FOR GROSSEACH SLlCE TYPE AT TSREF XPAN55

XPt 9TSTE sTFUEL 55STEM 55

FORTRAN TYPE DEFINITICN UNITS LADELLED REFERENCED DEF I NE D INPUT REC,NAME COMMON

X5Sbl A FUEL RDO RADIUS AT SU .!FIC RADIAL NCOE M VD9V XPAN5T PUT55LOCAT IONS FOR E ACH SLICE OF EACH CHANNEL DOPP5T PUT5T

GROW 5T

X5UBIR A UPPER OL ANVE T INNER RADIUS FOR EACH CHAN M VD9V LIST 7R V-17NEL ftPESR

REPT9R%RFY7R

X5UGOR A UPPER BLANKET OUTER RADIUS FOR EACH CHAN M VD9V TYPE 5R V-18NEL NRrY7R

LIST 7RCHEX9RREAD 9RERR 9RCREH9RLIST 9RREPT9RINIT9R

X6|NOZ S LENGTH OF INLET NOZZLE FOR CHANNEL ORIFI M DAT26V LIST 7R READ 7R V-27CE ZONE

,

WwN X65UMO S INERTIA OF FLUID IN BYPASS CHANNEL 1/M DAT26V IN!T6T INIT6T

FLOW 6T FLOW 6Tg

X65UMT S FLUID INERTIA TERM USED IN LOOP HYORAUL1 M RV INIT6T INIT6TCS INTERF ACE C ALCUL AT IONS VESLIT FLOW 6T

FLOu6T

X65UM A INTERIA OF FLUID IN EACH CHANNEL 1/M VD9V INIT6T INIT6TFLOWST

YlDYDT A TIME RATE OF CHANGE OF Y1 VD9V PRNT9T EQlVITINTGli EQiV2T

INTGlTINITlTUPLN6T

YlLOOP S DlAMETER OF OUTLET NCZZLE M DAINGV INIT6T CALCIR

FORTRAN TYPE DE F I NI T I ON UNITS LAEELLED REFERENCED DEFINED INPUT REC.NAME COMMON

vIOLD A PREVIOUS VALUES CF Yl VD9V INTG1T INTG1T

YlPIPE A INNER DIAMETER OF EACH PIPE IN EACH PRIM M VD9V IHXIT RSETIT N-1101ARY LOOP RSET)T READIR

LISTlR CALCIRPlPElTCALClRPRETITR1TEISHYDR 1TPIPW1TPIPEISIHX1SHYDRIS

Y1THlK A THICKr~SS OF EACH PlPE WALL IN EACH PRIM M VD9V PRETIT RFADlR N-1101ARY LGUP CALCIR CALClR

RSETIT RSETITLISilR

I YlTU81 S INNCR DIAMETER OF IHX TUBES M DATXIV HYDRIS READIR N-100lHX15g

%J HYDRITCD [HXIT

LISTlRI CALC!R

PRETIT

YlTUO2 S OUTER DIAMETER OF lHX TUDES M DtTXIV LISTlR READ 1R N-100CALClRPRETITIHX15

Y1 A ARRAY USED IN SUBROUTINE INTGli FOR LOOP VD9V E0lV2T E0lV2THYDRAULICS CALCULATIONS PRNT9T EQIVIT

EQlVIT INTGITINTG1TINITIT

-

FORTRAN TYPE CEFINITION UNITS LABELLEO REFERENCED CEFINEO INPUT REC.NAME COMMON

Y200WN 5 INNER DIAMETER OF (HX CENTRAL COWNCOMER M DAT12V PRE'1T READlR N-104LISTlRHYORISHYDR 1TCALC 1R

Y2EV S EQU! VALENT (HYDR AUL I C ) DlAMETER OF EVAPO M DATE2V EVAP25 CALCIRRATOR SHELL SIDE RITE 2S

EVAP2T

Y2P!PE A INNER DIAMETER OF EACH PIPE IN EACH INTE M VD9V CALCIR CALC 1R '201RMEDIATE LOOP PIPW2T i TT2T

RSET2T READlRRITE 2SP!PE2TPRETITPIPE 25LIST 1R

Y2SH S EQUIVALENT (HYDRAULIC) DIAMETER OF SUPER M DATS2V SPHT2T CALCIRHEATER SHELL SIDE SPHT2S

R!TE2Sg

H'J Y2THlK A THlCKNESS OF EACH P!PE WALL IN EACH IN'E M VD9V PRETIT CALCIR N-1201*- RMEDIATE LOOP CALCIR READlR

g LISTlR

Y3fD A INNER DIAMETER OF PIPE OR HEAT EXCHANGER M VD9V HX3T INIT3R S-301TUBE TUDE3T CALC 3R

P!PE3THX3SPIPE 3S

Y300 A OUTER DIAMETER OF HEAT EXHANGER TUDE M DATG3V CALCIR CALC 3R S-301HX35 HX3STUDE3T INIT3RHX3T

YGHYDR A HYDRAULIC DIAMETER OF EACH COOLANT CHANN M VD9V PROP 6T V-8EL CORE 65

COEF6TLIST 7R

FORTRAN TYPE CErlNITION UNITS LAEELLED REFERENCED DEFlf.ED INPUT REC.NAME COMMCN

Y6HYO2 A HYDRAULIC OIAMETER OF ORIFICE ZONE CF EA M VC9V INIT67 V-9CH CHANNEL CORE 65

COEF6TLIST 7R

>

Y6L 7BP S HYDRAUL IC DI AME TER OF LOWER BYPASS REGIC M dAT26/ LIST 7R READ 7R V-29N CHANNEL UPLN65

FLOW 6T

YGURBP S HYDRAULIC DI AMETER OF UPFER BYPASS REGIO M OAT 26V UPLN65 REA07R V-29N CHANNEL FLOW 6T

LIST 7R

21BK A HEIGHT TO OREAK LOCAT1ON. ME ASURED FROM M VD9V GVSL1TLOWEST ELEVATION OF P!PE IN GUARD VESSEL

ZlHEAD A PRIMARY PUMP HEAD (IN METERS OF COOLANTI M VD3V PUMP 15 PUMPISLOOP 15 LOOPISRITEls PUMPliPRNT9T

I INITITWRITlTg

00O

ZlHEDR S RATED HEAD OF PRIMARY PUMP M OATAlV LISilR READIR N-il2i WRITIT

HEADITPUMP 15

ZILOOP S HEIGHT OF OUTLET NOZZLES ABOVE 26TCOR M DAIN6V UPLN6T CALC 7RF L OWF3 T

IN1TCT

Z'MAXP S PUMP G.V. MAXIMUM LEVEL THAT CAN DE REAC M GVSL1V INIT1T READ 9T T-1003HED BY COOLANT LIST 9T

ZIMAXR S R.V. G.V. MAXIMUM LEVEL THAT CAN DE REAC M GVSLIV LIST 9T READ 9T T-1003HED BY COOLANT INIT1T

ZlMAXX S IHX G.V. MAXIMUM LEVEL THAT CAN REACHED M GVSLIV INITIT READ 9T T-1003BY COOL ANT LIST 9T

..

FORTRAN TYPE DErlNITICN UNITS LABELLED REFERENCED DErlNED INPUT REC.NAME COMMON

ZlMAX A HEIGHT OF GUARD VESSEL MEASURED FROM LOW M VD9V GVSLIT INIT!TEST ELEVATION OF PIPE IN GUARD VESSEL

ZIPES A HElGHT OF COOLANT IN PRIMARY PUMP TANK M VO9V PRNT9T RESITRITE!S LOOPtsRESIT RESISWHIT 1iLOOPISINITITRESIS

DENSITY FOR RESERVOIR KG/M2 VD9V EQlVIT EQIVITZIPHO A COOLANT HEIGHT *

INTGli INITlTFLOW 1TRESIT

DENSITY FOR REACTOR VES KG/M2 RV |NITliZlRR S COOL A:4T HE I GHT *

SEL UPPER PLENUM

l ZlRTOT S HEIGHT OF PRIMARY PUMP TANK M DATAIV LISTlR READ 1R N-ll2RESIT

$ RESISpa RITEls

1

22 HEAD A 1NTERMED1 ATE PUMP HEAD M VD9V PUMP 25 PUMP 2TWR1T2T PUMP 2SR1TE25 LOOP 25PRNT9TINIT2TLOOP 2S

22HEOR S RATED HEAD OF INTERMEDIATE PUMP M DATA 2V PUMP 2S READIR N-122HEAD 2TLISTlRRITE 25

Z2RES A HEIGHT OF COOLANT IN INTERMEDIATE PUMP T M VD9V RITE 2S RES2TANK PRNT9T LOOP 25

RES2T RES25INIT2TWRIT 2TLOOP 25RES25

FCRTRAN TYPE CEFINITICN UNITS LABELLED PEFERENCED DEFINED INPUT REC.NAME CO*" MON

22 RHO A CGOL ANT HE | CH T CENS!TY FOR'RESEvolR KG/M2 VD9V RES2T INIT2T*

FLOW 27 EQlV2TEQiV2T

22RTNK A CCOLANT HEIGHT CENSITY FOR SURGE TANK KG/M2 VC9V FLOW 2T IN!!2T*

TANK 2T EQlV2TEQlV2T

22RTOT S HEIGHT OF INTERMEDIATE PUMP TANK M DATA 2V RES25 PEADIR N-122RES2TRITE 2SLISilR

22 TANK A HEIGHT OF COOLANT IN SURGE (EXPANSION) T M VD9V INIT2T TANK:TANK TANK 2T CALC 8R

TANK 25 LOOP 2SLOOP 25WRIT 2TRf!E25

22TNK! S INITIAL VALUE OF 22 TANK M BNDS8R LIST 8R READ 8R O-9IC ALCOR

>-400N

22TTOf S HEIGHT OF SURGE TANK M DATA 2V TANK 25 READIR N-122y

TANK 2TR 1 TE 2SLISTlR

Z3DNO A RELATIVE LOCATION IN NODE OF DN8 IN EACH M VD9V HX3T HX?SSG HX PER SODIUM LOOP PRNT3T STGN35

STGN35 TUDE3TPRNT35TUBE 3T

Z3F I LL S EL E V A T ION OF F ILL JUNC T I ON M DATG3V PlPE35 CALC 3R S-401P!PE3T

Z3 FIT A EXIT ELEVATION Or FITTING A7 ExlT OF P!P M VD9V HX3T INIT3R S-1E P!PE3T' CALC 3R

HX3SPUMP 35PIPE 35

FORTPAN TYPE CEFINITION LN.TS LADELLED PEFEFENCED DE F I NED IPPUT REC.f4AME C O***0N

23FSSG A ELEVATION OF DCWNSTRE AM END CF E ACH CONT M VD9V STON35 STGN35POL VOLUME IN A FLCW SEGMENT REL ATIVE TO PLvP35 VOL 35

INLE T ELE V A T I ON F OR SG FLOW SEGMENT Hu3S PUMP 35PIPC35 HX35

P!PE3SINIT35

2 3FSTO A ELEVATION OF COWNSTPEAM END OF CONTROL V M VD99 P ! PE 35 INIT35OLUME IN TU6BINE FLOW SEGMENT RELAT!vE T V OL 35O INLE T ELEVAilGN PIPE 35

231 N' A ELEVATION OF EACH EXIT NOZZLE M DATG3V PIPE 3S C ALC 3R S-101P IPE 3 T INIT3R

23|P A ELEVATION AT EXIT OF INLE T PLENUM CF HE A M DATG3V TUBE 3T INIT3R S-301T EXCHANGER HX31 C AL C 3R

Hx35

230P A ELEVATION AT Exli Or OUTLET PLENUM OF HC M DATG3v PIPE 3T C AL C 3R S-301AT EXCHANGER HX3T INIT3R

# Hx35PIPE 35ps

CoW

Z3 PIPE A ExlT ELEVATION OF EACH MODULE M VD9V PIPE 3T CALC 3R 5-1I HX3T IN!T3R

TUGE3TPIPE 35HX35

23PMOT S ELEVATION AT PUMP OUILET M DATG3V P!PE35 CALC 3R S-201PIPE 3TPUMP 35

23 PUMP S PATED HEAD OF PUMP M DATP3V PUMP 3S Cr C3R S-201PUMP 37

25AFUL A AXIAL LENGTH OF ACTIVE FUEL PEGION OF EA M VD9V CCEF5T CALC 7RCH CHANNEL TEMP 55

STEM 55STEMU

FCRTRAN TYPE CEFINITION UNITS L AEiELLED REF ERE NCED CEFINED INPUT REC.NAME COMMON

25ELEV A RELATlsE ELEVATION OF EACH AX!AL SLICE O M VO9V CALC 74 CALC 7RF EACH CHANNEL WITH REFERENCE TO BOTTOM MAKO5TCF CHANNEL INIT9T

VOlOSTPRNT5SDOPP5iSTEM 55INIT5TSTEM 5TREPT9RPRNTSTLE AASTPRNT6T

Z5LOLK A AX1AL LENGTH OF LOWER BLANKET CF iaCH CH M VD9/ COE F ST CALC 7RANNEL TEMP 55

STEM 5TSTEM 55

25LF GP A AXIAL LENGTH OF LOWER F:SSION GAS PLENUM M VD9V COEF5T C AL C7RREGION OF EACH Cr1ANNEL INITST

FUEL 55TEMPSS

I STEM 55s F tJELS TCX) GROWSTD STEM 5T

DOPP5T,VOlO57

25REF A LENGTH OF EACH AXIAL SLICE IN EACH CHANN M VO9V GROW 5T INIT5TEL FOR AXI AL EXPANSION F EECBACK EF POW 5T GROW 5TFECT CALCULATIONS PRMIST

REACST

25Ut3L K A AX1 AL LENGTH OF UPPER BL AMET REGlON OF M VD9V STEMST CA1C7REACH CHANNEL COEFST

STEM 55TEMP 55

mm - - -

FORTRAN TYPE C{FINiilCN , 'N I T S LADELLED RE F E SC NC E D DEFINED INPUT REC.NAT COM"ON

ISUF GP A Ad1AL LENGTH Gr (PPER F 155!CN C AS PL ENUM M 409/ FEEL 55 CALC 7RPEG;ON OF EACH LHANNEL STEM 55

GROWSTVOlOSTDOPP5TINITSTS T E t*5 TTEMP 55COEF5TF UEL5T

26AFUL A AX1AL LENGTH CF ACTIkE FUEL REGICN OF EA M VD9V h PESR REA07R V-101CH ROD T YPE \RFY7R

LIST 7RCALC 7RCCRE65

26DCOR S ELtiJ'!ON CF BOTTLM OF CORE AEiOVE 26REF M CATPbV UPLN65 ,'E AD 7R V-?7COEF6TLIST 7RLPLN65INIT6TFLOW 6T

I LPL NG TCORE 65g

CDUt

26CHAN A TOTAL LENGTH OF EACH CHANNEL M VD9V INIT6T CALC 7RI COHE6i

UPL N65COEFbT

26CHIM S LENGTH OF CHIMNEY M CA!N6V mlST7R RE A07R V - 2E3UPLNGT

26DE L T A LENGTH OF EACH FlxCO MESH SLICE IN EACH M VC9/ PROP 6T INIT6TCHANNEL CALC 7R CALC 7R

COPE 6 TCOE F6T

26ELEV A REL AT I VE ELEV AT ION OF EACH AXIAL SLICE O M VO9V INIT6T CALC 7RF EACH CHANNEL WITH 9EFE RENCE TO B STOR9TOTTOM OF CHANNEL CALC 7R

COOL 65

_ . . . _ _ _ _ _ . _ . _ . . . . . . .

FORTRAN TYPE DEFINITION L*. l T S L40ELLEO GEFERENCEO DEFINED I NPU T RE C -

NAME CC""CN

26CAS S HEIGHT Cr COVER GA5 REGICN M C A I N6'v UPL % T % T6T|N!T6T

Z61NOZ 5 E L E v' A T I ON OF VESSEL IN:.E T NOZZLE A90.'E Z M DATCSV LPLN65 READ 7R V-276 PEF L P'J+6 7

[ NIT 6TL14T7RFLOR 6T

26 JET S PENETRATION HEIGHI INTO UPPER M|XING PLE M CA!NGi MONE9T UPLNETNUM OF .%ERAGE CORE Ex!T FLOW UPLN67 INIT6T

FRNT6T

26LDLK A AXIAL LENGTH GF LOWER BLANKET PEGION OF M VO9V CALC 7R PEAD7R V-lOlEACH RCD TYPE CORE 65

VRFY7p

TYPESRL15T7R

26LFGP A AX1AL LENGTH OF LOWER FISZ:UN GAS PLENUM M iD97 CALC 7R READ 7R V-lOli PEGION OF EACH POD TYPE LIST 7R

TYPELRgCORE 65m

Ch \PFY7R

I

26LMAX S LENGTH OF FLOW PAiH I N L OWE R REG I ON OF 8 M CATP6V FLOW 6T INIT6T1 PASS CHANNEL INIT6T

26 LOWR S LENGTH OF FLOW PATH FROM 261NO2 TO Z60C0 M CAT 26V INITGT INITGTR

26LROP S HEIGHT OF SODIUM IN L OWER FEGION OF SYPA M DAT26V INIT6T INIT6T55 CHANNEL CORL6T FLOWGT

FLOW 6TMOVE 9T

26NALV 5 HEIGHT OF SCDIUM IN UPPER MIXING PLENUM M CAIN6V PRNT6T INIT67ABOVE 26TCOR UPLN6T EQIVIT

INIT6TMOVE 9TE01VIT

-m __ _.. .

_ _ _ _ _ _ _ . -__

FORTRAN TYPE CEF!N! TION UNITS L ABELLE D REFERENCE 0 C'ErlsEo INPUT REC.NAME COMMON

260NOZ S ELEVATION OF VESSEL OUTLE T NOZZLE ABOVE M CAT 26V LIST 7R READ 7R V-2726REF CALC 7R

PINTISOPTN65UPL N6S

26 PEF S PEFEPENCE ELEVATICN OF iEACTOR VESSEL M DAi26V LIST 7R READ 7R V-27

26TCOR S ELEVATION OF TCP OF CORE ABOVE 26AEF M CAT 26/ OPTN6S READ 7R V-27CORE 65UPLN65LIST 7RCALC 7RINIT6TCCEF6T

26UBLK A AXlAL LENCTH OF UPPER DLAMET REGION OF M VD9V CALC 7R READ 7R V-!OlEACH ROD TYPE CORE ES

VPFY7RTYPESRgLIST 7R

HCDN 26UFGP A AXIAL LENGTH OF UPPER FISSION GAS PLENUM M VD9/ TYPE 5R READ 7R V-101

g PEGION OF EACH RCD TYPE CORE 65VRFY7RCALC 7RLIST 7R

26UMAX S LENGTH OF FLOW PATH IN UPPER PEGION OF 9 M DAT26V UPL NG T INIT6TYPASS CHANNEL INIT6T

COPE 6TFLOW 6T

26UPLN S RELATIVE HEIGHT OF SODIUM IN VFSSEL UPPE M DAT26V UPLN65 READ 7R V-27R PLENUM TG 26REF LIST 7R

PINTISINIT6TOPTNGS

26UPTL S TOTAL HEIGHT OF TOP OF OPPER PLENUM ABOV M DAIN6V LIST 7R READ 7R V-28E 26REF INIT6T

_ _ _ _ . _ _ _ . . . . . . . .

_ _ _ _ _

_ _ _ _ . . . . . . . . .

FORTRAN TYPE CEFINITION JN|TS LABELLED REFERENCED CE r ! *EO INout CEC.NAME C C"CN

26UPep 5 HE 10HT OF SCOlUM IN UPPER FCGICN CE GYPA M CAT 2S/ rL0wST FLCw6TSS CHANPEL CCCEOI INIIUI

MOVE 9TIN!76TLPLNET

29 MIN 5 t'0!TRARILY SMA'.L LENGTH USED FOR CHECVI M DATC97 GRCwST BLkOATNG PUPPOSES UPLN6T

COFE6TFUELSTUPLN65CALC 7RDOPP5TINITST401D5TFLOW 6TINIT6TCUELS$

1

HCDCD

1

_ _ _ _ . _ _ _ _ . _ ._ . . . . _ _ . _ _ _ _ . . . ._

_ . . _ _ , ,

4. INPUT /0UTPUT DESCRIPTION

4.1 Description of Input

In the design of SSC, great emphasis has been placed on flexibility and

adaptability so as to make its capabilities applicable to any loop-type LMFBR

and a wide class of transien 3. This approach to modeling necessitates con-

siderable interaction between the user and the code, especially during the ini-

tialization of the calculation. With this in mind, the SSC input modules have

been constructed to make the user-code interaction as intelligent and, hope-

fully, as painless as possible.

Input is processed in SSC by three sections of code; a reader, a verifier

and a secondary data manager. The reader is built around a Brookhaven National

Laboratory version of the GENRD(7) free-format processor originally devel-

oped by the Los Alamos Scientific Laboratory. Data, once read, is checked, by

the verification sub-module, for consistency within the data set and against the

criteria detailed in the data dictionary (Section 3.0). An inconsistency at

this point sets an error flag and causes the program to enter an informative

message on the output file. The program is terminated at the end of this

process if any error flag has been set. As a further check, all card images are

entered on the output file as they are read by GENRD, along with the decoded

values assigned to all variables.

Once the verification has been completed, the third section (the secondary

data manager) proceeds to initialize certain internal parameters on the basis of

processed input. The steady state calculations are then initiated.

The list of input required to run SSC consists of a series of free-format

card image records (cards). These records contain control specifications and/or

data in columns 1 through 72. The record format is ' free' in the sense that as

- 189 -

- - - . . .

long as the sequence of data points (for a given record) confoms to the

ordering found in this ssction, field location, field length, and type

conversions are determined solely by the way the record is " punched," not by an

externally specified fomat.

Two types of information are permitted on input records, numeric and char-

acter. Character information, begun with a dollar sign (5) and teminated

eithei at column 72 or by a second dollar sign, is ignored by the processor. It

is used as a comment field. Numeric infomation is delimited by commas or one

or more blanks, and is stored as a single-valued decimal constant. A number of

special characters and character-numeric strings are also permitted. These are

listed in Table IV.

The processor reads a " card" and completely processes it before reading the

next " card," unless numeric information is continued over subsequent " cards."

An input record is defined to be one or more card-images such that its' first

non-blank character string is a digit string (record number) followed by the

l e tte r "D " ( e. o ; , 25D 1, 300. 0/ ) . An input record is teminated either by a

slash, (/) or by a column 72 preceding a new record or file declaration. A list

of valid SSC record numbers is contained in this section.

Records are grouped to fom data files. There are six data files and one

control file which are used within SSC. Each of the data files contains data

local to one section of the entire system. These files include:

(1) OPDATA - data pertaining to the initial overall plant operating

conditions, plus specification of the plant balance

initialization logic (see Reference 1, Section 4.1.2)

(2) VESSEL - all geometric and hydraulic data required to specify the

core and in-vessel components.

- 190 -

__ ___

TABLE IV

Special Characters Used in the Input Processor

Character Description

( Begins a section (which is terminated by a right parenthesis) enclosing

a list of constants, specifications, or comments. The elements stored

whilt processing this list can then be stored repeatedly. A section can

be continued over more than one card. Sections can be nested to ten

levels (up to ten unclosed left parentheses).

) Terminates a section. If followed by a repeat spec, the constants

generated. within the section will be repeatedly stored in the word array.

If no repeat spec follows, the word array is unchanged, that is, the

list only be stored once.

R Immediately following a digit string, N, identifies a rereat spec, NR.

N, a positive integer that should be greater than one, i:,. the total

number of times the affected constaat or list is to consecutively stored.

Single numeric constants may be repeated as well as the set of constants

generated in processing a section. NR follows the item: it affects, so

by the time NR is detected the constants will already h ave been storet

onco.

I Immediately following a digit string, N, identified an interpolate

spec, NI. N, a positive integer, tells the number of t qually-spaced

interpolates to insert between the oreviously processel constant and

the endpaint, a real or integer constant follows the Ni spec.

- 191 -

-

_ . . .

(3) NALOOF' - all geometric and hydraulic data required to specify the

primary and secondary loop pipings, pumps and IHX as well

as sodium-side hydraulic infonnation in the steam generator.

(4) STMGEN - all geometric and hydraulic data required to specify the steam

generator heat exchanger (s), pump and water-side piping.

(S) MATDAT - data file used to alter the defat!1t values of the available

material properties, or to create new material properties.

(6) TRNDAT - file used to specify data for the transient desired; e.g.,

pump trip time (s), scram time (s), pony mator speed, decay

power curves, scram and reactivity, etc.

(7) OLDATA - file used to provide user control over which areas

of the code will be accessed, and which input / output

file (s) will be used.

A file is introduced by a " card" on which the first non-blank character

string is a digit string (file version number) followed by the letter "V" (e.g.,

IV HALOOP). Although a file version number must always be present, i t's primary

purpose is to identify different versions of the same file for user convenience.

It is subsequently ignored by the processor, Generally, there is no prescribed

sequence of records in a given file. However, certain records which set vari-

able dimensionality must precetJ all other records in the file the first time

the file is declared. These records are:

FILE RECORD

VESSEL 1

NALOOP 1

STMGEN 1001

- 192 -

As is implied in the previous statement, a file may be accessed more than

once in a given input stream. The only restrictions on this type of procedure

is that the records which set dimensionality mentioned above, may not be re-

entered. If a file is declared more than once some or all the records in that

file (with the exception made above) may be re-read; thus overwriting the pre-

viously stored values (s). This procedure is particularly useful when re-

starting (see below) a plant initialization with a previously stored input

" deck." In this case a single record may be changed without reprocessing the

entire " deck."

SSC processes input in two separate blocks. The first contains the fol-

lowing files: VESSEL, NALOOP, STMGEN, MATDAT and OLDATA. These files contain

all the plant initialization data needed to establish a system-wide steady

state, plus the control file OLDATA. There is no set sequence for the files in

this block. The file TRNDAT is the only file in the second block. It contains

the data needed to run a transient.

In a typical default control input stream, the first block is preceded by a

title card of up to 80 characters in length and is tenninated with a STOP

command (characters STOP in columns 1-4). The second block follows and is also

terminated with a STOP. The entire input stream is concluded with an END

(characters END in columns 1-3). Default control calls for one or more

successive cases such that a steady state preceeds a transient for each case.

Some examples of other than default control are illustrated in the OLDATA input

description in Section 4.1.7.

It should be noted that the program is provided with default material

property values. These values will be used if not overwritten by the MATDAT

file. As a result, if the default talues are to be used, the file MATDAT need

not be read.

- 193 -

....._ _ _ _

The volume of output generated by SSC is determined by user option. The

printing of intermediate results is controlled on a systems component basis.

The output from the steady state modules is specified on record 5 in file

OPDATA. Record 9005 in file TRNDAT allows the same type of control in the

transient. For the sample output contained in this report all print options

have been engaged.

4.1.1 In-Vessel Data

All geometric and hydraulic data required to specify the core and in-vessel

components are input to SSC through the data file VESSEL. The listing included

on subsequent pages of this section shows on a record-by-record basis how the

specific information is supplied by the user.

These records may be input in any order, except that record 1 must be first,

as it contains variable dimensioning data.

The core and in-vessel components are represented physically by a lower in-

let plenum, core, and upper outlet mixing plenum. The core is composed of any

number of parallel channels and a bypass. For the input data, a distinction is

made between number of channels simulated (denoted by N6CHAN and use of counter

K) and number of rod types (denoted by N5RTYP and use of counter L). This is

dcne, because any number of channels may be represented, but the physical make-

up of many of these channels will probably be identical (i.e., N5RTYP<N6CHAN).

The physical makeup of each rod type is assigned through records 101 to 200.

The actual rod type identification (L) is assigned as; L = Record Number - 100.

Here, by allocating (or setting to zero) the required lengths, materials, etc,

of the regions provided (i.e., lower fission gas plenum, lower blanket, fuel,

upper blanket, upper fission gas plenum), any fuel, blanket or control rod

description may be specified.

- 194 -

.

- - _ . . _

..

. _ . -

The rod type (L) is assigned to the individual channels (K) through record

2. Records 3 through 21 contain various other geometric and hydraulic data for

the channels (K).

Record 23 contains data which is very useful for of f-normal initial oper-

ating conditions. This data enables the user to correctly initialize the flow

split to the various core channels under of f-normal conditions and make use of

known information obtained under nonnal operation. Accurate data specifying the

flow split to the core channels is usually available at design power and flow

condi tions. Thus, a steady-state case may be run at design conditions setting

L60PT = 0 and specifying the known flow fractions through record 4. The result

of this run will be the calculation of the F6LSA4(K). To then run at some off-

normal condition where the individual flow fractions are not known, L60PT is set

to 1 and the previously computed F6LSA4(K) values are used.

Records (a) 201-300, (b) 301-400, (c) 401-500 and (d) 501-600 contain var-

ious power profile and fission gas data for each channel (K). The actual K is

computed by using the record number (N):

(a) K = N - 200,

(b) K = N - 300,

(c) K = N - 4 00,

(d) K = N - 500, respectively.

- 195 -

-.

- . , , , . - - - . . .

***** FILE VESSEL

RECOHO 1

PE;CHAN - MriffR OF CHANNELS BEING SIMULATED

NSRTYR - PAJMOER Or ROD TYFTS

NSASECtLI - NUMEER Or Axl AL SE C T I ONS I SL ICE S ) OF EACH ROD TYPE

N5NF R ( K 1 - ta#T3E R Or RAO! AL FUEL NODES IN AN Axl AL SLICE OF EACHCHANNEL

RECORD 2L6ATYPIK) - INTEGER V ALLE INDICAT ING D{ ROD TYPE OF E ACH CHANP(L

RECORD 3F6TPOWIK) - FRACTION OF TOTAL POWE R IN EACH CHANP(L

RECORO 9

F6FLOWIK' - FRACTION OF TOTAL CORE F L OW IN EACH CHANNEL

RECORD 5P6 ROOS (K I - NUMEER Or RODS ASSOCI ATED WITH E ACH CHANPfL

RECORD '7

A6RODak) M2 SCOlVM FLOW ARE A PER ROD IN E ACH CHANPEL

| RECOF.O BV6 HYDR 1KI M HYCRAUL !C DI AME TER Or E ACH COOL ANT CHANPfL

HW@ 9ECORO 9

Y6HYOZlK) M HY[AAUL IC DI AMETER OF ORIF ICE ZONE OF C ACH CHANPEL

RECORD 10F6LSAll.Kl - LOSS COEF . FOR ARE A EXPANSION IN E ACH CHANPEL. AREA

CONTRACTION IN EACH CHANPfL AND ORlFICE OF E ACH CHANP(L

RECORD 11x5FIRIKI M FLEL INPER RADIUS OF E ACH CHANNEL

RECORD 12x5FOR(K) M FUFL OUTER RADIUS OF C ACH CHANPEL

RECORO 13x5CLIRIK) M CL ADOING INNER RA01US OF E ACH CHANNEL

RECORD 1%x5CLORtK) M CLAODING OUTER RADIUS OF EACH CHANNEL

RECORD 15x5L81RIK) M LOWER BL ANKET INrER RADIUS OF E ACH CHANPEL

RECORD 16x5L BOR(K ) M LOWER BLANKET OUTER RA01US OF CACH CHANNEL

RECORD 17X5UBIRIK) M UPPER BLANKET INNER RAOlVS FOR E ACH CHANPEL

CHAV{L

RECORD 20H8/ M fKl W/fWa"di V;AT TRANSFE R COEF . FOR rL(L-CL AD CONT ACT F OR E ACH CHAV4[L

RECORD 21P*/GASixt N/M2 FISSION CAS PRESSURE FCR EACH CHANPEL

PECORD 23LfdOPT - INOIC ATOR FOR FLOH FRACTION OPTION O rR ACTIOrtS kNOwd

1 FRACTIONS UP#NOWNF6LSA*txt - TOTAL LOSS CCCF. AT TOP Or EACH CHANNEL

F 6L SBP - BYPASS FLOW LOSS COEF .

P60SGN N/M2 OESIGN COPE PRE $$URE CROP

W60SGN KG/5 OES!GN CORE FLOW ~4 ATE

NEPMAX - MAXIMUM ITER AT ION FOR PRESSURE C Atti ATION

N6FLMX - MAXlMUM ITERAT IONS FOR FLOW C ALCUL ATIO4

F6CONV - CONVERGENCE CRITERION (RELATivEl

F6WSTP - MAXIMUM FLOW FRACT ION CHANGE ALLOWED PER ITERATION

P6 STER N/M2 MAXIMUM PRES $URE CHANGE ALLOWED PER I T E R A T I ON

I RECORO P+V6LP M3 VOLUME OF LOWER PLENUM

B6LPMC J/k METAL MASS IN LOWER PLENUM

g . JA W/tK*M21 HE AT TRANSFER COEFF ICIENT IN LOMR PLENUM

A6L PLF M X-SECTIONAL FLOH ARE A OF UPPER PLEP4JM

RECORD 25L SME SH - INDIC ATOR FOR FUCL RADI AL MESH 0 Equi-RADIUS

1 EQUI- ARE ATSREF K TEMP. AT WHICH THE ROD DlMENSIONS ARE PEFEPENCED

RECORD 2726REF M REFERENCE ELEV ATION OF REACTOR VESSEL

26tNOZ M ELEVATION OF VESSEL INLET NOZZLE ABOVE 26AEF

26BCOR M ELEVATION OF BOTTOM OF CORE ABOVE 26REF

26TCOR M ELEVATION OF TOP OF CORE ABOVE 26REF

-76UPL N M RELATIVE ELEVATION OF VESSEL UPPER PLENUM TO 26REF

260NOZ M ELEV ATION OF VESSEL OUTLET NOZZLE ABOVE 26REF

X6INO2 M LENGTH OF INLET NO2ZLE FOR CHANFEL ORIFICE ZONE

RECORD 28A6GL M2 ARE A BETWEEN GAS AND LIQUID IN VESSEL UPPER PLENUM

A60P'l M2 APEA BETKEN CAS AND MET AL i IN VESSEL LCPE R PL E NLM

A6GM2 M2 AEE A BE' WEEN GA$ AND MET AL 2 IN %ESSEL UPPER PLENLM

A6GM3 M2 ARE A BE TWEEN GA$ AND ME T AL 3 IN VESSEL LFPER PLENUM

A6LM1 M2 ARE A BE TWEEN L. !QUlO ANO ME T AL 1 IN VESSEL t.PPER PLENUM

A6L M2 M2 ARE A BE TWEEN L IQUlO ANO PT T AL 2 IN VESSEL UPPER PL ENLM

A6E T M2 ARE A OF CORE JE T FLOW

K; GAS W/tx*M2) HEAT TRANSFER COEF. FOR CO'vER GAS IN UPPER PLENLM

H6LNA W/(K*M23 KAT TRANSrER COEr . bE TWEEN SOOIUM AND METAL IN UPDER PLENUM

H61PF w/(K =2I KAT TR ANSF E R COE F . AT INTERRACE OF TWO SOCIUM ZONESIN UPPER PLENUM

26CHIM M LENGTH OF CH I PT( Y

260PTL M TOT AL HE IGHT Or UPFER PLENUM

F6 LEAK - FRACTION P dYPASS FLOW LE AK ING OIRECTLY INTO UPPE R PLENUMF ROM L OVE re 8 YP ASS RE G I ON

B6UMCI J/K MASS K AT CAPACITV OF ME T AL 1 [N UPPE R PLEPdJM

EF2VMC2 J/K MASS HEAT CAPACITV OF MET AL 2 IN UPPER PLENUM

EEUMC 3 J/K MASS HE AT C APAC 1 TY OF ME T AL 3 IN UPPER PLENUH

RECOF.O 29| A6L F BP M2 FLOW ARC A OF LOWER REGION OF BYPASS CHANPEL

A6UFBP M2 FLOW ARE A OF UPPER REGION OF BYPASS CHAPM L

M V6L ROP M HYORAUL IC OI AMETER OF LOWER BYPASS REGION CHANPEL

I YSUROP M HYOPAUL IC O! AME TER Or UPPER BYP ASS REGlON CHANP(L

F61NBP - FLOW LOSS COEF . AT BYPAS$ !NLET

H6ABP W/K OVERALL HE AT TRANSFER COEF . BETWEEN UPPER BYPASS REGION SOO!UM AND LINER

RECORD 30F 6F RC 1 - FRICT ION F ACTOR CORREL ATION COEF . FOR SOO!UM rLOWING IN

CHANNEL SF 6F RC2 - FRICTION F AC TOR CORREL AT ION COEF . FOR SOOlVM FLOwlNG IN

CHANNELSF6NUCI - CORREL AT ION CONSTANT FOR NUSSEL T NUMBER

F6NUC2 - CORREL AT1ON CONST ANT FOR NUSSELT NUMBER

F6NUC3 - CORREL A T I ON CONST ANT F OR NUSclL T NUMBER

F6NUC4 - COPREL ATION CONST ANT FOR NLS#f LT ta)MBER

RECORD 101 - 20026LFGPIL) M AxlAL LENGTH OF LOWER F ISSION GAS PLENUM REGION OF EACH ROO

TYPE26LBLktL) M Ax! AL LENGTH OF LOWER BL ANKET REGION OF E ACH ROO TfPE

_ _.

26AruLtLa M Ar!AL LENGTH Or AC T i h E rJL DE GION Or E ACH FKO T V 4

26UBLKIL1 M AWIAL LENGTH Or UPPER BL ANk E Y RE G I ON OF EACH RCD TV4

26Ur GP IL 1 M ANIAL LENGTH Of UFFER F !S$1ON GAS PLEMJH RE GION OF EACH RODTYPE

N6L F GP IL i - NUMBER Or Ax ! AL COOL ANT NODES IN LOWER FISSION GAS PLENUMDEGION Or E ACH ROD TYPE

N6LBLK:L3 - NUMBER CF A r l AL COOL ANT NODES IN LO6(R BLaryE T REGION OFEACH ROO TYPE

N6AFULIL1 - Pd_F M R OF A u l AL COOL ANT NODES IN AC 71 vE FLEL REGION Or EACHROD TYPE

NGUBLKIL) - NUMEER OF Avl &L COOL ANT NGDES IN LPPER BL ANVE T REGION OFEACH ROD TYPE

NREGP t L I - NUMBER OF Axl AL COOL ANT NODES IN UPPER F ISSION GAS PLENUM,

RE G ION OF EACH ROD TYPEF 6PO f L I - PlTCH TO DI ATTER RATIO FCR E ACH ROD TYPE

FEAO f L ) - PITCH T O C i r . . tR RA T I O F OR WI RE WRAP OF E ArH ROO TYPC

L5CLMTIL) - 1;OEx OF CL ADDING MA TERI AL FOR E ACH ROD TYFT

L55YMT(L) - INDE x Or STRUCTURAL MATERI AL FOR E ACH RCD T YPE

L5LBMTimi - INCix F LOWER BL ANaE T PtTERI As. FOR E ACH RCD TYPE

F5DLBU f L I - FRACT lONAL UNSTRUCTURED GRAIN CO61 TY Or lob (R BL AWE Y FOREACH ROD TYPE

FSDL BE IL I - FRACTIONAL EQUI AMED GRAIN DE NS1 TY OF LOWEFr BL ANkE T FOREACH RC4. TYPE

F5DLBC il l - FRACTIONAL COLUMNAR GR A IN DE NS I T Y Or LOWER BL ANk E T FCREACH ROD TYPE

I L5AF MT f L i - INDEx OF ACT IVE FUEL MATERI AL FOR E ACH ROD TYPE

H F50AFu t L I - FRACTIONAL UNSTRUCTURED GRAIN DENSITY OF ACT ivE FUEL FOR* E ACH ROD TYPE* F 5DAFE IL ) - F RAC T IONAL EQUl xED GRAIN DENSI T Y OF ACT!vE FUEL FOR E ACHROD TYPEg

F5DAFC t L I - F RACT IONAL COLUMNAR GRAIN DENSI T Y OF ACTIVE FUEL F OR E ACHROD TYPE

L5UBMTfL) - INDEX OF UPPER BL ANkE T MA T[ RI AL FOR E ACH ROD TYPE

FSDUBUILl - FRACTIONAL UNSTPUC TLFE D GA A I N DE NSI T V OF UPPER BL ANk E T FOREACH ROD TYPE

F5DUBE f L 1 - FRACTIONAL EQUxI AXED GRAIN DENSITf Or UPPER BL ANKET FOREACH ROD TYPE

F5DUBC(L1 - FRAC T IONAL COLUMNAR GRA IN DE NSI T V OF UPPER BL ANVE7 FORE ACH ROD TYPE

RECORD 201 - 300F5PAXIJ Kt - Axl AL POWER FRACTION FOR E ACH NOOE IN E ACH CHANNEL

RECORD 301 - 400F5PR AD E 1,K ) - FUEL POHER FRACT ION IN EACH RADIAL FUEL NODE IN E ACH CHANNEL

I NO Ax ! AL DE PE NDE NCE )

RECORD 401 - 500F5PWR5tKI - FRACT ION OF POWER GEP(RATED IN E ACH CHANNEL DEPOSITED

D IREC TL Y INTO THE FUELF5PWR6(K) - FRACTION OF POWER GENERATED [f4 E ACH CHANPEL DEPOSITED

DIRECTLY IN THE CLADDING

F*PbR!(K) - FAACTION OF PO4A CENEP ATED IN E ACH CHAvfL DEPC$1 TEDC:PECTLY INTO THE COOLANT

PCCCRO 501 - 6CDL5GA5(1.WI - INCEr OF E ACH FISSION GAS TYPE IN E ACH twAVEL

F5CA5 41.K s - MOL E FPACT ION OF E ACH FISSION CA5 IN E ACH CHANNEL

|

NOO

I

I

. _ . - - - .

4.1.2 Sodium Ltop Data

All geometric and hydraulic data required to specify the primary and secon-

dary loop pipings, pumps and IHX, as well as sodium-side hydraulic information

in the steam generator is input using data file HALOOP. The listing included on

subsequent pages of this section shows on a record-by-record basis how the spec-

ific information is supplied by the user. These records may be input in any

order, except that record 1 must be read first, as it contains variable dimen-

sioning data.

The present version of SSC-L assumes that all primary heat transport systems

(HTS) are geometrically identical and are operating initially at the same steady

s ta te. The same assumption applies to all secondary HTSs.

The numbering sequence for pipes within an HTS is important. In the primary

loop, the pipe numbers must start at 1 at the vessel outlet and proceed sequen-

tially around to the vessel inlet. On the primary loop, the IHX primary side is

considered a pipe and a number must be assigned to it.

On the secondary side, the pipe numbers must start at 1 at the IHX secondary

outlet and proceed sequentially around to the IHX secondary inlet. Here, in the

intermediate HTS, the IHX secondary sid; and all steam generator heat exchangers

(e.g., evaporator, superheater, etc) are not assigned pipe numbers. However, if

an svaporator and superheater are specified in :.he steam generating system, a

sodium pipe connecting the two must be assigned in the secondary HTS.

Piping data are read in on records 1101-1199 for the primary HTS and on re-

cords 1201-1299 for the secondary HTS. The individual pipe ti mber (K' is de-,

rived from

(a) K = Record Number - 1100 and

(b) K = Record Number - 1200

- 201 -

--

_ _ . _ . _

. . . . _ _ - - _ _ - -. _ _ _

for the primary and secondary HTS, respectively. IHX data (geometry, noding,

etc.) is read in on records 101-104,1002 and 1003.

The portions of the pumps in both primary and secondary loops are specified

by the pipe r. umber preceeding the pump on record 1001. Required data, e.g.,

rated head, speed, flow, torque etc., must be provided on records 112 for the

primary pump and I?2 for the secondary pump. The coefficients in the polynomial

equations describing head and torque characteristics are given default values

which may be satisfactory for most situations. These coefficients may option-

ally be supplied by the user on record 110, if necessary.

The position of the check valve in the primary loop is specified on record

1001 by the pipe number preceeding the check valve. If the number specified is

zero then the pressure drop across the valve is always zero and the effects of

the check valve are removed from the systems check valve data is supplied on

record 111.

Provisions have been included in SSC to group all unbroken plant loops into

one simulated loop for computational efficiency. Specific ation cf loop simu-

lation is given in records 1 and 2 of file NALOOP and record 1 of file OPDATA.

In file OPDATA, two variables are of importance; N90SEN, the number of physical

loops present, and N9 LOOP, the number of operational loops present. Simulation

of these operational loops is divided in file NALOOP. N1 LOOP is the number of

loops actually simulated and N3STGN(K) is the number of physical steam generator

luup> i.o ue represent U by each simulated steam generator loop.

- 202 -

_ _ . . . .

' -

.

**"* FILE t.AL OOP

RECORD 1

N! LOOP - NUME5E 4 CF PR:MARf LOTS SIMLL.A1 J

N!PIPEIK1 - MTR OF PIFIS IN E ACH PRIMARY LOOP

NINOOEtJ.Kl - NUMOER OF NODES IN E ACH PIPE OF EACH PRIMARY LOOP

N2PIPEta') - Ps >MBE R OF PIPES IN EACH INTERMEol ATE LOOP

A W IJ.Kl - NUMUER CI NOOES !N EACH PiPL & EACH IN'E,P1EDI ATE LOOP

RECORO 2N3STON(K1 - Nl.JMDER OF PHYSICAL SG L000$ I? 6[ PEPPESENICO BY EACM

SIMUL ATED SG LOOP 1 SUMMAT IGN MUST EQUAL N9 LOOP 1

RECORD 100NITUBE - NUMBER OF TUBES IN !sX

YlTUHI M I NNE R O I AT T E R C." IMx TUBE S

YlTUB2 M OUTER O! AME TER OF IHX TUDE S

AllHX M2 TLOH ARE A ON PRIMAR f S!DE Or lHX

V!BYP M3 VOLUME Or SOOlUM IN THx PRIMARY OYPASS

VilHX M3 VOLUPT OF SOOlUM IN IHX PRIMARY HEAT EXCHANGE RE GION

BISHEL KG MASS OF IHX SK LL|

AISHEL M2 HEAT TR ANSF E R ARE A OF IHX STLL

FIPOO - P!TCH-TO-OI AME TER RAT IO FOR lHX TUBE OUNDLE

HIFLP (M2-K)/W FOUL ING RESIST ANCE ON OUTERt PR j MARY ) SURFACE OF TUBESg

HIFLS (M2-K1/H FOUL ING PESIST.4E ON I mE R I SE CCNOARY 1 SURF ACE Or TUDES

LISTRC - PRI MARY L OOP S f RUC TUR AL MA TE R I AL 10

RECORD 101LIFOIR - IHM FLOH INDICATOR I FOR PARALLEL F. OH IN IHX

-1 FOR COUNTER FLOHLIKP - INPUT OPTION INOICATOR O IF PLPOHX GI VE N

I IF F I LOSS t J!aX . I . G I VE NFilN - PRIMARY INL ET LOSS COEFFICIENT FOR IHX

FLOUT - PRIMARY OUTLE T LOSS COEFF ICIENT FOR lHX

LIKS - INPUT OPTION INDICATOR 0 Ir P2POHX GI VENI IF F2LOSXill GIVEN

F21NHX INLET LOSS COtrFICIENT TO IHX SECONDARY SLOE

F2EXPN - LOSS COEFFICIENT FOR EXPANSION FROM TUBES TO OUTLET REGIONIN IHX

FPCONT - LOSS COEFF ICIENT FOR CONTRACT ION FROM letET PLENUM TO TUBESIN IHX

F20UHX - OUTLET LOSS COEFFICIENT FROM IHX SECOrOARY S!OE

RECORD IC2

NIPLENEli M LENGTH Or !Hx PR; MARY PLENA i 1 1. 2 i=

Y2PLENill M LENGTH OF [HX INTEMDI ATE PLENA r 1 - 1.21

2 IvlPLENill M3 SOOlVM VOLUME OF lHA PRIMARY PLENA t 6

v 2PL E Ni l l N3 SOCIUM VOLLME Or lHx INTERMECI ATE PLENA E I =.1. 2 1

DECORD 103RIPLENill D T h{ ANGLE Or FLOh ]N lHX PRIMARY PLENA i i = 1. 2 i

1, 2 IR?PL EN i l l D THE ANGLE OF FLOH IN IHX SECONCARY PLENA ( l =

RECORD 10wXch M LENGTH OF |Hx CENTR AL CCAOME9 REGION

Y2OOWN M INNER O! AT TER OF IHX CENTRAL [OWNCOMER

R2DOWN D THE ANGLE OF FLOH IN THE IHX CENTRAL DOHNCOME R

RECORD 10*sT!CONV K CON'.ERGENCE CRI TERlON FCR TEMPEPATURES IN IHu

FIEPS M ROUGHrfSS OF PRIMARY LOOP PlPING

F2EPS M ROUGHPESS OF INTERMEDI ATE LCOP PIPING

IRECORO 110

N NIPUMP - NUMBf R Or COEFF ICIE NTS IN POL YNOMI AL FOR PRIMAAY PUMP HEADO& FIF NP(la - COErF ICIENTS IN POLYNOMI AL EQL,ATION FOR PRIMARY PUMP HEAD

IRECORD 11I

IIFAIL - MODE OF PRIMARY CF(CK VALVE O WORKING| F AILED

IITYPE - TYPE Or PRIMARY CHECM V AL VE

PIPCV N/M2 BACKF'RESSLRE FOR CF(Ck V AL VE TO CLCSF

FICVAltli f** CHECK V AL VE CHARACTERIST IC COEFF ICIENTS

RECORD 112Zl>4 ;R M RITED HEAD OF PRIMARY PUMP

UlONGR RPM RATED SPEED OF PRIMARY PUMP

QlFLOR M3/S RATED VOLUMETRIC FLOW RATE .V MlMARY PUMP

T[ORKR N-M RATED TOROUE OF PRIMARY PUMP

ZlRTOT M HE IGHT OF PRIMARY PUMP TANK

AIRES M2 x-SECTIONAL AREA OF PRIMARY PUMP T ArE

RECORD 120L2*EV - INPUT OPTION INCICATOR 0 IF P2>OEVill G I VE N

i IF F2EV(ll GIVENF21NEV - INLE T LOSS COEFF ICIENT TO EVAPORATOR SHELL SIDE

F20UEV - OUTLET LOSS COErFICIENT FOR E V APOR A T OR SFE L L SIDE

X21NEV M LENGTH OF I NL E T PLE V ON EvAPOAATCp gg{(L 5[g{

X2M J M LENGTH OF OUTLET PLENUM ON CwAPORATOR 5 HELL SIDE

V2 IN1[Y M3 SOCIUM VOLUME Cr E v APORATCA INLE i PL E NUH

V?WE V M3 SCOlUM <CLUME Or EV AP> A TOR OUTLE T PL E NUM

R2!NEY D THE ANGLE OF FLOW AT 'NLET PLENUM OF EVAPORATORSHELL SIDE

R20UEV D T *f ANr,LE OF FLOn AT TH[ CU T(E I PLENUM OF EeAPORAIONSHELL SIDE

P2CV D THE ANGLE OF FLOW iN THE EV APOR A T CR SH(( L $!CE

PECORD 121L2KSH - INPUT OPTION !NDICATOR 0 Ir P2PO5Hf1I G I VE N

1 IF F2 Shill Gl%ENF2iNSH - INLET LCSS COEFrICIENT TO SUFERHE ATER SHELL SIDE

F2OJSH - OUTLE T LOSS COErr ICIENT FOR SUFTRHE ATER SHELL SIDE

X21NSH M LENGTH Or INL ET PLENUM ON SUPERHE A TER SHELL SIEC

x20USH M LENGTH OF OUTLE T PLENUM ON SUPERHEATER SHELL SICE

V2!NSH M3 SCDIUM VOLUME OF SUPERHE A TE R INLET PLENUM

V20U94 M3 SOOlUM VOLUME OF SUPE R>( A T E R OUTLET PLENUM

R2tNSH D THE ANGLE Or rLOW 47 INLE T PLENUM OF SUPERHE ATERSHE LL SLOE

g R20USH D THE ANGL E OF FLOW AT OUTLET PLENUM OF SUPE RHE A TE RSHELL SIEC

3 R2SH O THE ANGL E OF FLOW IN SUPERHE ATER SHEL L S|OE

01RECOVO 122

1 22HE DR M RATED HEAD OF INTERMEDIATE PUMP

U20MGR PPM R A T E D ~#'EE D OF INTERMEDI ATC PUMP

Q?rLOR e 'S RATED VOLUMETRIC FLOW RATE OF 'NTERMEDIATE PUMP

T20RkR N-M RATED TORQUE OF [NTERMEO! ATE PUMP

Z2RTOT M HEIGHT OF INTEPMEDIATE PUMP TANK

A2RES M2 x -SE C T I ON AL AREA CF INTERMEDI ATE PUMP TANK

22TTOT M HEIGHT OF SURGE TANK

A2 YANK M2 x - SE C T 1ONAL ARE A OF SURGE TANK

RECORD 1001LIPUNPtK) - PIPE NUMOER PRECEDING PUMP IN E ACH FHlMARY LOOP

LICVtK) - PIPE NUME(R PPECEDING CHLCK VALVE IN CACH PRIMARY LOOP

LilHXLK! - PlPE NUMBER OF lHX IN E ACH PRIMARY LOOP

_._

L2P W IK) - F IPE NL?GER PPECED:NG PW IN E ACH INTERTDI A'E LOOP

L2TANKtK) - P I PE NUMBE R PGE CED I NG E M P ANSl CN T AW IN EACH IN'ERT CIATEL OOP

LPE/fkl - p!PE NUMBE R PRECEDING E v APC6 A'OR IN EACH INTERTDI ATE LOOP

L2SH W l - PIPE NUMBER PRECEDING SLFE5h4 ATER IN E ACH INTERMED1A'E LOOP

PECORO ICC2FIBETAtKI - PR! MARY BVPASS FRACTION THROUGH EACH |HX

NIACTV(K1 - NUMBER OF ACT!%E(UNPLUGGEDI TUEf 5 IN IMx Or E ACH LOOP

PIPDHXIKI N/"J PRESSURE OROP 0%ER IHM PRIMARY SIDE

RECORD 1003P2POMX(KI N/MC F '.E SSURL <ER SE CONCARY S!DE Or IHz

F2LOSxiki - LCSS COEFF ICIENT FOR 6ECONCARY SIDE OF EACH IHM

PcW V ( K 1 N/M2 PRESSURE DRCP 0%ER E ACH Eb APORATOR SHELL SIDE

FPEvtKI - LCSS COEFFICIENT FOR SrELL S:DE OF EACH EVAPORATOR i

P2 POSH (K) N/M2 PRESSURE GRCP OVER SUPERt4 ATE R SH[LL SIDE

FPSHIKI - LOSS COEFF IC IENT FOR SHELL SIDE & E ACH SUPERHE ATER

RECORD 1101 - Il99| FILOSSlJ.K) - LOSS COEFFICIENT FOR E ACH PIPE IN E ACH PRIMARY L Ors >

M X1PIPCtJ.Kl M LENGTH OF E ACH P!PE IN E ACH PRIMARY LOOPO@ YlPlPEfJ,ki M INNER DI APT TER OF E ACH PIPE IN E ACH PR! MARY LOOP

I YlTHiklJ,KI M THlCNNESS OF E ACH PIPE WALL IN E ACH PRIMARY ACOS

RISINtt,J,K1 0 THE ANGLE Or PRIMARY FLOW AT E ACH NCOE IN EACH PIPE OrC ACH LOOP

_

PECORD 1201 - 1299F2LOSStJ.KI - LOSS COEFF ICIENT FOR E ACH P;M IN EACH INTERMEDI ATE LOOP

x2PIPElm,K) M LENGTH OF C ACH PIFC IN E ACH PRIMARf iCGP

Y2PIPEIJ.K1 M INP(R DI AMETER OF EACH PIPE IN EACH NTERMEDI ATE LOOP

Y2THlKtJ,K1 M THICKNESS Or E ACH P!PE WALL IN E ACH INTERMEDI ATE LOOP

R2SINil,J.K) D THE ANGLE OF INTERMEDIATE FLOW A T E ACH NOOE OF E ACHPIPE Or E ACH LOOP

---

. . - __ . .__ _

- . _ _ _ , _ ,-

4.1.3 Steam Generator Data

The user constructs the simulation model of the steam genecating system by

interconnecting models of five types of components. These a're a pipe, an accum-

ulator, a pump, a heat exchanger, and a feedwater source. A pipe is a straight

length of adiabatic, constant diameter pipe with a user-specified orientation to

the vertical. Each pipe is divided into a user-specified number of control vol-

umes and contains a loss coefficient at the downstream end of the pipe to ac-

count for pressure losses due to area changes, flanges, fittings, values, etc.

An accumulator is modeled as a single control volume. A pump is modeled as a

single control volume with no storage (i.e., zero volume). The pump pressure

rise is computed from user input performance characteristics. The heat exchan-

ger model is a single tube representation of a multi-tube, counter flow,

straight tube heat exchanger. Inlet and outlet plena are included and the heat

transfer tube is divided into a user-specified number of control volumes. A

feedwater source is a source of fluid whose pressure and enthalpy are user spec-

ified functions of the ratio of feedwater flow to the feedwater flow at 100%

power.

Each component in the simulation model is given a unique identification num-

ber and all data for each component is referenced by its ID number. The compon-

ent numbering scheme is,

a) numbers 1 to 99 for pipes,

b) numbers 101 to 199 for accumulators,

c) numbers 201 to 299 for pumps,

d) numbers 301 to 399 for heat exchangers,

e) numbers 401 to 499 for feedwater sources, and

f) number 500 for turbine inlet.

- 207 -

In addition, certain numbers are reserved for the connections between the steaa

generating system and the intermediate sodium transport system. These rese ved

numbers are

a) number 300 for the connection between a heat exchar.ger and the IHX

inlet, and

b) number 400 for the connection between a heat exchanger and the IHX

ou tl et.

The identification numbers of the individual components may be chosen arbitrar-

ily within the rules stated above.

Once the identification numbers for the components have been assigned, data

describing each of the components must be supplied. The data for each component

is divided into three types of data, (1) geometric data, (2) performance data,

and (3) initialization data. The geometric data record cot;ists of items iden-

tifying the components which precede and follow the component specified by the

record number as well as physical parameters re : ired to describe the component

such as length, diameter, etc.

The performance data record contains items describing the operating charac-

teristics of the components specified by the record number. For example, the

perfcrmance data record for a pump would contain the pump head at rated condi-

ions and the pump flow rate at rated conditions, etc.

The initialization data record specifies the values of the state variables

at either the inlet or outlet of the component. If the user knows the values of

some key state variables at steady state, the initialization data allows the

user to utilize the known information to supplement his knowledge of the geo-

metry of the system being simulated. For example, if a pressure is specified,

the loss coefficient for that component is adjusted to produce the specified

pressure. If a fluid temperature or quality in a heat exchanger is specified,

- 208 -

an area correction factor is calculated so that the fluid temperature or quality

at that location in the system is the user specified value. If the pump outlet

pressure is specified, the pump speed is adjusted to produce the specified value

of pump outlet pressure. For each component, some types of data are required

while other types of data are optional. Table V lists the types of required and

optional data for each component.

The record number for the data record is the identification number of the

component to which the data record applies. Because there are three types of

data records for any single component, there may be up to three data records

with the same record number, each containing a different number of data items.

The code recognizes the type of record (geometric, performance, or initiali-

zation records) from the number of items in the record, so that the data records

may be inserted in the data deck iri any order. The only exception to this arbi-

trary ordering of the data records is that data record 1001, which specifies the

number to data records in the data deck, must be the first record in the data

deck.

The descriptions of the data items are tar the most part self-explanatory

but there are several items which require further explanation. The parameter

N3 KEY whi-h appears as the second and third item of the geometric data records

(the record number is considered as the first data item) specify the identifi-

cation numbers of the components which precede and follow the component speci-

fied by the record number. These items are used to determine the geometric ar-

rangement of the steam generating system. The fourth and fifth data items in

the heat exchanger geometric data records specify the interconnection of the

heat exchangers for the flow paths containing the sodium from the intermediate

heat transport system. To illustrate the way in which the parameters are used

to determine the geometric arrangement of the steam generating syF.em, Figure 1

'

.09 -

. . . . . . _ _ __ . _ _

TABLE V

Required and Optional Data for Steam Generator Components

Component Required Data Optional Data

Pipe Geometric Data Initialization Data

Accumulator Geometric Data -

Initialization Data

Heat Exchanger Geometric Data Initialization Data

Pumps Geometric Data Initialization DataPerformance Data

feedwater Source Geometric Data -

Performance Data

- 210 -

- - - _ _ - _._

is a diagram of a portion of hypothetical steam generating system containing

pipes, a pump and a heat exchanger. The first three data items in the geometric

data records for each of these components is # m, in Table VI.

A provision has been maie in the code to allow parallel flow paths. These

parallel flow paths are computationally equivalent and are lumped together by

the code. In order to obtain the prop 2r flow rates in the parallel paths for

the computations, tee's can be constructed at the junction between two pipes by

use of the parameter F3JUNC which appears in the pipe gemetric record. The in-

teger portion of the parameter specified the number of pipes upstream of the

junction while the fractional part of the parameter specifies the number of

pipes downstream of the junction. Thus, a parameter F3JUNC for a tee with one

inlet and two outlets would be 1.2 and the parameter F3JUNC for a normal junc-

tion between two pipes would be 1.1.

The parameter 13EISL which appears in the initialization record for accumu-

lators and is specified for each flow out of the accumulator must also be des-

crioed further. If this parameter is zero, the enthalpy of the flow leaving the

accumulator is the enthalpy of the fluid in the accumulator at the height of the

outlet nozzle. Thus, if the outlet nozzle is above the liquid level in the ac-

cumulator, saturated vapor flows out through the outlet nozzle. If the outlet

nozzle is below the liquid level, then saturated liquid flows through the exit

nozzl e. When feedwater is added to an accumulator and 13EISL for an exit nozzle

of that accumulator is equal to 1, the enthalpy of the fluid leaving the outlet

nozzle is the weighted average of the enthalpy of the fluid at the height of the

exit nozzle and the enthalpy of the feedwater. The weighting fractions are de-

fined by the ratio of the feedwater flow to the total flow through the outlet

noz zl e.

- 211 -

{

DIRECTIONOF FLOW

@-<>-

e @8@

. . COMPONENT ID

e. . JUNCTION BETWEENCOMPONENTS

Figure 13. Schematic diagram of a portion ofsteam generating system.

- 212 -

. . . . . . . . _ _ . -

TABLE VT_

First Three Data Items of Geometric Data Records for System of Figure 13

Pipe Geometric Data Records

Component ID ID of Preceeding ID of Following(Record Number) Component Component

6 NA 21

21 6 9

9 21 203

33 203 4

4 33 304

73 304 NA

.__________________._____..__..__________._____ ..__________

Pump Geometric D ta Records3

203 9 33

___________________.____________________.___________________

Heat Exchanger Data Record

304 4 73

- 213 -

-

_ _ . . . . -

The parameter 13DNB which appears in the heat exchanger initialization re-

cord controls the calculation of the location of the departure from nucleate

boiling. If the parameter is zero, a simple linear estimate of the DNB location

is performed while if the parameter is equal to 1 then a more detailed (and time

consuming) calculation of the DNB location is perfonned. The detailed calcula-

tion of the DNB location is recommended when a small number of control volumes

is used in the simulation of a heat exchanger.

- 214 -

i, . -.

- .- .

.

***** FILE STMGEN

REOUIAED CATA ***=****

RECOx 1031 RECCPD 1031 MUST BE Flcsi CATA RECORC IN F ILE STGNN 3Pl PR - NUML(R Cf P! PE S WHCSE GE Cri T R [ C OA T A |5 TC HL RE AD ON INPUT

N 3H A R - NUP0ER Or HM-5 WHOSE GEOME TR:C CATA WILL PE RE AD ON !**UT

N 3 VOL R - NLt10ER OF ACCL*+1 A TORS HMCM M OME TR I C D A T A ARE TO E{ READ ON1*PJT ( S AME NUMBE R MUST BE IN!TIA 1ZEDI

N 3PI P l - NJMBER OF P! PES TO BE ;NI T I AL 12E0 ON l*PJ'

N3HKI - NUP43E R OF Ha -S T O BE I NI T I AL I ZE D ON INPUT

N3PMPI - PUMP INITIAL 12ATION CONTROL FLAG

PECORD 1032A 3CONV - RELATIVE AREA COMERMNCE CRI TERION FOR >{ AT [wCHANGER AREA

CPTIONE 3CONV - REL Af l%E CONsJQGENCE CRI TERlON F OR STE A*1 MNE R ATOP ENiMALPY

C ALCUL AT lONF 301 CV - REL AT ivE CONVERCENCE CRI TER;ON FOR STE AM GENE R A TOR WATER

QUAL I T Y C ALCUL AT IONT3CONV - PEL AT IVE CUN 'ERGENCE CRI TERIL'. FOR TEMPERATURE I TERAT ! bE

C AL CUL A T I OPAP 3CONV - PE L A T I VE CONVE 'KE NCE CR I TE R l ON F OR SG PPESSURE C ALCUL A T IONS

W 3CONV - REL AT IVE CONVERGENCE CRI TERlON FOR So I TERA T IVE FLOWC ALCUL AT IONS

3 N31 TE R - max NUMBE R OF ALLO 6_v I TERAT IONS F OR ANY ITERATIVEC ALCUL A T I ON

>3H * PIPE C{0ME TPIC DA T A RECORD *Ut

RECORD 1 - 99 PIPE ID SE T EQU AL TO RECORO NUMBER| N 3KE Y - ID OF MODULE CONNEC TED TO INLE T OF THIS PIPE

N3x E Y - 10 OF MODULE CONNECTED TO OUTLET OF TH!S P!PE

M3 PIPE M PIPE LENGTH

Z3PIPC M Ex l T ELE s AT ICN OF P!PE

V3tD M P!PE INNER DI AME TER

F32Y - SURFACE ROUGHNESS TO O!AM #:'R RATIO FOR P!K

F 3JUNC - JUNCTION PARAMETER AT Ex t f Or PIPE

F3PW - PRESSURE LOSS CCCFF IC IENT FOR F I T T ING AT Exl T OF PIPE

F 3PWMP - TWO PHASE MUL TIPL IER FOR LOSS COEFF IC IENT OF F I T T ING AT ExI 7Or PIPE

23 FIT N E x l T EL E V A T lON OF F I T T LNG A T E x I T OF PlPC

N3 NODE - NLt1BER OF CONTROL VOLUMES IN PIPE

* ACCUMUL ATOR CEOME TRIC DAT A RECORD *

REr W 101 - 199 .CCUMULATOR ID SET EQUAL TO RECORG NUMOER*

V3VOL M3 VOLUME OF ACC(F1UL ATOR

._

_ _ . .

N!vLCT - P+JPHE R C4 Ex!' '& 2LE5

N3/CS8 ID Or MOCxAE A T T ACHED TO r 1%T E x I T NCZZL E231NS_ M ELE %AT!ON Cr F1RST EMIT NC22LE

F 31 NL v - RE L A T I V E HE !Ca? C# F I RS T E x ! T NO22LE (C.C - 1.0)

N 3 /C58 - 10 OF MOOULE A T T ACHED TO k -TH m = 1. N 3 vtCT . Ex!T NO2ZLE

231N1 M ELEyATION Or <-TH E x I T NC22LE

F31%V - REL A T I VE HE i CM T Or >-TH ErlT NO22; E (0.0 - 1.01

* Pt w ZOT TRIC CATA PECOPD *

PE CORD 201 - 239 PLW 10 SE T E QU AL 'O RE CCRD NUMBE RN 5a E Y - ID Or MOCULE COrtEC TED TO IPA ET Or PtM)

N 5= E Y - ID Or MODULE CCNICTED TO OUTLET or PUMP

2 3PMOT M ELE %ATION AT PUMP OUTLET

HE L T E KHANGE R GE DME TR I C CAT A RE COPC **

RECORD 331 - 333 HE AT E XCHANCER 10 SET EQUAL TO RECORO NUMBERN 3x E Y - ID Or WE CONNEC TED TO WATER I NL E . Or HE A T E X CHANM R

N 3k E Y - ID OF MODULE COr.tECTED TO WATER OUTLET Or HE AT E vCHANC{ R

N 3* E Y - 10 Or MCDULE COreECTED TO SODILN INLE T Or M AT E XCHANMR

N3kE Y - ID OF MOC"JL E CONtf C TE D T O SGO ' UM OU TLE T Or HEAT EkCHANM R1

x 3P IPE M LENGTH OF HE A T T R ANSFE R TURENH 2 3P I PE M E x i f EL E V AT ION OF HE AT TR AF / ER TUBEO

Y31D M I NNE R D I AME TE F. OF HEAT TRAP FER TUHEy

F32Y M $URF ACE POUGHNESS TO m E * ER R AT T O F OR HE A T T R A%f E R TUET

NITUDE - NUMBER OF HEAT T JA%FER TURES IN K AT EXCHANGER

F 3PWIP - INLET PLENUM PRESSURE LOSS COEFF ICIENT FOR HE AT EXCHANGfRF 31PMP - TWO-PHASE MUL T IPL IER F OR IPLE T PLENUM LOSS COEFF ICIENT FOR

HE A T E XCHANGE R23]P M ELEVATION AT Exli OF INLE T PL ENUM OF FEAT E XCHANM R

x31P M FLOW F ATH LENOTH IN INLET PLENUM OF HE AT EXCHANGER

v31P M3 VOLUME Or INLET PLE NUM OF HE AT EXCHANC{R

F3PWOP - OUTLE T PLENUM LOSS COEFFICIENT FOR HE AT E XCHANGER

F 30PMP - TWO-PHASE MUL T IPL ICR FOR OUTLE T PLENUM LOSS COEFF ICIENT FORHE AT EXCHANGER

230P M EL E V A T I ON A T E x ! T OF OUTL E T PLENUM OF '( A T E XCHANGE R

x30p M FLOW PATH LENGTH IN OUTLE T PLENLN Or HE AT EXCHANGER

v 30P M3 V AUME OF OUTLE T PLENUM OF HE AT E XCHANGER

. . _ _ . _ _ . _ .__ _ .

N NXX - NLMiE R Or CON'ROL VOLLM S IN wCAT TRANSFEA TSE

f3OO ** OLTER C I AT T E R Or HE A T TE A%F E R 'WE

F3rePD - PITCH T C OU 'E R O ! AME 'E R RAT IO FOR T UBE BL*.DL E IN HE A TE X C wANCE R

A3NA M2 TCTAt SOO l # FL OW ARE A IN HE AT EXCHANGER TUDE BUNOLE

H 3F OGL w .' l **2 * K ! wATCR S!l FOUL ING HE AT TRANrJER COEf r !CIENT FOR HE ATE *CHA%E R

F J A". - *RE A COWEC T ION F AC TOR FGR HEAT EXCHANGER

M3 TYPE - 1D Pd)MOER C# HEAT T R ANSF E R TUBE MATERI Au

N3HMOD - NUMBER C# PHYSICAL UNl TS REPRESENTED Oy EACL HEAT E x CHANCE R

F LEC+.A f f R SOURCE GEOME TR I C CA T A RECCFD **

RCCORD 401 - *39 FEEDwATER SPURCE I D SE 7 E QUAL TO RECORD NUMBERNkC Y - I D Or *'OOUL L a( RE F LEDwA TER IS ADDED

N3xE Y - 10 or POXJLE w(RE rEEDwATER CONTROL FLOW SENrlRIS LOC ATEJ ; SENSOR AT Ex!T Or MOOLLE )

23r ILL ra Etn AT ION Or F ILL JUNCTION

pJiP FERrCWHANCE CAT A RECORD **

RECORD 201 - 299 PUMP 10 cli FQgAL TO RECORD N M ERW 3REF KG/S PUMP FLOW RA1E AT RATED CONDITIONS

23 PUMP M RATED HE AD CF PUMP AT RA'EO COrolTIONS

I F 32W - CC(FFICIENT OF PUt1P HE AD W ARi AT ION wl TH FLOW

N S 3PCS T S PUMP CnASTDOWN T IME CCt.ST ANTHN F EEC ATER SOURCE TRF ORMANCE DAT A RE CORD **

I RECORD %G1 - %99 FEEDWATER SOURCE L O SE T C QU AL TO RECORD NtME RE 3F WMN J4G MINIMUM * E EDwATER ENTHALPf

F 3ENFW i l l - CnEFF ICIENTS OF POLYNOMI AL Flf OF FEED A'ER ENTHALPV AS AFUNCT ION Or NORMAL 12ED FEEDwA TER FLOW

F 3P"i WI : I - CNFrICIENT OF POLYNOMIAL F1T OF FEFDwaTE R fMSSUREAS A FUNCT;ON OF NORM AL I ZE 9 F E E DwA TE R F LOW

* ACCP .ATOR INI T I AL I Z A T I ON C A T A RE CORD *

RECORD 101 - IN ACCUMUL A TOR 10 SET FOUAL TO RECORJ NUF8E RP 3 /OL N/M2 PRE SSURE IN E ACH ACCUMUL ATOR

F 3L QL V M L IQUID LE VEL IN ACCUMUL ATOR

N 3VL OY - NLp1BER OF E X I T NCZZLES

N 3VOSB - 1D OF MODULE AT T ACHED TO F IRST E XI T NOZZLE

13E ISL - CONTROL FLAG FOR C AL CUL AT I ON OF ENTHALPY Or FLOW THRU FIRSTE K I T NCZZL E

N3VOSO - ID OF MODUL E A T T ACHE D TO k -TH 'm=1 N3vtOTI ExlT NCZZLE

13E I SL - CONTROL FLAG FOR C ALCUL AT ION Or ENTHALPY OF FLOW THRU K-THE x I T NOZZLE

**** CPTIONA, CATA ****

Pl4 IN!TIAullaTION CATA PECORO **

RECOPO I - 99 P!PE 10 SE I E 3JAu T O RE C CFO NL*9BE RP30T N<M2 OUTLET PW 5kFE Or P :rt

* PUMP INiflail/ATION CATA RECOPO *

RCCORD 201 - 299 PUMP I D SE T E QU Au T O RE C O'u NUMET RP 30i nim 2 P'>to OL T L E T PRE 55URE

HEAT EXCHANr4R IN!i1 ALIZAT ION DAT A RE CORD* *

RECORD 301 - 3 73 >( AT E xCHANC(R 10 SE7 E QU AL TO RE COHO NUMF( A137JB - CONTROL FL AG F OR DNS C At CUL A T 1 CN IN HE A T E * CHA%E

E 30T JMG WATER 5!DE CRJ!LE T ENTHALPr OF HE A T E MCHANC{ R

r3 QUAL - WA TER SLOE Ct.;TLE T QL,AL I T f OF HE &T EXCHANCER

T3NAIN K SODIUM INLE T TEMPE R A TURE OF HEAT E XCHANGE R

T3NAGT A SCO!UM OU TL E T TEwtRATUPE OF HE AT E wCHA%ER

P30T N/M2 OUTLrt ppCS5LoE Or *( A T E D CHA%E A O*4 HATER STOE

P3DP|P N/M2 INLL PLE9JM PRESSURE DROP !N HE A T E XCHAVER

P 3DPOP N/M2 OUTLET PLENUM PRESSLFE DROP IN F( AT E XCHA%ER

iNH00

|

4.1.4 Operating Data

Data pertaining to the initial overall plant operating conditions, plus

specification of the plant balance initialization logic are input to SSC through

the data file OPDATA. The listing included at the end of this section shows on

a record-by-record basis how the specific infonnation is supplied by the user.

The records for this data file may be entered in any order.

Record 2 is used to determine the particular plant balance initialization

logic the user desires (refer to Section 4.1.2 of Reference 1). Of the four

values contained on record 2, two must be specified as known (denoted by en-

tering values greater than zero) while the other two are assumed unknown

(denoted by entering values less than zero) and will be calculated by SSC. The

two unknown values to be entered need not be precise; these can be an

approximate initial guess (but these numbers must be entered as negative

values).

The accuracy of the initial guesses entered on record 3 are more important.

These values are used internally in SSC to start the iterative logic for the in-

termediate loop and steam generator balance. Thus, the more accurate the guess,

the quicker the converged solution is obtained. In addition, a control flag is

provided in record 3 for restart cases. For the first time through, L2 PREV must

equal zero. However, if multiple cases are to be run, the user can simply set

L2 PREV equal to 1 for the subsequent cases. The converged solution values from

the previously run case will then automatically be used to provide the initial

guesses required for the subsequent case.

- 219 -

***** FILE OPDATA

RECORO IP90SGN W CESIGN RE AC TOR POWER

F9PWR2 - FR AC T ION Or PETERENCE POWER AT T=0

N9 LOOP - NUMBER OF OPERAT1NG LOOPS PRCSENT 1N PL ANT

N90%N - PU10ER Cr PHYSIC AL LOOPS PRESENT IN PLANT

P 3DSGN N/M2 DESIGN PRESCORE AT TURBINE INLET

E 3DSGN J/*G DESIGN TURG NE INLE T ENTHALPY

RECORD 2T60UTL K VEhSEL SOCIUM OUTLE T TEMP.

T6tNLT K VESSEL COOLANT INLE T TEMP.

WILOOP KG/S SODIUM FLOW RATE IN PRIMARY LOOP

E3 FUR 8 J'KG DESIRED TUR8!NE |NLET ENTHALPY

RECORD 3L2 PREV - FLAG. INITIAL GUESS FROM PREVIOUS C ASE C NO

1 YEST2tHXI K GUESS Or lHX [NTERMEDI ATE SOO!UM INLET TEMP,

T21HWO K GUESS OF lHX INTERMEDIATE SODIUM OUTLET T E MP .|

W2 LOOP KG/S GUESS OF SODIUM FLOW RATE IN SECONDARY LOOPNN W2MXCG KG/S MAXIMUM ALLOWED CHANGE IN W2 LOOP PER 1TERATIONO

T2MXCG K MAXIMUM ALLOWED CHANGE IN T2(NHK PER ITERATIONg

T6MXCG K MAXIMUM ALLOWED CHANGE IN PRIMARY LOOP CORNER TEMPE R A TURESPE R ITERATION

RECORD 4PlGASI N/M2 COVERGAS PRESSUPE IN E ACH PRIMARY PUMP TANK

P2GASI N/M2 COVER GAS PRES $URC IN EACH INTERMEDIATC LOOP

22TANKt!) M HEIGHT OF COOL, ANT IN SURGE 1EXPANSIOro TANK

TIPUMPtli k TEMPERATURE RISE ACROSS PRIMARY PUMP

T2PtW III K TEMPERATURE RISC ACROSS INTERMEDI ATE PUMP

RECORD 5LIEPRT - CONTROL FL AG FOR PRIMARY AND SECONDARY LOOP DETAILED PRINT

L3PRNT - CONTRUL FL AG FOR SG DET AILED PRINT

LSPRNT - CONTROL FL AG FOR UE T AILED IN-VESSEL TEMP. OlSTRIBUTION PRINT

L6PRNT - CONTROL FL AG FOR IN-VESSEL FLUlO DYNAMICS OETAILED PRINT

. - - _ _ _ _

4.1.5 Material Properties Data

A set of material properties data is built into the code. These are given

in Reference 1. Any of these properties may be altered by the user. The data

required to alter the default values of the material properties provided within

SSC, or to create new material properties are input to the code through data

file MATDAT. The listing included on subsequent pages of this section shows on

a record-by-record basis how this specific information must be supplied by the

user. The records within this file may be entered in any order.

The numbering scheme for the various records fellows the global naming con-

vention for material property constants (see Table II). For example, the 50-

series records (50-59) are used to provide data for the fuel material types

(global material property number 5). Computer storage within SSC is allocated

to accomodate one heat transport system coolant (sodium), but 10 types of

blanket material,10 types of fuel material,10 types of cladding material,10

types of structural material, and 10 kinds of fission gases.

Default values are presently provided in SSC for material property numbers

10, 40, 50, 60, 70, 81, 82 and 83. Refer to Chapter 5 of Reference 1 for

further specific information on these particular materials.

- 221 -

-

. _ . . .

***** FILE MATDAT

RECORD IOClKO W/tMax) ADCITlvE CONSTANT FOR LlQUlO SCOlVM T HE4M AL CONOUCTIVITY

F UP*C T I ON 15-29) RE r . ICldt .u ( M*K21 FIRST ORDE R COE F . FOR LIQUID SOClVM THERMAL CONDUCTIVITY

FUNCTION 15-291 REF.1ClK2 W/fMar31 SECOND OROER COEF. FOR LIQUID SODIUM T HE kMAL CONDUCT!vlTY

FUNCTION 15-291 REF.1CICO J/tKG*KI ADO Iil vE CONST ANT F OR L IQUlO SODI UM SPEC . HE AT C AP. FUNCYlON

15-331 RE F . lCIC1 J/fkO*K2n FIPST ORDER COEF. F OR L I QU I D SOD lum SPE C , HE A T CAP. F UNC T I ON

15-331 REF.1CIC2 J/fKG'K31 SE CONO ORDER COEF . FOR L l OU I D SOD IUM SPEC . HE A T C AP.

FUNCTION 15-30) REF.1CIDO kG/tM3) ADDI TIVE CONST ANT F OR SATURATED LIQUID SODIUM DE NSI TY

FUNCTION (5-381 RE F . ICIDI KG/tM3*/3 F ' RST ORDE R COEF . FOR SATURATED L IQUID SODIUM DE NSI TY

FUNCTION 15-381 REF.ICID2 KG/IM3*N2) SECOND ORDER COEr . FOR SATUR ATED L IQUID SOOlUM DENSI T Y

FUNCTION 15-383 REF.iCID3 AG/IM3*K31 THIRD ORDER COEF . FOR SATURATED LlOUID SODIUM DENSITY

FUNCT1CN 15-381 RE F .1CIDTI K LOHER SATUHATED LIQUID SODIUM TEMP. BOUND FOR EQUATION

15-331 REF.1CIDTP K UPPER SATURATED LIQUID SODIUM TEMP. BOUND FOR EOUAT ION

85-381 REF.1ClHO J/KG ADDITIVE CONSTANT FJR SATUFATED L10UID SCIDIUM ENTHALPY

FUNCTION 15-311 REF.IClH1 J/tKGeKl F IRST ORDER COEF. FOR SATURATED L IQUID SODIUM ENTHALPf

IUNCTa0N 15-311 hEF.1CIH2 J/tKG'K2p SECOND ORDER COEF . FOR SATURATED L IQUID SODIUM ENTHALPY

| FUNCTION 85-311 PEF.IClH3 J/tKG'K31 THIRD ORDER COEF . FOR SATURATED LIQUID SODIUM ENTHALPY

N FUNCTION E5-31) REF.1N CIPl LNtN/MPs ADDI T IVE CONST ANT FOR SOOlUM SATURATED VAPOR PRESSUREN FUNCTION 85-351 REF.1

CIP2 LNIN/M23*K F IRST ORDER COEF . FOR SODIUM SATURATED VAPOR PRrSSUREI FUNCTlON 15-353 REF.1

CIP3 LNIN/IM2*K)i FIRST ORDER COEF. FCH SOO!UM SATURATED VAPOR PRES?UREFUNCTION (5-353 REF.I

CIP% LNfN/M23 ADDITIVE CONSTANT FOR SODIUM SATURATED VAPOR PRESSUREFUNCTION (5-361 REF.1

CIPS LN(N/M21*K F IRST ORDER COEF . FOR SODIUM SATURATED VAPOR PRESSUREFUNCTION (5-361 "EF.1

CIP6 LN(N/IM2* Kit F IRST ORDE R COEF . FOR SODIUM SATURATED V APOR PRESSUREFUNCT!ON IS-361 REF.1

CIPT* K SATURATED SODIUM VAPOR PRESSURE TEMP. CRI TERION FOR EQUATION15-35) AND IS-361 REF.1

CINI LNfN'S/M21 ADDI TIVE CONST ANT FOR LIQUID SODIUM DYNAMIC VISCOS!TYFUNCTION 15-%11 RE F . !

CIN2 LN(N*S/M21*K FIRST ORDER COEF. FOR LIQUID SODIUM DYNAMIC VISCOSITYFUNCTICN (5-411 REF.i

CIN3 LNtN=S/(M2*Kil FIRST ORDE R COF F . FOR LIQUID SODIUM DYNAMIC vlSCOSITYFUNCTION (5-%I1 REF.I

CITI - FRACTION OF INITIAL TEMP. GUESS TO INLREMENf FOR SECOtO PASSIN SATURt.TED SODIUMTEMP. ITERATION

CIT 2 - RELATIVE CUNVERGENCE CRITERION FOR SATURATED SODIUM TEMP.C AL CUL AT lON

OITT1 K INITIAL GUESS rOR SATURATED SODIUM TEMP. C ALCUL AT I ON

CITSO K.LNIN/M21 CONSTANT USED IN C ALCUL A T I N3 SOC ! UM SATJRATION TEMP. ASA Ft.M T ION OF PRESSURE (5-333 REr.I

CITSI L N ( N / M.? ) CONSI ANT USED IN C AL CUL A TING 57dlVM SATURATED TEMP. AS AFUNCTlON OF PRES $vRE (5-331 REF.I

RECORD 40 - 49CwKO(lI w/tM-Ki ADDI TIVE CONS 1 ANT FOR BL AN> E T MATER 1 AL THE PMAL CCfOUCT1viTY

FUNCTION t5-1I REF.1C4K1IIi - FIRST ORCE R COEF . FOR BL ANKE T M A T E R I Ai_ Tr(RMAL CONDUCTIVITY

F UNC T l CN I5-|1 REF.ICW 2IIi 1/K SECOND ORDER COEF . FOR BL ANkE 7 MATER!At THERMAL CCNDUC T I v i T *

F UNC T I ON I5-1I REF.C4K3tli I/K3 T HI RO ORDE R COE F . FOR BL ANKE T MATEF I AL THERMAL CONDUCTlv!TY

FUNCTlON IS-lI REF.1CwKwlII - F I RS T ORDE R COE F . ON POROS I T Y F OR BL ANk E T Ma TE R ! AL THEPMAL

C OPOUC T i v l T Y FUNCTlON(5-1I REF ICW5f1I - SECOND ORDER COEF. ON POROSITY FOR BL AN> E T MATER I At THLRMAL

CONDUCTIVITY FUNCTIONIS-1 REF.1C%C0(l) J/t*G %I ADOITlvE CONSTANT FOR BL ANxE T MATERI A; SPE C . HE A T CAP.

FUNCTION I5-21 REF.1C4Cl(11 t/K F [RST ORDER COEF . F 'IR 88. ANxE T MA TER I AL SPEC, HEAT CAP.

FUNCTION t5-2) REF.ICwC2t!! l/K2 SECOND ORDER COEF . F OR BL ANk E T MATER I AL SPEC. HEAY CAP.

FUNCTION 85-2) REF.1C%C3t11 1/K3 THIRD ORDER COEF. FOR BL ANkET MATERI AL SPEC. HE AT C AP.

FUNCTICN i5-23 REF.1CwC%t11 J/IKG'K) ADDI T !vE CONST ANT FOR BL ANkET M4TERI AL SPE C . HE A T C AP .

FUNCTION IS-%) PEF.1C%C5til J/tvC'K21 FIRTH ORDER COEF. FOR BL ANKE T MA TER I AL SPE C . HE A T CAP.

FUNCTION 85-%) REr.1C%C6(1) K2 INVERSE SECONO ORDER COEr . F OR RL ANkE T MATERI AL SPEC, HE A T C AP.

FUNCTIONt5-21 REF.1| C%CTIIin K LOWER BL ANKE T MATERI AL TEMP. BOUND FOR EOUAT IONS (5-2) T he)

(5-91 REF.1bJ C%CT2t!J K UPPER BL ANKE T MATERI AL TENP. BOUNO FOR EQUATIONS (5-21 THRUbJ (5-%) REF.1W C4A0til M/IM*K) ACOlTivE CONST ANT FOR BL ANkE T MATERI AL COEF . OF THERMAL

EXPANSION FUNCTION f5-101 REF.11 C%Altli M/IM*K21 F IRST ORDER COE F . FOR BLANKET MATERIAL COEF. OF THERMAL

EXPANSION FUNCT ION 15-101 REF.1C%A2tli M/(M*Ki ADDI T ivE CONST ANT FOR BL ANKE T MATERI AL COEF. OF THERMAL

ExPANS'ON FUNCTION E5-1|| REF.1C9ATOI11 K REFERENCE TEMPERATURE FOR C% AO

C%iltli K LOWER BL ANkE T MATERI AL T E MP . B0UND FOR EQUATION 15-9) REF.1

C*+ A T2 | 11 K UPPER BL ANVET MATERI AL TEMP. BOUND FOR EQUAT ION (5-91 REF.I

C%D0111 KG/M3 F IRST ORDER COEF . FOR BL ANKE T MATERI AL DENSI TY FUNCTION85-151 RE F .1

C%Difil KG/M3 ADDI T !vE CONST ANT FOR BL ANkE T MATERI AL OENSI TY FUK T I ON(5-166 REF.I

CwE0tt) - ADDI T ivE CONST ANT FOR Bl. ANKE T MATERI AL EMISSlv l TY FUNCTION(5-17) REF.

C%Ettil I/1 FIRST ORDFR COEF. FCR BL ANKE T MATERI AL EMISSivl T Y FUNCTION'5-181 REF.

C4Efotti K BL ANkE T MATERI AL TE MP . CRI TERlON FOR EQUAT IONS (5-171 APO15-181 REF.I

C% TML T t l i K BL ANKE T MATERI AL MELT iNG TEMP.

C%TEGGII1 K TEMPERA TURE AT ONSE T Or COLMNAR GRAIN GROWTH FOR BL ANvE T MATER! ALS

_ _ _ _ . .

C%TCGGf!I k TEMPERA!LSE AT CNE T OF COLMNA4 GAalN GRNTH F OR EL Aw C T P'A TERI ALS

RECCRO 50 - 59CSK0ilI n/tM*<1 ADOITikE CONSTANT FOR FLCL MATERIAL T HE RMA- CONOUCT!wlTY

rUNC T | CW 15-11 REF.1C54ttll - rlRST ORDER COEF . FOR FUEL MATERIAL T HE R" Ai CONDUCTivlTV

FUNCTlON 15-11 RE F .1C5k2111 liv SE C OND O'OE R C OE F . FOR FUEL MATERIAL lHERMAu CONDUCTIvlTY

F UNC T I ON 85-11 REF.1CSK3tli 1/v3 THIRO ORDER COEF . FOR FUEL MATERI Ac THERMAL C ONDilC i l w l T Y

FUNCTION 15-li REF.!C5k%fII - F I RS T ORDE R C OE F . ON POROSITV FOR FUEL MA TE RI AL T HE RM AL

CCNOUCTIV!TV FUNCTION 15-1i REF.)C5>51II - SECOND GRDER COEF ON POROSITY FCR FUEL MATERIAL T{ RMAL

CONDUCT!vlTV FUNC110Nt5-il REF.ICSC0til J/tKG*Ki ADDIT lvE CONST ANT FOR FUEL MATERI AL SPEC. HEAT CAP. FUNCTION

(5-21 REF.1CSCisli 1/k F IRST ORDER COEF . FOR FUEL MATERI A' SPEC . HE AT C AP. FUNCTION

85-2) REF.!CSC2tli 1/K2 SECONO ORDER COEF . FOR FUEL MATER]AL SPEC. HEAT CAP.

FUNCTION d5-21 REF.!CSC3111 1/k3 THIRD OPOCR COEF. FOR FUEL MATERI AL SPEC. HE AT C AP. Fle(TION

t5-21 REF.1CSC411) J/lkG Ki ADDI T IVE CONSTANT FOR FUEL MATERIAL SPEC . HE A T C AP. FUNCTION

(5-41 REF.IC5C5til J/tvG*K2B FIRTH ORDE R CCir . F OR FUE L MA TE R I AL SPEC. HEAT CAP. FUNCTION

IS-4) REF.1CSC6(ll K2 INVERSE cECOND ORDER FGEF. F OR FUEL MATERI AL SPEC. HE A T E SP.

FUNCTIONES-21 REF.1CSCTI.') K L OWER FUEL MATERl AL TEMP. BOUND FOR EQUAT IONS (5-21 THRU

5-91 REF.Ig C5CT21|| K UPPER FUEL MA TERI AL TEMP. BOUNO F OR EQUA T I ONS 15-2 ) THRU

15-9i REF.IN CSA0tli M/EM*K) ADDIT ivE CONST ANT FOR FUEL MATERI AL CCCF . OF THE RMALN EXPANSION IS-101 REF.1S- CSAll!! M/IM*K2, F I RS T ORDE F COE F . F OR FUEL MATERIAL COEF. OF THERMAL

EXPANSION 15-101 REF.1l CSA2til MetM*K) ADDI T IVE CONSI ANT FOR FUEL MA TE AI AL COEF. OF THERMA'.

CXPANSION (5-111 REF._CSATOi11 K REFERENCE TEMPERATURE FOR CSAC

CSATlfil K LOK R FUCL MATERIAL TEMP. BOUND F OR E QUA T ION (5-91 REF.1

C5AT2ill K UPPER FUEL MATERI AL TEMP. BOUND FOR EQUATION ES-91 REF.1

C500t!) KG/M3 F IRST ORDER COEF . FO9 FUEL MATERI AL DENSI TY FUNCT ICt4 i5-151REF.1

CSDi(ll kG/M3 ADOI T IVE CONST ANT FOR FUEL MATERI AL DENS I T Y F UNC T I ON (5-IF1RE F . I

C5E0tiI - ADOITIVE CONSTANT FOR FUEL MATER 1AL EMISSIVITY FUNCT!ON15-171 REF.1

C5Eltil 1/K FIRST ORDER COEF. FOR FUEL MATERI AL EMISSIV I TY FUNCTION(5-181 REF.1

CSET0t.) K FUEL MATERI AL TEMP. CRITERION FOR EQUATIONS (5-171 AND15-186 REF.I

CSTMLTill K F UEL P A TERI AL MEL TING TEMP.

CS TE GG i l l K TEMPERATURE AT ONSET OF EQUI AXED GRAIN GROWTH F OR FUEL MATER! ALS

-

_ . . _ _ _ . . . . _ _ . .. . _ . . . . . . . _.

- __.

CSTCCG(li K TEMPER A TURE AT ONSE T OF COLMNAR GRAIN GROH's FOR F UEL MATERIALS

RE CLAD 60 - 63C6KOt11 W/IM*KI ADDI T IVE CONST ANT FOR CL ADCING MATERI AL THEPMAL CLNCUCI|VITV

rurCTION [5-191 REF.lC6 Kit 1) W/IM*K21 rlRST ORDE R C OC F . F CR CL ADO !NG M A T E R I AL T HE R" AL CO*OUCTIVITY

FUNCTION 15-'9) PE F .1C6k2t11 w/IM*K31 SE COND ORDER COEF . FOR CL ADC I NS MA TE R I AL T HE RM AL CCNDUCT!vlTY

Fur 4 TION 85-192 REF.ICv 3(11 W/tM*K41 THIRD ORCCR COE F. FOR CLADOlNG MATERIAL THF AMAL CCM')UCllV|TY

F UNC T ! ON (5-191 RFF.ICEC 0til J/tkO*Ki #DOITIVE CONSTANT rOR CL ACO!NG MA TERI AL SPE C . HE A T CAP.

FUNCT!ON (5-201 REr.IC6Cti11 J/fkC'K2) FIRST ORDER COEF . FOH CL ADOING MA TEhl AL SPEC. HEAT CAP.

FUNCTION 15-2CI REF .1C6C2111 J/tKG'K3) SECOND ORDER CCEF . FOR CLADOING MATERIAL SPEC. HEAT CAP.

F UNC T I ON (5-201 ret .ICF43 in J/tKG*K4) THIRD OhuCR COEF. FOR C!. ADOING MATERI AL SPEC. HEAT CAP.

FUNCT|ON i5-201 RCF.IC6A0ti) M/tM*KI AOCITIVE CONSTANT FOR CL ADD!NG MATERI AL CCif. OF THERMAL

[ WP ANSI ON F UNC T I ON 45-211 REF.1C6Altli M/tM*K21 FIRST ORDER COEF . F OR CL ADOING MA TERI AL CCEF. OF THERMAt

EXPANSION FUNCTION 15-213 REF.!C6A2fil M/(M*K31 SECGND ORDER COEF . FOR CL ADDING MATER 6AL COEF. OF T HF'4M AL

EXPANCION FUNCTION (5-211 REF.ICEAT0lli K REFERENCE TEMPERATURE FOR C6A0

C6ATit!) K MAXIMUM TEMP. RANGE FOR CL ADDING COEF . OF EkPANSION

C6D0tli KC/M3 AOC I T I VE CONST ANT FOR CL ACO ING M A TER I AL DENS :TY FUNCTION15-221 REF.I

| C6E0til - ADDITIVE CONST ANT FOR CL ADDING MATERI AL EMISSIVITY FUNCTIONIt -23 ) AND 15-2%i NCF,1

PO C6C1t1) I/K F[RST ORDER COEF. FOR CLADDING MATERIAL EMISSIVITY FUNCTIONF4 f5 ?wn REF.1LD C6ETOtI) K REFERENCE TEMPERATURE FOR C6EO

I C6TMLT(ll K CL ADOING MATERI AL MELTING TEMP.

RECORD 70 - 79C7K0til W/tM*K) ADDITIVE CONSTANT FOR STRUCaVRAL MATERIAL TF(RMAL

CONOUC T i v l T Y FUNC T ION (5-191 RE F .1C7k11Il W/tM*K21 F IRST ORDER COEF . FOR STRUCTURAL MATERIAL TFE RMAL

CONOUC T I V I T Y F UNC T ION f 5 - l(') REF.IC 7K2 s l a W/IM*K3) SECOND ORDER COEF . F OR S TRUC T UR AL MATERI AL THERMAL

CONDUC T I V I T Y F UNC T I ON (5-191 REF.1C7K31il W/tM*K91 TH I RD ORDF R C OE F . FOR STRUCTURAL MATERIAL THE RMAL

CONDUC T I V I T Y F UNC T ION 19-193 REF.1C7C0 t l i J/fkG'KI ADD'TivE CONSTANT FOR S;RUCTURAL MATERIAL SPEC. HEAT CAP.

FUNCTlON 15-201 REF.IC7Cilli J/tKG'K21 F IRST OROCR COEF . FOR STRUCTURAL MATERI AL SPEC . HE AT C AP ,

FUNCTION 15-201 REF.1C7C2til J/tKG'K31 SECOND ORDER COEF . FOR STRUCTURAL MA1ERIAL SPEC. HEAT CAP.

FUNCTION 85-206 REF.!C7C3fil J/tKGak91 THIRD ORDER COEF . FOR STRUCTURAL MATERIAL SPEC. HEAT CAP.

FUNCTION 15-20) REF.IC7A0(l) M/tM*K) ADDI T IVE CONST ANT FOR STRUCTURAL MATER [ AL COEF. OF THERMAL

E kP ANS I ON F f lON 85-211 REF.1C7Al(1) M/IM*KPI F IR5T ORDER COE F . FOR STRUCTURAL MATERI AL COEF. OF THERMAL

E XPANSION F T ION 15-211 REF.1

.

,-

_ . _ _ _ _ _ _ _ _ . . . . . . . . . . . ..

C7A2i11 P*/ ( M = x 31 GECONO ORDE R COEF . FOR STPUCTUR AL MATERIAL COEF. GF THE R" ALE XPANS ION FUNC T ION 15-211 REF.1

C7DT0fli k T E MP . Af mlCH PEFERENCE DENSI TY !S SFTCIF !ED 65-221 REF.!

C7D0fil KG/M3 ADD I T i v E CnNST ANT F OR S T RUC T UR AL M A TE R I AL DENS I T Y FUNCTION85-22) ret.I

PECORD 80 - W3C8Kitin W/IM*K) F IRST ORDER COEF . FOR COVER gas THERMAL CONOUCTivlTY

FUNCT|ONC8K2t1) w (M*K21 SECOND ORDER ~ OEF . FOR COVER GAS THERMALCONDUCT!VI TY

FUNCTIONC6k3III W/(M*k31 T H I RD ORDE R COE F . FOR COVER GAS T AHMAL C4POUCTIv1TV

FUNCTION

|

NN@

|

- - -

_.

. _ _ _

4.1.6 Transient Data

All data required to specify the particular transient desired is input to

SSC through data file TRNDAT. The listing included on subsequent pages of this

section shows on a record-by-record basis how the specific information is pro-

vided by the user.

Wherever a series of record numbers if used to input certain information

(e.g., records 5101-5199 for the transient decay power curves in each channel);

the corresponding cnannel number (or loop number) is obtained by dropping the

first two digits of the record number.

If no pipe break is to be simulated for a particular transient, the 1100-

series and 1200-series records need not be input.

- 22i -

_ _ _ _ _ .

" * * * F ILE TRNDAT

RLCORD 100|LIPONY - CONTROL FL AG FOR E ACH PRIMARY LOOP PONY MOTOR 0 OrF

1 ONF1 PONY - PRIMARY PONY MCTOR SPEED FR ACTION

QiNRTA AG'M2 PRIMARY PUMP INERTI A

RECORD 1002L2 PONY - CONTROL FL AG FOR E ACH SECONDARY LOOP PONY MOTOR 0 OF F

1 OrF2 PONY - SECONE RY PONY MOTOR SPEED FRACT ION

O.3NR T A kO*M2 SECONDARY PUMP [NERTIA

RECORD 1003LIGviki GUARD 4ESSEL opt ION FL AG 0 NO GUARD VESSEL

l-RV OUT. 2-RV IN; 3-P IN. %-P C'T; S-!HX IN. 6-lHX OUT

VlMINR M3 R.V. G.V. VOLUME AT LEVEL WI TH BRE AK

ZlMAXR M R.V. G.V. MAXIMUM LE%EL THAT CAN BE PE ACHED BY COOLANT

FIGNRill - R.V. G.V. VOLUME TO LEVEL COEF. I I= 1. 31

VlMINP M3 PUMP G,v. VOLUME AT LEVEL WI TH PIPE BRE AK

ZlMAXP M PUMP G.V. MAXIMUM LEtEL THAT CAN BE RE ACHED BY COOL ANT

1. 31| FIGVPill PUMP G.V. VOLUME TO LEVEL COEF. ( i =

N VlMiNX M3 IHX G.V. bOLUME AT LEVEL WITH F. . BREAKN00 ZlMAXX M IHX G.V. MAXIMUM LEVEL THAT CAN REACHED BY COOL ANT

I FIGVXtli - IHX G.V. VOLUME TO LEVEL COEF . ( l = 1. 31

VlMAX M3 MAXIMUM VOLUME THAT CAN BE FILLED IN G.V. IN ANY LOCATION

RECORD 1101 - 1199 .

J1E7EKIK) - PRIMARY LOOP PIPE NUMBER CONT AINING BRE AK _*

NINBRKIK) - NUMBER OF NODES IN BROKEN FRlMARY PIPE UPSTREAM OF BREAK

X1BREFtki M LENGTH OF PRIMARY PIPE UPSTREA.' OF BREAK

FILSBKtK) - LOS5 CCEFFICl[NT AT PRIMARY GREAK

AIBREKtK) M2 BREAK AREA IN PRIMARY PlPE

AIGAPtki M2 X-SECTIONAL AREA BETWEEN BROKEN PRIMARY PIPE AND GUARD VESSEL

SIBRExtK1 S TIME OF PRIMARY P!PE BREAK

RECORO 1201 - 1299J2BREKtK) - SECONDARY LOOP PIPE NUMBER CONTAIN!NG BREAK

N2NBRKtK) - NUMBER OF NODES IN BROKEN SECOND8RY Pl"E UPSTREAM OF BREAK

Y2BREktK) M '.ENGTH OF PRIMARY PlPE UPSTREAM OF BREAK

.

_ _.

F2L SBK i v i - LOSS COEFFICIENT A T SECOP CARY BREAK

A2BREK t K ) M2 Br:" AK APE A IN SECONDARY PIPE

A2GAPtK) M2 x -SE C T I ONAL APEA BE T4EN BR>EN SECC*JC arf P!PE AND GvAR? PIPE

S2BRCvIKI S T IT CF SECONDARY PIPE BREAK

RECORD 3001P3P TRB t l i N/M2 TURRINE INLET PRESSURE I PAIRED WI TH S3PIPBf]] I

53PTR8til S TIME I PAIRED WITH P 3 TR9 t i l i

RECORD 5001LSPOPT - T7ANS!ENT POWER FL AG 0 PROMT JUMP APPOX.

I EXACTNSDNGP - NUMBER (f DC'_ AYED NEUTRON GR3UPS ( MAXIMUM OF 6i

CSLN 5 PROMT NEUTRCN LENERATION TIME

RECORD SCO2FSPFISix) - F RACT IONAL POWER IN EACH CHANNEL ANC BYPASS DUE TO F ISSION

HCATING

RE CORD 5003F5BETAll) - FRACTION OF I-TH EFFEC T IVE DEL AYED NEUTRON GROUP

RECORD 5004i CSLMDA(ll 5i DECAY CONSTANT OF l-TH DELAYED NEUTRON GROUP

MN RE ORD 5005@ RSSRODIII R LCRAM ROD REACT!vlTY *NSERTION E PALPF' WITH SfSRON Ii 1

I S55RODIIl S POSTSCRAM T IMES FOR SCRAM ROD INSERTION I P A I PE D W I TH R55 ROD I I I I

RECORD 5006F5PBPD(Il - FRACTIONAL TRANSIENT DEC AY POWER IN BYPA S I PAIRED WITH.

55PHPDfi1 1S5PBPDfil S TS ANSIENT POSTSCRAM T IME FOR DEC AY POWER IN BYFtSS ( PA I PE D

WITH FSPBPD I

RECORD 5101 - 5199F5PDtK.ll - FRACTIONAL TRANSIENT DECAY POWER IN CHANNEL K t K = PECORD

NUMEE R - 5100 i t PAIRED WITH 55PDIK,ll 155PDfK,Il S TRANSIENT POSTSCRAM T IME FOR DEC AY POWER IN CHANNEL ( PAIRED

WITH FSPDtk,Il I

RECORD 5201 - 5299F5BDOPEJ,KI R MESFf WE (GHTED DOPPLER RE ACT .COEF . W.TH SODIUM PRE,ENT FOR

CHANNEL K f J= 1, NSSLIC(K1; K = RECORD NUMBER 5200 1

RE CORJ 5301 - 5399FSUDOPlJ KI R MESH WEIGHTED DCPPLER REACT.COEF. W/O CODIUM PRESENT FOR

CHANNEL K t J= 1, N3SLIClkI; K * RECORD NUMBER - 5300 i

RECORD 5901 - 5499F SvWG T ( J, K ) R/KO MESH WElGHTrD SODIUM VC:D REACT.COEF. FOR CHANNEL K

( J= 1, NSSLICtK): K = RLCORD NUMBER - 5900 i

RECORD 5501 - 5599F S AHG T I J . K l R/KG MESH WE IGHTED FUEL AXIAL EXPANSION REACT.COEF. FOR

RECORD NUMBER - 5500 iCHANNE L K (J = |, NSSLIC(KI; K =

RECORD 6001L6 mix - INDIC ATOR FOR Mix ING TYPE 1 ONE ZONE MIXING

2 TWO 70NE M!xING

_ _ _

_ - . _ _ _ . . _ . . .

I rLOW RCD'STRIBL'T!ONTESUPH K SUPER HE AT TEMPERATUPE

RECORD 6CC2L6CGAS - CCNTROL FLAG FOR COsER G*SS PRESSURE OPTION a t E TANT MASS

2 Cv wST ANT FEED / BLEED RATE06CGFB KG/S COVER GASS FEED / BLEED RATE

P6CCF B N/M2 COVER GASS PRESSURE CHANGE REQUIRED TO ACTUATE FEED / BLEED VALVE

RECORO 900159LAST S PROBL EM S IMUL A T I ON T IME

S9MAxA 5 MAxlMUM Y l ME S TEP AL L OWE D

59MINA S MINIMUM TIMESTEP ALLOWED

595|NT - STORE INTERVAL (USED FOR SUEFlOUENT RE-ST ART

S9 PINT (J) S PRINT INTERVAL

RECORD 9002FIEMxA - RFL AT ivE DEvl AT ION ACCEPT ANCE L IMI T FOR LOOP

T F( RM AL CALCULATIONSFIWMxA - RELAfivE ACCURACY ACCEPT ANCE L IMI T FOR LOOP

HYDRAUL aC C ALCUL AT IONSF 3EMxA - PEL AT ivE ACCURACY ACCEPTANCE LIMIT FOR STEAM

GENERATOR ENTHALPY C ALCUL AT IONSF 3PMX A - REL ATIVE ACCURACY ACCEPT ANCE LIMI T FOR STE AM

g GENERATOR PRESSURC C ALCUL ATIONSF3WMxA - PELATikE ACCURACY ACCEPT ANCE LIMI T FOR STE AM

PO GE NERATOR FLOW C ALCUL AT lONSW F5MAxA - RELATIVE ACCURACY ACCEPT ANCE LIMI T FOR FUELO C ALCUL A T | CNS

F6MAxA - RELATIVE ACCURACY ACCEPT ANCE L IMIT FORI IN-VESSEL COOL ANT CALCUL ATIONS

RECORD 9003FilCDA - RELATIVE INTEWACE CONDITION ACCEPTANCE LIMIT

FOR LOOP HYORAULIC CALCULAT!ONSF 31 COA - RELATIVE INTERF ACF COIDI TION ACCEPT ANCE L IMI T

FOR STE AM GENERATUR C ALCUL AT IONSF6fCDA - RElmi l v E INTERF ACE CONDI T ION ACCEPT ANE L IMIT

FOR IN-vES?EL COOL ANT C ALCUL AT IONS

RECORD 9009LIECAL - FL AG TO C ALL LOOP THERMAL CALCULATION O NO

1 YESL1WCAL - FL AG TO C ALL LOOP HYDRAUL iC CALCUL AT ION O NO

I YE SL 3C ALL - FL AG TO C ALL SG C ALCUL AT ION O to

I YESL5 CALL - FLAG TO CALL FUEL CALCULATION O NO

I YESL6 CALL - FLAG TO CALL IN-VESSEL COOL ANT CALC. O NO

l YES

RECORD 9005LIEPRT - FL AG TO PRINT LOOP THE RMAL TRANSIENT CAT A 0 NO

I YESL'WPRT - FL AG TO PRINT LOOP HYORAUL IC TRANSIENT DATA 0 NO-

1 YESL3PRNT - FLAG TO PRINT SG DATA 0 NO

- - - - _. . _ . . _ _ ._

|-

P

..

t YESi

- FL AG TO PR INT F UE L C A . A 0 NOL9 J1 YES

L fiHN T - FLAG TO PRI. 'N-VESSEL COOL ANT CATA C NOg

I YES

RECORD 9An6L ISEPa - FLAG TO PRINT LOOP TtfRMAL CPU TIMING DATA C NO

1 YESL I S,FR - FL AG 10 PRING LOOP HYDRALA iC CPU TIMING DATA 0 NO

I TESL 3SPR T - FLAG TO PRINT SG CPU TIM!NG DATA 0 NO

I YE SLSSPRT - FLAG TO PRINT FUEL CPU TIMING CATA 0 NO

I YESL6cPRT - FLAG TO PRINT IN-VESSEL CPU T IMING DAT A 0 NO

1 YES

REFORD 9007SIP & FtK) S PuraP MAIN MOTOR SHUTOFF TIME IN EACH PRIMARY LOOP

S2POF F I K 1 S PUMP MA IN MOTOR SHU T OF F TIME IN E ACH SECCMCARY LOOP

S 3POF F l K ) S TIME AT WHICH PUMP IN E ACH STE AM GENERA TOR 15 r., HUT OF F

55SCRA S RE ACTOR SCRAM TIME

I

NLaH

|

,

4.1.7 Program Control Data

The cortrol file OLDATA allows the exercise of other than the default con-

trol. It is opened with a file card of the form,

'm'V OLDATA

where 'm' is a digit of the user's choice. In addition to this record, there

may be up to three other records in this file. Each of these records is re-

quired to be of the form,

'N'D 'm', "IN", (i) "OUT"/

The record number 'N' may have a value of 1, 2 or 3. Each corresponds to one of

the three principle subdivisions of the code

N Area Effected

1 Initialization (pre-steady state)2 Steady state

3 Transient

The function parameter 'm' indicated the type of control to be exercised. It

may be assigned values according to the following table.

m Function Comment

0 Module not entered - not permitted on ID record" 2D record1 Read external restart files - " "

- when used on 3D record it is assumedthat a restart is to be made at timet=0 from a file created by the steadystate module

-1 Read external restart file - pennitted only on 3D recordto restart transient at t>0

2 Write external restart file - permitted on 1D, 2D and 3D records

3 Read and Write external re- - not permitted on 2D recordstart file

4-999 Perform calculations with - default valuecurrent core image

- 232 -

. _ _ _

-_

The "IN" and "OUT" parameters correspond to input and output devices, respec-

tively, from which a restart file will be read and/or written. The program

contains default values for these tenns. The default values will be retained if

the user terminated the control record after the function declaration (e.g., 20 2/),

The default values for thc "IN" and "OUT" parameters are:

Record In Out

10 10 20

2D 30 40

3D 50 60

It should be noted that the last Jigit in each of these terms is zero.

This indicates that there is to be no file positioning before a read / write oper-

ation. This, once again, is the default mode of operation. If file positioning

is required, up to 99 files may be shipped before a given I/O operation is in-

listed. This type of control ma be exercised by specifying the number of filess

to be shipped as part of the I/O device assignment. For example,

30 1, 52, 40/

would read the third file (ship 2) from Unit 50 for a transient initialization.

Similarly,

3D 1, 347, 60/

would skip the first 47 files on unit 30 before initializing a transient. What

should be evident from these examples is that a given I/O device assignment is

- 233 -

-

_ _ . _ _

comprised of two fields; the device field and the file positioning field. The

first field contains only one digit (the first). By convention, user inter-

action is permitted only with a device whose unit number is an integer multiple

of ten (10-90). The value found in the device field when multiplied by ten

yields the I/O device. The remaining one or two digits make up the file posi-

tioning field and according to it's value the device will be positioned to re-

trieve a particular file.

An I/O device is rewound before it is either read or written. The rewind

before a write may be suppressed by signing the "OUT" parameter negatively

(e.g., 3D 1, 50, -60). This will result in a series of consecutive restart

files. A particular file may be accessed on a subsequent restart by entering

the appropt iate file positioning controller as discussed above.

The file OLDATA was fonnulated primarily to give SSC a re-start capability.

It should be noted that if a re-start (initialization or transient) is not de-

sired the program will run under default control and OLDATA can be omitted from

the input stream. The default control is equivalent to the following OLDATA

file.

OV OLDATA

1D 99, 10, 20/

2D 99, 30, 40/

3D 99, 50, 60/

The following examples are intended to illustrate some of the common uses of

OLDATA.

- 234 -

. _ .

E X AMPL E 1: C ALCUL A TE A STE AOY STATE At7 M ITE A RE-START FILE ON UNIT90 FOR LATER UcE.

SSC -L EXAMPLE 1C / W E SSE LID

CV NALGOP10

CV STMGEN1001)

OV QPDATAID

CV OLDATA20 2. 30. 90/30 0/

STCPENO

EXAMPLE 2: READ A PREV!OUSLY CALCULATED STEADv STATE FROM UNI? 90AND PROCEED WITH TRANSIENT CALCUL ATIONS.

SSC-L EX AMPLE 2OV OLDAT A

, | M 0/30 1, 40. 60/

N 5 NOTE: RE-START IS MADE IN THE TRANSIENT MODULEL.) 5 THE STEADY ST ATE MODULE 15 NOT ENTERED.$LA STOP

OV TRNCATI 1001D

STOPEND

EXAMPLE 3: CALCUL ATE A SERIES T STE ADY ST ATES V arf!NG ore DAT APOINT IE.G. THE ELEVATION OF 1HE PRIMARY PUMP TANKI APO WRi TEA RE-ST ART F ILE FOR E ACH C ASE FOR FUTURE USE .

SSC-L EXAMPLE 3-AOV VE SSELID

OV NALOOPID

1120 137.2. 1150.0. 2.1135, 26927.0 w.0, 3.0/

---

.

OV STMCEN1001D

CV OPCATA10

30 0, 619.7, 771.5. '610.2. 100. 3. 15./

DV OL DA T A10 2/20 2, 30, 40/30 0/

$ NOTE: A PRE-STEADY ST ATE PL ANT INI T I AL I ZAT ION$ WILL BE WRITTEN TO DE F AUL T UNIT 20.5% NOTE: THE TRANSIENT MODULE WILL NOT BE ENTERED 5

STOPSSC-L E X Ai PLE 3-B2V OLDATAID 1, 20/20 2, 30 -90/2V OPDATA30 1. 619.7, 771.5, 1610.2, 100. 3. 15./2V NALOOP112D 137.2. 1150.0, 2.!!35, 26927.0, 6.0, 3.0/

1 NOTE- ONLY THE RECORDis) REQUIRING CHANGE NEEDS$ TO BE RE-ENTERED.SS NOTE; it< ENTIRE RECORD MUST BE RE-READ5 EVEM THOUGH ONLY ONE ENTPY HAS BEEN CHANGED.$

STOPSSC-L EXAMPLE 3-C3V OLDATAgID 1, 20/

N 20 2, 30 -%0/w 3V OPDATAo 3D 1, 619.7, 771 5, 1610.2. 100. 3. 15./

3V NALOOoI 1120 137.2, 1150.0, 2.1135, 26927.0, 8.0, 3.0/

STOPSSC-L EXAMPLE 3-D%V OL DA T AID 1, 20/2D ?. 30, -%D/%V OPDATA3D 1, 619.7 771.5, 1610.2, 100. 3. 15./4V NALOOP1120 137.2, 1150.0, 2.1135, 26927.0, 10.0, 3.0/

STOP

END

E X AMPL E 4 : C ALCUL ATE A TRANSIENT A5 IN EXAMPLE 2 AND STORE A SER ES OFIN-STREAM TRANSIENT RE-ST ART F ILE S A1 0 SECOND REAL TIME INTE IV ALSON UNIT 60.

SSC-L EXAMPLE 4

CV CLCATA20 0%91 30. -60/

STORCV TRPC A T1001D

9001D 90.00 2.0. 0.0001 5 0. 999.9.lCA/

STOPEND

E x AMPLE 5 : RE-START THE TRANSIENT C ALCUL AT ION BEGUN IN E M AMPLE 4AT TIME T= 75.0 SECONDS ( THE F IF TEENTH F ILE CN UNI T 60

SSC-L E X AMPL E 5OV OLDATA2D O!3D -1, 619 -50/

% NOTE: SINCE THE FIFTEENTH FILE IS NEEDED. THE FIRST5 FOURTEEN F ILES MUST BE SKIPPED. $$ NOTE: THIS PROCEDURE WILL CONT I NUE TO WRITE$ RE-START F ILES AT 5.0 SECONO INTERVALS$ (FOR THIS CASE ON UNIT "3 WITH ON OVER@!TEI

STOP$ NOTE: NO OTHER CAT A F ILE IS NECESSARY IOR PFRMITTEDI% IN THIS TYPE OF RE-START. $

END

1

NL3N

E

4.2 Sample Problem 1

4.2.1 Problem Description

The following sample problem is a four channel, one loop simulation of the

Clinch River Breeder Reactor Plant. The reactor core is modeled by four chan-

n el s . The first channel models the average pin in the peak core assembly expli-

ci tly . It has all of the physical characteristics of the second channel with

the exception of power generation. The secord channel models the remaining 197

core assemblies. The third channel models all (150) of the radial blanket as-

semblies which surround the core. The fourth channel models all of the primary

and secondary control systems assemblies. As SSC-L specifically takes into ac-

count a bypass channel, all unassigned flow and/or power is assigned to this

channel. The radial shield assemblies, therefore, are lumped with the bypass

channel in this sample problem. Alternately, the radial shield assemblies can

also be represented by another channel.

Though the fuel assemblies are served by five orifice zones an " equivalent"

nozzle zone was defined. Similarly, the radial blanket assemblies, which are

served by four orifice zones, received the same treatment. However, the orific-

ing pattern for the first channel was, explicitly included.

The heat transport system simulated represents the three physical loops in

CRBRP as one. The primary loop consists of the piping from the vessel outlet to

pump, pump to intermediate heat exchanger, intermediate heat exchanger to check

valve, and finally the piping from the check valve to vessel inlet.

All core parameters used are for the end-of-the-equilibrium cycle (E0EC).

These are taken to be the nominal design values as given in the Clinch River

Breeder Reactor Plant PSAR. Some of the essential data are noted in Table VII.

- 238 -

_ _ . . _ _ _ _ _ _..

A natural circulation transient in CRBRP is simulated. The loss of power to

the pumps is assumed to occur at t = 0 sec. The reactor is scrammed 0.75

seconds later. The power to the pony motors is also assumed to be unavailable.

4.2.2 List of Input Cards

The input cards for this sample problem are given in the following pages.

This input deck is interpreted by the code and it ~iists ali input data one card

at a time.

- 239 -

. --

_-_

TABLE VII

Key Parameters Used in the Sample Problem 1

Parameter Engineering Units SI Units

Reactor Power 975 MW 9.75x108 y

Number of HTS loops 3 3

Total primary coolant flow rate 41.4x106 lb/hr 5223.9 kg/s

Total number of fuel assemblies 198 198

Fuel pellet inner / outer radii 0/0.0967 in 0/2.457x10 3 m

Axial blanket inner / outer radii 0/0.0967 in 0/2.457x10 3 m-

Cladding inner / outer radii 0.100/0.115 in 2.45/2.92x10 3 m

Number of fuel rods per assembly 217 217

Number of fuel assemblies in Channel 1 1 1

Number of fuel rods in Channel 1 217 217

Fraction of total power in Channel 1 0.00848 0.00848

Fraction of total coolant flow in Channel 1 0.004592 0.004592

Number of fuel assemblies in Channel 2 197 197

Number of fuel rods in Channel 2 42749 42749

Fraction of total power in Channel 2 0.94783 0.94783

Fraction of total coolant flow in Channel 2 0.785616 0.785616

Power fractions in Channel 1

in fuel 1.0 1.0

in cladding 0.0 0.0

a cooling 0.0 0.0

in structure 0.0 0.0

- 240 -

--

- . . _ .

g .y .,-- 4. .

.__o . _._.:

- ' .

81t1 . _j ,,

_'_,______.h 4 . '- -

,

_. , - .. .

_. s

TABLE VII

Key Parameters Used in the Sample Problem 1 (Cont.) *

+..

Parameter Engineering Units SI Units [I'Power fractions in Channel 2

in fuel 1.0 1.0

in cladding 0.0 0.0 *

in coolant 0.0 0.01

,

in structure 0.0 0.0 *

Total number of blanket assemblies 150 150

Number of blankel assemblies in Channel 3 150 150 j*Number of blanket rods per assembly 61 61

Total number of blanket rods 9150 9150

-3Blanket pellet inner / outer radii 0/0.243 in 0/6.17x10 m

Cladding inner / outer radii 0.245/0.260 in 6.223/6.604x10-3 m -

,

Fraction of total power in Channel 3 0.03768 0.03768

Fraction of total flow in Channel 3 0.13495 0.13495.-

Power fractiont in Channel 3 or 4.

in pellets 1.0 1.

in cladding 0.0 0.0,

in coolant 0.0 0.0'

in structure 0.0 0.0.

Total number of control assemblies 19 19.

Number of control assemblies in Channel 4 19 19..

Number of pins per control assembly 31 31

Number of pins in Channel 4 589 589

~3Absorber pellet inne./ outer radii 0/0.235 in 0/5.969x10 m-3Cladding inner / outer radii 0.2415/0.3055 in 6.134/7/760x10 m -

,

Fraction of total power in Channel 4 0.006 0.006 -

Fraction of total flow in Channel 4 0.014647 0.014647 ,

.,

P

- 241 - +

'

s

< , ,...m.----.._ .. . .,.-3._-. . = . . . . . . . ~ . . . . . . . _ . - . . . . , - _ .. . . -

- - --

r

_

. _ . . . . . .

SCC-l CRBR, 9-CHAN. 1 w3OP, CHAN-1 IS AVG IN PEAK. 09-15-78.Oy VE5 GEL

10 %, 3, 13.39, 4,9R/2D 1,2R. 2. 3/30 0.005989 0.083016, 0.1040. 0.007 /40 0.009592. 0.785616. 0.139950, 0.06/50 217, 42749, 9150, 589/7D 1.9979E-05,2R. 4.3575E-C5, 6.1613E-05/80 3.2500E-03,2R. 3.4270E-03, 3.9370E-03/90 4.035E-03. 3.655E-03, 3.089E-03, 1.013E-02 /100 (l..l. 2.1, 3R. 2.,2. - /110 0.0.4R/12D 2.4570E-03,2R, 6.1600E-0 3, 5.9690E-03/130 2.5400E-03,29, 6.223CE-03, 6.1340E-03/190 2.9210E-03.2R. 6.6090E-03, 7.7600E-03/150 0.0.HR/160 2.4570E-03.2R 6.1600E-0 3, 5.9690E-0 3/170 0.0.4R/.16D 2.457CE-03,2R. 6.1600E-03. 5.969CE-03/19D 2.1605E-05, 4.2561E-03, 3.2907E-03, 9.1090E-09/20D 1.0E+04.9R/21D 3.5E +06,4R/23D 0, 0.0,5R, 0.12798E+05, 5223.9, 25, 25, 0.0001, 0.01, 1900u.0/240 86.2. 158533.2, 26205.3. 'O . /25D 1. 300.0/270 0.0.2R,0.80t,6.2725,12.7025,7.7957.0.6/280 27.0.1.4,0.6.25.3.30.0,121.5.1.289,14.0,1400.0,560.0, 3.91, 13.043, 0.72, 9.7126E7, 1.95165E7 12.8E7 /

29D 20 .15,1. 23. 2. 585,0.1288. 2. 5E +5,9,?0 0 0 0. 0 /I 300 0.316,0.25 -16.15.29.96.-8.55.0.3/

101D 0.0. 0.356, 0.914 0.356, 1.219, 0, 1, 10, l. 1,

$ 1.25, 51.739. 6C, 70. %0. 0.95. 0.96. 0.98, 50. 0.95, 0.96.0.98, 40, 0.95, 0.96, 0.98/y

1020 0.0, 0.0 0.0, 1.6256, 1.0914 0,3R, 12. 1,

i 1.077, 7.6923, 60, 70, 0, 0.0.3R. O, 0.0.3R, 40, 0.95. 0.96 0.91030 0.3619, 0.0. 0.9144 0.0. 0.5765, 1, O. 11. O, i, 1.05. 61', 7+,

60. 70, 0, 0.0.3R, 51, i.0.3A, 0, 0.0,3R/2010 0.073099, 0.750, 0.920. 1.COs, 1.180, 1.210, 1.210 1.130. 1.010

0.850, 0.660, 0.029238, 0.001/2020 0.073099, 0.750, 0.920, 1.090, 1.180. f.210. 1.210, '.130. 1.010

0.850 0.660. 0.029238 0.001/2030 0.133. 0.350, 0.700, 1.300, 1.750, 1.900, 1.900, 1.700, 1.250,

0.750, 0.320, 0.133, 0.001/2090 0.001, 1.0, llR, 0.001 /3010 1.0,4R/3020 1.0.4R/303D 1.0,4R/s0%D 1.0,9R/uGID 1.0. O. O. /

9020 1.0, 0,, D. /9030 1.0. O. O. /4090 1.0, 0.. O. /501D 80, 0.95, 81. 0.03, 82, 0.02/502D 80, 0.95, 81, 0.03, 82, 0.02/503D 80. 0.95. Bl. 0.03, 82. 0.02/509D 80, 0.95, 81, 0.03, 82. 0.02/

OV NALOOPID 1, 5, 19, 8, 20, 6. 16. 5, 31, 3,3,7 19/20 3/

--

_ _____ _ _._ _ . . _ _ _ _ _ _ . . . _

--

_

1000 2850. .019934 .02222. l.9361, 7.5804 19.5832,35607.0, 79.9153, 1.5. 0.0, 0.0. 70/

1010 -1, 0, .319 .273. O. .937 0.0. 0.0. .199/ID?D 4.8585. 4.0234, 0.305. 9.572. 7.S!?2. 3.C56? 6.8527, 7.3624/103D 39.5507 -32.0256, 0.0, 97.1703/10%D 13.259. 0.8 -90./1100 6, 1.2897, -0.061901, 0.17327 -0.57299, 0.033762,0.13965/

1050 .001, 4.EE-5.2R/lilD I, 1, 689%.76, 19.59.2R. 2.286E06/1120 139.6, i116.0. 2.12, 26927.0, 6.0, 3.066/1200 0, 1.5. l.5, 1.0591. .8357, 4.605. 1.0068. 90._ 90. -90./1210 0, 3.5, 4.2, 1.0591. .8357 9.605, 1.0068. 90. 90. -90./1220 139.6. 1116.0. 1.8612. 26927.0, 6.0. 3.0. 9.5, 12.0/10010 1. 4, 3. 4 4 2, 1/11010 0.%002. 36 1859. 0.889. 0.0127,

10.0501, 96.1719. 2R, 20.7139 6.9086. 9.49, 4R. 5.40870.0, -29.3993. -26.4663. -0.351. -32.2414 -46.88, -45.093. 0.0, 2R% PUMP TO |HX $

l'OPD 1.8161. 26.2311. 0.5892, 0.0127,27.859, 39.2896, 0.0, 4R. -33.636, 0.0/$ IHX, ) =3 $

1103D 132.59, 7.8639, 0.03686, 0.0127-90.0. 20R/

11090 1.t243, 20.9702, 0.5892, 0.012716.53, 66.99, 2R, 22.487 0.0. 0.0/

11050 1.3883, 26.8225, 0.5892. 0.0127-1.3593, -9.29, %R. -9.08. 0.0, -31.9, -90.0. ER. 0.0, 2R/

10020 0.02825, 2850, 90029.9/I 12010 1.1, 250.596, 0.5892. 0.0127

-8.18995. 0.0. 4R. -30.77520. -27.19762, -0.6. 19R. -0.32894$ 0.0, 22.93075, 43.73177 39.36'/07 0.0/w 1202D 0.56. 39.492. 0.4318, 0.0127.

0.0 49.7836. 0.0/1 1203D 0.65, 29.689, 0.9318, 0.0127

0.b. 3R/1204D 1.92. 32.910, 0.5842, 0.0127,95.1105, 3R. 39.0919. 0.0, 3R/

12050 1.2. 126.992. 0.5892, 0.0127-69.85. 2R, -2.07%6, 5.39 LOR. 2.1462. 0.0. 3R, 18.9839,0.0/

1003D 73332.7 0.0. 82737.0. 0.0. 330998.0. 0.0/Oy STMGEN

10010 10 2 2 2 2 0 /

10020 5.0E-07 1.0E-07 5.uC-07 5.0E-05 5.0E-07 5.0E-07 90 /

10 101 201 39.0 235. 37 0.457 3. 33E-06 1. 4 00 1.0 235.37 w/20 201 3 7.9 239.0 0.3098 5.0E-06 1.2 0.0 1.0 239.0 1/30 24 25.0 230.15 0.259 6.0E-06 1.1 0.0 1.0 230.15 3/40 3 301 3.2 232.25 0.457 3.33E-06 1.1 0.0 1.0 232.25 1/SD 301 101 23.5 253.8 0.4 06 3.75E-06 1.1 0.0 1.0 253.3 3/60 101 7 59.86 230.27 0.3098 5.0E-06 1.1 0.0 1.0 230.27 5/7D 6 302 3.29 232.25 0.957 3.33E-C6 1.1 0.0 1.0 232.25 1/80 302 9 3.5 252.83 0.957 3.33E-06 1.1 0.0 1.0 252.83 1/9D 8 102 33.38 256.4% 0.406 3.75E-06 1.1 0.0 1.0 256.4% 3/100 10E 500 155.9 256.49 0.406 3.75E-06 1.1 0.0 1.0 256.49 1/301D 9 5 302 300 14.02 297.98 1.0339E-02 1.%"NE-09 757 0. 0 1.0

233.96 1.7 0.252 0.0 1.0 251.4 3.92 0.381 6 1.5879E-02 1.9520.529854 1.0E+10 0.55 71 2/

302D 7 8 400 301 19.02 247.98 1.0339C-02 1.979E-04 757 0.0 1.0233.96 1.71 0.252 0.0 1.0 251.9 3.42 0.381 4 1.5874E-02 1.952

OO $ -OO ON O+ 4 Nw wfDO OP T> f C DQ MQO OO (D ~ 4 ON N N O s@ Q *N O O O- CD h O f f

f N - : O ON ONJ OTN %O D e 1 f

* BOO b w O- O-O % fMMQ f O M s- -

O N Q O -f G O - Q -- -

W -O M@~NO OWOO -M O -

000 00+ ON O M s i OOOTO Z O-2 -f

G O W % QO I - -Q s@O O - O ON - N - -N O W i O OdOWO O O OQ- O N O OQt =~ D OT O O Q-

Of Os ~ e won f NQ sM w .O f .Of+ O h@ Q1 M O O 00 N O =@ O O

-W* NO -N u f o N O Os N NOQ NOQ00: M NmOf N - my N 0-ON- -ON

a CD u NDN-O c O VN ~- CD y~+ 3)=NM MQMN - N-M O J O CD M -f

D ON N O 00? ~ NOOO2 Of O

N W N FN - D -O N ON - : O -D.6 O =-% *-NO G7 O M MON MQN+ f -o -2- s 000 mo .x O- f --y - ~f

G, m-O-f a U- O N O M OQ - Q -O O M OMO O

*~M-f CN GO O&

-O M 00 UM-@ OUf00* CD N O @ 00 O2 - O *O O% O N -O e

M- O NO O O b *NO N + ~ OMb -Q s -N S--O --O

SO N w a tJ O O O e 2000 O O O tu O M O M O

- O- - UN-1 0 NQ M - -O O O 000O fuw f

- OFO - M fu

F~

@ s s W W - -

CD N f -b N h JM M O 6fl -N- b-N@ - O OO -f + @ nJ N - N -

00 000-OOO -OO V *ON e O - 00 - *f~ -T-N -O O f- --e@O U Ou @@ -GON-O f' -O

O O+O-- f s O N O O N G3 -

COMO D -Q --ONO MhWJ

- Nfu QOOOO

e O Q - - DOMQ -

0 O .-.N- N y M@O _ . -wo.N -O- .ONOO N .

OO .O

O -OO -

M s a O 00 00100 00 () *O N- -O - O O O O CD O f* OO F%0000 OO -O

-

GOO f - O O MO - WW O OON - ONO > OO OOt OM fT) NJ- 00 Df N - +N - N

- Mf@ O - O -U UNW - - @ l N N -O - : ~~~ ~~~

u -Q +Nf N O t~ JN -@N-N" N 00-O%@O CD N - *2S *ff-+ V -Df *OO OD O~NQm NO -s . N - - O Om=- O -

O M O .t - hh00+NO -Q QN 10 *WO O 000 +006 M + Of0 OfD

{0---NMMOOOOhob O N .710 - i Fy- ONOb@OfGM-~~~@OW

- * O OwCO CQQCNO-COO + WO+ 8 2 e SQ +O QQJh 6-w- 0 62 N-O+ +WOG+u - - W ++ 0 - ONO Os - s - N

- O00 WM -@ OM OMN O - + W ' J y10 (U y M -

-O1 yMMn; O cn N @ =N ~w - CQ O N O

wMN~OON7fN NON N- *O~ N -Nof e @ t ~ CD --* N - O tD a *O--OO---O@--O M - -O OOM +

ON M M N N N - O M J CD L -@W F -O -@ - MUGWJF -O OU27 O

- - O O nJ O -OM O O' M O-

N NO CD S f I.D NM O f- -POf f COOOM OOO-QGS i - +000000000MN MNON -:.3-NNOOMNM OO O @~ - M W -Q 00 --WO

O-NM-NF---OO--4@ l O--k-~ e i l I #O4 b000 ~*O N

N DA 2-NOQF*- CD O E - - - r CD OODOO M fN N - NN2-QMOO-~ -- -

n 4 W% % 4 N NOOr -

4 O 400 00000000 -QOQQMNGOMNwOOCCOO 0000 * OOG Z~NM--NM-foQ-Of-NQf-

000000 000000 OOQQOEu ~

Q J 20000000 0000 - - O - ---N~~- -N-N 40 Q

N~-fNf --MMNy -QMfC - O V~QQQkwOOOOOOO 000- -

NMO ---MOOO 0000 O> > > H>O O O 00

- 244 -

$$y //////

pg,9g'\\\No' Mig)5 //| . %,o

1:,2,g,-/% sNNNN y ,F;e 4

gp'Y/+9

,

44 %NNN'# IMAGE EVALUATION

TEST TARGET (MT-3)

I.0 'R3m , p= =.

l!i33

| E

||,||||l.8

1.25 1.4 1.6

I

4 6" >

MICROCOPY RESOLUTION TEST CH ART

[%i, /A. n >/y +48 -:+g

o y ,g/:-

c-

4>+A o

IIII/ / | , |" y ,'

f,''

yp ,

g+,y %g%$_ E E- -TEST TARGET (MT-3)

'" 2*1.0 3

0, ||||E

2 " Eau- u-

1.25 1.4 1.6

< 6~ >

MICROCOPY RESOLUTION TEST CHART

4% +4v:n->,#//// < s ,

s# f 5a

+h:4,g sy >o ;, p--

c- s

,D+ <(p ',,,, , ,

K t,'(Q '

<;p

--- g.__

OU

ON

L-

UwO % O ~

O O~

80 R - O*O @

O.O : m-

Of *@ O

1

O

*U Q O*h -

--.O O OM -O O O000 O O

t'== -e

-M p eFOm iu m O< > k1 MO O O

. . O*fO O O - %

O su - O O- - -'N O O OO % % % % O % b-11- N: % % % % 0 % -

-

% -

T T C W % ~O

MO M aR RT EQ - OTOWr%O ~~M. M- -

MMM M m %. N- 0 0. % - - *

O@

*% % % % N % % % @O *OETR ft EO. - -=* O O. M f* t O O M M &Q TR U1 =0 M - -= % +%

=

MM MM +O+ + +EO&O M. M . 0-.00== +a O O -- O O .-- -- O O. * 0 a- O - -. - p f

-.

-

00 000 0000000000000. N N f -

- _ . C.D. @ 0 0= *-00 00 00 00 N -* 00-*=-O--. =CD W

AeM.9982998 A9982998 A9989 82988P8O - - 00000000000000000000 0000000- N0O M Mildq M MMMMtIf.tO000000 00000004-

O 000000000000@@@ @ CT 7 @ @ @ O O Oez@ biJ

- 245 -

. . . . .

4.2.3 Data verification

All of the input data are checked for this consistency, as discussed

earlier. A sample of the output from the data verification module is shown for

OPDATA fiie.

- 246 -

6

EGCAEP3

32%.

2

43

%c!

!

0B7'

2'52

19'90C

4AEF.

PG

A' v

9'

1

803376 2236 0223201 55010-

N CC 0C 0C0C 000000 0000C1111

A ++ + + + * + + + * + + + + + + + - *H EE EE EEEE EEEEEE EEEEE

C CC C5 2035 C0?0O0 0C0000C C7 7917 7500C05O I2 01 42 911

00000

P 7C O3 0473 1

0]0 90000

C .

7 6 0 C.5 06000. -

O 9! 13 86t3 671131 18%6IL - --

1

.

NAHC

-

***

4 *

A *22 SG S 22 *9 *

MM / k / MM */ G/ G // EC *

N 'u kKKJ - KKK - KK NN KK - - - - T* W- -* E

L N L- U P

C G M5 E O5 B C

h Z o ', G GNN LTPO 0PGGG KPP TTTTCC TLOR C'.txxOCCC SSNMM RNNN

c R. O 3 S SS VNOU PHHOxxx AAAUU PRRR0%LC00 01 LTC P11LM M GGiPP EPPP A2 2 2 2 2 2" E

AV 99G933

6 6 'W ' _ .P2TTI3S6 T22I25

8' 'A PrNNPE TT LTTWWTT!

LLiL A7D C O/ P P;Y C O3T

E EPECA IL I 2 3 % 5 ILF

S r F

R r F

IMC O O'

LC +4 D D O D D N

RE [

P P R R R IOEA CO O C O O

FF T C C C C C TA E E E E E A

T C P P R R R CIS l

FA rF I

L Ai R- - E E

C 'v vSL * *

S * *FE * *

* ** *

ydN I1

4.2.4 Steady-State Output

The output for steady-state calculations is shown in the following pages.

- 248 -

. . _ . . .

S'EAM GEtEPATOR LOOP

MOOUL E I IS A P!PE

NCCE ENTHALPV PPE 551 PE

C(Ir(ETI 1.25-5E**E+C6 ' . 2*2*5 30E + 07

w t CuiLE T 1.25*564*E+C6 1.c55eG06E+C7 LOSS COEFFICIENT = 0.

MODULE 2 15 A P .rPt

W ENTHA PV PPE SSUPt:

1NLET I . 25-+5E* *E - C6 1.25568CSE+07

OUTLET 1.25*56v+E+05 I.33alColE+07

MODULE 3 IS A P!PE

NCOE ENTHALPf PRESSUPE

OfINLET1 1.25*56w-*E+C6 1.3381001E+07

1(OUTLET) 1.25*5644E+C6 1.3350119E+07 LOS3 JOEFFICIENT= 0.

MCDULE 4 15 A PIPE

I NCOE ENTHALPY PPESSUPE

$ 0(INLET) 1.25*564*E+C6 I.3350119E+07e

3(OUTLET) 1.25%56**E+C6 1.3406500E+07 LOSS COEFFICIENT = 0.,

MODUL E 5 IS A P!PE : "

NOCE ENTHALPY PRESSUPE

O(INLETi 1. 25956- wE + C6 1.3*C6500E+07

1 ( OU TL E T ) 1.25956**E+C6 1.3382723E*07 LOSS COEFFICIENT = 1.7082576E+01

MODULE 6 IS A HEAT EXCHANGER

WATER / STEAM SOOlVM

NOCE ENTHALPY PAESSUPE TEMPERATUPE

INLET PLENUM 1.25*5644E+C6 1.3382723E+07

O(TUBE INLFT) 1.254564*E+C6 1.3093*64E+07 614.7000

6(TU8E CUTLET) 2.C9000C*E+C6 1.2821083E+07 732.0295

OUTLET PLENUM 2.C9000C*E+C6 1.2"96720E+07

LOSS CCEFFICIENTS,1NLET PLENUM = 8.6257Cw2E+Cl OUTLET PLENUM = 1.2088528E+01

...

, ,

_ _ _ . . . _ _ _ _ _ _ _ . . . . _ . . . . .

MODULE 7 15 A P1PE

NCOE ENTHALPY PRESSLPE

OtINLET1 2.CSCCO wE+C6 I.2596720E+C7

3f0VTLET) 2.09:00:*E*C6 1.2*2*53CE+07 LOSS COEFFICIENT = 3.60399*7E+0!

MFOULE 8 !5 A V'.A. W

NOCE ENTHALPY PRCESURE

O 2.09:00DwE+C3 1. 2-2wS 3C E * 07

mlOUlO LEVEL = 5.000CCCCE-01

rr s_E 9 15 A PIPE

NODE ENTHALPy PRESSUPE

0' INLET) 2.6715916E+C6 1.292wS30E J7

5fOUTLET) 2.6715916E+C6 1.2376771E+07 LOSS COEFFICIENT = 0.

MODULE 10 15 A PIPE

NOOE ENTHALPY PRESSURE

I O ( I NLE T I 2.6715916E+C6 1.2376771E+07

$ 1(OUTLET) 2.6715916E+C6 1.2295097 +07 LOSS COEFFICIENT = 2.9327309E+01O

Pt'OULE 11 IS A HEAT EXCHANGER,WATER / STEAM SOOlUM

NOOE ENTH AL PY PRESSv 4 TEMPERATURE

INLET PLENUM 2.6715916E+C6 1.2295090E+07

0(TU8E INLET) 2.6715916E+C6 1.2210616E+07 732 0295

9(TUBE OUTLET) 3.3275259E+06 1.lC6789CE+07 777.0118

OUTLET PLENUM 3.3275259E+C6 1.1066662E+07

LOSS COEFFICIENTS,1NLET PLENUM = 9.3639216E-01 OUTLET PLENUM = 0.

MODULE 12 IS A P!PE

NOCE ENTHALPY PRESSURE

0(INLET) 3.3275259E+C6 1.1066662E+07

1(OUTLETI 3.3275259E+06 1.l(T/1513E+07 LOSS COEFFICIENT = 0.

MCOULE 13 IS A PIPE

NODE ENTHALPY PRESSUPE

_ . . .

..

O f INLE i1 3.3275253E+C6 1 1 C71513E + 07

3rOUTLEfi 3.3275259C+C6 1.0617925C+07 LCSS CCff e ICIENT = 2.7735579E+0!

TURBIPE LOCP

MOC'3 F l 15 A VOLLPJ

NODE ENTHALPY PRESSURE

O 3.3275259E+C6 I.0517925E+07

LIOUlO LEVEL = 0.

MODULE 2 15 A PIPE

NODE ENTHALPY PRESSURE

OfINLETI 3.3275259E+06 1.C617925E+07

ItOUTLET) 3.3275259E+C6 1.0100000E+07 ' 055 COEFF ICIENT = 1.6161100E-01

-

,

i

k)L.nH

E

_ _ . _ . . . . . . . . . . . . __ .. ..

66f 3. LJ G1 ni ni Gh n) QJf. nJ OJ n1^

b"tit 'r'J D O t)()f.Ji' .)f)Ui e t e 1 : i e a 8 I o e t

- vyu,wouuuuuuuvu&- {} - (T) (v Q > ;f i ()f- tt)@~~NiDJf-

D (Q ilj kl M y1 (.1 (D = * (O 10(, J t ) i Elj - t 3

y 1 }L i fjjN }1 TD W as^) NI

t gf (1 y 1 N t OMM^-=>-

(T t 1 (. 1, === f ) til f - r y1 g) o*( '' ( )()(,4JG()O @f3 4.D @

OJGJf1jDJOJfJQJOf-= - - -* --

(Tuts

~

O gl lliUl Afl O LIi 80 LO O @ O @ @Ul b ( ) ( l a 1 () (,J (14 's (J O c) ( ) O () )_? . 4 + e + + + + + + + + + + + +-s u + Li v u of Li tg w as i iis u t.: t.J LJ(1 -- R.e - - f it.i t b (I) LO di M t a f- f fM ') tp t ) O @ (?+ () }. -.7 ( ) f*) t M 0) (V t

-

h; ~ f {I h g i (@1) ( )-- t fil ta s t tI- t b y1y)

G) y M Og rif Of+ t,

.I --=4) Oi)()()@ hi1On@ @ @ @4 q;t n '. :y} () QJ DJIlj OJ O.J 04 (1) * * - ** -= ** *=-a

(f 4Ll1 LD U 1 U1til (11 O %. )(O O U1 Ul Oi()(i ) ) s .) a > t ) ( )t. ) t.1 ( ) ( 3 a 1 (tys - + + + + + + + + + + + - + +u +

) ^J s is t,s u u 1 e u L' I ta us t.J t.J 4.11A ]~ t- u1iQ l (O 491 LO F I'tj 4 if ( ) f e)

W ip - m t - u i f iO . J o ui l - m ( >t.J . (U f1) | ' M ITI M 1 ' il P 11) @ h 41 N1Q tb UT N) (b ( l t?1 (U Q gI f f \p -+ (1)-1

il 4) NJ e i J L.It I' 4) 51) T M Gs eLO OJ

LO J'I M 10 7 t * F f f f f M RI

- U1 tO LO g'1 t0 tD di LO LO 40 tD y) f.O @int)t :* ts)O ()()t)()tas,)()(>

>- + + + + + + + + + + + + + +(1

O' (11 Ni N b th al, (+f !sj (d Lal (d Iml lej 461 talb) b 8 L.) i l ta tj 41 q) u 1 (U =~ g i Ils @J

F h | I ' - t ti) il) [il I' M41M 's () 40 ( lO f s () u i (T1 . + M LD t(1 (D f f r' Ri U1 ullaA + '3 ul ET)( ) til OJ t ) = f WLO(3tJ4)(1) / W h(1)- MLO@L)UE D 4. > =a-+-

g Lie 4D :D (D (D @ (M @ ~ ~ += - - . . -

6

.I

o t i i ) ,41 RJ O) AJ (4. A.1 GI AJ O s GIJ sti til(y ab, M ,sai)oooc)<)oo_ u 6

_" Q + + + + + + + + + + + + + +-9 .} tally bl (al t tal tal Id (d tsJ l.l L.I Lal LJ'l + l ur 9 --t f f - M 611 -* f - T | - fis

OJ Q 3 (D 00 t 7 ( i 47 = = 7 ?I iO -*()Q"E t * * 41 T (1) O ( ) W f (15. :s - i tJ I '

* M t 4 a ) - N'1 g i g u t < > Qo t g )-/ ul(u ) Q1 |* (I) - M g i l' = t. , - 4M i t;

,

4.# 10 LO O W f ' b b f' F G (D (D (D 10

ea - ru m i O tc r eD 01() - ru M fUh gs - - . - - -

)

(QlloLr

.

+ ()(Q h @ r 3 n#M tf b @ r 1 +O ID- () W1 t M M aj - t. ) (D F - h ty J

4 I^ ( l M .t GI LO b (D @ l O - (U 4J (Ue

j () tow-em*4M

- 252 -

22? d2222222222N C0CO00C0000000C - - - - - - - - - - - - -I EEEEEEEEEEEEEETR1 2S1957*3368395ICC- o03351t8l37521

T 73171593C8810DRC t 7764319875*94%FA 111111000C0000

F . .

22222222222222RE

ST 55555555555555- > C00CC0CCCCC00CNN< + + + + + + + + + + ++ + +AE* EEEEEEEZEEEEEERI2 99921 * 5L727377TCM 82wC34?L316888

I t 35l567S93971CCTF< 32l975310S7777AEW 0CC999999G8888ECHC 222111I11i1111

55555555555555E C0CCCCCCCCC000P ) + + + + * + + + + + + + + +u 2 EEEEEEEEEEEEEE5 P5 /

B589393' 991635* 0360*190 2222

E N 776559 43 - 45639R 389 1239567846P

(

95443210987631* 944% * 44333332

2 55555555666666CC0CCCCCCCCCCC

Y + + + + + + * + * + + + + *P ) EEEECEEEEEEEEEL C 898358C279263CA v 071 *55S6899C36

R H / 0669612399GC22B N (J 5C535937135777E T

67802w7900C000M EU 0889999911I111NLE 22222222i22222fN.

E CCCC0CCCCC00CCP ++ + * + + + * + + * + + +

a U EEEEEEEEEEEEEEH T 795E3572l33812C A ) 2*158772*93789

P 152550C1983757N u 591 521C9626688i EP 5578C2*579C111

M9 E 66667777778888L T

I

GC 123*567890111E E 112341

;9 C0 NF

T O67902396790 ts5HG

) O59332109877 c4I IM C345678990126B

.

E 0 11112H

NLW I

iJ1

_ _ _ . _ _ .

FOR 5001UM IN CHAV{L %*d8ED 3

HEIGHT NOCE TEMPEGATURE Ft.THALPY PRES 5URE HEAT TRANSTER FRICTIONCOErICIENT FACTOR

(Mi (K) IJ/KG. IN/M2) W/tM2'K) (-)

0.000 1 6.55'27E+C2 8.65CCGE+C5 2.70326E*C5 7.74192E+0% 5.35672E-02.135 2 6.5633'E+C2 8.66561E+05 2. M 33* E * C5 7.73039E+09 5.35 tlE-02.271 3 6.5952%E+02 8.7C646E+C5 2.603*lE+C5 7. 705 3*_E + 0* 5.39727E-02906 4 6.65902E+C2 8.78917E+C5 2.55398E+C5 7.65779E+09 5. 3337EE -02.5*2 5 6.7776*E+02 8.93992E+C5 2.50359E*05 7.5854tE+09 5.30927E-0?.677 6 6.93769E+C2 9.twwl9E+C5 2.4536*E+05 7. 99930E + 09 5.277%8E-02.813 7 7.ll19CE+02 9.36597E*05 2. 8+ 0383E + C5 7.41017E+0% 5.29%39E-02.998 8 7.28652E+02 9.5G776E+05 2. 35% I 3E + 05 7.32627E+09 5.21270E-02

1.08% 9 7.4* 300E -C2 9.78619E+C5 2.30955E+05 7.25790E+09 5.18S 5E-021.219 10 7.55839E*C2 9.9321CE+05 2.25509E+05 7.21175E+0*+ 5.16605E-021.355 !! 7.6276*E+C2 1.00196E+C6 2. 20573E + 05 7.18734E+0% 5.15465E-021.%90 12 7.6572CE*C2 1.0057CE+C6 2.1569*E+05 7.17673E+09 5.14985E-021.626 13 7.66949E+02 1. 00725E + C6 2.10719E+05 7.1735CE+09 5.14786E-022.667 19 7.6702CE+C2 1.0073*E+C6 1.72968E+C5 7.1735CE +09 5.1%77%E-02

I

h)U1F

1

_ . _ _

_ . . .

FCA SOO!UM IN Cur #EL Pv 6EP *

HE ! Chi P40E TE'PEAATLaC ENT-ALAY PCE 55UoE KAT TRANSFER FRICTIONCCEFICIENT FACTOR

iM) f() (J/KGl (N/M23 w / ( "2 * K 1 (-)

0.000 1 6.55127E+02 8.65008E+C5 7.9308CE+C5 7.9312BC+C* 1.79782E-C2.362 2 6.5513*E+02 8.65018E+C5 6. 7C 38?E + C5 7.92776E+C4 1.74781E-024*5 3 6.56813E+C2 8.67171E*C5 6. 5 36* 3E + C5 7.92074E+C9 1.7-5 CE-02.528 % 6 . 59* 32E + C2 8.6932*E+C5 6.3691CE+C5 7.91373E+Cw 1.74*99E-C2.611 5 6.60172E+C2 8.71*77E+C5 6. 2 C I O 3E + Cf 7. 90673E + Cw 1. 79 358E -02.69% 6 6.61852E+C2 8. 7 36 3CE + C5 6.C3461E+C5 7. 8F'7 3E + C4 1.79219C-02.778 7 6.63532E+C2 8.75703E+C5 5.667-5E+C5 7.6S'79E+C* 1.79COCE-02.B61 8 6. 65213E + C2 0. 779 35E +C5 5.7CC3*E+C5 7. B8576E + C9 1.73941E-02.999 9 6.66895E+C2 8. 80 089E + C5 5.53329E+C5 7.87878E+C4 1.73804E-C2

1.027 10 6.68577E+02 8.822w2E+C5 5.36630E+C5 7.87181E+0w 1.73667E-021.110 11 6. 70259E + C2 8.O*395E+C5 5.19936E +C5 7.86985E+C9 1. 735 3CE -021.193 12 6.71992E*02 E.e55*eE.C5 5.03e47E.C5 2.eSi36E.C- i.7339 E-Ce1.(% 13 6.7194+E+C2 8.8655CE+C5 *.666CwE+C5 .B6136C+09 1.73399E-C21.853 19 6.71949E+02 8.9655CE+C5 3.71185E+C5 '.86136E+09 1.73394E-C2

I

NV1U1

|

-. -

6 5 5 2 2C 0 0 0 0+ + + + +

E E E E E7 9 6 C C

1322 8 0 C0000 6 %6 9 9+ + *+ 2 6

1

9 9EEEE 1 5 W9 9185* .

3963 * 9 1 7 7839430933101 = = = = =

S 2473 P T L SE G L T A

N. V G 3'A

E= = == L 0 C M

R

1 23%) F P T T4

) )6 . 6 6 E

C15

L I t t (

F NNNNAAAA 2 5 6 2 2

C 0" C" CH M 0 C C 0 C

+ + + + +

464Q E E E E Ea 7 9 : 6 3

2 0 7 3 01 0 9 w 75 5 * 0 65 E C 6 66 8 1 7 7

= = = = =

S T L000O A L T M000C P N V P 2

S + + ++ B 1 0 8 *T EEEE E 6 6 6 6N 29* 3 T E E T TE " 62%

2.e35!

C 965358%I

F 1 2 2 2 2F 232% 0 C 0 C CE + * + + +O E E E E EC = = == * 2 C 6 01

7 2 73

5 ) i

0!2? 3

3 1

C 5 C6 2 6

5 + 5 57 5 C 6 C

t( ( t t

7 6 8 8 8*4 wwAAAAC s 5. $Lt = = = = '6 6 C FxFrFF S T L E

A L T UP N U P l

8 0 8 r4T1 6 6 E3T 7 T

NLm inI

.

RACIAL TEMPERATURE DISTRIBUTION CATA FOR EACH AxlAL SLICE IN REACTOR CHANNEL 1

TOT AL F R ACT IONA!. POWER IN THIS CHANNEL .0060=

TOTAL FRACTIONA_ FLCH IN THIS CHANNEL .0096=

RACI AL NCOE PWR (TYPE)

I (FUI 2 (FU) 3 (FU) 4 (rVI 6 (CL) 7 (CLI 8 (CLI 9 (CO) 10 (ST)HGT(M) TEMPERATURE (K) FUEL STATE IR= RESTRUCTURED. U=UNRESTRUCTURED)

.178 798.02:U 731.69:U 719.02:U 706.95:U 660.69:- 659.38:- 658.21;- 657.69;- 657.69;-402 1569.80;R 1305.89:U lil2.99;U 950.52:U 697.55;- 689.26:- 672.90:- 667.02 - 667.02:-993 2021.91:R 1609.29:U 1332.96:U 1103.86:V 719.36;- 703.21;- 688.78:- 682.10:- 682.10:-.585 2293.29:R 1793.91;R 1**w.55;U tl61.71:U 794.16;- 725.29:- 700.31:- 700.30;- 700.30;-.676 2998.99:R 1898.97;R 1509.97;U 1196.69:V 767.9?:- 797.79;- 729.67:- 720.92;- 720.92;-.767 2516.97:R 1950.36;R 1595.87:V 1219.73;U 790.9;;- 770.01;- 751.75;- 792.68;- 792.68;-.859 2592.13;R 1975.25:R 1567.53:V 123'.50;U 812.05;- '91.99:- 773.99:- 769.77:- 769.77;-.950 29r/+.19;R 1927.06:R 1598.82:U !237.89:U 829.96:- 811.91;- 799.83;- 786.17;- 786.17:-1.042 2303.09:R 1837.M;R 1509.93;U 1225 6*;U 899.65:- 828.29:- 843.60;- 805.78;- 805.78;-1.133 2082.93;R 1702.ll;R 1931 09;v 1203.09;U 855.37;- 891.68;- 829.98;- 822.89:- 822.89:-1.224 1799.89;R 1520.29:V 1329.00;U ll59.15;U 861.69:- 851.20:- 891.86;- 836.71;- 836.71;-1.998 881.70:U 873.97:V 867.95:U 862.13:U 899.93;- 894.96;- 894.05;- 893.82;- 843.82;-2.236 0.00:- 0.00;- 0.00:- 0.00;- 0.00:- 0.00;- 899.99;- 899.99;- 899.99:-

I

NU1N

|

_ . . _ . . . . . _ . . . .

RADIAL TEMPERATURE DISTRIBUTICN CATA FCR EACH AX]AL Sv!CE IN PEACTCA CHAVEL 2

TOT AL FPAC T IONAL POWER IN TH[S CHANNEL .8830=

79'JaTO T AL F R AC T IONAL FLC.4 IN 'HIS CHANNEL =

RADIAL NODE NUMBER (TYPE 1

1 (FU) 2 (FU) 3 IFU; 4 (FU) 6 (CL) 7 (CLi 8 (CLI 9 (CO) 10 (ST)HGT(M) TEMPERATUPE IK) FUEL ST ATE ( R=RESTRUCTUPED U=t.jNPES TRUC TUREC )

.17A 724.71:0 712.74;U 703.48:U 699.59:V 659.61:- 658.62 - 657.75:- 657.3+:- 657.3*:-407 1936.80;U 1239.53;U IC92.27:U 968.39:U 688.ww:- 678.46;- 669.58;- 665.38:- E65.38;-4~' 1650.29;R 1377.C5:U llc 8.89;U IC28.N;U 706.52:- F <w.39:- E83.57;- 6 78.39;- 678.39;-

.i 1865.79;R ?S19.37:U 1282.49:V IC83.dt:U 727.12;- 42.93;- 700.27;- 699.07;- 699.07;--

.676 2004.03:R 1607.98:U 13*L.79;U lilB.61:U 747.43:- 732.21;- 718.62:- 711.83;- 71i.83:-

.76, 20SS.69:A 1655.05:R 137%.l*;U 1191.42:U 766.90:- 751.49:- 737.63:- 730.58;- 730.58 -

.859 2079.27:R 1676.20:R 1392.61:U ll57.22:U 785.63;- 770.35;- 756.72;- 7*9.60:- 799.60:-

.95G 2010.22:R 1638.25:R 1375.70:U ll55.96;U 801.49:- 787.33,- 779.79: 768.03:- 38.C3:-1.092 1886.48:R 1560.55:U 1334.31:U 1191.57:V 819.38;- 801.98:- 790.92, 789.92;- 784.92:-1.133 1718.82;R 1956.48:U 1272.81:U 1113.77;U PN.29;- 813.93:- 804.70:- /99.61;- 799.61:-1.224 1510.38:V 1322.76:V llu8.29;U 1069. 20 : t ' 830.61;- 822.63:- 815.53:- 811.56;- 811.56;-

1.998 895.77;U 890.18:V 835.83;U 831.62:v 818.53:- 818.17;- 817.86:- 817.68;- 817.68:-2.236 0.00:- 0.00;- 0.00 - 0.00;- 0.00;- 0.00;- 818.74;- 818.69:- 818.69;-

1

NU1LX)

I

~

T' _ _ . _ . . .

_ _ _ - . . . .

__

RAOIAL TEMPERATUPE CISTRIOU"lCN DATA FOR EACH AMIAL SLICE IN RE ACTOP CHANtEL 3

TOTAL FRACTICAAL POWER IN THIS C dNNEL . l S*=

TOTAL FRACTIONAL FLCW IN THIS CHAN+4L .1350=

RADIAL NCOE NUMBER (TYPEI

I (FU) 2 (FU) 3 (FU) % (FUI 6 (CLI 7 (CL) 8 (CL1 9 (CO) 10 IST)HGT(M) TEMPE'1ATURE (K) FUEL STATE (R= RESTRUCTURED. U=UNRESTRUCTURED).

.068 680.83;U 67%.28.U 669.18:U 66*.26:U 656.w6:- 656.23;- 656.01;- 655.73:- 655.73;-

.203 725.07:U 707.03:U 693.17:V 679.9*:U 659.85:- 659.2%:- 658.65:- 657.93;- 657.93;-

.339 800.62:U 761.91:U 732 F9:V 705.30;U 666.55;- 665.32:- 664.16;- 662.7!;- 662.71:-

.4% 939.46:V B58. % :V 800.o3;U h6.91:U 678.99;- 676.68:- 674.53;- 671.83;- 671.83:-

.610 IC39.99;U 941.*+;U 856.87:V 781.55:U 695.31:- 692.30;- 689.93;- 035.77;- 685.77;-

.745 III6.99:V 983.62:U 888.66;U 80%.6*:U 712.81:- 709.58:- 706.50:- 702.48:- 702.48;-

.881 1140.27:V 1004.37:U 907.56:V 821.86:U 730.22:- 727.03:- 723.99;- 719.92;- 719.92;-1.016 Ill3.71:U 993.35:V 906.80:U 829.45:V h5.68:- 792.85:- h0.16;- 736.98;- 736.98:-1.151 1023.82:U 939.73;U 977.95:V 821.55;U 756.83;- 759.77:- 752.81:- 750.072- 750.07:-1.287 920.09;U 872.98:V n37.50:U 80%.30:U 763.35;- 762.12;- 760.95:- 759.30;- 759.30;-1.%2P 831.33;U 812.5*:U 798.07:V 78%.23;U 765.97:- 765.45:- 769.95:- 764.2%;- 76%.2%;-1.558 793.93 U 786.36:U 780.47;U 7h .78;U 767.05, 766.83;- 766.63:- 766.33;- 766.33:-2.146 0.00 - 0.00;- 0.00:- 0.00;- 0.00;- 0.00:- 766.99;- 766.98:- 766.98;-

I

N(n@

|

.- .

R O!AL 'E *iPAT PE OI5'R:90'1 % CA's : % EAC- Axia ci :CE |N REACTOC C - A V E '. *

TOTA. rP AC T I Ct.A. P",,4 0 !N T-!S CrANNEL .C070=

TO'Au F G AC T ! *J. A. 8~LN IN 'a:S CmAVEL .C500=

PAO}A_ NOC[ PO $E;i CTYPE1

1 truz 2 :ru) 3 tru; w try) 6 (CLi 7 (CL1 8 ICL) 9 sCO) 10 IST)HGT(M) TE M RATUPE r<I rlL STATE ( P =PE " .?JC TLFEO , U=L*FESTRUC ? AO I

.181 C.00:- 0 .- 0.00:- C.CC;- 0.00:- 3.00;- 6" .13 - 655.13:- 655.13;-403 Il58.59;U IC52.G.:V 973.20:0 9CC.Ea:V E8*.62:- E70.66;- ES9.19:- 655.97;- 655.97;-

487 ILEO.91:U 1053.74:U 97*.01:U 902.19:U E95.27;- 672.33:- 660.69 - 657.ES:- E57.65:-.570 llE2 23;U IC55.w3:U 975.*1;u 903.71;J ES7.92;- 67*.CC;- 662.56;- E59.33:- 659.33;-.653 Il6%.C5;U IC57.12:U 979.01:L 9:5.23;U 689.57:- 675.6';- 66*.?,;- 661.01:- 661.01 -.736 Il65.87:U IC58.62:U 979.5!;U 9:6.75:U E91.23;- 677.3*:- E65.92:- 6E2. b.* - 662.69;-.819 1167.69:U IC60.52:u 991.22:L 938.27:U 632.68;- 679.01;- EE7.61:- 66* . 3~, , - 669.37;-.9CJ llE9.51;U ICF2.21;U 982.62;U 9;9.79;U E9*.5%:- E80.58;- 669.29:- EE6. 05 : - 66t2. C5 ; -

.385 Il71.33:U IC63.91:U 9Cw.w3;U 911.31:U E96.19:- 582.35;- 670.98;- 667 7w:- 667. 7* : -1.068 1173.15:V ICE 5.61:U 986.03;U 912.83:0 E97.65;- 684.02:- 672.66;- E69 . 42 ; - E69. 42 ; -

1.152 1174 96:V IC67.31:U 987.6*:U 914.35:U E99.50;- Ee5.69.- 679.35 - 671.10;- 671.10:-1.235 ll75.89;U IC68.!E:V 989.4*;U 915.!!;U 700.33;- 696.53:- 675.19;- 671.99:- 671.S ;-

1.565 0.C0:- 0 . C "' O.CC;- C.C0:- 0.00;- 0.00- 671.95;- 671.% :- 671.99:-

I

N@O

I

2M

E 2G /

MMKMNT

00005A 00000

+++++ 2 225 ST EEFEE MM MM/ /

00020 P/ //G G5 00380 MRN KNNKK K

06390P C601 9 236 25532 3O O0420 000 00000 0

Y O + + + + ++++ +L 63341 EEE EEEEE E

O 5 639 26*02 0T 287 06631 2

A N 083 61910 0A O 192 04697 1

E L 512 04577 6O . A' .

SI

81917 !T O S 111

C 24

R DS !RSY

A NE OI S_NO _-P

I API T _ SRA I -M A _ VS

0 R 1P A _ IEG TA _ P C_ S A _ I _-

0 T _ N SER T _ O-A _ E SEX R . ARE A _

L O_ H EEH I _ G V O_ r'O_ N

lPWI O_ EO ST _

T O_ IPEE R _ SET M_

I

CP _ T V RHC P__

L__

BH E _ I V R U Y As

L_ N TE I

ONI P_ T I _ E ) )

S __S

: S ES

A P W 1

R _ IRCIO I T _ R EE E_ U E RD OE EI5 V CS

IN_RORTR O _ TER U! !

TE IVINE L ARU TSZSL PI EV3 OROAS EE

I

RU5 A i

OL VEVLE SVS ES7 RYAY0 5 A RSROR I I PSE ERRR

5VR EEEO LR MEREPA AE SRSCE DA ERPTMDWD0 1KB E E H ANE TP AENONE

C R PCM RFRET EOR TRTOLOA MEU O H FIU TTE CFC

UHN F ETF TS EELWTE EE PC OAH O PAS LLTOESSS

Y R E ETF MTE INNULLtS(H HHI HAr R PRP

IOFN AEEP TP OE UOR

A- C OTU PPPSI MR

T TTIN HS EEE OOOSX XEOSGS HHH OOOAH H

M HISIE TTT LLLMI l

TAERI LCMHP

AER TSEEE

O- HHHP T XT' f

NCW Ihg

. . _ _ _ _ _ _ . _ . _ _ . _ _ . _ _ _ _ . . . . . . . . .

PR IM a R Y COOL ANT L00P STEA DY ST A T E

PIPE NUMDER 1____ ______

3.61853E+01 MPIPE LENGTH =

8.89000E-01 MD ' AME TER =

6.20717E-Cl M2/ 5ECTION AREA =

1.w*166E+05 N/M2INLE7 PPESSURE =

1. 3819W 05 N/M2I OUTLE T PRESSURE =

%.0020CL-01LOSS COEFF ICIENT =g 19NUMBER OF NOOES =m 8.CC502E+02 vN COOLANT TEMPERATURE =

|

P1PE NUMGER 2____ ______

2.623!1E+01 MPIPE LENGTH =

3.89200E-01 MOlAMETER =

2.68048E-01 M2x-SECTION AREA =

1.36190E+06 N/M2INLET PRESSURE =

OUTLET r. ESSURE 1.29002E+06 N/M2=

1.81610E+00LOS', COEFFICIENT =

NUMBER OF NODES 8=

COOLANT TEMPERATURE = 8.01202E+02 K

----m ._ __ .

PP MARY C00L AN T L00P STEAOY STA TE'

HEAT EXCHANGER

PIPE NUMBER 3.... ......

PIPE LENGTH 7.86390E+00 M=

DIAMETER 3.68600E-02 M=

x-SECTION AREA 1.93610E+00 M2=

INLET PRESSURE 1.29092E+06 N/M2=

OUTLET PRESSURE 1.15089E+06 N/M2=

LOSS COEFFICIENI 1.31007E+02=

NUMBER OF NODES 20=

|

$ NODE TEMPERATURE (K)w PRIMARY TU8E SECONDARY

|1 0.01202E+02 7.85570E+02 7.77012E+0F2 7.99198E+02 7.78299E+02 7.69615E+023 7. 870 ME + 02 7. 70931 E + 02 7.62119E+029 7.79756E+02 7.63967E+02 7.59525E+025 7.72917E+02 7.55906E+02 7. 96833E + 026 7.69983E+02 7.98297E+02 7.39091E+027 7.57952E+02 7.90991E+02 7.3115 E+028 7.99826E+02 7.32638E+02 7.23162E+029 7.92109E+02 7.29688E+02 7.15079E+02

10 7.39287E+02 7.I6691E+02 7.06087E+0211 7.26379E+02 7.08997E+02 6.98c02E+0212 7.18365E+02 7.00257E+02 6.90219E+0213 7.10262E+02 6.91921E+02 6.81738E+0219 7.02069E+02 6.83989E+02 6.73160E+0215 6.93771E+02 6.79963E+02 6.69986E+0216 6.85306E+02 6.ES393F+02 6.55717E+0217 6.76908E+02 6.57629t+02 6.96852E+02 ,

18 6.68338E+02 6.90029E+02 6.37899E+0219 6.59677E+02 6 39927E+02 6. 2889 3E + 0220 6.50926E+02 6.19700E+02

PR !M AR Y C00LANT L00P STEAOY STA TE

PIPE NUMBER 4____ ___...

2.09702E+0! MPIPE LENGTH =

5.89200E-01 MCIAMETER =

2.680%8E-01 M2X-SECTION AREA =

1.15089E+06 N/M2[NLET PRESSURE =

9.96389E+05 N/M2I OUTLET FRESSURE =

LOSS COEFFICIENT 1.12930E+00=

$ NUMBER OF NOOES 6=

p COOLANT TEMPERATURE = 6.55127E+02 K

I

P1PE NUMBER 5---- ......

2.68225E+0! MPIPE LENGlH =

DI AMETER 5.84200E-01 M=

x-SECTIOtt AREA 2.68C48E-01 M2=

INLET PRESSURE 9.27534E+05 N/M2=

OUTLET PRESSURE 9.56969E+05 N/M2=

LOSS COEFFICIENT 1.38830E+00=

NUMBER OF NOOES 16=

COOLANT TEMPERATURE = 6.55127E+02 K

. . . . . ___. _ _ _ . ,____

wH

<w

W

>

0

4

W-

N OH w

T ZQO U -yam wzgu u-

O Ok& ZE w3 TOO uz y

k 2nTO -u 40&&

J ~UF14

QLTU T4 ' c 120F a L -o -ya

e 4 e o Iz 11408 O-u 3>

W J3GOWu-

a8 * JO-34 Os m oaaogg

OnJ Je

- LJ awwm coa 3,T -w:OOOO D m -tU -~3 &&O cmOyooa U-J212

U O FTJ4000 400*J WWk wu

14 W12W W aaO33

HWEGEame> <wwk33mm

-114&OWu4 O-3> ml_

1VW4414a

O ws

d 2

E-

wo-NG I

-WW

Z-

- 265 -

- - -

___ . .

I N TEPM ED1A TE COOL A NT LCOP ST EA OY ST A TE

P l PE NUMBER 1____ ______

2.50546E+C2 MP!FE LENGTH =

5.842CCE-01 MDIAMETER =

2.680%8E-01 M2x-SECTION APEA =

1.87C83E+C6 N/M2INLET PCESSUPE =

1.68356E+C6 N/M2OUTLET PPE55UPE =

1.10CCCE+C0LOSS COEFFICIENT =

31NUMBEP GF NCOES =

7.77012E+C2 KC OOL ANT TEMPERATURE =

SUPER HEATER_____ ______

l

N

hk INLET PLENUM DATA

1.0591CE+00 MI LENGTH =

7.77012E+02 KCOOLANT TEMPERATURE =

3.5000CE+C0LCSS CCEFFIE!ENT =

HEAT EXCHANGE PEGION____ ________ ______

1.90200E+01 MLENGTH =

5.C8200E-02 MDIAMETER =

5.29359E-01 M2FLOW AREA =

9.91654E+00LCSS CCEFFICIENT =

3.30948E+C5 N/M2PPESSL.lPE DROP =

OUTLE T PLENUM C AT A

8.3570CE-01 MLENGTH =

CCOL ANT TEMPERATUPE = 7. 32029E +02 K9.2000CE+00LOSS CCEFFICIENT =

.

IN T ERMED 1 A TE COOL ANT L00P STEADY ST A TE

PIPC VJPEER 2.__ ______

PIPE LENGTH 3.www2CE+01 M.

D I A'dE T E R 4.31800E-01 M=

x-SECTION AAEA 1.46%38E-01 M2=

INLET PPESSUGE 1.35261E*06 N/M2=

OUTLET PPESSURE 1.21408E+06 N/M2=

LOSS COFFFICIENT 5.60000E-01=

NJMBER OF NODES 3=

COOLANT TEMPERATURE = 7.32029E+02 K

EVAPOAATORI __________

INLET PLENUM OATAyeN LENGTH 1. 05M E+00 M=

COOLANT TEMPERATURE = ~7.32029E+02 Kg

LOSS COEFFIEIENT 1.50000E+00=

HEAT EXCHANGE REGION.___ ________ _..___

LENGTH 1.40200E+01 M=

5.0820CE-02 MDIAMLIER =

FLOW AREA 5.29854F.-01 M2=

LOSS COEFFICIENT 2.71*28C+01=

PPESSUPE DROP 0.27370E*04 N/M2=

OUTLET PLENUM DATA

LENGTH 8.35700E-01 M=

COOLANT TEMPERATURE = 6.18700E+02 KLOSS COEFFICIENT 1.50000E+00=

E

T

A

T

S

Y

OA

E22

T MM2//

S MMMNN K

!11661 2000C00 0

P + - - ++ - +EEEEEE E

0 008590 C903300 0

0 889160 73 616390 8

L 434:0 5. ?1R_ 241116 6_

E_T B_M_

= = = = = = ==UNN_ E

A PE_ U

LPI _ ENSA

_ T T

O P _ AEREERERUIDE

O PUSCOPH ASSINM

C T SEF EG NERFFTNRORPEOEEIP O T

E LTT TCRNECTE EA

T EMEELSRLPASLTSMO

A II - NUOUOI

PDxIOLNC

DE

M

RE

T

N!

JbUbcO

INTERM ED 1 A TE C00u AN T L 00P STEAOv 5T A TC

P ! PE NUMBER 4____ __.___

PIPE LENGTH 3.2918CE+01 M=

DIA"ETER5.8*200E_0i

01 M=

x-SECT!ON APEA 2.6e04eE M2=

IrtET PRESSURE 1. CSSC9E + C6 N/ M2=

OUTLET PPESSUPE B.99121E+05 N/M2=

LOSS CCEFFICIENT 1.w2000E+00=

NUMBER OF NODES 7=

COOLANT TEMPERATURE = 6.18700E+Ld K

PUMP AND RESERV0!R____ ___ _________

l ORDER OF PUMP POLYNCM!AL 5=

33 TEMPERATURE RISE ACROSS PUMP = 1.0C000F+00 KCh RATED PUMP HEAD 1.39600E+02 M=

%D COMPUTED PUMP HEAD 1. 30913E +02 M=

RATED ROTATIONAL SPEED 1.ll60CE+C3 PPM=I

COMPUTEL ROTATIONAL SPEED 1.08751E+03 RPM=

PESERVOIR DATA

TOTAL HEIGHT 6.000CCE+00 M=

COOLANT HEIGH 7 9.0000CE+00 M=

x-SECTION AREA 3.00000E+00 M2=

GAS PRESSURE R 's000CE +05 N/ M2MASS OF GAS %.00330E+01 KG=

SURGE TANK_____ ____

TOTAL HEIGHT 9.50000E+00 M=

C OOL ANT HE I GHT 9.00000E+00 M=

X-SECTION AREA 1.20000E+01 M2=

GAS PRESSURE 8.60000E+05 N/M2=

MASS OF GAS 4.00330E+01 KG=

E

T

A

T

S

Y

DA

E22

T MM2//

S MMMNN K

211660 2000000 0

P + - - + + + +EEEEEE E

0 20B560 0904810 0

0 *20090 75 6w81 90 91

2 B. 6 0 9 2. 9 .L- . -

R_ 15221116E_

T B_M_ - = = = = = = =

N U_N_ E

4 R_ UE_P T TL

I _ ENSAO P_ AEREER

ERUIOEO RUSCOP

H ASSINMC T SEF E

G NERFFTNRORPEOEEIP O T

E LTT TCRNECTE EA

T EMEELSBLPASLTSMO

A !I - NUOUO1

PDxIOLNC

DE

M

R

E

T

NI

| (j 3 8c

PL A NT OA LA NCE SUMM A Rv ( 100.00 PER CENT OF RATED PO4R)- - - - - - - - ---- - - - ---- ------ .-- ---- -- ---- -----

REACTOA vCSSEL 1* T E R *1 E D 1 A TE HEA T r xCH ANGER- - - - --- - - - - - - - - - --- ---- -- - - - - - - - - - - - - -

-

PRIMARY SIDE SECONOARY SLOE

CUTLE T TEMPERATUPC = 800.00 K IrLET TEMPERATUPE = 801.20 K OUTLET TE MPER A T URE = 777.?! K

OUTLET PRES 5URE 1.9916579E+05 N/(M*MI INLET PPESSUPE 1.15069*5E+06 N/ (M*M1 UUTLET PRESSURE 1.870ts30!E * 06 N/ I M*M)= = =

IPL E T TEMPERATURE = 655.13 K OU'eLET TEMPERATURE = 655.13 K INLET TEMPERATURE = 619.70 KI

h3 INLET PREfSURE 9.56%378E *05 N/ (M*M) OUTLET PRES $UPC 1.1508945E+06 N/IM*M) INLET PRESSURE 1.9941629E+06 N/(M*M)= = =

NH

I

PR IMAR Y SODIUM PUMP-- - -_-- - - ---- - ---

INLET TEMPERATURE = 800.60 K

OUTLET TEMPERATURE = 801.20 K

INLET PRESSURE 1. 3819393E +05 N/ ( M * M )*

-OUTLET PRESSURE 1.3619835E+06 N/(M*M)=

PRIMARY PUMP SPEED = 1.0299

PRIMARY FLOW RATE = 17%I.30 kO/S

) I I

M M M_ M M)* * * *

R _ G.(

GM(

R_( R_ k (

M U_ M G Mk K

E_ / /

J N N E_ J NJ N/ / / / /

O_ O_6 7 E 6 7 S 7 T _ 6 7 S

A _ 0 0 0 0 / 0 C 0 /+ + N * * G * 0 A _ + + G

E_ E E1

E E k E 0 E E K9 * 9 0 M_ 0 0 W_ 3 0

H_ 5 2 5 0 3 3 5 9 3 82 9 8 2 0 0 A _ 5 D_5 7 5 0 9 71

S 6% .

M_ 3 0 U 3 01

E_ 2 E_ 0 2 92 6 2 1

97 1 R 7 09 0 9 '

9 i _ 2 = E_ 0 2 l

. LA _ 3 1 T _ 3 1

=5_ 1 E F _ 1 1

V =E _ = = = = E = E = = E

v E Y E T E L Y E TT _ P R P R A R P R A

L U L U R U D L U RS_ A S A S S I A S

H S H S W S U H S WT E T E O E Q T E ON R N R L R N R LE P E P F P IL E P F

i ) 1 ) ) )

M M M M P_ M M* * * * * *

K t K ( K K K K (MM M M_ G G Mt

G M G M G(

Gt

U_ / / / / S- / / / / / / /J N J N J N J N J J N N /

P_ G6 7 6 7 6 7 6 7 6 6 7 7 K0 0 0 0 C 0 0 0 0 0 0 0+ + + * + + + * + + + + 0E E E E E E E E E E E E 39 2 6 0 w 0 % 3 N_ % % 8 1 55 6 1 9 0 2 * 2 9 9 0 0 32 6 9 0 0 7 6 7 O_ 6 6 8 05 6 5 5 5 8 1 9

3 I

71

5 0 6 5 21 _ 9 9 5 8 77 6 4 0 9 4 8

2 C 2 9 5 5 3 5 5 5 3 26 2 0 2 2 3 T _ 2 2 2 3 =

. . E3 I 2 1 2 1 1 1 A _ 1 1 I 1 T

AE E L_ RO = = = = D =! 8 I

= = = = = = = 06 U_ 0 W

S % S 8 0 O% 8 C_ 0 L

R Y E 6 R Y E 5 Y EE P P Y E E P R Y E R_ Y P E R 1

F

R _ T L U P R T L U P R| _ L A U S

I

P L R U NA A S L U A S L U OaSO_ W H S A S W A S A H S S ./ T E H S = / T E H S = C_ H T S E D T

T _ R _ M N P T E R M N R T E R T N E R E AA E P N P O A E P N R O E_ N E R P E L

A . E_E E P T A.E E P T E P P UT T T C T T T C R_ T T S C

A . T _S E E T T A OS E E T T A T E T E PL L E E F L L E E F E L E L P I

E . A _ T T L L T _ T T L L L T L T M CU U N N U U

I I

OI O I O P R

N N N U N U U EN A _ O O NN _ E_ C O I I

OE_ H_ I R_ I

P_T TG_ R _ C O_

)

M R M M

C

E_ M M R P_ M) E M_ ) s) ) E

R * * R U_ *

M** *

M_ (M O A _ M M O

t t

P_ M( C L I C P_

M

U_ / / V _ / / / /

A _ N N N N N NS_ A E_ A

E_ 6 6 E 6 6 5 6T M_ 0 0 S0 0 P '. 0

T _ + + A + + + /

E E L E U_ E E O5_ K 7 K 7 # 0 K 0 K K 6 %

1 61 3 1 3 8 0 9 0 0 1

63 3 6 I . 09 0

E 0 5 0 6 E 0 0 7 3 O 7 7 2O 3 2 C . % 1

O_ 8 91

8 2I 7 8 2 5 I 2 1 8 3

. 0+ 1 0

3 3 S 3 2 1 9 0 1S 7 6

lU

1

71

U1

611

S_ 6 6 67 7M M 1 8 2 1

I =O = = = = D = = = = = = = = 5 EO E O E Y _ E 9 T

S C R S E R E R 7 AP U R U R_ R U 9 RU T E U T E U T ET E A R T E A R A_ T A E R WA R P U A P R U A R R U OR U E S R U E S D_ R E U S LE S P S E S P S E P S S = FP S M E P S M E N_ P M S E OM E E R M E E R M E E R E f

E P T P E R T P O_ E T R P E RT P T P T P P A

T T l T C_ T T S DT E NT T E E T T E E T

E.E E L L E C L L r, E 4 E L P OT T T T L T L T M Ct t L

I t O O I NI O O I O I O P St r U U U U S_ N U N U U EP

I NNN ,

4.2.5 Transient-State Output

A sample of the transient calculations is included in the following pages.

Printouts for only one c'.unnel (Channel No.1) are shown for t = 60 and 120

seconds.

- 273 -

.

_.C'

E1' C

^ 0'' -

EI C'' 55

70

62I 3' 1

23 2C0 C = =

'2+ * - PTEE C ELS8 2 TE

9 25 3 SOC 76 4 6t97 9 LS

9 6* 31 l

C73 O90 C-

9 Es~ 0' 21 30 10- 2 C0 C0 3052 + * + 25

EE EE 2- 9 5 95 2%2 523C

C 12 28 * =03 98 P'C. 9 68 EI

T E8' 08* 382 SDE - - S5P L5

^ 3?2 030 ll

0CC C00 CC*+* + - + - -

U EEE EEE EE055 13' C0

A'- 0*8 030 t00

5:10 285 b05

1

860 292 *52492 1 *3

211 371 293- - - - P = = =N E PTAA ' ELL

C"122 010 S TEE00C 000 E SDDEEE EEE I

336*** + - * -LS5

P E35 357 T*08 170 l1

C 2E0 795 C C0L 188 352 I - -- C62 ' 13 L EE

J 00EI7! 713 A 300

'.C - - R 80CA D 355.

A * Y.

" C!2 02 H 22A 0 0 C".

CC.

'. - P * * + + - E = = =.

* EEE EE H PT A.

. 52s5 25 T ELL_ 7?5 03 TEEC. 5 > 7 90 G SDD.

R_*

. E 3 0 4 I15

.

1'm x 7.

*.

' 30 ! L55. C A. T

.

G5' 50 220C C 11

. 0 D - - I 00

.

L : < R - -_.

- C H T EE.

C C 1023 0*5 S CC. 5 C P00C0 C0C E 2O0

5 D+ * + + * - - P 8C0. C CEEEE EEE 3S5.. E L2:C8 530 Y_ 1705 400 L 22_ Y5936 683 T

_.

B1C97 2C3 N = = =*

. 9 3*9*_ 7 O' D .

8I0 E PWA4P T LL75EE_

/ = E5673 II10 F1 WDD3TY

T - U0A C TlII_ K<E A ALSS

_.

C "Al C 5 *3 '

.' E 1 P

.

S T4 3 -

. O

.

vI T t_ 9 Cf d

" 0 O D_ l' L S f

l

EA L1 1

E PLC C E D_ L E

_ RE R Bv V D T

PA E A A S_ T I I E

_! S R R

!

*5 A A AA M V V TF

L- -0

_ 5L5 J

_eE

______

I hNk 1a

___

_ -

--

_

T HE W Ac RESA!5 Lorp w 1

TIME = -a FEAL T i rE 60.00=

rLOw pates In0/5)

WIPIDE= 53.!5 59.66 59.66 59.E6 59.66

W2PIPf= 128.C8 6*.04 64.0* 128.08 128.C9

TEMPERATU E5 (K)R

PRIMARY LOOP

TIINLT= 788.689

P I PE = 1 788.689 789.655 790.810 751.913 792.933 793.899 799.647 795.315 735.8*9 7?S.253

PIPE * I 796.550 796.776 796.979 797.202 797.47* 797.803 798.180 798.581 796.977

PIPE = 2 798.991 799.339 799.652 799.920 P10.l*3 800.326 P00.479 800.599

I P!PE = 628.538 630.673 632.746 634.761 636.720 636.623*

N-a P!PE = 5 6?8.623 639.wi8 6-0.201 6*0.973 6*l.733 6*2.481 6*3.215 6%3.936 599.691 6*5.330Ln

PIPE 5 696.003 646.657 6*7.292 647.905 6*B . 4S ' 6*9.C66=g

TlOUT_= 699.066

IHX PRIMARY

TilNHx= 800.599

TlOUHX= 628.538O

!!DYP 601.196=

ACTIVE H.T. REGION

000.96* 755.012 75* . **'I 7*3.116 735.536 727.192 719.C51 710.865 702.652 694.383

686.067 677.720 669.372 661.C69 652.880 6*9.919 637.33* 630.901 629.530 620.368

INTERMEDI ATE L OOP

T20UCv= 558.790

_ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . . . _ . . . . . .

P!PE = 2 E63. * 15 677.8-8 693.*78

PIPE $ 3 558.790 574 !*6 506.248

P!FE = % 5&C 2*S 590.225 593.903 597.29* 200.369 603.159 605.660

P!PE = 5 605.670 6C8.*56 610.809 612.'53 61*.35* 615.62* 616.617 617.300 617.9 % 610.3G7

PIPE = 5 618.707 610.997 619.128 619.267 619.375 619.459 619.525 619.576 619.61%

PlPE = 1 783.713 783.327 782.'67 782.117 701.*33 780.753 760.10* 779.505 778.970 778.508

PIPE = 1 778.123 777.812 777.570 777.390 777.259 777.169 777.1C0 777.0ct 777.095 777.030

P I PE = 1 777.022 77' 017 777.015 777.013 777.012 777.012 777.012 777.012 777.012 777.012

PIPE = 1 777.012

~ 2 l tGH = i'77.012

IHX SECONCARY SIDE

T21NHX= 619.614

T20UHX= 783.713

I

w ACTIVE H.T. REGIONNcs

783 2Er.i 756.640 750.679 7*l.028 733.091 72*.799 716.662 708.475 700.245 691.961,683.634 675.285 666.995 658.669 650.535 692.665 635.299 628.587 623.157- 619.689

STEAM GENERATORS

TIME = 60.00000

HEAT EXCHANGER FLOW SEGMENTS SOO!UM FLOW = 128.085 IN LOOP 1

1 1085727.53780 85.720672 1065763.66688 86.379103 1060565.75327 86.25319% 1073042.17326 86.15* %5 1101756.71673 85.211026 1101756.71673 85.211027 1114012.55426 89.799748 1139756.50395 89.092%99 1156559.9"^09 83.3397710 1177661.99606 82.5878011 1200293.5*902 81.7721812 121011%.88708 81.41350 558.7895513 1265389.60900 81.16702 569.17277 559.89217 58962.80185 1014 1317%79. % 792 80.88987 577.38079 569.5*607 59192.03279 1015 1359960.57948 80.61342 582.47376 577.02299 43231.33032 ?O16 1389079.9291% 80.39371 585.13524 581.90371 29163.26203 1017 1379907.33900 79.78171 562.11126 577.57351 -26671.68086 1018 1767903.37503 72.56598 693.47734 593.45021 39376*.76689 9019 16:8725.65639 66.9115320 ' 940w 08. 09%9 53 48301

-' - M ff _ .

21 205C696.63318 %5.8481622 2128161.61899 *1 7280023 2C9:0C0.*1801 0.0000029 2717399.81151 21.9273225 2716971.3476% 21.9*84626 2716*92.20866 21.9706827 271596*.42Iw8 21.99%5128 2715%08.32506 22.0188129 2719851.25741 22.0931530 271%*83.53681 22.059*531 2719319.31936 22.C67C2 663.*1530

DN8 IN HX 2 BETWEEN 31 ANC 32 AT Z= .59933 677.84743 193619.7 % 2532 37,6807.57391 22.11056 713.6E '2 677.89743 193619.79625 6633 3295934.23714 22.13037 751.w6s09 728.53476 6f>700.97159 603% 3327659.33228 ?2.f%C60 768.75753 756.497*5 32*91.63007 6035 3366873.13831 22.1+620 777.01181 771.17254 15975.71791 6036 3366473.82970 22.1556337 3365863.98585 22.I699838 3364293.51070 22.2066439 3362712.36C88 22.2935540 336Ii66.636 6 22.27999

TUR8iNE FLOW SEGMENT1 3327525.92695 0.000002 3352280.92927 67.350133 3348162.13637 67.57095

FLOW SEGMEST VARIABLESI 1 80.21037 49.19389y 2 22.06276w 3 67.46054N

VOLUMESI i 10168895.79579 1983885.52866

2 101119'7.16509 3352280.92927

MAXIMUN CHANGES .N STATE VARIABLES DURING THIS STEP WERE. PRESSUPE .0001480 E N T H Alf 'Y .0n36278 FLOW RALE .0077886

RAOlAL TEMPERATURE OlSTRIBUTION DATA FOR EACk Ax!AL SLICE IN REACTOR CHANNEL 1

TOTAL FRACTIONAL POK " IN THIS CHANNEL .0060$

RAOl AL NOCE NUMBER (TrT)

1 (FUI 2 IFU) 3 (FUI 9 (FU) 6 (CL) 7 (CL) 8 (CLI 9 (CO) 10 (ST)HGT(Mi 22WERATURE IK4 FUEL ST ATE I R= RESTRUCTURED. U*UNRESTRUCTLRED)

.178 661.76:U 660.99;U 660.38;U 659.79;U 657.31;- 657.29;- 657.18;- 657.1*;- 657.69;-

.%D2 7L8.14:R 700.21:U 653.63;U 687.30;U 671.11;- 670.41;- 669.79;- 669.41;- 667.02;-

.493 743.99:R 732.83;U 7Ew.41;U 716.37;U 690.4*;- 689.60;- 688.87;- 688.36;- 682. i ') ; -

.585 773.59;R 760.45;R 750.17;U 7w0.39:U 711.47;- 710.50;- 709.64;- 709.01;- 700.hJ;-

.676 799.77:R 785.23;R 773.86:U 763.05;U 733.C8;- 732.05;- 731.15;- 730.49;- 720.92;-

.767 822.08:R 80R.91;R 795.06:U 783.79;U 753.92;- 752.89;- 751.99;- 751.23;- 742.68;-

.859 89).90;P 826.01;R 813.99 U 802.55:U 773.22;- 772.22;- 771.3%;- 770 55:- 769.77;-

.950 851.91;R 839.47:R 828.17;U 817.%2;U 789.98;- 789.06;- 788.26;- 787.49:- 786.17;-1.092 860.53;R 897.66;P 837.59;U 827. 99 ;'J 803.21;- 802.40;- 801.70;- 800.99;- 805.78;-1.133 860.63;R 899.95;R 891.57:U 833.57:U F,12.31;- 811.65;- 811.07;- 810.99;- 822.89;-1.229 859.07;R 8%5.95;U 839.10;U 8 33. 68 ;U 316.97:- 816.47;- 816.05:- 813.53;- P36.71;-1.498 79 ' . 27 ;U 797.52;U 797.73;U 797.93;U 798.61;- .'0.63;- 798.66;- 798.53; 893.82;-2.2% 0.00;- 0.00;- 0.00;- 0.00; 0.00;- 0.00;- 899.99;- 770.57;- 894.99;-

I

NN00

l

..

__

-- ..- --

n: s3 'E+ER A iwE O!STRIBUT ION DAT A r0R EACH AXlAL SLICE IN REA070R CsA*AEL 2

TOTAc FRACT!ONAL P M R IN THIS CHAN?.EL .9830=

RAOl AL NOCE NUMBER (TYPEI

1 trui 2 trus 3 irU) * rrVI 6 (CLt 7 (CLI O (CLI 9 (Col 10 ISTIHGT(Mi TE % RATURE (K) FUEL STATE ( R *RESTRUC TURED . U=UNRESTRLC TL9EO )

.178 660.07;U 659.50;U 659.05;U 658.62;U 656.80;- 656.75:- 656.71;- 656.68;- 657.39;-402 701.13:U 694.95;U 690.15:V 685.52:U 668.40;- 667.85.- 667.%*:- 667.15;- 665.38;-

.%93 729.03R 716.26;U 710.28:U 70w.53;U 68*.56;- 683.95;- 68?.Sl:- 683.03:- 678.39;-

.585 797.82;P 738.43:U 731.22:U 729.29:V 701.74:- 701. 0 h - 700.91:- 699.99;- 699.07:-

.676 769.17;R 758.60:U 750.61;U 7*2.95:U 719.30;- 718.55;- 717.89:- 717.3S;- 711.81.-

.767 786.98;R 776.31;R 767.95:V 759.97;U 736.21;- 735.45:- 734.78:- 734.22;- 730.58:-

.859 802.51;R 791.72;R 783.26 V 775.19:V 751.80 - 751.CS:- 750.41 - 749.62;- 799.60;-

.950 Ol2.61;R 802.51:R 79*.59:U 787.02;U 765.2%:- 754.56:- 763.97:- '6 3. 4 0 : - 768 03;-1.092 817.70;R 808.65;U 801.69:U 795.00;U 7 .57;- 779.98;- 7~4.97;- 773.99;- 78's 92;-1.133 817.85;R 810.33;U 809.59;U 798.97;U 'd2.48 - 701.99;- 781.56;- 781.10;- 79: 61;-i

1.229 812.88:U 807.26:U 802.89;U 798.67;U 785.82;- 785.45 - 785.19;- 789.76;- 811.56;-1.4%8 769.16:U 769.33:U 759.96;U 769.59:V 770.0%;- 770.06:- 770.08:- 769.09:- 817.68;-2.236 0.00:- 0.00;- 0.00;- 0.00:- 0.00;- 0.00:- 818.79;- 753.29;- 818.69 -

I

toNSC

1

. _ _ _ .

AAO|AL T E*9EL A T'#E C : 5 9 :9Tl?.CA7A r ^9 E LCH Arts. 5 ':E PE AC T ^A C+#E L 3'

TOTAL rp A; T i;e, A. p';.E n ' * . T*:5C@th IC*:'

PA !A. P.%E WTER (TYE1

I trui 2 'ru) 3 crui * (rui 5 6;L 7 tiu: 8 (Ccl 9 001 10 iSTHGTim TE *EAATSE t<i FLEL STATE ' E==ESWJCTSEO , U=JFESRC TSED ;

D68 E56.91;u E5E.w*;U E56.09;U E55.73;U E55.17.- E55.15;- E55.i*;- 655.12;- E5" 73;-. JC 3 E62.90;V E61.76;J E60.93i EEO. !;U E58.61:- E58.'7;- E59.74;- E58.E9.- E57.93.-.333 677.E5;U 67'.*3;U ESS.73;v EEO I2.U EE5.6*;- 565.56;- EES.*9,;- E65.33;- EE2.71;. * 74 E9 '- 10 ;U EeS.87;U E85.E6;U Ee2.E1;U E78.17;- 679.03;- r77_g - E77 71;- 671 83;-.610 716.*9;U 7;0.E8;u 7:6.29;U 72.13;U E96.42,- E36.2*;- E96.C7;- E 35. 81 ; - E85.77;-.795 733.lC;u 732.63;U 727 77;U 723.!6;U 717.11;- 716.92;- 71E.7 :- 7 6.*5;- 7:2.*B;--

.881 7EO.E*;U 753.95;u 7wa.32:U 74*.ie:U 738.1*;- 737.96;- 737.79;- 737.%3;- 719.92;-1.016 779.- ;U 772.25;U '57.ES;U 753.31;'; 757.87;- 57.71;- 757.55;- 757.P3;- 736.w9;-1.151 768.61:0 784.05;U 'sC.E5;U 777.*5;J ''7 3 . ' 2 ; - -'7 3 . 3 3 ; - 773.19;- 772.93;- 750.C7;--

1.297 792.22:U '93.50;U 797.'-9;U 795.56;u 783.1E;- 733.C3;- 793.C3;- 732.91;- 759.30;-1.422 731.33;U 30.22;U 799.*;;U 759.63;c 737.E :- 787.61;- 787.te;- 787.53;- 76+.29;-1.558 790.EJ;U 730.17;U 783.84:U 793.5h;u 789.13;- 739.12;- 799.11;- 793.03;- 7 % . 33 ;-

2.1%6 0.C3;- 0.C0;- C.CC;- 0.C:;- 2. C;- 0.CJ:- 7E6.93;- 789.35;- 7EE 98;-

1

NCDO

1

F AO ! A: T EMPER A TURE D I S TR I BU T I ON C A T A FOR E Avr4 AMIAL SLICE IN T ACTOR CHA ZEL 9

TC4 g rRACTICt4AL POWER IN THIS CHANNEL .0070=

RADI AL N00E NUMBER (TYPEl

I crU) 2 IFU) 3 trUs 9 (FU) 6 (CL) 7 (CL) 8 (CL) 9 (C01 10 (ST)HGT(M) TEMPERATURE IK) FUEL STATE ( R=RESTRUC T FED . L'=UtJRES TPUC TUPEC )

.181 0.00 - 0.00;- 0.00:- 0.00 - 0.00 - 0.00;- 655.13:- 653.91:- 655.13;-

.403 699.31:U 687.26.O 682.09:U 677.29:V 658.16:- 657.05:- 656.19;- 655.76:- 655.97;-987 697.61:U 690.60.U 685.97:V 600.69:U 661.78;- 660.68;- 659.79:- 659.90:- 657.65:-.570 700.88:U 693.89:V 688.78:V 689.09:V 665.34:- 669.D6:- 663.38:- 663.00:- 659.33;-

.653 709.13:V 697.14;U 692.05:V 687.32:U 668.82;- 667.75:- 666.89;- E66.51;- 661.01:-.736 707.35:V 700.~6:U 695.27:U 690.56:V 672.18;- 671.13:- 670.28:- 669.90;- 662.69:-

.819 710.55:U 703 ';6 : V 698.47:U 693.76:U 675.98 - 679.%%:- 673.60;- 673.22;- 669.37:-

.902 713.73:U 706 79;U '01.65:V 696.99;U 678.76:- 6 /7. 7-) .- 676.88;- 676.50:- 666.C5:-

.985 716.91;U 709.90:U 709.82:U 700.10:U 682.01:- 600.90 - 680.19;- 679.77;- 667.79;-1.068 720.07:V 713.06:U 707.96:U 703.25:U 685.23:- 689.21:- 683.38:- 683.00:- 669.92;-1.152 723.22:U 716.20:0 711.10:U 706.38:V 688.43:- 687.41:- 686.59;- 686.21;- 671.10:-1.235 726.33;U 719.30:U 714.19:U 709.97:U 691.61;- 690.59;- 689.78:- 689.90;- 671.99:-1.565 0.00;- 0.00;- 0.00 - 0.00:- 0.00;- 0.00:- 671.95:- 690.89 - 671.99:-

I

b)CDH

I

SSC-L PRELIM 09/30/78 SSC-L. CRER. *-CHAN. 1-LCCP. CHAN-1 15 AVO IN PEAA. 09-l* "9. PAGE 171Brt - FAST PEACTOR SAFETY Div. 09'22/78 10.09.27 177.227 SEC.

O GO.00000 12500 .12500 60.00000

LOWER |rLET PLENUM **********

T61tL T TELPN T6LMT P68COR6.5513E+02 6.5390E+02 6.5903E+02 1. %76E + 05

***** UPPER OUTLET PLENUM *****

P60MTL 26NALV 26 JET 76 AVER T60VTL P6CGAS1.3780E+05 6.4097E+00 3.7586E+00 7.5387E+02 7.8869E+02 9.7688E+G9

T6NAA T6NA8 T6CGAS T6M1 T6M2 T6M37. 9293E + 02 7.8869E+02 7.9615E+02 8.0019E+02 7.6973E+02 7.9990E+02

***** 8YPASS CHAf 4.EL ***

W60 PAS T6LPN T68 PAS T68PM F6FL 8P F6h JPtI) F6RES (2)1.418 3E + 00 6.5390E+02 6.5951E+02 7.6770E+02 7.9031E-03 6.4302E*02 1.7561E*02

1

NCDN

|

_ - _

Mr M

SSC-L PREL IM 09/30/78 SSC-L. CP8R. 9-CHAN, 1-LOOP, CHAN-1 15 A40 IN PEAA. 09-15-76. PACE l'2Ort - F AST RE AC TOR SArE T y O l v . . 09<22<78 18.09.27 177.231 SEC.

- - - - C OPE - - - -

CHAMEL NO. MASS FLOWRATE rRA; TION Or rLCW RE 4 7_OS NL**BER1 8.57316E-01 4.77708E-03 2.91029E+C9

AXIAL NODE HEIGHT T TSAT P ENTHALPY FF OTION HEAT TRANS.COEFFICIENT COEFFICIENT

I 0. 6.53901E+02 1.22536E+03 1.89792E+C5 8. 639 36E + C5 %.77518C-62 1.69260E*C5E 3.56000E-01 6.60383E+02 1.22325E+03 1.81668E*05 8.7179'E+05 9.79780E -C ? I.67877E+053 4.%7900E-01 6. 789 30E + 02 1.22271E+03 1.80869E+05 8.998*2E+05 % . "'07 3 3C - 02 1.65724E+054 5.38800E-01 6.98299E+02 1.22217E+03 1.80073E+05 9.20185E+05 %.66558E-02 1.63*01E+C55 6.3020DE-01 7.19733E+02 1.22163E+03 1. 7928 3E + 05 9.97459E+C5 9.62463E-02 1.61CIM +056 7.21600E-01 7.9115]E+02 1.22108E+03 1. 784 %E + C5 9.74619E+n5 4.58700E-02 1.58729E*C57 8.13000E-01 7.61313E+02 1.22055E+03 1.77715E+05 1. 00013E + C6 4.55373E-02 1.bto 6E + 058 9.04400E-01 7.79786E+02 .22001E+03 1.76937E+05 1.02346E+06 4.52580E-C2 1.59785E+059 9.95800E-01 7.95209E+02 . 21997E+03 1.7616*E+05 1.0929CE+06 4.50939E-02 1.53337E+05

10 1.08720E+00 8.C6777E+02 1.21893E+03 1. 7539 3E + 05 1.05740E*06 9.48970E-02 1.52323E 0511 1.1736CE+00 8.19108E+02 1.21890E+03 1.7462*E+05 1.06670E+06 9 M8195E-02 1.51788E+0512 1.27000E+00 8.16997E+02 1.21786E'03 1.73857E+05 1.07020E+06 9.5C818E-02 1.53599E+0513 1.62600E+0C 7.'3115E+02 1. 2157 3E + 03 1.'C854E+05 1.02387E+06 4.59045E-02 1.55752E*C51% 2.84500E+00 7.77034E+02 1.20017E+03 1.60512E+05 1.01999E+06 4.54095E-02 1.55752E*05

CHANNEL NO. MASS FLOWRATE FRACTION OF FLOW REYNOLDS NUMBER8 2 1.91267E+02 7.87158E-01 2.25910E+03to00 AXlAL NODE FCIGHT T TSAT P ENTHALPY FRICTION HEAT TRANS.W COEFFICIENT cr c!CIENT

1 0. 6.53901E+02 1.22528E+03 1.89666E+05 8.63436E+05 5.17736E-02 . us 3 3 3E + 05g

2 3.56000E-01 6.59956E+02 1.22319F+03 1.8157CE+05 8.70559E+05 5.08996E-02 1.6813*E+053 9.47400E-01 6.74897E+02 1.22265E+03 1.00778E+05 8. 90263E + 05 9. 95839E -02 1.66327E+05% 5.388000 31 6.91218E+02 1.2221tE+03 1.79990E+05 9.ll'67E+05 9.89994E-02 1.64419E * 055 6.30200E-01 7.08653E+02 1.22157E+03 1.792L5E+U5 9.33372E+05 4.85860E-02 1 62968E+056 7.21600E-OI 7.26067E+02 1.22109E+03 1.78929E+05 9.55996E+05 9.82596E-02 1.60597E+C57 8.13000E-01 7.92369E+02 1.22050E+03 1.776*7E+05 9. 7616P05 4.79603E-02 1.58878E + 058 9.04900E-01 7.57273E+02 1.219%E 03 1.76874E+05 9.9502 m+05 4.77139E-02 1.57399E+059 9.95800E-01 7.69525E+02 1. 2199 3E + 0.3 1. 7610 3E + 05 1.0105tE+06 k.75272E-02 1.56290E+05

10 1.08720E+00 7.78357E+02 1. 21889E + 03 1.75334E+05 1.02166E+06 4.79039E-02 1.55973E+0511 1.17860E+00 7.838*6E+02 1.21836E+03 1.74567E+05 1.02858E+06 9.73910E-02 l '. 55079E + 0512 1.27000E+00 7.85667E+02 1.21782E+03 1.73801E+05 '.03088E+06 4.75963E-02 1.56676E+0513 1.62600E+00 7.59308E+02 1.215 7ti+03 1.70806E+05 t.91275E+05 9.78978E-02 1.58506E+0514 2.89500E+00 7.52169E+02 1.20016E+03 1.60498E+05 9.88568E 05 9.78978E-02 1.58506E+05

CHANNEL NO. MASS FLOWRATE FRACTION C.' FLOW REYNOLOS NUMBER3 2.49999E+01 1.39303E-01 9.C9519E+02

AX1AL NODE HEIGHT T TSAT P ENTHAL PY FRICliON HEAT TRANS.COEFT'CIENT COEFFICIENT

I 0. 6.53901E+02 1. 229 39E + 0 3 1.83277E+05 8.63936E+05 1.12380E-01 7.74516E+092 1.35967E-01 6.56331E+02 1.22356E+03 1.82123E+05 8. 66553E + 05 1.1161CE-01 7.72649E+C93 2.70931L-01 6.61090E+02 1.22278E+03 1.80970E+03 8.72589E+05 1.10196E-01 7.69138E+094 9.06900E-01 Li . 69736E + 02 1.22199E+03 1.79819E+05 8.83726E+05 1.0770CE-01 7.6'721E+C45 5.41867E-01 6.85689E+02 1.2212tE+03 1.78673E+05 9.09106E+05 1.09259E-01 7.53369E+096 6.77333E-01 7.05931E+02 1 2209PE+03 1.77532E+05 9. 29909E + 05 1.00620E-01 7.42789E+097 8.12000E-01 7.26975E+02 1.21963E+03 1.76398E+05 9.56698E+05 9.72181E-02 7.32129E+09

- - -

_ _ _ _ _ _ _ _ _ _ . .

i

1- 1

.

_

__

+ * w**** .T 9 * * % * * * * %%9%%*CCC0D0C SNC000C00000C000+ * + + + + + NE+ + + + + + + + + + + + + +EEEEEEE AIEEEEEEEEEEEEEE7%22688 RC30981618%1C8338. 3 9 1779299 TI27707715186%33*22 F252075921367222*97666 T i 3210B7659211I21C0CCC AE2222I11111I0C07777777 KC555555555555551O . . .

2222222 222222222222220CC00C0 00000000C00000- - - - - - - T - - - - - - - - - - - - - -EEEEEEE NEECEEEEEEEEEEE992?70C NE7E59790%0639%%*391966 O!62623909991377%399855 IC*6937175938299206C888 TI%31087593322l142CC999 CF1111.C0C0000CO0IF9999888 RE4%%9%4%4%%%9%%FO

C

5666666 553555555555550CCC0CC CCF0CCCCCCCC0C* + + + *++ + + + + + + + + + + + + * +EEEEEEE EEEE

639%X2563821EEEEEEEEE388I531 Y %2979B673 P 366180787E92712621 455 L * 4183602%678863023333 A 338271609826C08 0 7 ;. 0 C 0 H 66677889990CI191111* 1

T.

. . . .

N 8088888E889999E

5555555 555555555555550CC0C?C C0C0CC000CCC0C* * + + +* * * + + * + + + + + + + + + +EEEEEEE EEEEEEEEEEEEEE1t6* **3 228521C01358157532107 627399173951872109871 R 191 * 692*7925765*31091 E3 P 17765 493211097777766 B0 87777'777777766'M+1111111

N311I11111111111LE

9S0C7

3333333 L5 33333333333333000C0C0 O C000C0C000C01J* * + + *** N% * + + + + + + + + + + + -EEEEEEE Y EEEEEEEEEEEE /J5699016 E 1976%2C86*29F6902,796 R 96161615C50*928876590 T 20099887766591!|1 110 A 222111111111112222'222 S 222222222222,22W T1t 11111 C 1111111I111111

L2FC

-rE

2222222 C7 2222222222!22200C0C20 2

026wt3" IC!!CCC0C0C0000CCC* * + + * - + + + + * + * * * + + + + + +*

EEEEEEE EEZEEEEEEEEEEEO 12 55325135I930 2 9'18376%91107C0618 T 8805**651 C5 9952725B13689706T8888t6699

A T 3371 %81 %8l4700*6.

F . . -.

P 355666777.O88997777777 66666366666666

El00;000 T 1 11l11111C0000C00E00C A0 00O000000C0C0- **e **+ R+ - - - - - - - - + * + + +EEELEEE WE EEEEEEEEEEEEE7307300 C2 C75296%12570C6726160 L9 T 0258036990138239*057 F2 H 90129567603628O15926 9

I 6921976901128G

w C. 2 3 %.6 6 S0 1581 +70321975. S E . . . . . .

9I11112 A1 H 03956678911111M

O EN C

OL NE989012341 f L I23%5678901111A

1!23%A111f

I

H XC A

+o3t0C 1,

__

_

-COOLANT H CRAULIC RESLtTS-rRIMiD Y L OOP

NO PIPE BREAKT I ME = 60.00 (Si

PRE SS'SE S (N'(M*MI)

LOOP NO 1 LOOP NO 2 LOOP NO 3

PPECSUPE INTO LOOP .1379E+C6=

PREsm AT VESSEL INLET .2035E+C6=

PUMP INLET PRESSURE .1376E+06=

PUMP OUTLET PPESSUPC .1372E+C6=

PUMP PPE3 M RISE .4086E+03=

COVER CAS PPESSUPC .1035E+CE=

FLOW RATE IkG/S: PRESSURE LOSS (N/(M*MI)

LOOP NO 1 LOOP NO 2 LOOP NO 3 LOOP NO 1 LOOP NO 2 LOOP NO 3

PIPE 1 .532E+02 .697E+02PIPE 2 .597E+02 .1%6E+05PIPE 3 .597E+02 .586E+05PIPE 4 .597E+02 .895E+05PIPE 5 .597E+02 .ll1E+06

I TOTAL COPE Flow PATE = .179CE+03 (kG/S)NCoLn CHECK VALtEI

L00P NO 1 %OOP NO 2 LOOP NC 3

PRESSURE LOSS (N/(M*MI) .8095L+02=

PUMP AND PUMP TANK PARAMETERS

LOOP NO 1 LOOP NO 2 LOOP NO 3

ROTATIONAL SPEED (RPM) .1012E+02=

HEAD (M) .5040E-01=

HYDRAULIC TOROUE (N*M) .3090E+01=

FRICTIONAL 10 ROUE (N*M) .9592E+03=

ENTHALPY E;5E (J/KG) .1699E+02=

COOLANT LEVEL IN TANK (Ml= 4214E+0!

WCORE= .3926017E-01

WI,W2 = .3052389E-01 .3926017E-01

.9072373E-02OMEGA =

H/ ALPHA 2.NU/ ALPHA .5962938C+07 4190652E+09H/ANU2, ALPHA /NU .3110736E+00 .2386264E-03

3

CP

l PO

3 Mi O 3* LMI

.

O N ON (

2N

P S PC S OO O O C

w LL L

E PR OU C

P S LC SC

W_LF

E5536** *T 1

A 0U00* * *I 2 + * + + * * * 2O O EEEE" * *

N 711 * * *M 0210* * *P f 9033* * *E O C 2121 * * * O

N O . * * * N'NI P R P

L SC E O

- O T OS L E LT *

3 AA 1

S K 1

RA

E A M O PNR E **a P K

C e ( P N. C A

'A E N O TP 6 L

) PA 1

65636 S 1 1A P S 1 2113211*

G C C0C0C /

P + - + + + + *L C00CC00

O P * - * * + GH N L EEEEE K EEEEEEE

S O 00966( 2 C 2897366S 11650

O 3977968'N

*E N 77673 E A N 431 4299

A c 88838 T O 449I133L o P A N A PO O - A M O -

O O P U OC L W C P L- O O

L LF

= = = = = = = = = = = =1 3223332 l

) K C00000C MS N + + + + * + + I (

1 EP N 1 * 4111 w MI M( A E O EEEEEEE I

M* KNl NtPUEE 90C8880 P *

EUSSP P 2w*2224 R N(GAMC RSEaS O 1E.6 1116 (

(E/'s GSSlU O KT(

UER S L D EUJNL

SPPMRE E UOI IE0

P E QP6 VT T

I P P RCELEATES S OTSEL

ELSS T IVA L LREKE(TMGP? U A CA LN

S P123%5 NIINY AU!OF

OMLOPTTLI LN= SPPPE II

EM1 Mv T ATAAESPUiUO ADRCHLGEI

PPPPC TAOITORMO YRNOURKHFECST

EEEEEPPPPPIIIII HVPPDPPSE

yC& IDI

092

EGC 1

AE 0PS -

E5 06 703 00

959 3 .1 22 23 2

00 0 = =3 ++ - PT5 EE E EL

28 2 TE5 45

1 669 SD

1 9647 0 L5

0 74 31

073 0601,

-8 E

97'

0- / 21 2 00

2 00 0 9052 + - - 45

/ EE E 219 79 3 290 17 50 68 2 = =

98 l PT93 l EL

n . . TEA 079 0l0 SDE - 5SP LS

N 11

I

32! 01100000 000

+ ++ + - - - .G EEE EEE E 4

!. 7 3 220 012V; 586 30EA

S136 901 100

I

7'2 770 B5549* 479

221 375 1l1

P = = =- - - -N E PTAA T ELLH l21 21 S TEEC CC0 00 E SD0

- + + - - MEEE EE I

336LS5

P 62 l6 11

0 TC

l

* 33 *O l*16 %1

I - -C 00

72 20Ll8w . w9 L EE-

U 001

E975 C7l A 600

N.G - R 0J0A C 6 ?. 5A W Y

H C120 12 H 22C A000 00

- P+ + + - - E = = =w EEE EE H PTA

S*55 B1 T ELLC645 5% TEE

R E-17 6% G SD09 IL%73 62 N II5D U287 59 I LS5C A T

P5750 6700 C 11

0 D - I 00L 0 Y R - -- 0 H T EE

C 0 !023 095 S 00S 0 P0000 000 E 500S O++++ + - - R 000

0 OEEEE EEE 6552 L2798 035 Y . .

0395 315 L 221

Y5796 090 Tv B9097 179 N = = =

0i 7494 236 E PWA7D D P NTLL/ = E%673 3110 R OSEE

WDD0f T - U I

3T E A C Tt II/E M R ALSS9F I G 5 M

R0A T E 1

OS TK N 2 F

P C T NMC O

I

O I

T L S rILC C E DEA L1 l

E PL E

P R BY Y B T

PF E A A ST S

I I ETR R M

S A A A I

A M V V TF

L- -

CStSr

O

1 NCN |D

tea- RE50_TS LOCP NC 1

T 1 *C = -R Peat T PaE = 120.C'

F da RATES ;GS)

WIPIPE* %7.95 52.w9 52.*9 52.w9 52.*9

@ ! PE = 59.2S 27.13 27.13 5*.26 54.26

TEMPEAATifEs t()

PR| MARY LOOP

T i t oL T = 787.136

PIPE = 1 787.136 787.590 769.*55 789.456 790.500 791.530 792.511 793.416 75.229 794.936

~ 95.5 32 796.019 796.41: 796.729 796.999 797.25% 797.519 797. J8 798.125PIPE = 1 <

PIPE = 2 799.125 798.*39 ~03.766 799.089 799.396 799.676 799 12 3 600.136

I PlPE = % 626.12A 627.*01 629.008 630.825 632.735 634.661toos PIPE = 5 63*.661 635.476 636.266 637.C87 637.879 638.660 639.929 640.167 6*0.932 691.G6503

PIPE = 5 642.386 6*3.093 6*3.766 6-4.464 645.127 645.773,

T10UTL= 6%5.773

IH( PRIMARY

TIINHX= 800.136

T10UHX= 6 5.126

TIBYP = 801.18w

ACTIVE H.T. REGION

800.739 755.129 'N7. l *9 739.797 730.665 722.829 719.499 706.329 698.0*7 6 1.7*1

681.393 673.037 66w.712 656.wel 699.**2 640.746 633.630 627.*73 022.822 619.935

INTERT DIATE LCCP

T20VEv= 531.887

. _m - -- - - -

PIPE = 2 695.175 679.136 666.748

P!FT = 3 531.887 556.702 57*.078

PIPE = w 57w.073 579.365 594.G21 588.192 591.982 595.w*l 598.599

PIPE = 5 598.598 602.20% 605.s .2 EC8.C92 610.*17 612.365 613.970 615.272 616.308 617.!20

P!oE = 5 617.7w6 618.22w 618.585 618.058 619.C63 619.220 619.339 619.931 619.502

RIPE = ! 785.286 7e3.9c2 783.31C 782.7s0 762.270 781.691 701.C8J 780.470 779.889 779.3432

PIPE = 1 778.860 778.4*1 778.089 777.802 7'7.577 777.404 777.277 777.186 777.123 777.081

PIPE = 1 777.053 777.036 777.C26 777.020 777.016 777.014 777.0; 777.012 777.012 777.012

PIPE = 1 777.072

T21NSH= 777.012

'HX SECONC A''- SICC

T2iNHX= 619.502

T20UHX= 785.286

I

w ACTIVE H.T. REGIONCD@

791.599 753.587 746.962 738.385 729.6*2 721.668 713.387 705.197 696.913 688.600I 600.248 671.09% 663.577 655.365 647.363 639.729 63?.718 626.734 622.343 619.661

STEAM GENERATCRS

TIME = 120.00000

HEAT EXCHANGER FLOW SEGMENTS SOO!UM FLOW 5*.263 IN LOOP 1=

1 1213779.4w87'i 55.519502 II70861.05556 56.578833 1136919.35557 57.393294 1110336.09911 58.014935 1092900.99766 58.423396 1092980.99766 58.423397 1087306.19255 58.5%0668 1082968.45597 58.638549 10821,I.6962% 58. 652'+ 710 1085725.69230 58.5764811 1095912.320*6 58.3954312 1102125.08653 58.203*O 53I.8867213 1190150.93172 50.07279 5*0.75112 534.45204 27779.66159 10tw 1183822.09595 57.91006 550.00930 593.25377 31701.35706 1015 1227371.71787 57.72507 557.578*6 551.7541* 31091.00830 1016 1277344.80952 57.59588 570.9768% 561.6?C22 370*9.67235 1017 126*927.6K 37 57.39536 590.2980* 557. 9t'02 -l'5910.68829 1018 1958791.78411 57.14658 636.76029 599.19079 162788.17012 1019 1961958.98291 56.0752620 1486299.44708 49.C8499

21 153%127.213d7 39.*182522 1598218.07556 31.I885523 2090000.91801 0.0000029 2718772. 6EE47 3.**5 3725 2718734.77559 3.wwS7026 2718FE5.5017i; 3.ww60527 27185w6.59518 3.**65228 2718379.05875 3.4971129 2718175.85310 3.9977830 2718026.85491 3.4482731 2717955.0'223 3.4w851 695.1799732 3200329.05592 3.477?2 7*7.65778 717.21489 35382.37977 6033 3335869.20%%2 3.47590 766.36378 756.12597 3519.39926 60

39 3369090.32570 3.97733 77*.57329 770.C5353 2096.63132 6035 3380759.60%67 3.47769 777.01187 775.66999 739.53499 6036 3380563.1629, 3.4781537 3380258.93890 3.9789538 33791% .19979 3.4916639 3377895.19591 3.w850540 3376397.971W 3.48881

TUR8lNE FLOW SEGMENT1 3327525.92695 0.000002 3364933.53509 10.550133 3359532.58953 10.59019

FLOW SEGMEST VARl*BLESI 56.93669 15.67389

1 2 3.459303 10.57016g

eo VOLUMES

10097179.50975 2%2117C.763721 2 10100270.59632 3369933.53509

MAXIMUN CHANGES IN STUE VARIABLES C W ING THIS STEP WERE, PRESSURE .0000020 ENTHAlPY .0008309 FLOW Raft .0001582

_.

, - - - - -

RACIAL TE**ECATURE O!Sta!BUT!th CATA rOR EACM Atla. S !CE IN T ACTOR CHANNEL 1

TOTAL F R AC T [ C%AL R(;C I N THI$ CmANNEL = .0060

RACIAi NCCC NL'MBER 1iTPC1

1 trui 2 trU; 3 rru) % t rm 6 (CL- 7 (CL) 8 1C,1 9 (COI 10 ISTIHGTIM3 TE WERATU E (K1 rUEL STATE (R=RESTRUCTUREO. U=UNRESTRUCTLFED)R

.178 ELO.60:U 653.96:V 659.w6:V 659.98;U 656.o5:- 656.89:- 656.89;- 656.82:- 657.69;-402 700.03:R 693.76;U 688.55;U 683.52;U 670.5*;- 669.9A - 669.48;- 669.21; 667.02;-493 739.03;R 725.09:V 718.31:V 7tl.00;U 690.64;- 689.9t - 689.35;- 689.01;- 682.10:-. B5 767.10;R 756.28;R 797.80;U 739.71:U 715.75:- 714.9*;- 714.23;- 713.03.- 700.30:-*

.676 801.39:R 789.C9;R 779.*5;U 770.28:V 7';.15;- 799.20:- 743.51;- 793.08:- 720.92:-

.767 835.68:R 822.50;R 812.19;U' 802.37:V 777.15;- 776.28;- 775.50;- 775.06;- 792.68;-

.059 869.03;R 855.%2:R 8%%.76:U 834.60;U 809.91:- 809.C6;- 808.29;- 807.85:- 769.77:-

.950 896.50;R 883.57:R 873.w.;U 863.73:U 8' 0. 82 ; - 890.09;- 839.35;- 838.S2;- 786.17:-1.042 917.04:R 905.50;R 996.92:U 887.73:V 867.35;- 866.69;- 866.10;- 865.68;- 805.78:-1.133 928.85:R 919.39:R 911.90;U 904.71:U 887.66;- 887.13;- 886.66: 886.27;- 822.8%:-I.229 931.15;R 9cN .17 : V 918.73;U 913.95:U 900.52;' 900.13;- 899.80:- 899.%7:- 836.71;-1.498 878.43:U 879.35;U 880.03;U o80.65:V 882.38;- 882.43: 802.%9:- e8e.38;- 893.82;-2.236 0.00:- 0.00:- 0.00;- 0.00;- 0.00:- 0.00;- 89%.99;- 854.02:- 899.99;-

I

N@W

l

_ _ . . _

PADIAL TEMPERATG E CISTR:00T!ON CATA FOR EACH AtlAL 5t!CE IN AEACTOG CH A NNE L 2A

TOTAL FR AC T ID AL POwE A 7".5 CHANNEL .8830' =

RAO:AL NCOE NUP"8ER (TYPE)

I trui 2 IFU) 3 tFU) w (FU) 6 (CL1 7 (CLI 8 (CL1 9 (CO) 10 (ST)HGT(Mi TZMPERATURE t<a FLEL STATE i R = RE S ':+ C T URE D . U = UNRE S T RUC T URE D I

.178 659.34;U 658.88;U 650.51;U 650.16:U 656.65;- 656.62:- 656.59:- 656.57;- 657.34:-

.wC2 695.03;J 6?O.l*:U 686.33;U 682.65;U 668.96;- 668.55;- 668.18;- 667.99;- 665.38;-993 719.5*:R 713.23;U 7C9.36;U 703.67;U 687.35:- 686.85:- 686.90:- 686.16;- 678.39:-.585 798.66;R 740.B9:U 734,82;U 729.03;U 71C.35; 709.76:- 709.23;- 708.95:- 699.07;-.676 779.27:R 770.26:U 763.*3;U 756.87:U 737.1%:- 736.51:- 735.99:- 735.64;- 711.83;-.7F7 808.87;R 799.62;R 792.35;U 785.40;U 765.6*:- 765.00;- 764.93:- 769.11:- 730.5d:-.859 836.36R 626.99:R 819.61:U 812.5*:V 793.37;- 792.76;- 792.21;- 791.87:- 799.60;-

.950 857.47:R 848.75;R 891.87;U 835.26:U 817.76;- 817.21;- 816.73;- 816.38;- 768. L'3 : -1.042 871.47;R B63.78:U 857.81:U 852.04:U 836.62:- 836.35;- 835.99;- 835.60;- 789.92.-1.173 878.C6:R 871.83:U BE6.97:U 862.27:V B*9.73;- 8*9.36;- 899.0*;- 898.72:- 799.61;-

1.229 877.13:U 872.67;U 869.15:U 865.71:U B56.3*:- 856.07:- e55.85:- 855.57:- 811.56;-1.998 828.82:U 629.61;U 930.19;U 830.73:U 832.36;- 832.91;- 832.47;- 832.36:- G17.68;-2.2 36 0.00:- C.00;- 0.00:- 0.00;- 0.00;- C.00;- 818.79:- 801.23:- 81e.69.-

1

N@N

I

RADIAL TE H RATLGE O STRIBUTICn pa rA FCA EACH Ax!AL SLICE IN REACTOR CHANNEL 3

TOTAL FAACTIOr.AL PXf ' IN T-15 CHAVEL IO*C=

RADIAL NCOE NL%ER tTYPEi

I (FUI 2 trU) 3 (rui w (rul 6 (CL) 7 tc 7 8 (CL) 9 (Col 10 (SilHGT(Mi TEPEPA '. URE (K FUEL STATE ( R = RES TRUC TURE O U =UNRES T RUC I URE D )

.068 656.20;U 655.80:0 655.*7:V 655.16:U 654.66;- 65*.6*: 65+.63;- 659.61:- 655.73;-

.203 663.27:V 662.28;U 661.50:U 660.7*:U 659.5*;- 659.50;- 654.47;- 659.w3;- 657.93;-

.339 676.09;U 679.12:U 672.62;U 671.16;U 668.93;- 668.86;- 660.UO;- 668.72;- 662.71;-47% 698.52:0 699.92:0 692.13:0 689.w2;U 685.51;- 6e5.39:- 6e5.27 - Se5.ie - 67i.e3:-

.610 726.*3;U 721.56;U 717.79:U 719.15:U 709.21;- 709.C6;- 708.91;- 708.71;- 685.77:-

. 7%5 753.15;U 797.92;U 743.90;U 7*0.03;U 735.C1;- 73*.86;- "H.71:- 739.49;- 702.%8;-

.881 776.28;U 771.12.U 767.19:V 763.91:U 758.68;- 758.53;- ? '>8 . 9 0 ; - 758.!7; 719.92;-1.016 793.66:0 7e9.10;U 795.65;U 782.35;U 778.28;- 778.15:- 779.09;- 777.89;- 7 36. % 8 ; -1.151 802.30;U 799.12;U 796.79:V 799.47:V 791.65;- 791.56;- 791.49:- 791.39;- 750.07;-1.287 802.92;U 801.26;U 800.06;U 798.93;U 797.99:- 797.%5;- 797.42;- '37.33;- 759.30;-1.422 798.30;U 797.89;U 797.56.v 797.33;U 797.02;- 797.01;- 797.01;- 796.97; 7G9.2%;-1.558 794.14:U 79%.05:U 79*.C3;U 79*.03:U 799.09;- 79*.04;- 799.09:- 799.03;- 766.33;-3.146 0.00:- 0.00;- 0.00;- 0.00:- 0.00;- 0.00;- 766.99:- 791.85;- 766.90;-

I

N@W

I

R AD I A,_ TEMPERATUPE DISTRIBUTION CATA FOR EACH AW|AL SLICE IN RfACTCR CMavfL *

TOT AL FR ACT ICf4A.. RC# G IN THl; C-A*viL .C;,0=

RADIAL NCCE NLtEER tTYPE1

1 (FU) 2 trU) 3 trU) * trU) 6 (CL) 7 (CL1 8 (CL) 9 (Col 0 (ST't0T(M) T E * APE R A T URE wi FLEL ST ATC (R= RESTRUCTURED U=LNRESTRUCTURED)

*101 0.00;- 0.00:- C.00;- O.00:- 0.00;- 0.00:- 655.13:- 653.13;- 655.13:-903 67%.09:V 670.80:U 668.25:V 665.60:U 655.70:- 655.12:- 654.69;- 654.49;- 655.97;487 677.09;U 673.73;U 671.lw:U 668.63:U 658.37:- 657.78:- 657.29;- 657.08;- 657.65;-

.570 680.21:U 676.79;U 674.14:0 671.58:V 661 15:- 660.55 - 660.05;- 659.89;- 659.33;-

.653 683. 95 :U 679.96:V 677.?5;U 674.65:U 664 jw : - 66 3. w 3 : - 662.91:- 662.70:- 661.01:-

.736 686.80:U 603.29;U 580.48:U 677.82:U 667.Cw;- 666.wl:- 665.89; 663.67:- 662.69;-

.819 690.23:V 6B6.61:U 683.80;U 681.C9:V 670.16:- 069.52:- 668 99;- 668.77:- 564.37:-

.902 693. 7 3 ;U 690.06;U 687.21:U 684.45;U 673.40:- 672.75;- 372.20:- 671.98;- 666.05;-

.985 697.27;U 693.57:U 690.68:V 687.89:V 676 79:- 676.08:- 675.53:- 675.30 - 667.79:-1.068 700.83:V 697.lO;U 699.19:V 691.37:U 680.;7:- 679.51:- 678.95:- 67E.72;- 669.42:-1.152 709.IO;U 700.64;U 697.72:U E?4.88:V 683.66.- 683.C :- 682.41 682.21;- 671.10:-1.235 707.90;U 70%.16:U 701.23:U 698.39:V 687.20:- 686.55;- 685.98;- 685.75;- 671.99:-1.565 0.00;- 0.00 - 0.00:- 0.00:- 0.00;- 0.00;- 671.95;- 687.79;- 671.94;-

I

PJ@k

I

2

O

sMmt3

0)N

if_tD-

C)

* G)rD t -t- -e rij -

ON -OfQ +--f7) -w8

On O goO wO

N1D

44 6. GJLJ&

t DJ -

/ O O ~1+ e = '~

(1) LJ w - Lat

O -t t - O QO# OW MW WW4 yb { Q1 w-

wO w UI Q 10B & >- w~ m & 6 01-

nj Pe Me

/ () U O4 6 * e

1 J t.1 y RwLJ 6- J t QO

7- fu di _.J t -Oh 3- t aOQ W G) WD WW() n e- -

g --

O N NJ Ot ()

~ 4) 41 RJ (V OJt) (> (. ) O ()(3 * 4 9 4

7 a LA Ew y w4 O O (D L.J (D l'. @L sTJO ~

(pM 's u'l ~~ &O'

(D W) 4M 1 QfW 01 Wm W Oi Wh

f a - D h ht-- >- >-

(.

Q () e(Il 41 Rs e O QJ QJLI gi e () e o O OU IU * * * * * *

e y o y to w (A ye * - - t- f 4f- o 4-

.J e L of T wh O Cn e Q-e aM Q 7o yM e gh(7 I.' W O s

N e-- e >- -@f W@ * wC

v) y 6- yUl a- @ J @ b d

O w & J

'$ d' ru +- o fu $. ru. |tO. o. o. o.w

s- 6- 4.2@~ LI y F ^ tej .ej 1 LeJ%O Q 7 su 3 .<h 4- E-

f C3 t U 2 n'

a-*.0-- . tOs

**o '' N Lft M()%Cef d h3 @ @ @MF

wL Q e-- N >- 4-@ to d @ h b d040 %

L/1 O CD ~O _J ru O AJq (1 o e o o e o

EOo e + e + + e e

@W* _J w w *,e,, e >- tdyi .$. - 4s . 4_. o o4- . e

y-a 9 e--.-o4 u o

*fpN1 DD b& t0 C

s-- + s- -

*- t0 -- N fuCO s

4b

Je t

y'S

- 295 -

>c,'bC00000000000 *-00000000000000 .>.J 9 9 12 t2I O00000000000 2000000000u0000 g20000000u.- + + ++++++++++ W+ + + + + + + + ** .W+ + * *+ +

40-m-h-h4 --,Mh0M- $ - _U e fu m m e n t-wihMM,omm--- &, mC3Oxb wMOm21Mme Omm wh, um

V * 6 01 OQs GQJAfb b- w C') CQ O M O h 7 - CD h O - M >- L + N r- CD LD P I **4 DtOWWO 222223? 4 LD w D D D 0 0 0 S 2 ? 0 0 0 4* b LO O t M nJ

4 YU- ---- ----- - Y U - - - -. - - - - - L r2h rJ r N r-5d

M ~ ~ nJ r. . m m m m m m eJ ~ ~ ru m m m n: ~ ~ ru m m e nJ n. m -------

p.OooOOOOO ooO( )OOOOOOOOO OoooOoOOOOOOOOe e e e e e ef >- e i e e e e a e o a e o e >- a a e e e e e e e e a e e

Z t.J W W W y; W Wy W y y*n * Z W W W y Q LaJ W W W W LJ W Z W W W W LJ W LJWm ul Z W O t r- O w h boom CD Z LJ CD (D 0) N r.D GJ tO

- O - $ r ' N - D r- O m.Z LJ0 N r- ru - i o. - O O CD O - r- O ru M o b f-O iN O - CD M m O r 2 h h

N - U N $ - O O 01 O O "9g') C b i- -- U C M r* CD M O (D CD M f ~ - U M - r- CD h O rus t g; T >- - w O LD 0) O M@ f m & AJ ru > - O t - f- AJ h M

*- da m- r- ~ (Q O ) o r- t rUg r- r-. W (D. C. O. f. f. f. $ $ t U u O. O. M - O. . CD r- r-. r-. r- r- CD a3 O u m m m ru ru - -t . a . g - - .gOfffffffffff ' ff C ta,IO O O O O f f f f f 3 f f f TLJ**-"-*-****

-*

T yJ6 6O 60OU U U

G)- O O O O O O LD 0 W uf W Q W LD 0 0 0 0 0 C (O LO LD W LD @ O tD 0000000

oOooOoooOooooo ooOoooOoooooOo oOOoOOo+ + + + +++++++++ + + + + + + + + + +++++ + ++ ++++

* 3 la) W Lal W LJ L.J LJ eaJ LJ 1.1 L.J f.y L.) LJ LnJ Id L.J L.J LJ LJ LJ L.J LJ t.J L.J LJ L J LaJ L.J W> LD u - M w CD M f a f O M > W h o -* b O UiO r- >- W w 1 w M - N O O f a ul ,1 a M G J - M CD

I '' D-CL M +. r- O @ f f J f f W - r- - M r- Q M

O P O O CD O - - .UN iD r- N O - O M M LD - m p J f NOh*-f 01 - O M h (D U1 W W CD O Ji 8 J oj - 1 n1 h @ M t- - f Q r O h 01 . 0) O fu O CD o - ru O y--h .a nj 2 O 10 O ruO fu 4 mo atf CD O o o - - - o O I (D LD h 01 - 0 (D*- I W O' w N O 01 O O ** - - - - - I

e U) >- >- . - : r[ @ @ @ @ Gl Q) @N) ( J [ (D @ @ rp @ Q) e..eem. e. e.-= [ @ @ @ Q) Q) Q) .= e -.e.m.gytJ w w

V8 O O O O O O ul O O O O O O O OOOOOOOOOOOOOO OOOOOOO

L'J o O o o o o O O O o o o o(J oooooooooooooo oOoooOod + + + + ++++++++++ + + + + + + + + + + + +++ + ++ ++ +

7 1 - t - t M W nJ r.J LD CD rb ()-taJ LJ LJ LaJ LaJ LJ L.J L.J L1 LaJ L.J L.J LJ LJ LJ LaJ LJ LJ LM L i QJLa) LJ LJ L.J LJ La) Le) Lei LpJ LJ Laj LJ LaJ LJr- Aj ru r- r- M W $ CD r- CD - - r- f -= o ru LD 2 w

-- m CD CD @ O nj t rD N W - r- O O f ta r- CD O M D O t 011 O r- t O O O O ui nj dit t<l u I r- O N t i ) E .t M O h O ru f N 0) -- t f- r ip a.J ru a ru - O CD h (D O

m ru o 0) N w fM O 01 (D rD h (D u' m - t (D r-

TO Wt & t t M AJ rP L UM 1 M O m CD CD h q.D O .t t M ru m t) L

4* 1+ (D CD h b. f - F f- r-- FhbQOO.

CD (D h h h r- h b r- F h b 10 O' G.1 o CD (D CD h h r' bQO- - - - - +

+ZrJ

c.-we--*e.- Lg . e. gg *.e.JLm O1 s-

M O-

(f) t- (f) (f) b-O -- o- Oe 5 mmmmmmMmmmmmmm ru mmmmmmmmmmmmmm a mmmmmmm7 ( 00000000000000 0000000000000Q 0000000-t / nj + + + + ++++++++t + ru + + + + + + + + + + + +++ r +++ ++++1 F e y W W W W L J LJ U tjJ W taJ LJ W W > W W W LJ LJ 'd WLg W tJ tg La' tal W aJ W LJ W W t J LJU IJ Ln W t'' D - r- M E ) h O ru 3 M W W w (O CD O - CD O nJ o e f tQ ru W ru f C (O CD on -

r1 tMN -ruL.O - O O O O @ O CL t M CD nJ h nJ W - tD - L' a vi O a b01-MOHOFN a O m 0) rD CD h r- $ ru - - O 0 0) 01 CD CD h r- 1 r- >-- M ru ru - O m m

F.s na fu r , s u' nJ ru - - - - - - .t. b FtO ru ru ru fu N ru - - - - - - - O 4 nJ nj nj ru ru - -C(r in N ru ru ru ru ru ru ru nJ ru ru ru ru ru ui ru ru tu ru ru a ru ru tu ru ru tu ru nJ m N ru ru nf ru ru ru

>-- 3 e - - - g e5)Q's - .-- ----

-

o. - -- oJa _JM J. J-

- 6O kO kOe a e

k LaJ t* k' La. Laj/ O t0 AJ OJ N ru OJ OJ AJ ru AJ GJ fu ru ru ru O -- fu ru ru AJ OJ fu ru ru ru N ru r)J N ru OO nj rv ru GJ GJ ru fu4 M O(1000000000000 h 00000000000000 f 0c00000

o --b @F1 7 + + + + + + + + + + + + + + ~* Q * * + + + + + + + + + +++ 7Q + + +++++

LJ W W LJ l b- 8 LaJ W W LJ W W W W Laj LJ Y,1.J t J LJ W W Wo-F F- su - O - M M D) di M fu > 0 t O

--LJ W

cu r- r- m M L J LaJ W LJ d LJ H LJ ru f- f e cD cD u rD - - O - ru ru ru CD ru r- -m - CD 1 ru f CDiF- OJ - LD Of O O P CD ru fu -- 2 >= nJ O O N b I ruo - - r-(D O w -*JO - 0 0) - O W t - (D b CD - O M CD = 0 m m u n b 1 OJ f b b 1 m -'t U.i 0) w O h M M N P isl 4 &- M (D ru f L[1 -. N>- M r > r o N (D - t M h t J L J r- >- ' * O O g u f N o ru s O O 0 0)

m 6 6 - ft b w r- = - - -

E O O to t' m ru $Q. II O (D h o ru O G ru O O' 01 O LD f & In'6

(I 4D LD LD F F h h CD CD (D G 0) Q CD LD LD tD (D h h N CD CD CD CD CD O) h W (D W W (D h ;-U

J t.J Lak L.J--000000

E > - - --------OOOOO >= ru --------OOOOO6.E O

------

U 4O 0000000000000 =t o O000000000000W LI e e e e e I s e e + + + + + + e 4 e i e e e s + ++++ + 4 e e e e eW 3 LJ LJ 1a) LaJ L.J W Lal LJ L.J LaJ LaJ L.J L.) L.J Laj taJ LJ LnJ LaJ L.J L.J LJ t.) L.J Lak L J LaJ LaJ L.J LaJ L.J t.aJ LaJ LaJ L.J

OM 0000000000000 0000000000000 LD hMOhmoJf M Q o (1 O O o O O ru LD O O O J >= O o O O O O O O ru O O O O Jt >- (D M O (D M O

L AJ I O F CQ GJ Q O F T h CD O tO O 6 I O 1 CD N to O f CD h 0) O sp O 6m I f On f (D m (DV O tQ h w (3 - M t O Cr) P- r- ru ? o (Q h (D O - M f @ CD h h N Z (D

--d O O O - r- r.uO f M M ru - 0 0) R . ru Q CD @ ru - O f M M ru - O 0) o - ru 10 w Mo M t- o 2 h> M- -

I ,1- - - - - - - : O01 - U) : - - -

- - - W4- O m J i. . LD r- cD ai m - - - - ru 4 ru Y O - ru f O tD c0Y O m J O to r- cD 010i - - - - ru

qr- a i 4m .% i T E YOw iM>-- e

%L.JJ) 4 LJo .4

O}L

@U Q LeJ 3 O y

# Zr8 d. y'i

_; a .-- e ay- y OJ M.J o e

g ---- . .a -N m fr 3h em O-mm.f.4y .% .a - m m f O e h e m o - m m .s g ----a -mmfOmhW4 e.g

(L tl 4 - at - 4 -

I X I x I xw U 4 U et U 4W4k

Je s

"' a$.

.

- 296 -

9 9.w&25'E-Cl ~ . E 3219E * 02 1.21922E 03 1.'*37X :5 1 " C:2f+:E 1.0997*l -01 ~.i UwE+C*9 1. 9373E*:0 '.86*58E+C2 1.c;7w-E*03 ! 732F E+C5 .03186E+C6 1. C 7 8 3dE -01 /* O!E+C*-

1" '.2:92 E*:0 7. 96229E + :2 '.2:E6EE+C3 1.72;E:E+:5 . C,* 19E + L6 1.CE32;E-21 ' . C 2 3E5E + Cw11 . 35-67E+C ".98*39E+;2 '.2:587E+C3 7IC5*E+C5 1.0*EhE+:E C E 9'EE - C i '.C2*ECE+2,'

12 1.-90:3E+C 7.9*51CE*02 1. 215 CSE * : 3 . . E 9E*eE +;5 3329E*:6 1.07*2wE-01 ~.C-CC;E+C*13 '.62"4CE+0C 7. 9255 3E + 02 1.21-29E+ 3 1.EE9*1E :S 1.CIreE+:6 1.0 "E:E-C: ' C50'.X Ow1* 2.E67::E+C: 7.9:1"EE+:2 1.2 9 3E+03 1.E:327E 05 1.0375:E+ 6 ! . C"6:E -C 1 ~ R _E+0*

CHAVEL PC. MASS FL M ATE rcACTICr. 05 Flow ;E" CLOS NL*TERw 7. 77139E + C ] * 9;7E'9E-C2 3. 392E-E + 0 3.

At!AL NODE K | Cri 7 '?*T P ENTHALPY FRICTIN KAT TRANS.CCErrICifNT CCEFFICIENT

1 C. 6.53:22E*C2 1.222:6E 23 1.799;*W+C5 8.62*3EE+:S * 7 W :E-02 5. 2 3* 9aE * C-.

2 3.619:CE-01 E "31*TE+02 1.2:9BTE*C3 76'wie.+C5 8.62*EeE+C5 w.7.818E-02 5.23CI"l+0**

3 w.w5:27E-01 6.557 3'E C2 1. 219 ?6E + C 3 1.~ECl2E+C5 e.tS79:E+C5 . 7 332* E - 02 5.221CCE+:=w

5.29155E-CI 5.58-29E + 2 1.2 F W +C3 1.7529?E+ 5 8. 692w 3E * C5 *.72991E-02 5.2112'C+Cw*

5 6.:126?C-01 6.6:245E C2 1.21e35i*C3 . ~~55EE*:5 8. 72853E + C5 w 7?C23E-02 5. 201 12E + C*.

6 6. 9** 9E -01 6.541ECE+C2 1.2172*E*:3 7382EE*C5 8.7E587E+C5 * 71C2:E-02 5.19:63E+C*'

7 7 7'536E-Cl 6.67:59E+ 2 1.21732E+C3 73102E + C5 e.e:-EeE.05 .+.e99,9E-Ce 5.17373E.C,8 8.E:66-E-01 6.',3*5E+C2 1.2:68:E+C3 ~2376E+C5 8.8w5:5E+C5 w. 68899E - C2 5.168 G +0*9 9.*3791E-0; 6.73615E*C2 1. 216 3 E + : 3 ':E5:E+05 8.23E89E+C5 *.67'9%E-C2 5.1"E'5E + 0*

10 1. 02E92E + C ': 6.7E987E*C? 1.215 7E+03 1 :326E + 05 8.92EE 05 w.EEE3X-C2 5.In ??E+C*11 1. llc 5E+: 6.S **3E+C2 1. 2152EE + C 3 7:202E+C5 8.97422E+C5 w.65*72E-02 5.1325,F + w.12 1.1931'E*C: 6.83972E+C2 .21w75E+C3 1.EE%79E+C5 9.019?iE+C5 4.6*290E-C2 5.:20:X +C+13 1.2'63:E*C 6.9752?E+:2 1. 21 * 2 3E + C 3 1.E875EE+:5 9.CE*58E+C5 w . E 30 0 3C - 02 5.1:297E+C+14 '.9529:E+0C 6.89:53E+C2 1. 21 C 5BE + C 3 1.637*9E+C5 9.C7129E*C5 w.E3EC3E-02 5.1129'E+;+

1

MWN

1

-COOL ANT HYORAJL I C PESUL TS-PR IMAA * L OOD

NO PIP 8REA<T IT = 120.00 S)

PAES$UPES tN/IM*M)

LOOP NO I LOCP NO 2 LOOP PC 3

PPESSUPE INTO LOOP .1369E +t '=

PfE %$UPC AT VESSEL INLET .202PE+C6=

PUMP INLET PPESSUPE .1367E+C6=

PUMP OUTLET PRESSUPE .I361E+C6=

PUMP PPESSURE RISE .5672E+C3=

COVER GAS PRES $UPE .lC26E+C6=

FLOW PATE fxG<Si PRESSUPC LOSS IN/tM*MI)

LOOP NO 1 LOOP NO 2 LOOP NO 3 LOOP NO ! LGOP NO 2 LOOP NO 3

PIPE 1 480E+C2 .892E+C2P;PE 2 .525E+C2 .146E+C5PIPE 3 .52*l+02 .587E+C5PIPE 4 .525E+02 .895E*05PIPE 5 .525E+02 .lllE+C6

1 TOTAL CORE FLOW PATE = .1575C+03 (xG/S)N@02 CHECK VALVE

I LOOP NO 1 LOOP NO 2 LOOP PC 3

PRESSURE LOSS (N/(M*M)? .6221E+C2=

FU"D AND PUPP TANK P AP A*t. r ERS

LOOP NO 1 LOOP NO 2 LOOP NO 3

RO T A l l ON AL SPE'. G tRPMI .9114E+CO=

HEAD (Mi .6996f -01=

HYORAULIC TOROUE (N*M) .86: *01=

FRICTIONAL TOROUE IN*M) = . 3NE + 0 3ENTHALPY RISE (J/VGi .575CE+00=

COOLANT LEkEL IN TANK (M)= 9201E*01

WCORE = .301420 4-01

W1.W2 = .2753702E-01 .3019209E-01

. 81670 38E - 0 3OMEGA =

H/ ALPHA 2.NU/ ALPHA .9355391E+C9 4094622E+05H/ANU2. ALPHA /NU .5500CCCE*CO .2W2229E-C4

3

O"

i Pl

O3 M O 3

* LMt

/

O N CN I P2

P S PO S OO O O OL L N L

E PP CU O

P S LC SJ EL P

PE' 1 5626***A 0CCC* * *! 2 + ++ + * * * 2O O EEEE' * *

N 9834'T * *212: * *

P P 8O33* * *E O O 2I41 ' *' N O ' O

' * NN L S

P R PI

O E O- C T O

S L E LT M

3A i

A

S < iRA

E A m C PR E. - P

M K1

W 1

O AC P N

/

NEr

O T1 FA I 1

LP

R P s 1 66a36 5 M 0123011C E CC:0C / U

1

0000000F O - + + * + G P + - - + + + +N J ETEEE K EEEEEEEt

S 22531 ( 2 O 98C6288S O 77e93 N O 022+677

'N E N 55512 E A N 3383099A c 99e78 T C 9863633

C C - PP P P -L P P A

M O - -O O P U O

%C P LOC L-

L LF

= = = = = = = = = = = =) K

! 2222222 1

CC0C00 MS N * * ++ + + + ) (

A E O EEEEEEE I ) M(

TEP N 633E663 M M* KPUEE 2112221 P N) N)

EU5S9 P 977*9 *7 P N' IC RSERS O -

2 ( (GAM

3 G$EiL O 52255*r kT(E/

UER S L D EUJNL0 SOPEE E UG(IE2 P PP E OR V1 T 7 UP P ROELE

ATE $ S OTSELELSS T I V

CLTEA L LREKP N 'L & G A

5 RI23%5 N)ICA LN

U!OP NY A

5fPPE IOMLOPTT( UILN=

ipMMV T ATAAET A tUUO ADRCHLC

PPPPC TADITORit OEYRNOUT RHHFECS

EEEEEPPPPP!IIIIHVPPPPPSE

I gee 1

4.3 Sample Problem 2,

4.3.1 Problem Description

This problem i.s a simulation of pipe rupture in ona of the tr ree primary

heat transport systems of the CRBRP. The reactor is assumed to be operating at

its nominal value of 100t power and 100% flow conditions.

The reactor core is modeled by a total of twelve channels and the bypass

channel. Each of the nine orificing zones is represented by a separate channel.

Thus, there are nine channels out of which five are fuel and the remainder re-

present blanket channels. One hot channel each in the fuel and blanket regions

is also included. All of the control assemblies are represented by the twelf th

channel. Flows in bypass and shielding assemblies are represented by th( bypass

channel.

4.3.2 List of Input Cards

The list of input cards for this problem is given in the following pages.

- 300 -

/

949000- - -

EEE8 5577 / 600- 794 5

6 51000 89 0O 760 91056 141 0 0.9 60C / 791 1 999 0. 01

- / 6C / 2 9 0 . 7100 0 0 5

19 , 5C 79w /

0 7 1C 606C 13 E 1 0 01016 *

K 87 2n,.8 1

000C 91 0.

J. 2A 10 0l 0/ 0O 354 0

/ / / / /C00 0 01 30 C. 0 0EP

01 . / / - - - 4 0 1

N .9929 EEE 13 1 47. 61005 62005 00010I

850708 78 33I 3 3863 12 E 5 759 517 9 757896355309 00C 0 01 99 97

1I

5/ 3 2 0 0/ 0 0 6 0 .

T 51311 C021 - - - - - 503 91 1

6. *. 6 0300 - 32 EEE E E867 03 0 1 0 1

C e25 , 17 636 6 6129 0 , .9. 0

1 2EE00 0CC C C610 0 50HCC 30CC 9*C 9 9 . . 2390 01, 0

1

. .069263 917 9 9 +0 7910/1

080619.83 567 5 5 8 90. . . E 58 23

1

42.79. 016C2651

5011226397 8631 2

7.1. E 5-

40080 00000 41000N 8333 28 930C

7.52E591694 6 4 1916 16+51A 9120 32 RRR R R 330C/0 0 0H 341 RR00 SSS S 53*3 999.00 0 95.8050C0 . .

2 ?11. . S S 0 0. /C 10.21 8

7.2 -- - - 2310 1

.010 333 3 3EEE 02

P. 078553 . 000 0 0976 5 71 4 ,.

C0C 0 C096 26 5,O6 I

O 970772C0663 - - - - - 226 23 .

R9O 0205 - 03 EEE E E466 . 20.02 .

L / 3357 EE66 .03% 0 0421 /59550 10014 95C332- 7883 . 7700 62C 6 61' 1

R613 2 5 3.0 0.5 30040.0 0. /.261968 00300 09782241001

R 303 - 7. 0 12 5 399 2

2334126 1 1 577 6

6 0 5 2 C 0. 2 . 0 900 07.0073N.

2. 51

1

6 '11

1/ 98 666 6 6 2 . . 2.5381

0 ,0A , . .J6193 /12 9 6 9.2

1 9. 0C 431873 2RI PRR R R 3 . 6,2.0956 5 7 6 20H 62%31 95R.

.6. 32,.- 5165 RR07I E E, G 6 65%9 23 1

CC0R 23 02 2990 6643 ./ / / - - - 2 7955 00,155 / / /RR319w56 C01

C01 333 3 3EEE1 934 8/ ,22 503S302C.C9 7. 031153 000 0 0553 388

50O.4.1I000556800700.918915 0.000R- - - RR - 021 647951 ,- - . 2.2EEE2E2E6989C618 32 , .192C0R

,90 0 R 1,%.560 2 9 9,9.0. . 7 0. 0 .3 ..C 2,0 3 11 I000 03 1 10, 000 .654.EE216E23P 1 5063 EE90l

542 5

CC01C1C1 + + . . +9C9

.1

701 7 7C 3026 7 C 2 'J . 522605.021.

C -0. 7

1

0 063 76L R7037

. 06 , 0.E366230 . 9532 .04590404LS 0000719200l . . . . . 1301588t02020

16 4 0C(02220202 912S 0000.2 13 521 0CE21 6 0 0 0 088.800005D01SV1 2 3 1

S 000000DD00 0D00 0

GI23 4 5 7B9 1 123456709 0t316 9578 900 01 2VD00 0 0 0D0 01

11111111 222 2222 231 1

p LO IJ

sssssss sssss

N N N nJ N n> nJ N N nJ N NOOOOOooooooO

sGoooeooooooogggggggggy

. . Ol El tf- UI J- --* hl pu N AJ GJO O O O O (V

. - - - - - - - - 8888810888888 5O

M O 7 O O O OM-

MM. -

MN h b t- h

O.. - - - . - - - -

mmmmMmMMMMMm O- - -- - - 0 () O () O 0 0 0 0 0 0 o c.' o 0 0 0 s e01 (V N N N O @ @ @ G - U

00000000o000 0- .e - . _ - - - - -

C- - - - () O O O O O

GJ DJ N fu (V @ @ @ G @ OO1

- - - - - - - - - - ssssssss ssss uO

----- ------

n, OO o c, O o o O O o o o o o m m m m m m m m m m m e- y.) f., O s,m- m_ e_ m_ m

r r- . _ _ - _ _ _ -

o00000000000 6c,)ssss,s. . , , ssu

ib o@ m t @ m O () O O O -

aao O a O O f=1 M M M M O tr a Q. Q a a a a a LO271 2232273 22 0

-s-s-s -s-r -% -s-s -s-s 000000000000

n O ~ O r,. _OnOgDOcOOOOOOOO2. 0 0 0 0 0 0 0 0 0 c3 0 0 - - - - - - - nJ o.._ .- . __ . . ._ ._ ._0000o0000000

L O@OOO O v: O h O h () N O h O h O. -= W- - - - - O

- . . . . . . NUl m 7 O u1 O O O O O O M O m O m O M O M o

. M b. m b. M b m M M M M M M M. M M Ma ** OhbM,

0000000000000000000C000 O=O O O () O - .- --()() O O r) < > O O O O O O O O O . ) O O O O o O O O O O O O

CD m m O. O O o O O O Oe

...CDeme ou-- *O0000000000000000000(3000

M *m .M .M .M .M .M .M .M .M .=*s) O O O O O C) O O O O O =~ O

hQh 1r h tQ h 4.Q M N M. fV m N M N M N O O O O o o O O O O O O o * -a -- -= - - - *= - - - .* ZO OOwO - ' OwOO-M ki-M-M-MOame..yese.e e mimunu.u.-.ma.esmug

oc' ' ' - ' s

n-NO Q O O o O O O O O 0 0 0 0 0 0 0 r3 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 c . , n 0 0 Q 0 0 0 0 0 0 0 0 0N m 2 O Q h w m O - N - N M f O O r- CD m O - N - N M f u i W h w C3 O - N - r J M 3 0 w h w cn O - i u Oo

OJ GJ N GJ N N N N N -- - O 0 0 0 0 ( ) D 0 0 - - -~ O 0 0 0 0 0 o 0 0 - - - 0 0 0 0 0 0 0 0 0 - -- - > - -*O O O O o O O O - OJ RJ M M M M M M M M M M M M J J J f f f f f f f f f0000000000000

- 302 -

10 101 201 33.0 235.37 0.957 3. 3 3E -C6 1.1 C.0 1.0 235.37 */20 201 3 7.9 239.0 0.3098 5.Or.-06 1.2 0.0 1.0 239.0 1/30 2 * 25.0 230.15 0.259 6.CE-C6 1.1 0.0 1.0 230.15 3/4D 3 301 3.2 232.25 0.457 3. 3 3E -06 1.1 0.0 1.02'2.251/50 301 101 23.5 25 3.8 0.906 3.75E-06 I.1 0.0 1. 0 253.F 3/60 101 7 5*.86 230.27 0.30%8 5.CE-C6 1.1 0.0 .0 230.27 5/

'. 0 2 32. 25 t /7D 6 302 3.29 232.25 0.457 3. 33E-C6 1.1 0.090 302 9 3.5 252.83 0.457 3. 33E- 1.1 0.0 1.0 252.83 1/9D 8 102 33.38 256.44 0.906 3 75t.-06 1.1 0.0 1.0 256.** 3/10D 102 500 155.9 256.4% 0.406 3.75E-06 1.1 C.0 1.0 256.4* I/3010 9 5 302 300 14.C2 247.99 1.03 9E-02 1.97%E-09 757 0.0 1.0233. % 1.71 C.252 0.0 1.0 251.* 3.92 0.381 6 1.5874E-02 1.9520.529859 1.CE*10 0.55 71 2/

3020 7 8 400 301 19. 02 297. 98 1. 0 3 39E -02 1. 9 74E -09 757 0.0 1.0233.96 1.71 0.252 0.0 1.0 251.* 3.+2 0.381 9 1.587*E-02 1.9520.329859 1.CE+10 0.55 71 1/

2010 1 2 235.75/1010 23.7 2 1 253.73 0.0 6 2 % .99 1.0/1020 38.5 1 10 256.94 1.0 0 0.0 0.0/4010 101 302 25+.66/201D 279.353 111.2% 0.90 10.0/901D 7.18723E +05 * %7506E +C5 1.20355E +C6 - 1. l l 879E +C6 9.192087E+C5

1.242953E +07 0. 0 0. 0 0. 0 /1010 1.242953E+07 0.50 2 1 1 6 O/I C2D 1. 0617925E + 07 0. 0 1 10 0 0 0/301D 0 0.0 0.50 0.0 0.0 1.259672E+07 2.89259E+C5 0.0/3020 0 3.32752EE+06 0.0 0.0 0.0 0.0 3.99738E+C9 C.0/7D 1.229509E+074D I.3382723E+07

: OV OPDATA10 975.C+C6 C00000 C3 3 1.0lE+07 3.327526E+C6 /'

W 20 -800.72. -0*l.9, 1791.3, 3.327526E C6/O 3D 0, 619.7. 771.5. 1610.2. 100. 3. 15./" 4D 1.09E CS, 0.6E 05. 4.0. 0.6, 1.0/I 50 1, 1, 1, 1 /

OV MATDAT10D 109.7 -E.9999E-C2. 1.1728E-05, 1630.22. -0.83359, 9. 62838E-09

1011.597, -0.220510. -1.9229 3E-05. 5.63769E -09. 370.9. 16*9.2.-6.75!!E+09 1630.22. -0.91679, 1.54279E-09, 11.35977, -5567.0.-0.5. 11.68672, -5599.97 -0.61399, 1199.2. -2.4892. 220.e5.-0.9925. 0.001, l.CE-05. 750.0. -12130.0, 10.5/

SID 33e.130 21.6178 5.381E-02 0.02.2 0.0 1791.79 2.39856E-090.0 0.0 0.0 0.0

-96639.7 9999.0 9999.0 2.25E-062.5E-09 0.0 295.9 9939.09999.0 2381.0 0.0 0.55

2.5E-09 900.0 9999.0 3R /

71D 9.9391695E+01 -1.71228E-02 0.0 0.0 460.59 0.0 0.0 0.0 0.0 0.0 0.00.0 7833.35 /

OV NALOOPID 1, 5, 19, 8, 20, 6~, 16, 5, 31, 3, 3, 7, 19/2D 3/1000 2850, .019939 .02222. l.9361. 7.5809, 19.5832,35607.0, 79.9153, 1.5. 0.0. 0.0, 70/

1010 -1, 0, .319 .273. O, .937, 0.0. 0.0. .199/102D +.8585, 9.0239 0.305, 9.572. 7.6172, 3.0582, 6.8527, 7.3629/103D 39.5507 -32.0256, 0.0, 47.1703/109D 13.259, 0.8. -90./11CD 6. 1.2897 -0.061907, O.17327 -0.5729+, 0.033762,

I F 'r

.. _ . . . - -.-- - leC-

%

ON

N

O% O

-@ Oe t

O - f %@ M % Q O f ^C= O *OeO f E N 1 O -

*@w *O N M @ - e ON ON ONO t- M D w 1 J 10 - @@ O @ h M O- O- O-@ - (b o? O 6 CD fr; %- -O- y e -

O O @ CD-

E.O =*

00.. 00*@ O O - 000e =-

O - & O O ~2- N - N-f -f

- h'@g .d Cr -

-

wf & W T w O M @*O f@ - M O O @ *O *O ON GO 2 W O t % 0 0 OWW O *t O O W h NO NO su oeD C t O O h N -O -0 -O00 M J O t a CD -- - *-- 2 @ O O N MM - (. @- e O . - 1. - 2. - 1.-.

CD C O -@ W - -O wo m f =% O ~O00 t s QN @ Q MG MG MQ% - n N f

w= 2. % (D- f. % CD~1+@ f- Ed Cn N - - M O CDo 'if nog N

- -M -- M fu @ f e O +b .h N

CD r- O r- hwh @O f O <3@ f fL @W N Mt .O fu @ e - -

C-

NON- -

-. O@ W O - O *O .O

:O*fh-

OW-* OQOh

- - OW 000s T- b h h h NN -@ ~ W +% f--O--O--M iuNOh N O O rD O M OM OMfu h h (D @ O 0 -

O O -O -8 h (V - N- N- - O @ t's M - +COOOOOOO* M fuO O O tD - 0 OsOT h - 1 M@ h- h- hQO if) fM *M - - -MO -Q O O OO O -

O@@-N - * fu *fu --@*E M tu aM fu M Q fu O tb O % OO - C.a OMO- QT Q" G -1- -f- -S@~O ? I w 1 * ? -@ NGO QU ON-ON-ON-A su Wht @ W

O h ]u (D f (b b @OM@OM@@w -OM - O -

G - *G - CDO fu - t g - O fu M O1 OfO -O CD - + (D

- N O fu ? O E f (V--

* Ib CDO' - -a-

MO d)F - +--% 0 - (D O fb f N - M (" O CD M 6 -O - -

J fM N fu

@ * g) O - - - fu e @ M == f - efe rgl O h @--ui- O M O

--f@w O @OOO M J M W eO * O *p0 af

N -NU--N@@= -O - NNO- - (b tD f C OO O su O su

g - *~ w @ - @ O N -OI M - O O@O - Q 00h- O N--------pN NO - g % % O - -

N *N-

su MO M h *N&O - % *? +1 00~Os@ - CD fu *ff ff *I-WO *tu N Q @ E CD J O tO 2 M +0@ CD O fu h O h - N OOf- - - -O f . CrtI W O fu LD eD -

- . te w fu = wfffN -CD - -@O O9O OO M -O@ - -@ - *@e O1OOfCOf

t.) - - -7MP -te O O - O @ fu O f O uJ @@f. N

- O C Il f b e N O -O@QO@OWwO(b @ f' N * fu f *f MW ---2- -MM DM f -N =OO of N Qe * ----@OU - Os -@

*ul M OM O

UN O Oe - -

- - - F1 * fb -@ O - t O fu M fu N -U - (D e f :O +f - M fy D .t - - -a fxM M @ IV OOMM qy- N O O Oe@O fu M- - * -- fu - W gi WO - O

- O

% -

@ - > - (D N (b - M. M. O - p . en -Qw f . fu M O O O - tD @ ~ fu .--OM--*O---O-

+OO - .O f M @t O & f Q CD e CD M (D +f

=ff . O - M ~) :O N O CD ru - @ bO tb 'r i

- O f w I'u O OM -OM00. - -+ (DM-@ M - M@ - . M. + w fu gl ? E ifi - -

he- 4 -

M4 H- . - M + Cn 0 -* t fu f O M - w * O

- MO +0000000C0O M - .M .O O e t

0 wI -O - W 4 QOOO -.OO@h - - (V N-fu fu*-fu=a--OO-- O + OX O O u) @- % Oss -OO-~ -

:

hw

00 O= M -O - - NO NO

f 0 3 @ O.M 8 8 $ a 1 0 8 R 0 0 0 0 A 0 0 8 O M N, 8 M N,R M.000000--O - Mb-GOCE3 8O-m 8OR00 O- o - --N 10 -o o e@f- -

D C - N o -fb O O - Otp O N Who e O Oe00s 000000 toe 00 O 000000 O 0000 O - OO--NNNO-- - - -

ONN- N N N ONOOw>OOOOOO O 000- -

0

-

----~~--- - -

- O N M m O - - - M o g) O ppp0 0-

-- - - -

- 304 -

_ . _ . _ . . . .

.. . - . %- -

.O . l.1 ,O .O .@ -@ .O . O.--

O GJO. QJ O. 4) O. QJ O. fu O. OJ O. N O. QJO2 O2

- f f f 1 2 J O- O- O- O- O- O- O-

.-- ru, . -

0O v1 O. OO.-. g3 .O .O . g) . g1

-m -M -M -M

h r*- J-1 -- WO WO WO OO N-*f OO

-

b r- h r -. D t. Ogy

*O .O *O *O *O =O *O *O- O

Ogl g1 |[1 g) O g) y1 y1 Oe.u. O RJ O

Fu. O G.-.J OAJ O NO su O NO - O.O~ ,() .O- .O .O .O .O- .O

2. - 2. - 1. - 2. f 2. ru 2. (y 2. nj 2. (b-- -

oM (D M (D M (D ht tQ fW 7 (f- tW O O-f - M ui

%CD = w (D f N CD- 2. % (D -* f C. s 3.)tO%f Wi

7 0. %CD - .Ce@ % OOO .O .O

..O

..O O . .O

..O *OO fu.h .h . .hO-.O- O hO hO .-. h O h O r-.O- OO O OOM .()M .(>M .OM .OM OM .OM OM 00

0 O. O () O.& O.O O O.p <1.O O O.N -OOO.& O.OOOOO OO OO ON--

N-- &- & O-

- fu. f u. f - fu. f u. N f. ru. - M. ru. Mfu. : M. ru. : M- *( - *(

.

@O RJ - O - O OJ - O O N 10 @ @ m 0101 (D @ @ (D CM @ (D-

@ O N

M. c@ O M. g1 M. w g1 M. o O M. < > g1 M. Oc. ) g) M. (i g1 M. (c' u1 M. O.

@ - 7 -@- cy cn @ - O g)

. .

- g10. O NVi O O-

pO- O fu. fu. g10. O tu. y1 g3. O GJ. O O. O (U

. irl O .OO OO OO O-

O- O N. nj. O AJ - O fu. turu - . (u - nj - . ru - (u - (u o O

- - - - . - - . 7 2 p* f- f. f - .p

----------------O O O ss O2. @ 1. J. (n f f. @ -

*fy- * f 7. t - .f - - - O (n-

*2y = 1 2 (U

OO D y1 1 0 0 ? L1W D M W Ti,T W t1@ M O 01M O @ M O - O-

7022Wt?O%W@W w (T MnW@WW@-M@Mu. - g1 M .W7 .Of .W2 Wf . O f. O - N O. sO, s OMM .

-

-

. O ru OE.O. *O.- O. =O. O. O. *O. *O. OG . C[ MOO

.

-

-OM- O sos

. O M. M. O M. M . O M. re O M. M. O M. M. O M. M. O M. M. O.O-M -

O .Q Em. O O g1 ef

G O O O O O O O O O O. O O O O O O r3 O O. fu ruOOOOOO OOOO

N. *. QJ fu. OJ fu. - N N. N AJ. OJ (U. > e J fu. . . fu fu. fu M Q O O O O-

: : : - -

*W - * .-

O bO hO hO fu CD (Q CD (D CD Q CD .D t.n

ru O M N Q M N Q M (u O CD CD Q m O O @ O O cn O O @ O 0 0. O O C5 O O O Q Q O O2. O7 W f.giW3.w Wf.h(dI.w W O.@ W O.O W 0.,.W O.N- N - w (b M tCWf CD CLO L' J O O O' O O Q-*

O - O- -

O O - O . - .

-OOO- - -~000

OOOOOOO>cO O O O O O O O OWW@ 01Q@@@[email protected]

- 305 -

. - . . _ . .

REFERENCES

1. A. K. Agrawal et al., "An Advanced Thermohydraulic Simulation Code forTransients in LMFBRs (SSC-L Code)," Brookhaven National Laboratory,BNL-NUREG-50773, February 19/8.

2. " USA Standard FORTRAN," A"SI X3.9-1966, United States of America StandardsInstitute, New York.

3. "ANS Standard Recommended Programming Practices to Facilitate theInterchange of Digital Computer Programs," ANS STD.3-1971, AmericanNuclear Society.

4. " Guidelines for the Documentation of Digital Computer Programs," ANSIStandard N413-1974.

5. " Flow Chart Symbols and Their Usage in Information Processing," ANSIStanaard X3.5-1968.

6. " Computer Coding, Documentation and Distribution," RDT Standard F 1-4,Uncpproved Preliminaray Draf t, January 30, 1975.

7. C. W. Cox, "GENRD: A Free-Fonnat Card Input Processor," Los AlamosScientific Laboratory, LA-4793, January 1972.

8. International Mathematical and Statistical Library, IMSL Library 3, June1974.

- 306 -

APPENDIX A

CONVERSION FACTORS

Multiply No. in engin-

"9 "**II"9 **" "9 "" Y *IQuantity Dimension *' SI Units Units fal10 wing to convert

to SI units

_

Length L m ft 0.3048

Mass M kg lb 0.4536

Temperature K K R or F 1/1.8Area L2 2 ft2 0.09290m

Volume L3 m ft3 0.028323

Velocity LT-l m/s ft/s 0.3048

Density ML-3 kg/m lb/ft 16.023 3

Volumetric Flow L3T-1 3 3m /s ft /s 0.02832-I

Momentum MLT kg m/s lb ft/s 0.13825

Force MLT-2 kg m/s or N lb 4.4482

f

ML T-2 N m or J Btu 10552Work, Energy

Pressure ML-IT-2 N/m2 or Pa psi 6895

ML T-3 J/s or W Btu /hr 0.29312Power

Dynamic Viscosity ML-lT-1 N s/m 2 or P1 lb/hr ft 4.134 x 10-"Heat Flux MT'3 W/m2 Btu /hr ft2 3.155

Thermal Conductivity MLT-3K-1 W/mK Btu /hr ft F 1.731

Heat Capacity ML2T-2K-1 J/k Btn/F 1899

Specific Heat Capacity L2T-2g-1 J/kg K Btu /lb F 41872L T-2 J/kg Stu/lb 2325.9Specific Enthalpy

Thermal Conductance M T-3K-1 W/m K Btu /hr ft F 5.6782 2

*M denotes mass, L-length, T-time and K-temperature

- 307 -

APPENDIX B

SL'3ROVIINE CROSS-REFERENCE TABLE

In the first column of the following table is a list of all the routines

used in SSC-L. All the routines which reference the first colran entry are

listed in the columns which follow it. This cross reference table should be a

useful guide in the design of an overlay structure, as well as, a traccback aid

for program debugging.

- 308 -

...................... ................................................................ . ...........................................

. . ,

PW i r.E* CALLED BY**

. . ,

.....................................................................................................................................ACCM3T STCN3T* *

*. . ,

ALFAIA* **

. . ,

ALFASS * FUELES STEM 55 **

. . ,

ALFAST * FUEL 57 STEM 5T**

. . ,

ALFA'' CENS7D* **

. . ,

ALOG OOPPST EAVG35 EAVG3T HX35 HX3T jHx15 PPETIT SATTis T UeE 3 T VAVG35 VAVG3T VJIT* **

. . ,

* ALOG10 EVAP25 HYCRIS IHXIS PIPEIS PIPE 25 PLOT 9T PLMP15 plt *P25 SPHT25 SwPSIP V[$CIN* *. . ,

ANUSIU IHXIS |HXIT P1PEli PIPE 2T* **

. . ,

APPL 5 T * REACST**

. . ,

GLKDAT* *.

. . ,

* BLKDTR **

. . ,

* BREK1T VESLIT**

I . . .

BREK2T * FLOW 2T*w .

o . ..

@ * CALCIR * | NIT 9R =. .

.

CALC 3R INIT9R* **

. . ,

CALC 7R INIT9R* **

. . ,

CALC 8R IN!T9R* *.

. . ,

CDINPT * GENRO**

. . ,

CHEX9R * MAIN 9R*.

. . ,

COEF5T FUEL 5?* **

. . ,

COEF6T CCOL6T* *.

. . ,

COFS3T HX3T PIPE 3T* *.

CONDlk CORE 65 FNUSCC HNAF35 HNAr3T IHXIT PIPEIT PIPE 2T PROP 6T *. .

.

CCNO7K HNA35 HNA3T HWS33 |HXIT PIPEIT PIPE 2T F 'P6T**.

. . ,

CONL3K HWFC35 HWFC3T HWN835 HWNO3T* *.

. . ,

CONV3K * HWF8 35 HWF83T b : L !S HWSC3T*.

C00L65 * MAIN 95* .

. . . . ........................................................

>-U'O4si; .h

ib--nj M>- tal- LIJ

?

e= t)f

-zs-r

k-

H n). - *

h.I e,

b b-e- Ni(l. l\) Laj() Un t-

> LJ @IJ .L

F (n-H M..)- GbW lD P-

> LJ @oQ C

t- -*

Lo a Mjf03 m'saa -

LL & >

vv qnJ t s Ma it Us-4 &

LJ u.-

L1Qn.

eW v.t() - M

gI m. n. /

,

(J a

> e ri>->.#M - () M

ts) - l LJ QQ*-<a>- )tp.

.c ua 2

m &- 9 OM w- ML.s * J LJ >

_

* a u F-

@ ( ) --* @l (Ju ()

* * *- ( A in OM M M g) - MIk (J m Li D--

R.vi - az .

..f .( ()- QI U1 ()

m Us m. y sm OPO f* I p gg g M(D (. p m L. , I*V

,1 (3d Q

*

QF'

1L I UO O

> 6- e & o () s.-> k- > m >t.a

b tAM M == fu M M p' M M(1) q) y))

M M MU m b * W (L i .* L LJ > UI Lk LJ Lit t - * i .g .J Li 1- GJ L. (Lt.g - n a/* * - (! q60 .J (}

- a a a. - ~

L' ) lh J * F- t)

* 80 + ol m g) W * * *- >- *~ () (Ts.- v1 F

& 4 (1 s m * s O (1 e eth (il M M

. o al J- Q. o () -g+

(,IM( .-- . p M v .. .g - M M 68 ) M M M M MgI tg (7,1t (4 I

t t) 4 L) O O Ul .J LJ J . - ~ a o o o m * to La

Q-*. O; g n

..J:

l L8 J UI 4 L Le M M N1 (L U tc )Q lJ I < () (1 Oe ()

.J EQ qk (Y O Q LJ.Jh' fl D = * - Q Q (h. Qu o o 1 t ., a m o u o su a a u o u O 1 I 2 a o o o

. . . *... . . .........e e . . . . . ..e . . . e . ..................,,... ...

> Y k, @ >* b > V- () ( 0 ( W 0 >- .O >* (O > ( (] a Ww a e o4<

t . . . 9 M - - e M M M m M M - m -

a .> : 1 v,- ,vi > mq i s > d .> .us de 4 z y/ / - a < -:. a a u o a a n ~ a c >A -e < - u. u a 9 v u u ui a d .= > < Q W ts) W y W LJ te.: L.) O. Q 4 (L 4 11 7

(%Qt a t

V U V U V U U U O (.J LJ L. LJ L, W W O O L) ( O O L O LJ (2 L3 J Oe .........e e . . . .........e e . . . . . . . ......,........,...........

- 310 -

- _ _ _ . . . . . .

. . ,

* EAIV3T * MAIN 9T *

. . ,

DRLH30 * ACCM3T* *. . ,

* DRLP3D ACuM3T **

. . ,

Ex 6H30 ACCM3T DRSP3D* * *. . ,

* DRSP3D ACCM37* *

. . ,

DRVH3D ACCM3T* * *

. . ,

DRVP3D ACCM3T* * *

. . ,

DSTL3D DRFPID DRSH30 CRSP3D EAVG35 EAVG3T PLOP 3T TPMP35 TPMP3T VAVG35 VAVG3T VClD3V WSTE35 WSTE3T XCRT35 XCRT3T ** *

. . ,

* DSTV3D DPAC35 DPFT3T DRGP3D ORSH3D DRSP3D EAVG35 EAVG3T HWF 835 HWFB3T HX3T PLCPP TPMP35 TPM 3T VOID 3V WSTE35* *

WSTC3T XCRT35 XCRT3T* * *

. . ,

. EAVG35 * HXND35 HX35* *

. ,

* EAVG3T * HX3T P I PE 3T TUBE 3T **

. . .

* ELV3H * HX35 TUBE 3T VOlD3V VOL 3S WSTE35 WSTE3T YCRT35 XCRT3T *

. . ,

ENAVG * TUGE3T* .

. . ,

I * ENDIS * LOOPIS *

. . .gENDIT * LO 31i*p *

w . . .

ENO2S * LOOP 25* *3 . . .

* ENO2T * LOOP 2T *

. . ,

END9U * SSC* *

. . ,

*~

* COOL 65 COOLST CORE 6T HXNO35 HX35 IHXIS IHX1T INIT6i INTF3T LOOP 15 LOOPli LOOP 25 LPLN65 LPLNGT PDAL95ENTHlH* *

* PRETIT RESIT RES2T TEMPlT T UDE 3T UPLN65 UPLNGT *

. . ,

ENTL3H* * *

. . ,

ENTV3H * HWFB35 HWFB3T* .

. . ,

EQiVIT * DRIVIT FLOWIT INITIT* .

. . ,

DRIVIT FLOW 27 INIT2TEQlV2T ** .

. . ,

* ERRMSG * CDINPT GENRD .

. . ,

ERR 3M * CONL34 CONV3i< CPL 3C :PV3C DENL30 Dt W3D DRVH3D ORVP3D ENTlIH PRES 3P PSAT3P TMPL3T TMPV3T V !SL 3N VISV3N **

. . ,

CALC 3R VRFY3PERR 3R ** e. . ,

FEED 35 HXNO3S HX3S I N3L 3S /OL 35 WFLO35ERR 35 ** *

. . ,

ACCM3T FSEG3) HX3T STGN3T TUDE3T* ERR 3T * .

. . ,

ERR 9R CHEX9R CRDR9R INIT9R READlR READ 3R Rr. A07R REANR READ 9R* * *

. . .

. EPR9T* READ 9T VRFY9T **

. .

ACCM3T C O*( 3K C PL 3C DENL 30 CPFG35 SFP3D DRSH3D DRSP3D DSTL 30 EAVG35 EAVG3T ELV3H E NTL 3H HWN935 H4*d3 3 T* t sTL 3H **

* HWS35 Hx35 ^ *E S 3 T INSL35 PLCP3T TMPL37 TPMP35 T Pa*P 3 T TSAT37 VAVG3S VA.G3T VISL3N VD!D3V VOL35 WSTE35* *

* WSTE37* .

. . .

''S T V 3H * ACCM3T CONV3< CPV3C DE *W 3D CPFT35 DPGP3D DRSH30 DRSP3D DRVH30 DRvP3D DSTJ7D EAVG35 EAVG3T ELv3H HWNO35 **

* HWNG3T HWS35 HWS37 HX35 INSL35 PLGP3T TMPV3T TPMP35 TPMP3T V!SV3N WFL O35 WSTE35 WSTE3T **

. . .

* EVAP25 * LOOP 25 *

. . .

EVAP2T * PDF G2 T **

. . .

FEtD35 INSL35 ** *

, . .

FEED 3T INFS3T PSF W3 T ** *

. . .

FLOWIT * DRIVIT **

. . .

FLOW 2T DRIVIT ** *

. . *

FLOGGT COOL 6T ** *

. . .

* FNUS6C * CCRE65 PRCP6T *

. . .

FRAD55 * FUEL 55 **

. . .

I * FRA05T * FUEL 5T *

. . .y>d * FRIC * EVAP2T HYDRIT PIPWIT PlPW2T SPHT2T *

N . . .

FRIC35 * OPFG35 **,. . .

FR C3T * DPFG3T **i

. . .

FRIL6C * COEF6T CORE 65 FLOW 6T UPLN65 **

. . .

* FSEG3T * STGN3T *

. . .

* FUEL 55 * MAIN 95 *

. . .

FUEL 5T * DRIV 9T **

. . .

FUNClT * FLOW 1T **

. . .

FUNC2T * FLOW 2T **

. . .

TEMP 55 *GAMA55 **

. . .

COEF5TGAMA5T ***

. . .

CROR9R PCADIR PEAD3R READ 7R REACOR PEAD9R READ 9TGENRO ***

. . *

GETN9R * **

. . .

CALCIR CALC 3R CALC 7R CALC 9R INIT3R READIR READ 7R TRAN9R TYPE 5R *GPNT9R **

. . .

MEAC5'* GROW 5T * *

. . .

C/<OSS . rye L *;S*.

. .,

G v st.1 T * FLOW 1T**

HCAPlc CCPE6T FNUSCC 44AF35 HNAF3T !Hali LPLN6T FIPEli PIPE 2T PRCPGT UPLN65 UPLN6THCAP7( !HX1T PIPEli PIPE 2T TU6E3T *

HEAO!T PU**P1T* **

. .,

* HEAD 2T * PufdP2T *. .

,

* HNAF 35 * HNA35 *. .

,

HNAF3T * HNA3T**

. . ,

* HNA3S * HXFC35 *. . ,

* HNA3T * T UBE 3 T *. . ,

HWCO35 * HWS35**

. . ,

* HWF B 3 T = HWS3T .. . ,

HWFC35 * HWS35*.

. . ,

HWFC3T * HWS3T**

. . ,I * HWN835 * HWS35 ,

a *y .

H * HWN83T * HWS3T *

u . ..

HWSC35 * HWS35**,

. ..

HWSC3T * HWS3T**

. . ,

HWS35 * HXND35**

. . ,

HWS3T TUGE3T* * *. . ,

HXNO35 * HX35**

. . ,

HX35 * STGN35**

. . ,

HX3T * FSEG37*.

. . ,

* HYDR 15 * LOOP 15 *. .

HYDRIT * PDFG1T PCFG2T WPITIT*

ICSlVU PST83T SFLO3T STMP3T .. . ,

IHXiS PBAL9S* **

. . ,

|Hxli LOOPli LOOP 2T* *e

. .

I vJ 53 T * FSEG3T STGN3T*.

. . ,

I NFS3 T * FSEG3T*.

. . ,

e o e e o e e o e e e e e e e e e o e o e e e o e e e e e e e o e e o e e e e o e e e e o e e e e e e e e e o e e

b'

lta1..s.*

b

f1 M pa Z Ql O /.) s u

LE U1 0

f7 & F () QM. - Z W QM

td- ==

(, , 2-*s F

d () Q~ ? " () LI wk -s Q w Q

> b J b 6- > 1 & d >. H F- e b-- W W F 1 1 1 1 'l 5-- 40 6- 6 >

* * u tu +-01(P m '9, O M n - - a CL O G G W - M N I O CT) O '9 O @P - Ni

.

6-- Z - ~~O O ts O O ~.)

'I.>1 tr 1 1 Li 4 1 4 Q

*- + 7 > > J i 1 2 2 J >- > >- >- >- > Z :' 2 >-. a m - * . ./. .-- U I - ~ - E W - O LT Q

'w w a u. w - - - -

? , *1 * / * 4 W / - -. z .. u au -

U O J U U Q U U L. ' > > 4 p 1 O E O

e e e e a e e e o e e o e e e o e e e o e e o e e e e e o e e e o e e e e e e e e e e e o e e o e , , e o e o e o e e

L 1 b b Ib b d I9 $- k- >- $1 b- ) {l ( H b* C [ h b

- Rg M M M W Q d O 3 M 1 M - O I Q 1 U W ~ 'e_

- - - ~-. - > . - - - - .J y a O Z &~ O 1 f.L 't ** F -- >- F- H C.~ CL~OJ N' P W JI C& C

.4-. .. .' - - -, - - - p|- - - - W W >-' H- U ~ W 'W ~ O W G C O U

~ * e6 > > k.- p >_ w e r r i.J r w 1 et W '.3

U C O O: z ? 7 | ? 2 ~ ~

"J ~_f; ; ; . - - - - _.2 _.1 s > J J a a _;

e o e e e e o e o e e e e o e e e o e e o e e o e o e e e e e o e e e o e e o e e o e e e e e e o e e e e e o e e e e

- 314 -

LPLNES OF T *.f;S* * *. . ,

LPLN6T CCO 6T* * *

. . ,

MAIN 9R SSC* * *. . ,

MAIN 95 SSC* * *. . ,

MAIN 97 SSC ** *

. . ,

MAXOST CRiv97 ** *

. . ,

NAME WD CDINPT* * *

. . ,

* NFS!U BFEKIT DPEk2T CVALis CVALIT ENDIS ENDIT ENO25 ENO2T LVAP2S EVAP2T Gv5 LIT HYDulS HYDAli !HXIT INITit* *

INIT2T LOOPlc LOOPli LCOP2S LOOP 2T P!PEIS DIPEIT PlPE2S P I Pt 2 T PIPWIT PiPW2T PRETIT PRNTIT PRNT95 PUMPIS* * *

PUMP 25 PESIS FESIT PES 25 RES2T AliEIS AlTE25 RSET1T REET2T SPHT2S SPHT2T TANK 2S TANv2T* * *

. . ,

NVEY3R VRFY3R* * *

* . ,

NNBLN* CDINPT GENPD ISTOP ** *

. . ,

NSK!P * COINPT* *

. . ,

OPTN6S COOL 65* * *

* . ,

OVFL9U * CALC 7R FUEL 55 INIT6T NkEY3R PEAD3R REAC7R TRAN9R T PE5R kPFY3R VRFY7R **

I PAGE9U CHEX9R INIT9U PRNTLT PRNT9T READ 9T PEST 9R REST 9T SAVE9R SAVE95 SAVE9T vRFY97*

. .m .

PDAL95 MAIN 95te * * *

L/t . . .

PCHK9R VRFYlR VRFY7R* * .g. . .

PDFG1T FLOW 1T* * *. . ,

PDFG2T FLOW 2T* * *

* * .,

** PINTIS MAIN 95 *

. . ,

PINT 9R MAIN 9R* * *

. . ,

PIPE 15 LOCP15* * *

. . ,

PIPEIT * LOOP 1T **

. . ,

PIPE 2S LOOP 2S* * *

. . ,

PIPE 2T LOOP 2T* * *. . ,

* P I PE 35 STGN35* *

. . ,

PlPE37 FSEG3Ta * *

. . ,

PDFG1T WRIT 1TPIPWIT* * .

. . ,

PIPW2T PDFG2T 14R I T2 T** .

. . ,

PLOP 3T IKFS3T STGN3T TUGE 3T** .

. . .

.* PLOSIT * FLOW 1i

*. .

*FL M TPLOS2T **

POLY ACCM'T CONL3< CONV3< CELP3D OENL3D CEvP3D Carp 30 DROP 3D CRLH30 CRLP3D MvH3D DRVP3D DSTL 33 ENTV3H ESTL3H*

* ESTv3H FEED 35 rEEC3T INFS3T INSLIS PPNT95 PSF.43 T TMPL3T TMPv3T V I SL 3N VIS GN*

*POW 5T ruEL5T* *

. .*

POW 6T COOL 6T* *

*PPNT99 CALCIR CALC 3R CALC 7R CALCOR 1N!T3R REAOlR RE AO-'R TRAN97 TYPE 5a

*PRESIS LGOP!S* *

.. .

*FLOWITPRESIT **

*. .

*LCOP25* PRES 25 *

*. .

** P9ES2T FLOW 2T*

. .*

* PRES 3P *.

. .*INIT9T* PRETIT **

. .*

PRESSPREX5S* *.

. .*

FUEL 55PRE 55 **.i . e*

FUEL 5TPRE 5T **y .. .g

*POW 5TPRMT5Tm * *

*. .

I *PRNT9TPRNTIT **

. .

*PRNT35 * PBAL95*

. .*PRNT9T SIGN 3TPRNT3T ***

. .*

FUEL 5SPRNTSS ***

. .*

PRNT9TPRNT57 ***

. .

*PPNT97PRNT6T ***

. .

*MAIN 95PRNT9S ***

. .

*COOL 6T DRIVIT DRIV 9TPRNT9T ***

. .*

COOL 6TPROP 6T ***

. .

eHWN835 HWNO3TPSAT3P ***

. .

ePLOP 3T* PSFW3T *

*. .

*INFS37 PLOP 37 STGN3TPSTB3T ***

. .

*LOOPISPUMPIS **

*. .

*FLOWITPUMPIT **

. . .

PUMP 25 * L COPPS* *

. . .

* FUMP2T * FLCW2T *

. . .

PU"P 35 STGN35 ** *

. . .

* PUMP 3T FSEG3T* *

. . .

PUT55 FUEL 55* * *

. . .

PUTST * FUEL 57* *

. . .

* REACST PCW5T* *. . .

* READHM ColNPT* *

. . .

READlR * CRDR9R* *

. . .

* READ 3R CRDRGR* *

. . .

RE ADN * CRDR9A **

. . .

REAC8R CRDR9R* * *

. . .

READ 9R CROR9R ** *

. . .

* READ 9T IN!T9T* *I . . *

w * REPEAT * COINPT *

w . . .

N * REPT9R TYPE 5R **

. . .,REST 9R CRDR9R* * *

. . .

REST 97 MAIN 9T* * *

. . .

REST 9U REST 9R REST 9T* * *

. . .

RESIS LOOP 15 ** *

. . .

RESIT FLOWii ** *

. . .

RES2S * LOOP 25* *

. . .

RES2T * FLOW 2T* .

. . .

diTE15 * LOOP 15* *

. . .

RITEIT * INITIT* *

. . .

RITE 25 LOOP 2S** *

. . .

* ROOTIU * PUMP 15 PUMP 25 .

. . .

RSETIT INIT!T** *

. . .

* RSET2T * Ir43 T2T *

. . .

* SATtl5 * CORE 65 CORE 6T PRNT6T VOID 5T .

*. .

*5A,Ega !.:; 7 o. .

*. .

*

S A 'Eh - A ; VI.;* *

*. .

*

S A v'E 9 T OW!v97* **

. .

*SA E9 4 5A.ES3 SA,Eg!SA sE 90* *

*. .

*SECOND CGIs95 'P''E! P AGE 9 ) r%!97* * -

*. .

*ci T F M T * F-E ADwM*

*. .

*"J L O 35 STCN?S* *

*. .

*

FR.!3' ' OE 3 rSF_C3T* *

Ev4 PEG E . A '? T Hr;p!S -r;ali P%!! P ' e ~z ' SPu!c3 cPHT2;SIMPlu* a

. .

*

SCLv3? ACCM37* *

. .*

CNTDC CP h99 PEAD:R SE T9'SP AC%* *

. .

*cpu 25 * L OGP 2c.ra

*. .

*FCFu?T$PHT2T* *

*. .

*SSC *

f *. .

*INiT9U* %CDA T *u

.w . .

*M * P ACE 9'155rT!M *

. ., *

FUEL 55S T E MSS ***

. .*

*LELSTGTEMST* *

*. .

*HWNR3s HwNB3TSTEN 33 **

. .*

PBAL95S T GN 55 **

*. .

*DPlVSTSTUN 3T **

*. .

*H/35 SIGN 35SIMP 35* *

*. .

*TURE3TSTMP3T **

.. .

*D9:/1TSTCHli *.*

. .

.,vpStp ..

*. .

*LOOP 25TANV25* *

*. .

*FLOW 2TI ANk2 T **

*. .

COPECS CORE 6T ENDIT END2T HAND 35 HX35 lH(l$ [HXIT IN]T6T LOOPIT LOOP 2T f'BAL95 PIPEIT PIPE 2; T UBE 3 T *TE MP l i **

*. * UPL NES

*, .

*

FULL 55TEMP 55* *

*. .

T E P*PS T F UE L 5 T* * *

* . .

TFUN5T *FUE LS T **

. . .

TIME SETD9T SSCTIM ** *

. . .

TMPL3T EN TL 3H TSAT3T WSTE35 WSTE3T ** *

. . .

TMPV3T CONv3< VISv3N WSTE35 WSTE3T* * *

. . .

TMSG3T * STCN3T **

. . .

* TOPK1T PUMP 17* *

. . .

TCPK2T PUMP 2T ** *

. . .

TPMP35 DPFG35* * *

. . .

TPMP3T DPFG3T* * *

. . .

TRAN9R * PEAD7R* *

. . .

TSAT3T ENTL3H HWFB35 HWF037 HWS35 HWS3T PSAT3P STEN 35 WSTE35 WSTE3T* * *

. . .

TSAV55 FUEL 55 ** *

. . .

TSAv5T F' ,t ' 5 T* * *

. . .I TUBE 3T STGN3T* * *

.y .

TYPE 5R ! NIT 99 *H * *

c . . .

* UERTST ICSIVU **g

. . .

* UPLNGS OPTN65 **

. . .

* UPLNGT FLOW 1T* *

. . .

* VAVG3S HXND35 HX35 .*

. . .

VAVG3T HX3T PIPE 3T TUDE 3T* * *

. . .

VESLli * FuGWIT* .

. . .

COEF6T EVAP2T FLOW 6T FRIC6C HNAF3S HNAF3T HYORIT IHXIT PlPEIT PIPE 2T PlPWIT PIPW2T SPHT2T *VISClN **

DPFG35 DPFG3T HWFC3S HWFC3T HWNB3S HWNB3TV ISL 3N ** .

. . .

DPFG 35 DPFG3T HWFB35 HWFB3T HWNB35 HWNB3T HWSC35 HWSC3TVISV3N ** -

. . .

BREKIT BREK2TVJIT ** *

. . .

WSTE 35 WSTE3T .VO!D3V **

. . .

PEACST ** VOIDST *

. . .

SIGI.3S* VOL35 * .

. . .

CHEx9RVRFYlR ** *

. . .

vpFf3R * Cr{ FJR **

O O .

VPFY7A * CHE :n gp G*

. . e

VPFY8R CHE)99* **

. . .

VRFY9R CHEX9P ** *

G G .

VRFY9T INIT7T* **

. . .

WFLO35 I NSL 35 ** *

G G .

* WSHT2T lh!T2T **

. . G

WRITlT * PPNT9T *

. . .

WRIT 2T PRNT9T ** *

. G .

WSTE3S HXNO35 HX35 P1PE35 PUMP 35 WFLO35 ** *

. G G

WSTE3T * ACCM3T EAiG3T HX3T IKFS3T I NFS3 T PIPE 3T PUMP 3T TUBE 3T VAVG3T **

. . .

* XCRT35 HX35 **

. . G

* XCRT3T TURE 3T **

. G G

xili INITIT ** *

. . .

I * XI2T INIT2T **

. . .yN * XPAN55 * FUEL 55 *

c- . s 4

FUEL 5T* XPANST **g

G G .

PUT5T *YLDST **

. . .

OeGGGGGe499444444GS996ee44644eGGDGGGeGGeGGSGG900GSGGGGGGG#46GeG4eG44444699494949eGeGGGGGGeeGGeGe49448404GGGe49OGG9944499GG444444eeeGG

APPENDIX C

SEGMENTED LOADER DIRECTIVES

The following set of segmented loader directives has been formulated for the

CDC 7600 SEGLOAD utility. The tree structure iliustrated is not as involved as

that permitted by the code but was found to be sufficient for most of the prob-

lems analyzed to date.

- 321 -

TPEE SSC-tEPCH9A,BRCH95, ORCH 9YlORCH 9R TDEE MA1N9R-tCPDR9R,58PH9R,1N!T9R113RH9R TREE CHE X 9R- ( VRFY 1 R VRF Y 3R , VPF Y7R , t PF YOR VRF Y9R I

BRCH95 TREE MA IN95-IPO AL95 LOOP IS. LOOF 2S. COOL 65, FUEL 5S nORCH 9T TPf. E MAIN 9T-1INIT97,58PH973599H9T TREE DR I V9T - f RUE L5 T . COOL 6 T LOOP 1 T L COP 2 T ,DR I V ! T .SSBR 3T l

SSOR3T TREE STGN3T-IFSEG37. TUBE 3T ACCM3T )SSC INCLUCE BLKCATMAIN 9R INCLUDE BLKDTRSSC GLC8AL VD9V. CANT 9l,TAOLES.CATAll.DATAlv,DATBIV,DATL1iSSC GLCDAL DATMll,CATxil,DATxlV,DAT12V DATM21, DATA 21. DATA?VSSC GLCBAL DATE21,DATE2V,DATS21, CATS 2V,CATL2|,AlTCV,AtTCISSC GLOOAL A2TCV , A2TC l , GVSL 1 v , PQEV21 PRE V2V , D A T G31,O A TG3VSSC GLOBAL DATP3V DAT ! 31,DAT 13V,DA TG31 DA TS3V,8CWFLO ,0C TEMPSSC GL OOAL DATT31.DATT3V,lHx3SI,IHx3SV,DAT251,DAT25V,DAT!alSSC GLOBAL DATA 61,DAT26V, CAT 16V,DAT361,DAT36V,DAIN6V,CAIN61SSC GLCBAL DAT A8V, CAT A81.DATF6V,DA TN6V,DAT AC 1,DAT AC7,DA TC9VSSC GLOGAL DATC91 DATAIP.DATAll,DATLIP.CATLIL,CATXIP.CATXILSSC GLOBAL DAT12P,DAT12L. DATA 2P,CATA2L.DATE2P,CATE2L,DATS2PSSC GLDBAL DATF _,DATL2P,DATL2L,8RKTIP,BFKTit,BAKT2P BRKT2LSSC CLOCAL I T I ,L T I , I T2,L T2,GVSL IP GVSL ll .D T T 12PSSC GLOBAL DT T 12L ,DA T G3P.DATG3L ,C AT I 3P ,CA T 13L ,DA TS3P , C A TS3LSSC GLOOAL D A T T 3P D A T T 3L D A T 25P . D A T25L . D A T 15P , C A T l 5L D A T C5P

SSC GLOBAL DATCSL.DAT46P,DAT96L DATC6P.DATC6L. DATA 6P. DATA 6LSSC GLOBAL DAT26P,DAT26L.DATC7P.DATC7L. CAT 16P. CAT 16L.DAT36PSSC GLOOAt D A T 36L , I NC 16P , I NC 16L , I NC26P , I NC26L , I NC 36P , I NC 36LSSC GLOBAL DAT56P.DAT56L,DATR5P DATRSL,LOCLIP.LOCLil.DA' :SSC GLOOAL UNIT 9U,PNTR31.SCRIE .SCR12P,5CR12LMAIN 9R GLOBAL DA T AC% ,D AT ACS , D AT ACo.D A T AC8,D A TR31.C A TR3V ,D ATR 3P

l MA1N9R GL06AL D A T R 3L , BNDS 1 R , BNDS 3R , BNDS7R , BNDS8R , ONDS9R , SCRH9 iMAIN 9T GLOOAL TLUP 1 V , TLUP ! ! , TFLO l V , TFLO I I , TFULSV , T FUL51, TCUL6V

W MAIN 9T GLOBAL TCUL61,INTG9V INTG91, TIME 9V,RV.DATD5V.DATD51

[ MAIN 9T GLOBAL DATT6V,DVOG6V,5CRHiv,5CRH11.SCRHIP,5CRHIL.SCRH3PMAIN 9T GLOBAL SCRH3L SCRHSV SCRH51.SCPH5P,5CRH6V.SCRHCP CORE

I MAIN 9T GLOBAL PLOT,STOR9DRIV 97 GLOBAL Fix6T,STDTAB

END