226
RECLOSER CONTROL EVRC2A USER’S MANUAL ENTEC ELECTRIC & ELECTRONIC CO., LTD ENTEC Copyright © 2002 by ENTEC ELECTRIC & ELECTRONIC CO., LTD all right reserved. Forerunner Distribution & Automation Release Date: Oct 2006 / Manual Revision: 4.00

03_20061013_V4.00_EVRC2A_Manual_Control

  • Upload
    cacr72

  • View
    65

  • Download
    15

Embed Size (px)

Citation preview

Page 1: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A

USER’S MANUAL

ENTECELECTRIC & ELECTRONIC CO., LTD

ENTEC

Copyright © 2002 by ENTEC ELECTRIC & ELECTRONIC CO., LTD all right reserved. Forerunner Distribution & Automation

Release Date: Oct 2006 / Manual Revision: 4.00

Page 2: 03_20061013_V4.00_EVRC2A_Manual_Control
Page 3: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

3ENHANCED TECHNOLOGY

TABLE OF CONTENTS

1. INTRODUCTION ........................................................................................................... 7

1.1. Description .......................................................................................................................... 71.2. Summary of Features .......................................................................................................... 8

2. TECHNICAL SPECIFICATIONS............................................................................... 11

2.1. Inputs and Outputs ............................................................................................................ 112.2. Type Withstand Tests......................................................................................................... 132.3. Metering Accuracy ............................................................................................................ 142.4. Protection Elements........................................................................................................... 152.5. Monitoring......................................................................................................................... 182.6. Recorder ............................................................................................................................ 192.7. Communications................................................................................................................ 21

3. USER INTERFACE PANEL........................................................................................ 22

3.1. Construction ...................................................................................................................... 233.2. LCD Display ..................................................................................................................... 313.3. Using the LCD Menu ........................................................................................................ 34

4. SELECT SETBANK ..................................................................................................... 37

5. RELAY SETUP.............................................................................................................. 38

5.1. Passcode ............................................................................................................................ 385.2. Communication ................................................................................................................. 395.3. Clock ................................................................................................................................. 495.4. Time Display Type ............................................................................................................ 495.5. Event Recorder.................................................................................................................. 495.6. Clear Saved Data............................................................................................................... 505.7. Factory Debug................................................................................................................... 505.8. Gas Sensor Type................................................................................................................ 51

6. SYSTEM SETUP........................................................................................................... 52

6.1. Current Sensing................................................................................................................. 526.2. Line VS Sensing................................................................................................................ 546.3. Line VL Sensing................................................................................................................ 56

Page 4: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

4 ENHANCED TECHNOLOGY

6.4. System Power .................................................................................................................... 576.5. Panel Sleep Time ............................................................................................................... 576.6. Opto Input Set - Option ..................................................................................................... 586.7. Output Relay Set - Option ................................................................................................. 596.8. Loop Control - Option....................................................................................................... 616.9. Loop Control Application.................................................................................................. 73

7. PROTECTION.............................................................................................................. 80

7.1. Phase (Fast/Delay) Time Overcurrents (51P).................................................................... 827.2. Phase High Current Trip (50P-1)....................................................................................... 867.3. Phase High Current Lockout (50P-2) ................................................................................ 887.4. Ground (Fast/Delay) Time Overcurrent (51G).................................................................. 907.5. Ground High Current Trip (50G-1) ................................................................................... 937.6. Ground High Current Lockout (50G-2) ............................................................................ 957.7. Sensitive Earth Fault (SEF) ............................................................................................... 977.8. Negative Sequence (Fast/Delay) Time Overcurrent (46) ............................................................ 997.9. Negative Sequence High Current Trip (46(50)-1)........................................................... 1017.10. Negative Sequence High Current Lockout (46(50)-2)............................................................ 1037.11. Directional Controls (67)............................................................................................... 1057.12. Reclose (79)................................................................................................................... 1137.13. Cold Load Pickup.......................................................................................................... 1197.14. Sequence Coordination.................................................................................................. 1247.15. Time Overcurrent Curves .............................................................................................. 1267.16. Undervoltage (27).......................................................................................................... 1537.17. Overvoltage (59)............................................................................................................ 1557.18. Underfrequency Load Shedding (81) ............................................................................ 1577.19. Other Element................................................................................................................ 1597.20. Synchronism Check (25) ............................................................................................... 1607.21. Fault Locator ................................................................................................................. 162

8. METERING................................................................................................................. 164

8.1. Metering Elements .......................................................................................................... 1648.2. Accuracy.......................................................................................................................... 169

9. MONITORING ........................................................................................................... 170

9.1. Demand ........................................................................................................................... 1709.2. Synchronism Check......................................................................................................... 1739.3. Trip Counter .................................................................................................................... 173

Page 5: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

5ENHANCED TECHNOLOGY

9.4. Recloser Wear.................................................................................................................. 175

10. EVENT RECORDER................................................................................................ 177

10.1. Waveform Capture ........................................................................................................ 17710.2. System Event Recorder ................................................................................................. 18010.3. Diagnostic Event Recorder............................................................................................ 18210.4. Load Profile................................................................................................................... 184

11. INSTALLATION ....................................................................................................... 187

11.1. User Interface Door and Power Switch ......................................................................... 18711.2. Vent and Outer Cover .................................................................................................... 18811.3. Dimensions and Mounting Plan .................................................................................... 18911.4. Earth Wiring Diagram ................................................................................................... 19111.5. Inner Structure ............................................................................................................... 19211.6. Mount Accessories Dimensions .................................................................................... 19311.7. User-Available DC Power ............................................................................................. 19411.8. Terminal Block and Fuses ............................................................................................. 19511.9. EVRC2A Wiring Diagram - CVD Type ........................................................................ 19611.10. EVRC2A Wiring Diagram - VT Type ......................................................................... 19711.11. Side Panel .................................................................................................................... 19811.12. Current Inputs Wiring Diagram................................................................................... 19911.13. CVD Wiring Diagram ................................................................................................. 20011.14. VT Wiring Diagram..................................................................................................... 20111.15. Load Side VT Wiring Diagram ................................................................................... 20211.16. Current and Voltage Inputs Phase Rotation ................................................................. 20311.17. Control Cable Receptacle Pin Descriptions ................................................................ 20411.18. Control Cable Assembling / De-assembling................................................................ 20611.19. AC Power Receptacle Pin Descriptions ...................................................................... 20611.20. AC Power Cable .......................................................................................................... 20711.21. Fuses............................................................................................................................ 20711.22. Battery and Control run time....................................................................................... 20811.23. Charge Circuit ............................................................................................................. 20911.24. Battery Change ............................................................................................................ 20911.25. Communications.......................................................................................................... 21011.26. Communication Cables ............................................................................................... 21111.27. Hardware Block Diagram............................................................................................ 21211.28. Recloser Trip and Close Circuits ................................................................................. 213

Page 6: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

6 ENHANCED TECHNOLOGY

11.29. Uninterruptible Power Supply for Trip & Close.......................................................... 21411.30. Main Board.................................................................................................................. 21511.31. Analog Board............................................................................................................... 21611.32. Recloser EVR Wiring Diagram ................................................................................... 21711.33. Recloser EPR Wiring Diagram.................................................................................... 21811.34. Recloser Current Transformer (CT) ............................................................................ 21911.35. Recloser Capacitor Voltage Divider (CVD) ................................................................ 21911.36. Recloser Pressure Sensor (Only EVR Type) ............................................................... 22011.37. Recloser 52 contact and 69 contact ............................................................................. 22211.38. Recloser Trip and Close Coil....................................................................................... 22211.39. Recloser Test Kit ......................................................................................................... 223

12. MAINTANANCE ...................................................................................................... 224

12.1. Warning Events ............................................................................................................. 22412.2. Malfunction Events ....................................................................................................... 226

Page 7: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

7ENHANCED TECHNOLOGY

1. INTRODUCTION

1.1. Description

EVRC2A with the microprocessor-based digital control technology is designed to provide protective coordination and fault clearance of distribution systems for the continuous best quality of electric service.

Remote monitoring and control can be provided by RTU(Remote Terminal Unit - Option)

which fundamentally installed. EVRC2A provides protection, control, and monitoring functions with both local and remote. It

also displays the present trip/alarm conditions, and measured system parameters. Recording of past trip, alarm or control events, maximum demand levels, and energy metering

is also performed. Users can operate Close and Trip, and also control EVRC2A with key buttons on the user

interface panel; Protection Enabled, Ground Enabled, SEF Enabled, Reclose Enabled, Control Locked, Remote enabled, Alternate-settings, Program 1, Program 2, Hot line tag.

Users can manage the Recloser interface software using a portable PC for modification of

settings, acquisition of event data, and management of operation history. EVRC2A contains many T-C characteristic curves developed by IEEE C37.112, IEC255-3,

McGraw Edison, and KEPCO to provide fully protective coordination for the continuous best quality of electric distribution. Users can select any time of current curve simply by programming and modifying.

Page 8: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

8 ENHANCED TECHNOLOGY

1.2. Summary of Features

PROTECTION Phase Instantaneous Over-current Elements Phase Time Over-current Elements Phase Definite Time High Current Lockout Element Ground Instantaneous Over-current Elements Ground Time Over-current Elements Ground Definite Time High Current Lockout Element Sensitive Earth Fault Elements Negative Instantaneous Over-current Elements Negative Time Over-current Elements Negative Definite Time High Current Lockout Element Phase, Neutral, Ground, Sensitive Earth and Negative Sequence Directional Control Automatic Reclosing(Up To 4 Shots) Cold Load Pickup with Voltage Control Sequence Coordination Control Two Under-voltage Elements Two Over-voltage Elements Under-frequency Element

MONITORING Fault Locator Demand trip and alarm(Ia, Ib, Ic, Ig, I2) Trip Counter Limit Synchronism Check Recloser main contact Wear(Per Phase) Recloser Operation Failure Voltage Transformer Failure Battery Automatic Load Test Recloser Gas Over and Low pressure Breaker Failure with Current Supervision

Page 9: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

9ENHANCED TECHNOLOGY

METERING Phase, Ground and Sensitive Ground Current Phasors Line and Phase Voltage Phasors Current and Voltage Symmetrical Component Phasors Frequency Magnitude and Rate Synchronizing Voltage Phasor Synchronizing Voltage Frequency

Synchronizing Delta, Delta Single and Three Phase Power(MW, Mvar, MVA, PF) Energy(MWh, Mvarh) Maximum Demand(Ia, Ib, Ic, MW, Mvar, MVA)

COMMUNICATIONS Front Panel PORT1 RS232 Serial Port : EVRC2A interface software Side panel PORT2 RS232 Serial Port : DNP 3.0 Protocol - Option Side panel PORT3 RS485/422 Serial Port : DNP 3.0 Protocol or Modbus – Option Side panel PORT4 RJ45 Port : IEC60870-5-104 Protocol – Option

RECORDER Trip and fault counter System event recorder - last 512 events Diagnostic event recorder - last 100 events Load profile recorder - last 42days

Fault Waveform - 15 cycles×16

USER INTERFACE Fault indicators Manual Battery Load Test: Battery Voltage and Charge Voltage Dual Functional keypads

20×4 Character Display(LCD or VFD : Vacuum Fluorescent Display) 32 LED indicators - Fault indications, sequence status, battery status, etc RS232 port Context Help Messages Access Security(Passcode)

Page 10: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

10 ENHANCED TECHNOLOGY

AUXILIARY OUTPUTS - Option 7 Programmable Relays 1 Programmable Alarm Relay

AUXILIARY INPUTS - Option 8 Opto-isolated Programmable Inputs

Page 11: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

11ENHANCED TECHNOLOGY

2. TECHNICAL SPECIFICATIONS 2.1. Inputs and Outputs

Systems 3phase-3wire or 3phase-4wire, 38 maximum, 800 Amp maximum

Frequency 50 / 60 system and ABC/ACB phase rotation

Control Voltage Input AC Voltage Input 110V/220Vac or other voltage (+10%,-15%) Nominal Battery Voltage : 24Vdc

User available DC power Output - Option DC Power Voltage : 12, 15, 24Vdc DC Power Continuous : 30W DC Power for 10Sec : 70W

Capacitor Voltage Divider Inputs (CVD) - Standard Maximum Input Voltage 5V Burden : 2e-6 VA

System Voltage : 15, 27, 38 Capacitor value

EVR

- Phase Capacitor value : 20 EPR

- Source Side Phase Capacitor value : 26 - Load Side Phase Capacitor value : 20(Option)

Voltage Transformer Inputs (VT) - Option Voltage Inputs VA, VB, VC and VL

Input Voltage Range : Phase-Neutral Continuous <300V Burden: 0.6VA(300V), 0.2VA(220V), 0.05VA(120V), 0.02VA(67V)

Page 12: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

12 ENHANCED TECHNOLOGY

Current Transformer Inputs (CT) Current Inputs IA,IB,IC and IG, SEF IA,IB,IC,IG Input Current Range

1A Nominal 2A continuous 25A 1 second Burden : 0.38VA(1A)

SEF Input Current Range 0.05A Nominal 0.16A Continuous 0.6A 1 second Burden : 0.0375VA(0.05A)

Control Inputs - Option Control Inputs 8 Channel Nominal Voltages and Operating Range

250Vdc(-15%,+20%) 125Vdc(-15%,+20%) 48Vdc(-15%,+20%) 24Vdc(-15%,+20%) 12Vdc(-10%,+30%)

Operating current : < 5mA at Nominal Voltages

Control Output Contacts - Option Control Outputs 8 Channel

Normal Open 5 Channel Normal Close 2 Channel ALARM 1 Channel

300Vac / 350Vdc Varistor for differential surge protection

Operate / Release time : < 5ms at +20(+68) Maximum operating power

125Vdc 0.1A 48Vdc 0.8A (L/R=7ms) 24Vdc 3A 250Vac 3A (cosΦ=0.4) 125Vac 5A

Page 13: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

13ENHANCED TECHNOLOGY

2.2. Type Withstand Tests

Dielectric Strength CT inputs, VT inputs, Control Power inputs, Opto-isolated inputs and Relay outputs

2(60) for 1 minute

Impulse Voltage IEEE C62.45 (1992) Withstand Capability of Relay Systems to Radiated Electromagnetic

Interference Transceivers, 6(1.2×50), 3(8×20)

Surge Withstand Capability IEEE C37.90.1 - 1989 IEEE SWC Tests for Protective Relays and Relay Systems

(3 oscillatory 1 to 1.5, 5 fast transient 1.2×50) IEEE C37.90.2 - 1987 IEEE Trial-Use Standard, Withstand Capability of Relay Systems to

Radiated Electromagnetic Interference from Transceivers, 10 V/m

(150 and 450, 5 W transmitter 10)

Vibration Test IEC 255-21-1 - 1988 Electrical relays, Part 21 : Vibration, shock, bump, and seismic tests on

measuring relays and protection equipment, Section One - Vibration tests (sinusoidal), Class 2

Control Operating Temperature Operating range : -25∼+70(-13∼+158) LCD : -20∼+70(-4∼+158) - standard VFD : -40∼+85(-40∼+185) - option(Vacuum Fluorescent Display)

Page 14: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

14 ENHANCED TECHNOLOGY

2.3. Metering Accuracy

The harmonic components of current and voltage are removed from the input voltage and current parameters, so all measurements based on these quantities respond to the fundamental components only.

Table 2-1. Metering Accuracy

Accuracy Measurements Parameters Unit

CVD VT Range

CURRENT

Phase A RMS Current

Phase B RMS Current

Phase C RMS Current

Phase G RMS Current

A ±1% of 2 x CT ±1% of 2 x CT 20 x CT

VOLTAGE

A–N (A–B) RMS Voltage

B–N (B–C) RMS Voltage

C–N (C–A) RMS Voltage

±2.5% ±1% -

SYMMETRICAL

COMPONENTS

I1, I2, 3I0

V1, V2, 3V0

A

±1% of 2 x CT

±2.5%

±1% of 2 x CT

±1% -

POWER

FACTOR

Phase A, B, C

3Φ Phase Rate ±0.05 ±0.02 -1.00 to 1.00

3ΦREAL POWER Phase A, B, C

3Φ Phase MW ±3% ±2% –320.00 to 320.00

3ΦREACTIVE

POWER

Phase A, B, C

3Φ Phase Mvar ±3% ±2% –320.00 to 320.00

3ΦAPPARENT

POWER

Phase A, B, C

3Φ Phase MVA ±3% ±2% –320.00 to 320.00

WATT-HOURS Phase A, B, C

3Φ Phase MW/h ±5% ±3% –32000 to 32000

DEMAND

Phase A/B/C/G Current

A/B/C, 3Φ Real Power

A/B/C, 3Φ Reactive Power

A/B/C, 3Φ Apparent Power

A

MW

Mvar

MVA

±2%

±5%

±5%

±5%

±2%

±3%

±3%

±3%

-

FREQUENCY A-N (A-B) Source

Load Voltage ±0.05 ±0.02 40.00 to 65.00

• If the VT connection type is set to delta, all single phase voltage quantities are displayed as zero.

Page 15: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

15ENHANCED TECHNOLOGY

2.4. Protection Elements

Phase/Ground/Negative Sequence Time Overcurrent Protection Phase/Negative Pickup Level.................................... 0.04 to 3.20 in steps of 0.01 x CT Ground Pickup Level ................................................ 0.02 to 3.20 in steps of 0.01 x CT Dropout Level ........................................................... 96 to 98% of Pickup Curve Type

ANSI : Moderately, Normally, Very, Extremely, Short Inverse, Definite Time (1s ,10s) IEC : Standard, Very, Extremely, Long, Short Inverse ESB : Normally, Very, Long Very Inverse User programmable curves : U1, U2, U3, U4 McGraw-Edison : Non Standard Curves 37

Time dial ................................................................... 0.05 to 15.00 in steps of 0.01 Time adder................................................................. 0.00 to 10.00 in steps of 0.01 Minimum Response time .......................................... 0.00 to 10.00 in steps of 0.01 Reset Type ................................................................. Instantaneous/Linear Pickup Level Accuracy.............................................. 5%

Timing Accuracy ....................................................... ± 5% of trip time or ± 20

Phase/Ground/Negative Sequence Instantaneous Overcurrent Protection Pickup Level.............................................................. 0.10 to 20.00 in steps of 0.01 x CT Dropout Level ........................................................... 95 to 98% of Pickup Time Delay ................................................................ 0.00 to 10.00 in steps of 0.01s Active Trip ................................................................ 1 to 5 in steps of 1 Pickup Level Accuracy.............................................. 5%

Timing Accuracy ....................................................... at 0 time delay (50 max) 5% of trip time or ± 20

Phase/Ground/Negative Sequence High Current Lockout Protection Pickup Level.............................................................. 0.10 to 20.00 in steps of 0.01 x CT Dropout Level ........................................................... 95 to 98% of Pickup Time Delay ................................................................ 0.00 to 10.00 in steps of 0.01s Active Trip ................................................................ 1 to 5 in steps of 1 Pickup Level Accuracy.............................................. 5%

Timing Accuracy ....................................................... at 0 time delay (50 max) 5% of trip time or ± 20

Page 16: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

16 ENHANCED TECHNOLOGY

Sensitive Earth Definite Time Overcurrent Protection Pickup Level..............................................................0.005 to 0.1600 in steps of 0.001 xCT Dropout Level ...........................................................95 to 98% of Pickup Time Delay ................................................................0.00 to 10.00 in steps of 0.01s Pickup Level Accuracy..............................................5%

Timing Accuracy .......................................................at 0 time delay (50 max) 5% of trip time or ± 20

Phase Directional Control Polarizing Voltage .....................................................Positive Sequence Voltage V1 Maximum Torque Angle............................................0 to 359° in steps of 1° Angle Accuracy .........................................................± 2° Internal Operation Delay ...........................................1.5cycle

Ground/Sensitive Earth Directional Control Polarizing Voltage .....................................................Zero Sequence Voltage Vo For voltage element polarizing the source VTs must be connected in Wye Maximum Torque Angle............................................0 to 359° in steps of 1° Angle Accuracy .........................................................± 2° Internal Operation Delay ...........................................1.5cycle

Negative Directional Control Polarizing Voltage .....................................................Negative Sequence Voltage V2 Maximum Torque Angle............................................0 to 359° in steps of 1° Angle Accuracy .........................................................± 2° Internal Operation Delay ...........................................1.5cycle

Reclose Control Operations to Lockout - phase trip ............................1 to 5 in steps of 1 Operations to Lockout - ground trip..........................1 to 5 in steps of 1 Operations to Lockout - SEF trip ..............................1 to 5 in steps of 1 Operations to Lockout - Negative Seq’ trip...............1 to 5 in steps of 1 Operations of Fast curve - phase trip.........................0 to 5 in steps of 1 Operations of Fast curve - ground trip ......................0 to 5 in steps of 1 Operations of Fast curve - Negative Seq’ trip ...........0 to 5 in steps of 1

Page 17: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

17ENHANCED TECHNOLOGY

Reclose interval 1 ...................................................... 0.50 to 600.00 in steps of 0.01 Reclose interval 2 ...................................................... 1.00 to 600.00 in steps of 0.01 Reclose interval 3 ...................................................... 1.00 to 600.00 in steps of 0.01 Reclose interval 4 ...................................................... 1.00 to 600.00 in steps of 0.01 Reset time for Auto Reclose Cycle ........................... 1.00 to 600.00 in steps of 0.01 Reset time from lockout ............................................ 1.00 to 600.00 in steps of 0.01 Timing Accuracy ....................................................... ± 5%

Cold Load Pickup Blocking Phase Pickup Level ................................................... 0.10 to 20.00 in steps of 0.01 x CT Ground Pickup Level ................................................ 0.10 to 20.00 in steps of 0.01 x CT SEF Pickup Level...................................................... 0.10 to 20.00 in steps of 0.01 x CT Negative Seq’ Pickup Level ...................................... 0.10 to 20.00 in steps of 0.01 x CT Reset Level................................................................ 95 to 98% of Nominal Pickup Outage Time .............................................................. 0.00 to 600.00 in steps of 0.01s Restore Minimum Time ............................................ 0.00 to 600.00 in steps of 0.01s Reset Time................................................................. 0.00 to 600.00 in steps of 0.01s Pickup Level Accuracy.............................................. 5%

Timing Accuracy ....................................................... at 0 time delay (50 max) 5% of trip time or ± 20

Undervoltage 1/2 Protection Pickup Level.............................................................. 0.00 to 1.25 in steps of 0.01 x VT Minimum Voltage...................................................... 0.00 to 1.25 x VT in steps of 0.01 Dropout Level ........................................................... 95 to 98% of Pickup Time Delay ................................................................ 0.00 to 600.00 in steps of 0.01s Active Phases ............................................................ Any One/Any Two/All Three

Timing Accuracy ....................................................... ± 20

Overvoltage 1/2 Protection Pickup Level.............................................................. 0.00 to 1.25 in steps of 0.01 x VT Dropout Level ........................................................... 95 to 98% of Pickup Time Delay ................................................................ 0.00 to 600.00 in steps of 0.01s Active Phases ............................................................ Any One/Any Two/All Three

Timing Accuracy ....................................................... ± 20

Page 18: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

18 ENHANCED TECHNOLOGY

Underfrequency 1/2 Minimum Voltage......................................................0.00 to 1.25 in steps of 0.01 x VT in Phase A

Pickup Level..............................................................40.00 to 65.00 in steps of 0.01 Dropout Level ...........................................................at VT Pickup + 0.02 at CVD Pickup+0.05 Time Delay ................................................................0.00 to 600.00 in steps of 0.01s (definite time)

Level Accuracy..........................................................at VT ± 0.02, at CVD ± 0.05 Timing Accuracy .......................................................2cycle

2.5. Monitoring

Demand Measured Values........................................................Phase A/B/C/G Current(A)

Phase A/B/C/G 3Φ Real Power(MW) Phase A/B/C/G 3Φ Reactive Power(Mvar) Phase A/B/C/G 3Φ Apparent Power(MVA) Measurement Type ....................................................Thermal Exponential/Rolling Demand Time Constant ...........................................................5, 10, 15, 20, 30 or 60 min. Phase Pickup Level ...................................................0.04 to 3.20 in steps of 0.01 x CT Ground Pickup Level.................................................0.02 to 3.20 in steps of 0.01 x CT Negative Seq’ Pickup Level ......................................0.04 to 3.20 in steps of 0.01 x CT Level Accuracy..........................................................± 5%

Synchronism Check Dead Voltage Maximum............................................0.00 to 1.25 in steps of 0.01 x VT Live Voltage Maximum.............................................0.00 to 1.25 in steps of 0.01 x VT Maximum Voltage Difference ...................................0.00 to 1.25 in steps of 0.01 x VT Maximum Angle Difference......................................0 to 100° in steps of 1°

Maximum Frequency Difference ..............................0.00 to 5.00 in steps of 0.01 Synchro-check Phase.................................................R(AB), S(CB), T of Load side

Trip Counters Number of Pickup Limit............................................1 to 20000 in steps of 1 Trip Counter Set ........................................................0 to 10000 in steps of 1

Page 19: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

19ENHANCED TECHNOLOGY

Recloser Wear Pickup Wear .............................................................. 0 to 100% in steps of 0.1

Rate System............................................................... 15, 27, 38 Rate Interrupt()...................................................... 5.0 to 50.0 in steps of 0.1 Number of Maximum Interruption............................ 1 to 999 in steps of 1 Set Phase A Wear....................................................... 0.0 to 100.0 % in steps of 0.1 Set Phase B Wear ...................................................... 0.0 to 100.0 % in steps of 0.1 Set Phase C Wear ...................................................... 0.0 to 100.0 % in steps of 0.1

2.6. Recorder

WAVEFORM CAPTURE Trigger Source

Protection pickup Elements Trip command active

Data Channels 4 currents, 3 voltages, Frequency, 32 logic input states, 8ch output relays, 8ch Input

Sample Rate : 16 per cycle Trigger Position : 1 to 15cycle Storage capacity : 16 events with 15cycle

SYSTEM EVENT RECORDER Trigger Source

Protection Elements 52A Contact Sequence status Front panel control AC supply External control Fail operation External input status System alarm

Trigger Time : each 1/4 cycle Trigger type : Pick up and Dropout Storage Capacity : Last 500 Events

Page 20: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

20 ENHANCED TECHNOLOGY

DIAGNOSTIC EVENT RECORDER Trigger Source

System Power(AC, Battery, ±12V, +5V) A/D Conversion(A/D Fail, Reference Voltage1, Reference Voltage 2) Sleep Mode Power Down Mode Setting Change Gas Status

Trigger Time : each 1/4 cycle Trigger type : Pick up and Dropout Storage Capacity : Last 100 Events

LOAD PROFILE Trigger Source

Demand Current(A, B, C, G)

Demand Real Power(A, B, C, 3ф) Demand Reactive Power(A, B, C, 3ф) Trigger Time : 5, 10, 15, 20, 30, 60minute

Storage Capacity : Total 1024 Events, 42days/60min.

COUNTER Trip : 0 to 65534 Fault : 0 to 65534 System Restart : 0 to 65534

RECLOSER WEAR Phase A Wear : 0.0 to 100.0% Phase B Wear : 0.0 to 100.0% Phase C Wear : 0.0 to 100.0%

Page 21: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

21ENHANCED TECHNOLOGY

2.7. Communications

Table 2-2. Communications

Front Panel Port1 RS232, 19200bps, No Parity, 8 Data Bits, 1 Stop bit

EVRC2A interface software

Side panel Port2 - Option RS232, 1200-19200bps, No Parity, 8 Data bits, 1 Stop bit

DNP 3.0 Protocol

Side panel Port3 – Option

RS485/422, 1200-19200bps, None, Odd orEven Parity, 7 or 8 Data bits, 1 or 2 Stop bit

Modbus Protocol, DNP 3.0 Protocol

Side panel Port4 – Option RJ-45, 10BASE-T/100BASE-T

IEC60870-5-104 Protocol

Page 22: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

22 ENHANCED TECHNOLOGY

3. USER INTERFACE PANEL This section describes the User Interface Panel(front-panel) The User interface Panel control is used for; Directly control the recloser Verify control status View system status View metering value View information stored in the EVRC2A unit View and change the EVRC2A settings

Figure 3-1. User Interface Panel

Page 23: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

23ENHANCED TECHNOLOGY

3.1. Construction

Panel consists of 8 sections as below; Operation section Local control section Fault indication section Voltage elements section Sequence status section System diagnostic section Battery test section Menu control section

3.1.1. Operation Section

OPEN Pressing OPEN push-button sends a trip signal to the Recloser.

CLOSE Pressing CLOSE push-button sends a close signal to the Recloser. Units operating with firmware version 2.18 or later have a feature of Close Time Delay. The Close Time Delay allows a delay of 0.00 to 600.00 seconds after pressing the close push-button before closing the recloser

POSITION LED Indicates the position of the Recloser. Position indicator is based on the Recloser 52a contacts.

Figure 3-2. Operation Section

Page 24: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

24 ENHANCED TECHNOLOGY

3.1.2. Local Control Section

All indicators show status of Control function. The indicators are continuously ON when the control function is enable and the indicators are continuously OFF when control function is

DISABLE. The push-button toggles Enable/Disable

PROTECTION ENABLED All Protection elements are enabled

GROUND ENABLED Ground Protection elements are disabled

SEF ENABLED SEF Protection elements are disabled

RECLOSE ENABLED Reclose function is enabled

CONTROL LOCKED Front panel function is unlocked

REMOTE ENABLED Remote control is disabled

ALTERNATE SETTINGS Alternate setting is disable Primary Setting is enable

PROGRAM 1 Program 1 function is disabled

PROGRAM 2 Program 2 function is disabled

HOT LINE TAG Hot Line Tag function is disabled

Figure 3-3. Local Control Section

Page 25: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

25ENHANCED TECHNOLOGY

Protection Enabled When illuminated, all protection elements are enabled. The protection enabled condition can be disabled by pressing the Protection Enabled push button on the front panel. The front panel LED will illuminate on either source of all protection enabling.

NOTE : Although all protection elements are enabled, ground protection elements and SEF element are operated individually

Ground Enabled When Ground Enable LED is ON, the ground over-current elements are enabled. The enabled Ground can be disabled by pressing the Ground Enabled push-button on the front panel.

SEF Enabled When SEF Enable LED is on, the Sensitive Earth Fault(SEF) element is enabled. The enabled SEF can be disabled by pressing the SEF Enabled push-button on the front panel.

Reclose Enabled When Reclose Enable LED is on, the reclose(79) element is enabled. The enabled reclose element can be disabled by pressing the Rcloser Enabled push-button on the front panel.

Control Locked When Control Locked LED is on, all functions in operation section and all functions in Local control section are locked. These can be unlocked by pressing the Control Locked push-button on the front panel

NOTE : Even though Control Locked function is locked, OPEN, Lamp Test, Battery Load Test and menu control section can be normally operated.

Remote Enabled When Remote Enabled LED is on, all remote control function (e.g. SCADA system) are enabled. This can be disabled by pressing the Remote Enabled push-button on the front panel. SCADA control refers to supported communications protocol such as DNP3.0

Alternate Enabled When Alternate Enabled LED is on, the Alternate setting is activated. When Alternate Enabled LED is off, the primary setting is activated.

Page 26: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

26 ENHANCED TECHNOLOGY

Program 1 A function installed in Program1 is operated when Program1 LED is On. Depending on user’s request, Manufacturer sets a function in Program1.

Program 2 A function installed in Program2 is operated when Program1 LED is On. Depending on user’s request, Manufacturer sets a function in Program2.

Hot Line Tag When Hot Line Tag LED is on, the Hot Line Tag function is enabled.

3.1.3. Fault Indication Section

Indicates current on the phase or neutral lines is above the minimum pickup setting as programmed in any of the EVRC2A over-current elements Phase Instantaneous over-current Elements Phase Time over-current Elements Phase Definite Time High Current Lockout Element Ground Instantaneous over-current Elements Ground Time over-current Elements Ground Definite Time High Current Lockout Element Sensitive Ground Time Over-current Elements Negative Instantaneous over-current Elements Negative Time over-current Elements Negative Definite Time High Current Lockout Element Phase, Neutral, Ground, Sensitive Ground, and Negative Sequence Directional Control

Figure 3-4. Fault Indication Section

Page 27: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

27ENHANCED TECHNOLOGY

TRIP TYPE INST : Shows high current trip (50-1) DELAY : Shows delay trip(51) HIGH CURR’ : Shows high current lockout(50-2)

FAULT INDICATION A, B, C : Indicates an over-current fault has occurred on one of the phase lines G : Indicates an over-current fault has occurred on the neutral line SEF : Indicates a sensitive earth fault has occurred on the neutral line FI RESET : Reset fault indication/Lamp test

3.1.4. Voltage Elements Section

Indicates that voltage pickup element is operated. Two Under voltage Elements Two Over voltage Elements Synchronism Element Under frequency Element

27 : Under voltage pickup 59 : Over voltage pickup 25 : Synchronism check pickup 81 : Under frequency pickup

Figure 3-5. Voltage Elements Section

Page 28: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

28 ENHANCED TECHNOLOGY

3.1.5. Sequence Status Section

Indicates the current status of programmed sequence procedure.

RESET : Sequence shows resetting CYCLE : Sequence shows running LOCKOUT : Sequence shows lockout

Figure 3-6. Sequence Status Section

3.1.6. System Diagnostic Section

Indicates Diagnostic status of the EVRC2A. Control run indicates (green) the EVRC2A has successfully passed its internal diagnostic test. Self Check (Red) indicates the EVRC2A has failed its internal diagnostic test.

CONTROL RUN Status of EVRC2A systems shows normal

SELF CHECK Status of EVRC2A systems shows warning

Figure 3-7. System Diagnostic Section

NOTE : Control Run LED is blinking when system functional status is normal

Page 29: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

29ENHANCED TECHNOLOGY

3.1.7. Battery Test Section

Indicates the system power status of the EVRC2A. AC supply indicates the EVRC2A has external power source. Charge indicates the EVRC2A is charging Battery. Discharge indicates the EVRC2A has failed battery load testing.

AC SUPPLY Status of supplying the external AC power.

CHARGE Status of charging the battery.

DISCHARGE Status of discharged battery.

BATTERY LOAD TEST Push-button for battery load test.

Figure 3-8. Battery Test Section

LCD displays during Battery Load Testing.

Figure 3-9. Battery Test Mode

3.1.8. Menu Control Section

The Liquid Crystal Display (LCD) of the EVRC2A displays four lines of twenty characters each.

LCD DISPLAY 4x20 Characters display

CONTROL KEYS [] [] [] [] Arrow keys are used for the moving between the menu window and the changing of the setting value

[] (METER) : Up arrow key is used to move to the meter menu, operable in menu starting mode [] (AWAKE) : Down arrow key is used for panel awake from sleep mode [] (EVENT) : Left arrow key is used to move to the event menu, operable in menu starting mode[] (SET) : Right arrow key is used to move to the setting menu, operable in menu starting mode

[FUN] : To move to main menu when present mode is in starting mode [ESC] : To cancel for data input mode or return the display to the previous level [ENT] : To select sub menu or data input

[BATTERY TEST MODE] LOAD(V) : 25.00 CHARGE(V): 26.50 STATUS : CHARGE

Page 30: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

30 ENHANCED TECHNOLOGY

Figure 3-10. Menu Control Section

[FUN] Key Press [FUN] key to enter Main menu for displaying information or changing settings. [FUN] key is also used to display a help message in setting change mode and to cancel the help message display.

[ESC] Key The ESC key can be used to cancel data input mode and return to the previous menu.

[ENT] Key ENT key is used to select a menu by using Up and Down arrow key. Enter key is also used to accept a new setting by using Up or down arrow key.

[] [] Key Use the left and right arrow keys to move cursor when you are in the data input mode and when you change display message.

[] [] Key Use Up and Down arrow keys to move through the various menus and to decrease or increase value when you are in the data input mode.

Page 31: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

31ENHANCED TECHNOLOGY

3.2. LCD Display

20 x 4 Character Display(LCD or VFD : Vacuum Fluorescent Display) All menus are arranged in rotation algorism.

When cursor is in top menu, if you press [] key, you go to the bottom menu due to Rotation Menu Algorism.

Displays Context Help Message.

3.2.1. Main Menu Summary EVRC2A has 6 Setting Menu BANKs which can be changed individually. BANK in Primary Setting Menu is applied to System, BANK in Alternate Setting/EditBank Setting

Menu is not applied to System. Press [Alternate Enabled] button, when the lamp is on, Alternate setting Menu is applied to the system. EditBank Setting is used for setting value. EVRC2A Main Menu consists of 8 sub-menus.

[MAIN MENU] 1.SELECT SETBANK 2.PRIMARY SETTING 3.ALTERNATE SETTING 4.EDITBANK SETTING 5.STATUS 6.METERING 7.MAINTENANCE 8.EVENT RECORDER

[PRIMARY SETTING] 1.RELAY SETUP 2.SYSTEM SETUP 3.PROTECTION 4.MONITORING 5.SAVE SETTINGS

[ALTERNATE SETTING] 1.RELAY SETUP 2.SYSTEM SETUP 3.PROTECTION 4.MONITORING 5.SAVE SETTINGS

[EDITBANK SETTING] 1.RELAY SETUP 2.SYSTEM SETUP 3.PROTECTION 4.MONITORING 5.SAVE SETTINGS

[STATUS] 1.OPTO INPUTS 2.RELAY OUTPUTS 3.CLOCK 4.CONTROL TYPE

[METERING] 1.CURRENT 2.VOLTAGE 3.FREQUENCY 4.SYNCHRO VOLTAGE 5.POWER 6.ENERGY 7.DEMAND 8.SYSTEM

[MAINTENANCE] 1.COUNTERS 2.WEAR MONITOR 3.OUTPUT RELAY TEST

[EVENT RECORDER] 1.FAULT CYCLE 2.SYSTEM STATUS 3.LOAD PROFILE 4.DIAGNOSTIC

Figure 3-11. Main Menu Tree

3.2.2. Select Setbank Consists of Primary, Alternate, Edit. Primary : Select BANK to be applied to System.

Alternate : Press [Alternate Enable] button and select a BANK to apply in the system. Edit : Select a BANK to edit.

Page 32: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

32 ENHANCED TECHNOLOGY

3.2.3. Primary Setting RELAY SETUP Consists of PASSCODE, COMMUNICATION, CLOCK, TIME DISP’TYPE, EVENT RECORDER, CLEAR SAVED DATA, FACTORY DEBUG., GAS SENSOR TYPE

SYSTEM SETUP Consists of CURRENT SENSING, LINE (VS, VL), SYSTEM POWER, PANEL SLEEP TIME, OPTO INPUT SET, OUTPUT RELAY.

PROTECTION Set items related to protection elements.

MONITORING Set items related to measurement and maintenance.

SAVE SETTINGS Save all changed values.

3.2.4. Alternate Setting The same as “PRIMARY SETTING”

3.2.5. Editbank Setting The same as “PRIMARY SETTING”

3.2.6. Status OPTO INPUT : Shows status of External port. RELAY OUTPUT : Shows status of Output port. CLOCK : Shows the present time. CONTROL TYPE : Shows specs of Hardware.

3.2.7. Metering Shows metering values. For more details, refer to (see 8. METERING)

3.2.8. Maintenance COUNTER : Shows counters related with SYSTEM. WEAR MONITOR : Shows any damage Interrupter. RELAY OUTPUT TEST : Test External Output port. For more details, refer to (see 9. MONITORING)

Page 33: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

33ENHANCED TECHNOLOGY

3.2.9. Event Recorder Shows about Event recorder items. For more details, refer to (see 10. EVENT RECORDER)

[MAIN MENU]1.SELECT SETBANK2.PRIMARY SETTING3.ALTERNATE SETTING4.EDITBANK SETTING5.STATUS6.METERING7.MAINTENANCE8.EVENT RECORDER

[MAIN MENU]1.SELECT SETBANK2.PRIMARY SETTING3.ALTERNATE SETTING4.EDITBANK SETTING5.STATUS6.METERING7.MAINTENANCE8.EVENT RECORDER

[LINE CURRENT(A)]A: 0 B: 0C: 0 G: 0SG: 0 I2: 0[ZERO SEQ CURRENT]

0 A 000.0 Leg[POS SEQ CURRENT]

0 A 000.0 Leg[NEG SEQ CURRENT]

0 A 000.0 Leg[SENSTV CURRENT]

0 A 000.0 Leg[PHASE C CURRENT]

0 A 000.0 Leg[GROUND CURRENT]

0 A 000.0 Leg[PHASE A CURRENT]

0 A 000.0 Leg[PHASE B CURRENT]

0 A 000.0 Leg

[LINE CURRENT(A)]A: 0 B: 0C: 0 G: 0SG: 0 I2: 0[ZERO SEQ CURRENT]

0 A 000.0 Leg[POS SEQ CURRENT]

0 A 000.0 Leg[NEG SEQ CURRENT]

0 A 000.0 Leg[SENSTV CURRENT]

0 A 000.0 Leg[PHASE C CURRENT]

0 A 000.0 Leg[GROUND CURRENT]

0 A 000.0 Leg[PHASE A CURRENT]

0 A 000.0 Leg[PHASE B CURRENT]

0 A 000.0 Leg

RECLOSER CONTROLEVERC2A

ENTEC E&E CO. V4.41

RECLOSER CONTROLEVERC2A

ENTEC E&E CO. V4.41

FUN

[PRIMARY SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[PRIMARY SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[ALTERNATE SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[ALTERNATE SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[EDITBANK SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[EDITBANK SETTING]1.RELAY SETUP2.SYSTEM SETUP3.PROTECTION4.MONITORING5.SAVE SETTINGS

[STATUS]1.OPTO INPUTS2.RELAY OUTPUTS3.CLOCK4.CONTROL TYPE

[STATUS]1.OPTO INPUTS2.RELAY OUTPUTS3.CLOCK4.CONTROL TYPE

[METERING]1.CURRENT2.VOLTAGE3.FREQUENCY4.SYNCHRO VOLTAGE5.POWER6.ENERGY7.DEMAND8.SYSTEM

[METERING]1.CURRENT2.VOLTAGE3.FREQUENCY4.SYNCHRO VOLTAGE5.POWER6.ENERGY7.DEMAND8.SYSTEM

[MAINTENANCE]1.COUNTERS2.WEAR MONITOR3.OUTPUT RELAY TEST

[MAINTENANCE]1.COUNTERS2.WEAR MONITOR3.OUTPUT RELAY TEST

[EVENT RECORDER]1.FAULT CYCLE2.SYSTEM STATUS3.LOAD PROFILE4.DIAGNOSTIC

[EVENT RECORDER]1.FAULT CYCLE2.SYSTEM STATUS3.LOAD PROFILE4.DIAGNOSTIC

[RELAY SETTUP]1.PASSCODE2.COMMUNICATION3.CLOCK4.TIME DIS’TYPE5.EVENT RECORDER6.CLEAR SAVED DATA7.FACTORY DEBUG8.GAS SENSOR TYPE

[RELAY SETTUP]1.PASSCODE2.COMMUNICATION3.CLOCK4.TIME DIS’TYPE5.EVENT RECORDER6.CLEAR SAVED DATA7.FACTORY DEBUG8.GAS SENSOR TYPE

[SYSTEM SETTUP]1.CURRENT SENSING2.LINE VS SENSING3.LINE VL SENSING4.SYSTEM POWER5.PANEL SLEEP TIME6.OPTO INPUT SET7.OUTPUT RELAY SET8.LOOP CONTROL

[SYSTEM SETTUP]1.CURRENT SENSING2.LINE VS SENSING3.LINE VL SENSING4.SYSTEM POWER5.PANEL SLEEP TIME6.OPTO INPUT SET7.OUTPUT RELAY SET8.LOOP CONTROL

[PROTECTION]1.OPERATION2.INTERVALS3.PICKUP CURRENT4.PHASE FAST5.PHASE DELAY6.GROUND FAST7.GROUND DELAY8.SEF ELEMENT9.NEG SEQ FAST10.NEG SEQ DELAY11.H/C TRIP-PHA12.H/C TRIP-GND13.H/C TRIP-NEQ14.H/C LOCKOUT-PHA15.H/C LOCKOUT-GND16.H/C LOCKOUT-NEQ17.COLD LOAD PICKUP18.DIRECTION19.VOLTAGE20.FREQUENCY21.OTHER ELEMENT22.USER CURVE SET

[PROTECTION]1.OPERATION2.INTERVALS3.PICKUP CURRENT4.PHASE FAST5.PHASE DELAY6.GROUND FAST7.GROUND DELAY8.SEF ELEMENT9.NEG SEQ FAST10.NEG SEQ DELAY11.H/C TRIP-PHA12.H/C TRIP-GND13.H/C TRIP-NEQ14.H/C LOCKOUT-PHA15.H/C LOCKOUT-GND16.H/C LOCKOUT-NEQ17.COLD LOAD PICKUP18.DIRECTION19.VOLTAGE20.FREQUENCY21.OTHER ELEMENT22.USER CURVE SET

[MONITORING]1.DEMAND2.SYNCHROCHECK3.TRIP COUNTER4.RECLOSER WEAR5.BATTRY TEST6.FAULT LOCATOR

[MONITORING]1.DEMAND2.SYNCHROCHECK3.TRIP COUNTER4.RECLOSER WEAR5.BATTRY TEST6.FAULT LOCATOR

[DIRECTION ELEMENT]1.PHASE DIRECTION2.GROUND DIRECTION3.SEF DIRECTION4.NEQ DIRECTION

[DIRECTION ELEMENT]1.PHASE DIRECTION2.GROUND DIRECTION3.SEF DIRECTION4.NEQ DIRECTION

[VOLTAGE]1.UNDER VOLTAGE 12.UNDER VOLTAGE 23.OVER VOLTAGE 14.OVER VOLTAGE 2

[VOLTAGE]1.UNDER VOLTAGE 12.UNDER VOLTAGE 23.OVER VOLTAGE 14.OVER VOLTAGE 2

[FREQUENCY]1.UNDER FREQUENCY

[FREQUENCY]1.UNDER FREQUENCY

[USER CURVE SET]1.USER CURVE 12.USER CURVE 23.USER CURVE 34.USER CURVE 4

[USER CURVE SET]1.USER CURVE 12.USER CURVE 23.USER CURVE 34.USER CURVE 4

RECLOSER CONTROLEVERC2A

ENTEC E&E CO. V4.41

RECLOSER CONTROLEVERC2A

ENTEC E&E CO. V4.41

EVRC2A – CURRENT (A)A: 0 B: 0C: 0 G: 0SG: 0 I2: 0

EVRC2A – CURRENT (A)A: 0 B: 0C: 0 G: 0SG: 0 I2: 0

EVRC2A–SYSTEM STATUSCONTROL : NORMALBREAKER : OPENBAT: 25.12 GAS: 0.50

EVRC2A–SYSTEM STATUSCONTROL : NORMALBREAKER : OPENBAT: 25.12 GAS: 0.50

ENT ENT ENT

Please press the [ENT] key to select an INITIAL LOGO among (1), (2), (3)

(Control Firmware Version 3.01 higher support) Figure 3-12. Menu Structure Tree

Page 34: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

34 ENHANCED TECHNOLOGY

3.3. Using the LCD Menu

Starting mode Screen appears after powering on Control and initializing System.

INITING LOGO

Starting mode Message Display.

System Name : RECLOSER CONTROL EVRC2A Manufacturer : ENTEC Electric & Electronic Co., Ltd Control Firmware Version : 4.41

On Starting mode screen, to see Main Menu, press [FUN] key. Use [] [] key to select sub-menu. When cursor is in top menu, if you press [] key, you go to the bottom menu due to Rotation Menu Algorism.

MAIN MENU

Main Menu consists of 8 sub-menu.

You can choose any sub-menu by using [] [] key.

Press [ENT] key to select the sub-menu.

As above explanation, you can move and select sub-menu.

3.3.1. View Example To see External input port status. Move to “MAIN MENU / STATUS / OPTO INPUT”. The following screen is displayed.

STATUS / OPTO INPUTS

OPEN : Shows External Input is de-asserted, CLOSE : Shows External Input is asserted.

Only 4 lines are displayed on LCD Screen, use [] [] key to see next lines.

RECLOSER CONTROL EVRC2A ENTEC E&E CO. V4.41

[MAIN MENU] >1.SELECT SETBANK 2.PRIMARY SETTING 3.ALTERNATE SETTING 4.EDITBANK SETTING 5.STATUS 6.METERING 7.MAINTENANCE 8.EVENT RECORDER

[OPTO INPUTS] Input 1: OPEN Input 2: CLOSE Input 3: OPEN Input 4: OPEN Input 5: OPEN Input 6: OPEN Input 7: OPEN Input 8: CLOSE

Page 35: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

35ENHANCED TECHNOLOGY

3.3.2. Setting Example Step to change Phase Pickup current of protection elements in Primary setting.

1) Move to “PRIMARY SETTING / PROTECTION / PICKUP CURRENT / PHASE”. A following screen is displayed.

PRIMARY SETTING / PROTECTION / PICKUP CURRENT / PHASE

Range OFF, 0.04 ~ 3.20

Default 0.50 Step 0.01 Setting value x CT Phase Ratio

Ex) When CT ratio is 1000:1and setting value is 0.50, Pickup Current : 0.50 x 1000 = 500A

2) As above screen, to move to Phase, use [] [] key and press [ENT] key to move into value column.

3) Use [] [] keys and [] [] keys to change a new value.

Press [ENT] key, then you see the changed Phase value.

NOTE : You must save all changed values at Setting Save menu.

3.3.3. Help Function Help function displays the detail requirements for the setting. User can check the detail requirements of a setting after selecting the setting item by pressing

[FUN] key.

Help Message

Help Message : Pickup current - phase (OFF,0.01-3.20 x CT phase ratio)

[PICKUP CURRENT xCT] >Phase: 0.50 Ground: 0.25 S.E.F: 0.010

Pick up current - ph >Phase: 0.50 Ground: 0.25 S.E.F: 0.010

Page 36: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

36 ENHANCED TECHNOLOGY

3.3.4. Setting Save To save all changed values, steps are as follows;

Move to “PRIMARY SETTING / SAVE SETTING” and follow each step as below.

PRIMARY SETTING / SAVE SETTING

1) Type Passcode and press [ENT] key

2) If Passcode is correct, screen ②(Left) appears; otherwise screen ① (Left) appears again.

3) If screen ② appears, press [ENT] key to save changed value. System will restart with changed values. Screen ④ shows ”SAVE SETTING” is done.

ENTER PASSCODE 0000

SETTING VALUE SAVE <ENT>:SETTING SAVE

SETTING CHANGE !! SYSTEM STOP !!

SETTING CHANGE !!SYSTEM RESTART !!

Page 37: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

37ENHANCED TECHNOLOGY

4. SELECT SETBANK There were only Primary and Alternative banks below version 4.40. Higher than 4.40 version has included 4 more banks. EVRC2A has 6 setting banks and the user can have 6 different sets depending on Distribution circumstance.

SELECT SETBNAK / PRIMARY

Range BANK1 ~ 6

Default BANK1 Step ~

Set Primary for BANK1.

SELECT SETBNAK / ALTERNATE

Range BANK1 ~ 6

Default BANK2 Default ~

Set Alternate for BANK2.

SELECT SETBNAK / EDIT

Range BANK1 ~ 6

Default BANK3 Default ~

Set Edit for BANK3.

[SELECT SETBANK] >Primary: BANK1 >Alternate: BANK2 >Edit: BANK3

[SELECT SETBANK] >Primary: BANK1 >Alternate: BANK2 Edit: BANK3

[SELECT SETBANK] >Primary: BANK1 Alternate: BANK2 Edit: BANK3

Page 38: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

38 ENHANCED TECHNOLOGY

5. RELAY SETUP Relay set shall be set independently for each bank. However, after version 4.41, regardless of bank, it will be applied to all other banks if it is set in a bank. Sets following items for Relay Passcode Communication Clock Time Dis’Type Event Recorder Clear Saved Data Factory Debug Gas Sensor Type

5.1. Passcode

PRIMARY SETTING / RELAY SETUP / PASSCODE

Press PASSCODE to store changed value. PASSCODE has 4 digits. Passcode change procedure is as follows;

① Enter the old PASSCODE, and press [ENT] key.

② Enter new PASSCODE, and press [ENT] key.

③ To change and store PASSCODE, enter, [ENT] key.

④ After changing PASSCODE, new PASSCODE will be displayed.

[PASSCODE CHANGE] ENTER NEW PASSCODE

0000 PASSCODE SAVED: 0000

[PASSCODE CHANGE] ENTER NEW PASSCODE

0000 PRESS <ENT> TO SAVE

[PASSCODE CHANGE] ENTER NEW PASSCODE

0000

[PASSCODE CHANGE] ENTER PASSCODE 0000

Page 39: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

39ENHANCED TECHNOLOGY

5.2. Communication

5.2.1. Overview EVRC2A has three ports for communication. The EVRC2A has the front panel RS232 port, the side panel RS232 port, the side panel RS485/422 port and the side panel Ethernet port.

Communication port settings are available as follows in “Table 5-1”. Table 5-1. Communication Ports setting of EVRC2A

Port Type Speed Parity bit Data bit Stop bit Location

PORT1 RS-232 19200 bps No parity 8 1 User Interface Front Panel

PORT2 RS-232 1200 - 19200 bps No parity 8 1 User Interface Side Panel

PORT3 RS-422/485 1200 - 19200 bps None, Odd, Even 7, 8 1, 2 User Interface Side Panel

PORT4 RJ45 10BASE-T/100BASE-T User Interface Side Panel

PORT1 A port to interface with Interface Software.

PORT2– Option A port to remotely operate with DNP Protocol, user can change Interface Speed and DNP3.0 Protocol.

A complete description of DNP services is in “DNP3.0 Protocol Technical Manual C. DNP 3.0 DEVICE PROFILE”

PORT 3 – Option A port to remotely operate with MODBUS and DNP3.0 Protocol, user can change Interface Speed, MODBUS Protocl and DNP3.0 Protocol.

A complete description of MODBUS services is in “MODBUS Protocol Technical Manual”.

PORT 4 – Option A port to remotely operate with IEC60870-5-104 Protocol, user can change IEC60870-5-104

Protocol. A complete description of IEC60870-5-104 services is in “IEC60870-5-104 Protocol Technical Manual”. Port4 consists of RJ-45 interface. 10 BASE-T /100 BASE-T speed is provided and ACTIVITY

Page 40: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

40 ENHANCED TECHNOLOGY

LED and LINK LED are placed at front Left/Right sides. ACTIVITY LED shows Data transferring and LINK LED shows the status of cable link. LED orange color means 10BASE-T, green color

means 100BASE-T. For more details, please refer to “Table 5-2. LED Function”. Table 5-2. LED Function

ACTIVITY LED (Left) LINK LED (Right) Meaning

Off Off No Link

Off Solid Amber 100BASE-T Half Duplex Link

Off Blinking Amber 100BASE-T Half Duplex; Activity

Off Solid Green 100BASE-T Full Duplex Link

Off Blinking Green 100BASE-T Full Duplex; Activity

Solid Amber Off 10BASE-T Half Duplex Link

Blinking Amber Off 10BASE-T Half Duplex; Activity

Solid Green Off 10BASE-T Full Duplex Link

Blinking Green Off 100BASE-T Full Duplex; Activity

5.2.2. Remote Method PRIMARY SETTING/RELAY SETUP/COMMUNICATION / REMOTE METHOD / Select

Range DNP3.0, MODBUS, IEC104

Default IEC104 Step ~

Select remote protocol.

5.2.3. RTU Communication Setup (DNP 3.0 Protocol) - Option EVRC2A can be programmed for communication using the DNP 3.0 through communication port2

or port3. For details, refer to “DNP3.0 Protocol Technical Manual”

Move to “PRIMARY SETTING / RELAY SETUP / COMMUNICATION / COMM STTING / DNP3.0” to select setting for DNP Protocol.

COMMUNICATION / COMM SETTING / DNP3.0 / Line Speed

Range 1200, 2400, 4800, 9600, 19200 bps

Default 1200 Step ~

Select the baud rate for DNP3.0 Communication.

[DNP3.0] >Line Speed: 1200 Line Type: 4 D/L confirm: SOME

[REMOTE METHOD] >Select: IEC104

Page 41: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

41ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / DNP3.0 / Line Type

Range 2, 4 Wire

Default 4 Step ~

Select the type of communication wire.

COMMUNICATION / COMM SETTING / DNP3.0 / D/L Confirm

Range NO, YES, SOME

Default SOME Step ~

Select the data link confirmation mode desired for response sent by the EVRC2A.

NO : Never confirm request YES : Always confirm request SOME : Data link confirmation is only requested when the response contains more than one frame

COMMUNICATION / COMM SETTING / DNP3.0 / D/L Retries

Range 0, 1, 2

Default 0 Step 1

Enter the number of retries that will be issued for a given data link layer.

COMMUNICATION / COMM SETTING / DNP3.0 / D/L Timeout

Range 1 ~ 255 sec

Default 15 Step 1 sec

Enter a desired timeout. If no confirmation response is received within this time and if retries are still available, the EVRC2A will resend the frame.

COMMUNICATION / COMM SETTING / DNP3.0 / A/L Retries

Range 0, 1, 2

Default 0 Step 1

Select the number of retries that will be issued for a given application link layer.

[DNP3.0] D/L Retries: 0 D/L Timeout: 15 >A/L Retries: 0

[DNP3.0] D/L confirm: SOME D/L Retries: 0 >D/L Timeout: 15

[DNP3.0] D/L confirm: SOME >D/L Retries: 0 D/L Timeout: 15

[DNP3.0] Line Speed: 1200 Line Type: 4 >D/L confirm: SOME

[DNP3.0] Line Speed: 1200 >Line Type: 4 D/L confirm: SOME

Page 42: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

42 ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / DNP3.0 / A/L Timeout

Range 1 ~ 255 sec

Default 15 Step 1 sec

Enter an Application layer timeout.

COMMUNICATION / COMM SETTING / DNP3.0 / PowUp Unsol

Range DISABLE, ENABLE

Default DISABLE Step 1

Select the unsolicited mode

Enable : Unsolicited response is transmitted. Disable : Unsolicited response is not transmitted.

COMMUNICATION / COMM SETTING / DNP3.0 / Unsol time

Range 0 ~ 255 sec

Default 5 Step 1 sec

Enter the minimum time from when unsolicited event occurred.

COMMUNICATION / COMM SETTING / DNP3.0 / Master Addr

Range 0 ~ 65535

Default 65534 Step 1

Enter the master station address.

COMMUNICATION / COMM SETTING / DNP3.0 / SBO Time

Range 1 ~ 255 sec

Default 15 Step 1 sec

Enter the duration of the select/operate arm timer.

COMMUNICATION / COMM SETTING / DNP3.0 / DNP Address

Range 0 ~ 65535

Default 1 Step 1

Enter the slave (EVRC2A) address.

[DNP3.0] D/L Timeout: 15 A/L Retries: 0>A/L Timeout: 15

[DNP3.0] Master Addr: 65534 SBO Time: 15>DNP Address: 1

[DNP3.0] Unsol time: 5 Master Addr: 65534>SBO Time: 15

[DNP3.0] PowUpUnsol: DISABLE Unsol time: 5>Master Addr: 65534

[DNP3.0] A/L Timeout: 15 PowUpUnsol: DISABLE>Unsol time: 5

[DNP3.0] A/L Retries: 0 A/L Timeout: 15>PowUpUnsol: DISABLE

Page 43: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

43ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / DNP3.0 / Multi Inter

Range 0.01 ~ 300.00 sec

Default 0.10 Step 0.01 sec

Enter a time delay between frames when Multi-frame replies.

COMMUNICATION / COMM SETTING / DNP3.0 / Tx Delay

Range 0.00(OFF), 0.01 ~ 300.00 sec

Default 0.05 Step 0.01 sec

Delay time of sending Real data after RTS Signal is on.

COMMUNICATION / COMM SETTING / DNP3.0 / RTS Off Dly

Range 0.01 ~ 300.00 sec

Default 0.05 Step 0.01 sec

Enter the turn-off time of RTS signal. In other words, it’s a time delay to prohibit the last data loss after sending data. Usually Turn-OFF time is set to 1 or 2 Byte carrier occurrence time

COMMUNICATION / COMM SETTING / DNP3.0 / CTS Chk Out

Range 0.01 ~ 300.00 sec

Default 5.00 Step 0.01 sec

Enter a waiting time between outgoing RTS(Request To Send) signal and incoming CTS(Clear To Send) signal. In other words, before sending a data, it’s a time interval to wait until CTS signal becomes High after sending RTS signal High.

COMMUNICATION / COMM SETTING / DNP3.0 / DCD Timeout

Range 0.01 ~ 300.00 sec

Default 5.00 Step 0.01 sec

Enter the minimum time from when a DNP request is received and a response issued.

[DNP3.0] RTS Off Dly: 0.05 CTS Chk Out: 5.00 >DCD Timeout: 5.00

[DNP3.0] Tx Delay : 0.05 RTS Off Dly: 0.05 >CTS Chk Out: 5.00

[DNP3.0] Multi Inter: 0.10 Tx Delay : 0.05 >RTS Off Dly: 0.05

[DNP3.0] SBO Time: 15 Multi Inter: 0.10 >Tx Delay : 0.05

[DNP3.0] Master Addr: 65534 SBO Time: 15 >Multi Inter: 0.10

Page 44: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

44 ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / DNP3.0 / VOC1 Lev(%)

Range 0(OFF), 1 ~ 50 %

Default OFF Step 1 %

Enter the Value of change event 1 setting.

OFF : Not used

COMMUNICATION / COMM SETTING / DNP3.0 / VOC1 Min(CT)

Range 0.04 ~ 3.20 ( xCT Phase Ratio)

Default 0.50 Step 0.01

Enter the Value of change event 1 limit Value.

COMMUNICATION / COMM SETTING / DNP3.0 / VOC2 Lev(%)

Range 0(OFF), 1 ~ 50 %

Default OFF Step 1 %

Enter the Value of change event 2 setting.

OFF : Not used

COMMUNICATION / COMM SETTING / DNP3.0 / VOC2 Min(VT)

Range 0.00 ~ 1.25 xVT

Default 0.10 Step 0.01

Enter the Value of change event 2 limit Value

COMMUNICATION / COMM SETTING / DNP3.0 / VOC3 Lev(%)

Range 0(OFF), 1 ~ 50 %

Default OFF Step 1 %

Enter the Value of change event 3 setting.

OFF : Not used

COMMUNICATION / COMM SETTING / DNP3.0 / VOC3 Min

Range 0~60000

Default 0 Step 1

Enter the Value of change event 3 limit Value.

[DNP3.0] VOC2 Min(VT): 0.10 VOC2 Lev(%): OFF>VOC3 Min: 0

[DNP3.0] VOC2 Lev(%): OFF VOC2 Min(VT): 0.10>VOC3 Lev(%): OFF

[DNP3.0] VOC1 Min(CT): 0.50 VOC2 Lev(%): OFF >VOC2 Min(VT): 0.10

[DNP3.0] VOC1 Lev(%): OFF VOC1 Min(CT): 0.50>VOC2 Lev(%): OFF

[DNP3.0] DCD Timeout: 5.00 VOC1 Lev(%): OFF>VOC1 Min(CT): 0.50

[DNP3.0] CTS Chk Out: 5.00 DCD Timeout: 5.00>VOC1 Lev(%): OFF

Page 45: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

45ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / DNP3.0 / Class 1

Range DISABLE, ENABLE

Default DISABLE Step ~

Select the unsolicited response mode of Class 1 events.

COMMUNICATION / COMM SETTING / DNP3.0 / Class 2

Range DISABLE, ENABLE

Default DISABLE Step ~

Select the unsolicited response mode of Class 2 events.

COMMUNICATION / COMM SETTING / DNP3.0 / Class 3

Range DISABLE, ENABLE

Default DISABLE Step ~

Select the unsolicited response mode of Class 3 events.

COMMUNICATION / COMM SETTING / DNP3.0 / Time Req(m)

Range 0(OFF), 1~30000 min

Default OFF Step 1 min

Enter the Time Synch’ Request Interval.

COMMUNICATION / COMM SETTING / DNP3.0 / Use Port

Range PORT2-232, PORT3-422, PORT3-485

Default PORT2-232 Step ~

Select the Use Port of Control.

[DNP3.0] >Class 3: DISABLE >Time Req(m): OFF >Use Port: PORT2-232

[DNP3.0] Class 2: DISABLE Class 3: DISABLE >Time Req(m): OFF

[DNP3.0] Class 1: DISABLE Class 2: DISABLE >Class 3: DISABLE

[DNP3.0] VOC3 Min: 0 Class 1: DISABLE >Class 2: DISABLE

[DNP3.0] VOC3 Lev(%): OFF VOC3 Min: 0 >Class 1: DISABLE

Page 46: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

46 ENHANCED TECHNOLOGY

5.2.4. RTU Communication Setup (MODBUS Protocol) - Option EVRC2A can be programmed for communication using the MODBUS through communication

port3. For details, refer to “MODBUS Protocol Technical Manual”

Move to “PRIMARY SETTING / RELAY SETUP / COMMUNICATION / COMM STTING / MODBUS” to select setting for MODBUS Protocol.

COMMUNICATION / COMM SETTING / MODBUS / Line Speed

Range 1200, 2400, 4800, 9600, 19200 bps

Default 1200 Step ~

Select the baud rate for MODBUS Communication.

COMMUNICATION / COMM SETTING / MODBUS / Parity Chk

Range NONE, ODD, EVEN

Default NONE Step ~

Select the Parity Check.

COMMUNICATION / COMM SETTING / MODBUS / Data Bit

Range 7, 8

Default 8 Step ~

Select the Data Bit.

COMMUNICATION / COMM SETTING / MODBUS / Stop Bit

Range 1, 2

Default 1 Step ~

Select the Stop Bit.

COMMUNICATION / COMM SETTING / MODBUS / Modbus Type

Range RTU, ASII

Default RTU Step ~

Select the Modbus protocol type.

[MODBUS] Data Bit: 8 Stop Bit: 1>Modbus Type: RTU

[MODBUS] Parity Chk: NONE Data Bit: 8>Stop Bit: 1

[MODBUS] Line Speed: 1200 Parity Chk: NONE>Data Bit: 8

[MODBUS] Line Speed: 1200>Parity Chk: NONE Data Bit: 8

[MODBUS] >Line Speed: 1200 Parity Chk: NONE Data Bit: 8

Page 47: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

47ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / MODBUS / Slave Address

Range 1 ~ 254

Default 1 Step 1

Enter the Modbus address.

COMMUNICATION / COMM SETTING / MODBUS / Line Type

Range 485LINE, 422 LINE

Default 485 LINE Step ~

Select the Modbus line type.

COMMUNICATION / COMM SETTING / MODBUS / Tx Delay

Range 0.00(OFF), 0.01 ~ 300.00 sec

Default 0.05 sec Step 0.01

Delay time of sending Real data after RTS Signal is on.

5.2.5. RTU Communication Setup (IEC60870-5-104) - Option EVRC2A can be programmed for communication using the IEC60870-5-104 through

communication port4. For details, refer to “IEC60870-5-104 Protocol Technical Manual”

Move to “PRIMARY SETTING / RELAY SETUP / COMMUNICATION/COMM SETTING /3.IEC60870-5-104” to select setting for IEC60870-5-104.

COMMUNICATION / COMM SETTING / IEC60870-5-104 / IP Addr’1~4

Range 0 ~ 255

Default 0 Step 1

Select the IP Address for IEC60870-5-104 Communication. IP Address : 192.xxx.xxx.xxx

① ② ③ ④

IP Addr´1,2,3,4 is ①,②,③,④

[IEC60870-5-104] >IP Addr’1: 0 IP Addr’2: 0 IP Addr’3: 0 IP Addr’4: 0

[MODBUS] Slave Address: 1 Line Type: 485LINE >Tx Delay: 0.05

[MODBUS] Stop Bit: 1 Modbus Type: RTU >Slave Address: 1

[MODBUS] Modbus Type: RTU Slave Address: 1 >Line Type: 485LINE

Page 48: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

48 ENHANCED TECHNOLOGY

COMMUNICATION / COMM SETTING / IEC60870-5-104 / Gateway Addr’1~4

Range 0 ~ 255

Default 0 Step 1

Select the Gateway Address for IEC60870-5-104 Communication. Gateway Address : 211.xxx.xxx.xxx

① ② ③ ④

Gateway Addr´1,2,3,4 is ①,②,③,④

COMMUNICATION / COMM SETTING / IEC60870-5-104 / S/M

Range 255.000.000.000 ~ 255.255.255.252

Default 255.255.255.000 Step ~

Select the Subnet Mask.

COMMUNICATION / COMM SETTING / IEC60870-5-104 / Tcp Port No

Range 1~65535

Default 2404 Step 1

Select the Tcp Port Number.

COMMUNICATION / COMM SETTING / IEC60870-5-104 / ASDU Addr

Range 0~65535

Default 0 Step 1

Select the Application Service Data Unit Address.

COMMUNICATION / COMM SETTING / IEC60870-5-104 / Cyclic Period

Range 1~60000 sec

Default 60 Step 1 sec

Select the Cyclic Period. It is to set interval time between Point set for Cyclic.

[IEC60870-5-104] Tcp Port No: 2404 ASDU Addr: 0>Cyclic Period: 60

[IEC60870-5-104] Tcp Port No: 2404 >ASDU Addr: 0 Cyclic Period: 60

[IEC60870-5-104] >Tcp Port No: 2404 ASDU Common A: 0 Cyclic Period: 60

[IEC60870-5-104] >S/M:255.255.255.000 Tcp Port: 2404 ASDU Common A: 1

[IEC60870-5-104] >Gateway Addr’1: 0 Gateway Addr’2: 0 Gateway Addr’3: 0 Gateway Addr’4: 0

Page 49: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

49ENHANCED TECHNOLOGY

5.3. Clock

PRIMARY SETTING / RELAY SETUP / CLOCK

Use Arrows to move cusur and change the time.

5.4. Time Display Type

It is to set Date Display for all related Menu.

PRIMARY SETTING / RELAY SETUP / TIME DIS’TYPE

Range YMD, MDY

Default YMD Step ~ YMD : it displays in turn Year / Month / Date

MDY : it displays in turn Month / Date / Year

5.5. Event Recorder

Event Recording elements are set such as Recording and Sampling timing and so on.

PRIMARY SETTING / RELAY SETUP / EVENT RECORDER / Fault Cycle

Range ON, OFF

Default ON Step ~ Select On or Off for Fault Cycle recording.

PRIMARY SETTING / RELAY SETUP / EVENT RECORDER / Len’ of Pre F

Range 0 ~ 14 cycle

Default 4 Step 1 cycle Enter the length of prefault in fault cycle.

[EVENT RECORDER] >Fault Cycle: ON >Len’ of Pre F: 4 >Load Profil: ON

[EVENT RECORDER] >Fault Cycle: ON >Len’ of Pre F: 4 >Load Profil: ON

[TIME DISP’TYPE] >Time Disp’Type: YMD

[CURRENT TIME] 2006/09/29/ 21:45:41 PRESS <ENT> TO SAVE

[CURRENT TIME] 2006/09/29/ 21:45:41 PRESS <ENT> TO SET

Page 50: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

50 ENHANCED TECHNOLOGY

PRIMARY SETTING / RELAY SETUP / EVENT RECORDER / Load Profile

Range ON, OFF

Default ON Step ~

Select On or Off for Load Profile recording.

PRIMARY SETTING / RELAY SETUP / EVENT RECORDER / L.P save time(m)

Range 5,10, 15,20,30,60 min

Default 15 Step ~

Set Load Profile recording interval.

5.6. Clear Saved Data

PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA

Clear(delete) the saved data.

Clear Saved Data Fault Cycle System Status Load Profile Daignostic Max Demand Energy Counter Wear Monitor Wear Monitor All Saved Data

NOTE : It is recommanded to have Backup data because Cleared(Deleted) data can not be recovered.

5.7. Factory Debug

This menu is for Manufacturer’s maintenance purpose.

FAULT CYCLE DATA PRESS ENT TO CLEAR

[EVENT RECORDER] >Fault Cycle: ON>Len’ of Pre F: 4>L.P save time(m):15

[EVENT RECORDER] >Fault Cycle: ON>Len’ of Pre F: 4>Load Profile: ON

[CLEAR SAVED DATA] >1.Fault Cycle >2.System Status >3.Load Profile >4.Daignostic >5.Max Demand >6.Energy >7.Counter >8.Wear Monitor >9.All Saved Data

FAULT CYCLE DATA !! DATA CLEARED !!

Page 51: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

51ENHANCED TECHNOLOGY

5.8. Gas Sensor Type

PRIMARY SETTING / RELAY SETUP / GAS SENSOR TYPE

Range NONE, TYPE1, TYPE2

Default TYPE2 Step ~ NONE : Gas Sensor is not used.

TYPE1 : Set TYPE1 if Recloser manufactured before JUNE year 2005.

TYPE2 : Set TYPE2 if Recloser manufactured after JULY year 2005.

[GAS SENSOR TYPE] >Type Select: TYPE2

Page 52: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

52 ENHANCED TECHNOLOGY

6. SYSTEM SETUP System set shall be set independently for each bank. However, after version 4.41, regardless of bank, it will be applied to all other banks if it is set in a bank. Sets following items for System CT Ratio VT or PT Ratio Power Line Frequency, Phase rotation Panel sleep time Opto-Input setting Relay output setting Loop Control setting

6.1. Current Sensing

6.1.1. Description This Setting group is critical for all over-current protection features that have settings specified in multiples of CT rating. When the relay is ordered, the phase, ground, and sensitive ground CT inputs must be specified as 1 Amp. As the phase CTs are connected in wye (star), the calculated phasor sum of the three phase currents (Ia + Ib + Ic = Neutral Current = 3 I0) is used as the input for the neutral over-current. In addition, a zero-sequence (core balance) CT which senses current in all of the circuit primary conductors, or a CT in a neutral grounding conductor may also be used. For this configuration, the ground CT primary rating must be entered. To detect low level ground fault currents, the sensitive earth input may be used. In this case, the sensitive ground CT primary rating must be entered.

For additional details on CT connections, refer to (see 11.12. Current Inputs Wiring Diagram).

Page 53: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

53ENHANCED TECHNOLOGY

6.1.2. Setting PRIMARY SETTING / SYSTEM SETUP / CURRENT SENSING / PHA CT Ratio

Range 1 ~ 1200

Default 1000 Step 1

Enter the phase CT primary current value.

PRIMARY SETTING / SYSTEM SETUP / CURRENT SENSING / GND CT Ratio

Range 1 ~ 1200

Default 1000 Step 1

Enter the ground CT primary current value.

PRIMARY SETTING / SYSTEM SETUP / CURRENT SENSING / SEF CT Ratio

Range 1 ~ 1200

Default 1000 Step 1

Enter the sensitive earth CT primary current value.

[CURRENT SENSING] >PHA CT Ratio: 1000 GND CT Ratio: 1000 SEF CT Ratio: 1000

[CURRENT SENSING] PHA CT Ratio: 1000 >GND CT Ratio: 1000 SEF CT Ratio: 1000

[CURRENT SENSING] PHA CT Ratio: 1000 GND CT Ratio: 1000 >SEF CT Ratio: 1000

Page 54: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

54 ENHANCED TECHNOLOGY

6.2. Line VS Sensing

6.2.1. Description To measure Source Voltage, set Connect Type, 2nd Nominal Voltage, VT Ratio. With Line VTs installed, the EVRC2A can be used to perform voltage measurements, power calculations, and directional control of over-current elements.

6.2.2. Setting PRIMARY SETTING / SYSTEM SETUP / LINE VS SENSING / Connect Type

Range NONE, WYE, DELTA, CVD-W, CVD-D

Default NONE Step ~

Enter None if line VTs are not to be used.

NONE : VT uninstalled. If used, external PT by user, enter the VT connection made to the system as Wye or Delta.

WYE : Install type wye. DELTA : Install type delta. If installed VT of Capacitor Voltage Divide type.

CVD-W : If the user system made to 3 phase 4 wire. CVD-D : If the user system made to 3 phase 3 wire.

PRIMARY SETTING / SYSTEM SETUP / LINE VT SENSING / VS 2nd(v)

Range 50.0 ~ 250.0 V

Default 100.0 Step 0.1 V

Enter Secondary Nominal Voltage(V) This setting is the voltage across the VT secondary winding when nominal voltage is applied to the primary.

PRIMARY SETTING / SYSTEM SETUP / LINE VT SENSING / VS Ratio

Range 10.0 ~ 760.0

Default 86.6 Step 0.1

Enter the VT primary to secondary turns-ratio with this setting.

[LINE VS SENSING] >Connect Type: NONE VT 2nd(v): 100.0 VT Ratio: 86.6

[LINE VS SENSING] Connect Type: NONE>VT 2nd(v): 100.0 VT Ratio: 86.6

[LINE VS SENSING] Connect Type: NONE VT 2nd(v): 100.0>VT Ratio: 86.6

Page 55: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

55ENHANCED TECHNOLOGY

6.2.3. Setting Examples

Use of CVD Case of CVD installed in Recloser, setup as follows; Usable in Wye connection. Set VT2nd(v) 100 as Default. PT Ratio is calculated as below.

VoltageФ-Ф = VoltageФ-N × SQRT(3) VoltageФ-N = VT 2nd(v) × VT Ratio Hence,

15Ф-Ф = 8.66Ф-N, therefore 8.66Ф-N = 100(V) × 86.6 If user line voltage between phases (VoltageФ-Ф) is 11, set VT2nd(v) of 73.3V and set VT Ratio of 86.6 (11Ф-Ф => 6.35Ф-N, 6.35 = 73.3(V) × 86.6) 27Ф-Ф = 15.59Ф-N, therefore 15.59Ф-N = 100(V) × 155.9 38Ф-Ф = 21.94Ф-N, therefore 21.94Ф-N = 100(V) × 219.4

Use of External PT by User Line is Wye connection type and has VФ-Ф = 15. If external rated PT is 14400 : 120, then VT Ratio is 14400/120. Because of 15Ф-Ф = 8.66Ф-N, VT2nd(v) is 8.66Ф-N / 120 = 71.2V

Line with Delta connection type and has VФ-Ф= 15. If external rated PT is 14400 : 120, then VT Ratio is 14400/120 and VT2nd(v) is 15Ф-Ф / 120 = 125V

Table 6-1. VT Ratios of External PTs

Capacitor Voltage Divider Potential Transformer

Wye connection Wye connection Delta connection Line-Line

Voltage VT 2nd (v) VT Ratio VT 2nd (v) VT Ratio VT 2nd (v) VT Ratio

15 100 86.6 71.2 120

(14400:120) 125

120

(14400:120)

27 100 155.9 72.5 215

(25800:120) 125.6

215

(25800:120)

38 100 219.4 73.1 300

(36000:120) 126.7

300

(36000:120)

Page 56: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

56 ENHANCED TECHNOLOGY

6.3. Line VL Sensing

6.3.1. Description To measure Load Voltage, set Connect Type, 2nd Nominal Voltage, VT Ratio. With Line VTs installed, the EVRC2A can be used to perform synchronism elements.

6.3.2. Setting PRIMARY SETTING / SYSTEM SETUP / LINE VL SENSING / Connect Type

Range NONE, WYE, DELTA, CVD-W, CVD-D

Default NONE Step ~

Enter None if line VTs are not to be used.

NONE : VT uninstalled. If used, external PT by user, enter the VT connection made to the system as Wye or Delta.

WYE : Install type wye. DELTA : Install type delta. If installed VT of Capacitor Voltage Divide type.

CVD-W : If the user system made to 3 phase 4 wire. CVD-D : If the user system made to 3 phase 3 wire.

PRIMARY SETTING / SYSTEM SETUP / LINE VL SENSING / VT 2nd(v)

Range 50.0 ~ 250.0 V

Default 100.0 Step 0.1 V

Enter Secondary Nominal Voltage(V) This setting is the voltage across the VT secondary winding when nominal voltage is applied to the primary.

PRIMARY SETTING / SYSTEM SETUP / LINE VL SENSING / VT Ratio

Range 10.0 ~ 760.0

Default 86.6 Step 0.1

Enter the VT primary to secondary turns-ratio with this setting.

6.3.3. Setting Example Refer to (6.2.3. Setting Examples)

[LINE VL SENSING] Connect Type: NONE>VT 2nd(v): 100.0 VT Ratio: 86.6

[LINE VL SENSING] Connect Type: NONE VT 2nd(v): 100.0>VT Ratio: 86.6

[LINE VL SENSING] >Connect Type: NONE VT 2nd(v): 100.0 VT Ratio: 86.6

Page 57: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

57ENHANCED TECHNOLOGY

6.4. System Power

6.4.1. Description Menu to set Frequency of Protected Line and installed Phase rotation.

6.4.2. Setting PRIMARY SETTING / SYSTEM SETUP / SYSTEM POWER / Frequency

Range 50, 60

Default 50 Step ~

Select the nominal power system frequency. This value is used as a default to set the optimal digital sampling rate.

PRIMARY SETTING / SYSTEM SETUP / SYSTEM POWER / Phase Rotation

Range ABC, ACB

Default ABC Step ~

Select the phase rotation of the power system.

6.5. Panel Sleep Time

6.5.1. Description Menu to set the interval time that User interface panel turns into sleep mode.

6.5.2. Setting PRIMARY SETTING / SYSTEM SETUP / PANEL SLEEP TIME

Range OFF, 1 ~ 100 min

Default 5 Step 1 min

Enter the sleep mode entering time Setting the interval time of which Panel indicator turns into Sleep mode

[SYSTEM POWER] >Frequency: 50 Phase Rotation: ABC

[SYSTEM POWER] Frequency: 50 >Phase Rotation: ABC

[PANEL SLEEP TIME] >Interval(m): 5

Page 58: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

58 ENHANCED TECHNOLOGY

6.6. Opto Input Set - Option

6.6.1. Description Menu to set External input terminal function and Debounce time. The opto input is available as an ordering option.

EXTERNALFunction execute

X

XINPUT

REMOTE mode

TrigertimeDebounce

Status LCD Display

Figure 6-1. Input logic

6.6.2. Setting PRIMARY SETTING / SYSTEM SETUP / OPTO INPUT SET / I1 Func

Range NONE, TRIP, … , OUT8 RESET

Default NONE Step ~

Enter the function of External input terminal Opto input can have following functions.

NONE TRIP CLOSE

PROTECTION

Enable/Disable

GROUND

Enable/Disable

SEF

Enable/Disable

RECLOSE

Enable/Disable

CONTROL

Locked/Unlocked

ALTERNATE SETTINGS

Enable/Disable

PROGRAM1

Enable/Disable

PROGRAM2

Enable/Disable

HOT LINE TAG

Enable/Disable

FAULT INDICATION

RESET BATTERY LOAD TEST

OUTPUT RELAY

1∼8 RESET.

For more details, refer to (Appendix A).

[OPTO INPUT SET] >I1 Func: NONE I1 Debounce: 0.02 I2 Func: NONE

Page 59: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

59ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / OPTO INPUT SET / I1 Debounce

Range 0.01 ~ 9.99 sec

Default 0.02 Step 0.01 sec Enter debounce time to prevent chattering in Input

Input 2 ~ Input 8, the same as Input 1 above

6.7. Output Relay Set - Option

6.7.1. Description Menu to set External Output Terminal Function and Output type. The output relay is available as an ordering option.

Protective Elements

Function Occurrence

LATCH

Pulse T

PULSE

R

SQ

OUTxx Relay

S/R LATCH

Y

OPTO INPUT SET(OUTxx Reset)

Latch

Type

OUTPUT RELAY TEST2s

Pulse

Status LCD Display

Relay Setting( 50.51,27,59...etc )

Figure 6-2. Output logic

[OPTO INPUT SET] I1 Func: NONE >I1 Debounce: 0.02 I2 Func: NONE

Page 60: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

60 ENHANCED TECHNOLOGY

6.7.2. Setting PRIMARY SETTING / SYSTEM SETUP / OUTPUT RELAY SET / O1 Func

Range NONE, TRIP, … , INPUT08

Default NONE Step ~

Enter the function of External output terminal. Output Relay can have following function.

NONE TRIP CLOSE

FAIL TRIP FAIL CLOSE FAIL AC

FAIL BATTTERY 27 ELEMENT 59 ELEMENT

25 ELEMENT 81 ELEMENT 79 RESET

79CYCLE 79LOCKOUT SELFCHECK

PROTECTION Enable GROUND Enable SEF Enable

RECLOSE Enable CONTROL Locked REMOTE Enable

ALTERNATE SETTINGS

Enable PROGRAM1 Enable PROGRAM2 Enable

HOT LINE TAG Enable FAULT INDICATION ALARM

52A INPUT 1~ 8

For more detail, refer to (Appendix B).

PRIMARY SETTING / SYSTEM SETUP / OUTPUT RELAY SET / O1 Type

Range PULSE, LATCH, S/R LATCH

Default S/R LATCH Step ~

S/R LATCH: Output signal is delivered only this function activates (ON).

PULSE: Output signal is delivered only during PULSE T. To activate Output aganin, turn this function OFF and then, turn it ON again.

LATCH: Output signal is delivered once this function ON. To turn it off, it needs Reset signal and it is set in “OPTO INPUT SET”

PRIMARY SETTING / SYSTEM SETUP / OUTPUT RELAY SET / O1 Pulse T

Range 0.01 ~ 99.99 sec

Default 0.05 Step 0.01 sec

Sets Duration time if OUTPUT TYPE is PULSE

Output 2 ~ 8, the same as above.

[OUTPUT RELAY SET] >O1 Func: NONE O1 Type: S/R LATCH O1 Pulse T: 0.05

[OUTPUT RELAY SET] 01 Func: NONE>O1 Type: S/R LATCH O1 Pulse T: 0.05

[OUTPUT RELAY SET] 01 Func: NONE O1 Type: S/R LATCH>O1 Pulse T: 0.05

Page 61: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

61ENHANCED TECHNOLOGY

6.8. Loop Control - Option

The purpose of using LOOP CONTROL is to isolate a fault area and protect the normal operation area by coordinating with C/B or Recloser when a fault occurs. Loop control is able to provide automation system with using Sectionalizing Recloser, MID point Recloser, TIE point Recloser. Loop control is performed by voltage sensing of DV(Dead Line Voltage), LV(Live Line Voltage).

Sectionalizing Recloser(SEC) When a fault is occurred from the source side of Sectionalizing Recloser and backup C/B operates, the line becomes DV and if it continues, it is figured as a permanent fault. Hence, Sectionalizing Recloser is opened. After Sectionalizing Recloser is opened and TIEpoint Recloser is closed, the current flows in opposite way. Therefore, the load side of Sectionalizing Recloser can keep the live line. When Load side of Sectionalizing Recloser has a fault, OCR Function is operated and the load side is disconnected.

MIDpoint Recloser(MID) When a fault is occurred in the source side of MIDpoint Recloser and backup C/B or Sectionalizing Recloser operates, the line becomes DV status and if it continues, it is figured as a permanent fault, then automatically the setting is changed to Alternate setting. After changed to Alternate setting, when TIEpoint Recloser is closed, the current flows in opposite way. During TIEpoint Recloser closed, when a fault occurs, MIDpoint Recloser trips once and lockouts. After recovering the fault, connect C/B and when the line becomes LV, the setting is automatically changed to Primary setting and MIDpoint Recloser is closed. When Load side of MIDpoint Recloser gets a fault, OCR Function is operated and disconnects the load side.

TIEpoint Recloser (TIE) TIEpoint Recloser automatically closes when either Source side or Load side becomes DV. When a fault occurs during automatic closing, the recloser trips once and lockouts. TIEpoint recloser automatically opens when loop control operates automatic closing at both side and when both side becomes DV.

Page 62: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

62 ENHANCED TECHNOLOGY

LCD Initial Screen Recloser type that is selected in Loop control, is displayed on LCD Initial Screen. Press “ENT” KEY to check operation status on the Initial Screen to see loop control mode.

LOOP CONTROL: [SEC] , [MID], [TIE] Display a selected type.

VS: [DV], [LV] Display Source side voltage of Recloser either Dead line voltage or Live line voltage.

VL: [DV], [LV] Display Load side voltage of Recloser either Dead line voltage or Live line voltage.

VSDLT: [ - ], [RUN] Displays loop control function is operating due to the dead line voltage of Recloser’s Source side.

VLDLT: [ - ], [RUN] Displays loop control function is operating due to the dead line voltage of Recloser’s Load side.

AUTO RESTORE T: [ - ], [RUN] Displays Restoring status after Loop control operation.

LOOP CONTROL KEY Use PROGRAM KEY to use Loop control on User interface Panel.

Figure 6-3. Loop Control Key

Program 1: Enable/Disables Loop control function. Lamp is on when Loop control function is Enabled. SEC, MID can be selected on CLOSE status and TIE can be selected on OPEN status.

Program 2: Enable/Disables Auto restoration function of SEC, MID. Lamp is on when Auto restoration function is enabled. Auto restoration function is, after loop control operation, Auto Rest’ T” timer operates till timeout, and restore the preset values.

LOOP CONTROL [TIE]VS-[DV] VSDLT-[ - ]VL-[DV] VLDLT-[ - ]AUTO RESTORE T [ - ]

Page 63: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

63ENHANCED TECHNOLOGY

6.8.1. Setting PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / ………

LOOP CONTROL SUB SETUP MENU

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / Type Select

Range NONE, SEC, MID, TIE

Default NONE Step ~

Select the Recloser Type and add Loop Control function. After selecting, press Program 1 Key to enable Loop Control.

NONE : Loop control is not in use. SEC : SECtionalizing Recloser MID : MIDpoint Recloser TIE : TIEpoint Recloser

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / VRS to S/M

Range VS, VL

Default VS Step ~

Voltage Response Side to SEC&MID : The setting values are used in SEC, MID. Recloser operates upon selected side of voltage sensing. Select the Voltage response side when Recloser type is SEC & MID

VS : Recloser’s Source Side(A,B,C phase) Voltage VL : Recloser’s Load Side(R,S,T phase) Voltage Standard Model, EVRC2A uses CVD(Capacitor voltage divider) to measure the voltage. It measures only A, B, C, R phases, phase S and T are not measured.

[LOOP CONTROL] Type Select: NONE

[LOOP CONTROL] VRS - S/M: VS

[LOOP CONTROL] >Type Select : NONE VRS – S/M : VS VRS – Tie : VS VS Wire: 3PN VL Wire: 1PN(A) Cng Alt-Mid: OFF Cng Alt-Tie: OFF LC After Cl:DISABLE LC After Op:DISABLE OT Both DL: 10.00 Auto Rest’ T: 5.00 DL V Max(%): 50.0 LL V Min(%): 70.0 DL Pickup T: 50.0 LL Regain T: 10.00 DL Reset T: 5.00 NRT After LC: 10.00

Page 64: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

64 ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / VRS to Tie

Range VS, VL, VS&VL

Default VS Step ~

Voltage Response Side to Tie : The setting value is used in TIE. TIE operates upon selected side of voltage sensing.

VS : Recloser’s Source Side(A,B,C phase) Voltage VL : Recloser’s Load Side(R,S,T phase) Voltage VS&VL : Loop control operates one of either Source side or load side voltage becomes dead line voltage.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / VS wire

Range 3PN, 3PP, 1PN(A), 1PN(B), 1PN(C), 1PP(AB), 1PP(BC), 1PP(CA)

Default 3PN Step ~ Line VS Wire : Select Recloser’s Source side(A,B,C phase) voltage

sensor(CVD or VT) connection type. Selected phase is used to figure dead/live line voltage. CVD type Control measures A, B, C phase voltage.

3PN : 3 Phase-Neutral 3PP : 3 Phase-Phase 1PN(A) : Phase A-Neutral 1PN(B) : Phase B-Neutral 1PN(C) : Phase C-Neutral 1PP(AB) : Phase A-Phase B 1PP(BC) : Phase B-Phase C 1PP(CA) : Phase C-Phase A

[LOOP CONTROL] VS Wire: 1PN(A)

[LOOP CONTROL] VRS - Tie: VS

Page 65: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

65ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / VL wire

Range 1PN(A), 1PN(B), 1PN(C), 1PP(AB), 1PP(BC), 1PP(CA)

Default 1PN(A) Step ~

Line VL Wire : Select Recloser Load side(R,S,T phase) voltage sensor(CVD or VT) connection type. Selected phase is used to figure dead/live line voltage. Select 1PN(A) to measure R phase voltage for CVD type Control S,T phase are not measured.

1PN(A) : Phase A-Neutral 1PN(B) : Phase B-Neutral 1PN(C) : Phase C-Neutral 1PP(AB) : Phase A-Phase B 1PP(BC) : Phase B-Phase C 1PP(CA) : Phase C-Phase A

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / Cng Alt- Mid

Range OFF, ON

Default OFF Step ~

Change Alternate Setting at Mid Point : Set Value is used in MID. Select if Primary setting is automatically changed to Alternate setting, after set time(LL Regain T). To use this function, Loop control(setting value) of Primary and Alternate shall be set as the same.

OFF : Turn off auto change. ON : Turn on auto change.

[LOOP CONTROL] VL Wire: 1PN(A)

[LOOP CONTROL] Cng Alt-Mid : OFF

Page 66: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

66 ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / Cng Alt-Tie

Range OFF, ON(VS), ON(VL), ON(BOTH)

Default OFF Step ~

Change Alternate Setting at Tie Point : Set value is used in TIE. Select if Primary setting is automatically changed to Alternate setting, after set time(LL Regain T). To use this function, Loop control(setting value) of Primary and Alternate shall be set as the same.

OFF : Turn off auto change. ON(VS) : Turn on Auto change by measuring VS. ON(VL) : Turn on Auto change by measuring VL. ON(BOTH) : Turn on Auto change by measuring VS or VL.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / LC After Cl

Range DISABLE, ENABLE

Default DISABLE Step ~

Select After Manual Close : Setting value is used in SEC. To select Loop Control automatically enable after recloser is closed by Manual operation. Manual close is referred when the operation signal is coming from remote or local. When Loop control function is enabled, PROGRAM 1 LED on User interface panel is turned on.

DISABLE : After Manual close, Loop control function is not automatically activated.(Use PROGRAM 1 to activate it)

ENABLE : After Manual close, Loop control function is automatically activated.

[LOOP CONTROL] Cng Alt-Tie: OFF

[LOOP CONTROL] LC After Cl:DISABLE

Page 67: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

67ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / LC After Op

Range DISABLE, ENABLE

Default DISABLE Step ~

Select After Manual Open : Setting Value is used in TIE. To select Loop control function automatically enable after recloser is opened by manual operation. Manual open is referred when the operation signal is coming form remote or local. When Loop control function is enabled, PROGRAM 1 LED on User interface panel is turned on. DISABLE : After Manual open, Loop control function is not automatically activated. (Use PROGRAM 1 to activate it)

ENABLE : After Manual open, Loop control function is automatically activated.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / OT Both DL

Range 0.01 ~ 600.00 sec

Default 10.00 Step 0.01 sec

Open Time on Both Dead Bus : Setting value is used in TIE. After TIE closed, source and load sides become dead line for a certain period, TIE opens by Loop control.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / Auto Rest’ T

Range 0.01 ~ 600.00 sec

Default 5.00 Step 0.01 sec

Auto Restoration Time : Setting value is used in SEC, MID. This is active when Program 2 on User Interface Panel is enable. SEC operates Loop control(Automatic Open) if a voltage selected from “VRS – S/M” becomes dead line. After opened, the voltage becomes Live Line, a certain period later, restores (Automatic Close). MID, if a voltage selected form “VRS – S/M” becomes dead line, and when Loop control(“Chg Alt-Tie” is on, it automatically changes to Alternate Setting. After Loop control, Live Line becomes Tie Close, and during operation, it figures as a fault and Trip Lockout. After it becomes Live line, Restore( auto close and change to Primary setting).

[LOOP CONTROL] LC After Op:DISABLE

[LOOP CONTROL] OT Both DL: 10.00

[LOOP CONTROL] >Auto Rest’ T: 5.00

Page 68: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

68 ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / DL V Max(%)

Range 20.0 ~ 70.0 %

Default 50.0 Step 0.1 %

Dead Bus Maximum Voltage(%) : Sense Dead Line Voltage. In Live Line, when a voltage is decreased below a set value, it determines Dead Line. In Source side, it is figured from a selected phase from “VS Wire”. In Load side, it is figured from a selected phase from “VL Wire”.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / LL V Min(%)

Range 50.0 ~ 85.0 %

Default 70.0 Step 0.1 %

Live Bus Minimum Voltage(%) : Sense Live Line Voltage. In Dead Line, when a voltage is increased over a set value, it determines Live Line. In Source side, it is figured form a selected phase from “VS Wire”, In Load side, it is figured from a selected phase from “VL Wire”.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / DL Pickup T

Range 0.01 ~ 600.00 sec

Default 50.00 Step 0.01 sec

Dead Bus Pickup Time Delay : During “DL Pickup T”, the line becomes Dead Line and “LL Regain T” Timer shall be operated so that SEC, MID, TIE can operate. “DL Pickup T” Timer is the Cumulative Timer to count Dead Line time while C/B or Recloser is doing re-close operation. Timer is not reset regardless of Live Line and it is reset by “DL rest T” Timer. Setting shall be the same or bigger than the sum of C/B or recloser’s reclosing time.

[LOOP CONTROL] DL Pickup T: 50.00

[LOOP CONTROL] LL V Min(%): 70.0

[LOOP CONTROL] DL V Max(%): 50.0

Page 69: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

69ENHANCED TECHNOLOGY

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / LL Regain T

Range 0.01 ~ 600.00 sec

Default 10.00 Step 0.01 sec

Live Bus Pickup Time Delay : “DL Pickup T” shall be finished and during reset time, the line shall not be Live Line. SEC’s reset Time shall be longer than MID 5 seconds, and MID’s shall be longer than TIE’s 5 seconds. When timer is finished, SEC is opened, MID changes Settings from Primary to Alternate(if Chg Alt-Mid is enable), and TIE is closed automatically after changing settings form Primary to Alternate(if Chg Alt-Tie is enable).

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / DBRT Time

Range 0.01 ~ 600.00 sec

Default 5.00 Step 0.01 sec

Dead Bus Reset Time : It is a delay timer to reset accumulated time from “DL Pickup T”. This timer operates when “DL Pickup T” is set and the line becomes Live line.

PRIMARY SETTING / SYSTEM SETUP / LOOP CONTROL / NRT After LC

Range 0.00 ~ 600.00 sec

Default 15.00 Step 0.01 sec

Non Reclose Time After LC Action : Setting values are used in MID, TIE. This timer prevents from Reclosing when recloser operates due to a fault after Loop control. After “LL Regain T” and changed Settings, while backward distributing line operating, if a fault occurs and MID trips within a set time, MID reclose. MID trips once and lockouts. If a fault occurs and MID trips after a set time, reclosing is executed. After “LL Regain T”, when a fault occurs and TIE trips within a set time, TIE also, trips once and lockout. If a fault occurs and TIE trips after a set time, reclosing is executed.

[LOOP CONTROL] NRT After LC: 15.00

[LOOP CONTROL] DL Reset T: 5.00

[LOOP CONTROL] LL Regain T: 10.00

Page 70: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

70 ENHANCED TECHNOLOGY

6.8.2. Loop Control Logic Diagram

Figure 6-4. Sectionalizing Recloser Logic

Page 71: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

71ENHANCED TECHNOLOGY

Figure 6-5. MID Point Recloser Logic

Page 72: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

72 ENHANCED TECHNOLOGY

Figure 6-6. TIE Point Recloser Logic

Page 73: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

73ENHANCED TECHNOLOGY

6.9. Loop Control Application

6.9.1. 5-Reclosers Loop Control For five reclosers loop control, it consists of 2 sets of SEC(Sectionalizing Recloser), 2 sets of MID(MIDpoint Reclosers) and 1 set of TIE(TIEpoint Recloser). Setting is in-turn form Source side to SEC-MID-TIE.

In “Table 6-2. 5-Reclosers Setting”, the source side bushings of RC1, RC2, RC3 are installed for CB1 side. And the source side bushings of RC4, RC5 are installed for CB2 side.

Table 6-2. 5-Reclosers Setting

SETTING CB1 RC1 RC2 RC3 RC4 RC5 CB2

Type Select - SEC MID TIE MID SEC -

VRS – S/M - ⎯⎯←VS ⎯⎯←VS X ⎯→⎯VS ⎯→⎯VS -

VRS – Tie - X X VS&VL X X -

VS Wire - 3PN 3PN 3PN 3PN 3PN -

VL Wire - 1PN(A) 1PN(A) 1PN(A) 1PN(A) 1PN(A) -

Cng Alt-Mid - X ON X ON X -

Cng Alt-Tie - X X ON X X -

LC After Cl - ENABLE ENABLE X ENABLE ENABLE -

LC After Op - - X ENABLE X - -

OT Both DL - X X 10.00 X X -

Auto Rest’ T - 5.00 5.00 5.00 5.00 5.00 -

DL V Max(%) - 50.0 50.0 50.0 50.0 50.0 -

LL V Min(%) - 70.0 70.0 70.0 70.0 70.0 -

DL Pickup T - 22.0 22.0 22.0 22.0 22.0 -

LL Regain T - 5.00 10.00 15.00 10.00 5.00 -

DL Reset T - 5.00 5.00 5.00 5.00 5.00 -

NRT After LC - X 10.00 10.00 10.00 X -

PROGRAM 1 - ENABLE ENABLE ENABLE ENABLE ENABLE -

PROGRAM 2 - ENABLE ENABLE X ENABLE ENABLE -

Reclose Time 2sec-1st reclose, 5sec-2nd reclose, 15sec-3rd reclose (lockout)

“X” is not used.

Page 74: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

74 ENHANCED TECHNOLOGY

5-Reclosers Loop control at F1 Fault

Figure 6-7. 5-Reclosers Loop Control at F1 Fault Step1 : When Permanent Fault occurs at F1, CB1 operates reclosing sequence and then Trip

Lockouts. During CB1 operation, accumulates Dead line time and the accumulated time becomes “DL Pick T”. When a line is Dead Line, “LL Regain T” operates. “DL Pick T” is set by summing all reclosing time of back line equipment. SEC, MID, TIE has the same setting time.

Step2 : “LL Regain T” is set, and if the line is not becoming Live line within a set time, SEC(RC1), MID(RC2), TIE(RC3) operate.

To operate “LL Regain T” from SEC→MID→TIE in turn, MID shall have longer time set than SEC, TIE shall have longer time set than MID. When “LL Regain T” is enable, SEC(RC1) is opened automatically, MID(RC2) changes to Alternate setting.

Step3 : When “LL Regain T” is finished, TIE(RC3) changes to Alternate setting automatically, and then automatically close. F1 is isolated by Loop control operation, the rest of region shall be alive by backward distributing line.

Step4 : After removing a Fault, close CB1, then, SEC(RC1) automatically close after Auto-Restoration Time.

Step5 : Manually open TIE(RC3), change MID(RC2), TIE(RC3) setting to Primary setting. Enable Loop control of TIE(RC3) to recover the line as previous normal line.

Page 75: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

75ENHANCED TECHNOLOGY

5-Reclosers Loop control at F2 Fault

Figure 6-8. 5-Reclosers Loop Control at F2 Fault Step1 : When Permanent Fault occurs at F2, SEC(RC1) operate reclosing sequence and tirp

lockout. During SEC(RC1) operation, accumulate Dead line time, and the accumulated Dead line time becomes “DL Pick T”. When the line is Dead Line, “LL Regain T” operates. “DL Pick T” is set by summing all reclosing time of back line equipment. MID, TIE point recloser has the same setting time.

Step2 : “LL Regain T” is set, and if the line is not becoming Live line within a set time,

MID(RC2), TIE(RC3) operate. To operate “LL Regain T” from MID→TIE in turn, TIE shall have longer time set than MID. When “LL Regain T” is enable, MID(RC2) changes to Alternate setting automatically.

Step3 : When “LL Regain T” is finished, TIE(RC3) automatically close after changing to Alternate setting.

Step4 : When closing TIE(RC3), MID(RC2) trip once and lockout because of F2 fault. F2 is isolated by Loop control operation, the rest of region shall be alive by backward distributing line.

Step5 : After removing a Fault, close SEC(RC1), then, MID(RC3) automatically changes to Alternate setting after Auto Restoration Time.

Page 76: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

76 ENHANCED TECHNOLOGY

Step6 : Manually open TIE(RC3) and change to Primary setting. Enable Loop control of TIE(RC3) to recover the line as previous normal line.

5-Reclosers Loop control at F3 Fault

Figure 6-9. 5-Reclosers Loop Control at F2 Fault

Step1 : When Permanent Fault occurs at F3, MID(RC2) operate reclosing sequence and tirp

lockout. During MID(RC2) operation, accumulate Dead line time, and the accumulated Dead line time becomes “DL Pick T”. When the line is Dead Line, “LL Regain T” operates. “DL Pick T” is set by summing all reclosing time of back line equipment.

Step2 : “LL Regain T” is set, and if the line is not becoming Live line within a set time, TIE(RC3) operate. When “LL Regain T” is enable, TIE(RC3) changes to Alternate setting automatically.

Step3 : When closing TIE(RC3), TIE(RC3) trip once and lockout because of F3 fault. F3 is isolated by Loop control operation, the rest of region shall be alive by backward distributing line.

Step4 : After removing the fault, close MID(RC3) Step5 : Manually open TIE(RC3) and change to Primary setting.

Enable Loop control of TIE(RC3), and recover the previous the line as the previous normal line.

Page 77: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

77ENHANCED TECHNOLOGY

6.9.2. 3-Reclosers Loop Control For three - reclosers loop control, it consists of 2 sets of SEC(Sectionalizing Recloser), 1 set of TIE(TIEpoint Recloser). Setting is in-turn form Source side to SEC and to TIE.

In “Table 6-3. 3-Reclosers Setting”, the source side bushings of RC1, RC2 are installed for CB1 side. And the source side bushings of RC3 is installed for CB2 side.

Table 6-3. 3-Reclosers Setting SETTING CB1 RC1 RC2 RC3 CB2

Type Select - SEC TIE SEC -

VRS – S/M - ⎯⎯←VS X ⎯→⎯VS -

VRS – Tie - X VS&VL X -

VS Wire - 3PN 3PN 3PN -

VL Wire - 1PN(A) 1PN(A) 1PN(A) -

Cng Alt-Mid - X X X -

Cng Alt-Tie - X ON X -

LC After Cl - ENABLE X ENABLE -

LC After Op - - ENABLE - -

OT Both DL - X 10.00 X -

Auto Rest’ T - 5.00 5.00 5.00 -

DL V Max(%) - 50.0 50.0 50.0 -

LL V Min(%) - 70.0 70.0 70.0 -

DL Pickup T - 22.0 22.0 22.0 -

LL Regain T - 5.00 10.00 5.00 -

DL Reset T - 5.00 5.00 5.00 -

NRT After LC - X 10.00 X -

PROGRAM 1 - ENABLE ENABLE ENABLE -

PROGRAM 2 - ENABLE X ENABLE -

Reclose Time 2sec-1st reclose, 5sec-2nd reclose, 15sec-3rd reclose (lockout)

“X” is not used.

Page 78: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

78 ENHANCED TECHNOLOGY

3-Reclosers Loop control at F1 Fault

Figure 6-10. 3-Reclosers Loop control at F1 Fault

Step1 : When Permanent Fault occurs at F1, CB1 operates reclosing sequence and then Trip

Lockouts. During CB1 operation, accumulates Dead line time and the accumulated time becomes “DL Pick T”. When a line is Dead Line, “LL Regain T” operates. “DL Pick T” is set by summing all reclosing time of back line equipment. SEC, TIE has the same setting time.

Step2 : “LL Regain T” is set, and if the line is not becoming Live line within a set time,

SEC(RC1), TIE(RC2) operate. To operate “LL Regain T” from SEC→TIE in turn, TIE shall have longer time set than SEC. When “LL Regain T” is finished, SEC(RC1) is opened automatically, TIE(RC2) automatically changes to Alternate setting and close. F1 is isolated by Loop control operation, the rest of region shall be alive by backward distributing line.

Step3 : After removing the fault, close CB1, SEC(RC1) is automatically closed after Auto Restoration Time.

Step4 : Manually open TIE(RC2) and change to Primary setting. Enable Loop control of TIE(RC2) and recover the line as the previous normal line.

Page 79: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

79ENHANCED TECHNOLOGY

3-Reclosers Loop control at F2 Fault

Figure 6-11. 3-Reclosers Loop control at F2 Fault

Step1 : When Permanent Fault occurs at F2, SEC(RC1) operates reclosing sequence and then Trip

Lockouts. During SEC(RC1) operation, accumulates Dead line time and the accumulated time becomes “DL Pick T”. When a line is Dead Line, “LL Regain T” operates.

Step2 : “LL Regain T” is set, and if the line is not becoming Live line within a set time, TIE(RC2) automatically changes to Alternate setting and close. When closing TIE(RC2), MID(RC2) trip once and lockouts because of F2.

Step3 : After removing the fault, close SEC(RC1). Step4 : Manually open TIE(RC2) and change to Primary setting.

Enable Loop control of TIE(RC2) and recover the line as the previous normal line.

Page 80: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

80 ENHANCED TECHNOLOGY

7. PROTECTION Protective Elements Block diagram - ANSI Designations

VT

CVDTRANSDUCER

CVDTRANSDUCER

VT

OPTION 1

OPTION 1

3CVD

1CVD

3VT

1VT

50P1,2

51P1,2

MeteringV, I, Watt, var, Hz, PF

25

27

271,2

591,2

3I0

I2

CT3WYE

46/501,2

50G1,2

51G1,2

46/511,2

I1

67P1,2

67G1,2

V1, V2, 3V0

51SEF

81

SOURCE

LOAD

REC

LOSE

R

81

ZCT3I0

67SEF

E V R C 2 A

46/671,2

CVD

VTOPTION 2

OPTION 2

791-4

Figure 7-1. Protective Elements Block Diagram - ANSI Designations

Page 81: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

81ENHANCED TECHNOLOGY

Protective Elements - ANSI Designations

Table 7-1. Protective Elements -ANSI Designations

Protective Elements ANSI Designations

Phase fast time overcurrent 51P1

Ground fast time overcurrent 51G1

Negative sequence fast time overcurrent 46(51)-1

Phase delay time overcurrent 51P2

Ground delay time overcurrent 51G2

Negative sequence delay time overcurrent 46(51)-2

Sensitive Earth Fault protection 51SEF

Phase directional time control 67P

Ground directional time control 67G

Negative sequence directional time control 67I2

Directional Sensitive Earth Fault 67SEF

Phase instantaneous high current trip 50P1

Ground instantaneous high current trip 50G1

Negative sequence instantaneous high current trip 46(50)1

Phase High current trip lockout 50P2

Ground High current trip lockout 50G2

Negative sequence High current trip lockout 46(50)2

Four shot recloser 79

Under voltage 1 27-1

Under voltage 2 27-2

Over voltage 1 59-1

Over voltage 2 59-2

Under frequency 81

Synchronism check 25

Cold load pickup

Sequence coordination

Page 82: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

82 ENHANCED TECHNOLOGY

7.1. Phase (Fast/Delay) Time Overcurrents (51P)

The EVRC2A has two phase time overcurrent elements. The phase time overcurrent element contained in the EVR2A, is set based on CT secondary current as connected to the current inputs. The phase time overcurrent element is the most commonly used as a protective element for distribution systems and also used in both down-line and back-up recloser protection. The phase time overcurrent element provides a time delay versus current for tripping that is used for an inverse time curve characteristic coordinated with current pickup value, curve type, time dial, time adder, minimum response time setting and reset type. This inverse characteristic means that time overcurrent element operates slowly on small values of current above the pickup value and operates faster when current increases significantly above the pickup value. The phase time overcurrent element is enabled in the Primary, Alternate settings and PROTECTION ENABLED in user interface panel. Multiple time curves and time dials are available for the phase time overcurrent element to respectively coordinate with other protection elements in the EVRC2A and other external devices on the distribution system. ANSI, IEC, ESB, USER and non-standard time current curves are included in the EVRC2A. A User Programmable curve option is also available for user to allow creating custom’s time current curves for more enhanced coordination than the standard curve types. The Reset type can be either instantaneous or linear. The phase time delay reset mode applies to the ANSI, IEC, ESB, USER curves. The instantaneous mode is used to coordinate with other instantaneous reset devices such as a recloser or other protective equipment on the distribution system. In the instantaneous mode, the time overcurrent element will reset instantaneously when the measured current level drops below the pickup setting for one cycle. If the recloser is closed by pressing the CLOSE button on the front panel, or by an remote control or via SCADA, the phase time overcurrent element is prevented from tripping for a period specified by the Cold load pickup scheme.

Page 83: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

83ENHANCED TECHNOLOGY

The following setting is used to program the phase fast time overcurrent element.

PRIMARY SETTING / PROTECTION / PICKUP CURRENT / Phase

Range OFF, 0.04 ~ 3.20

Default 0.50 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase time overcurrent element starts timing. The dropout threshold is 98% of the pickup threshold curves as a multiple of the source CT. For example, if 1000:1 CTs are used and a phase pickup of 500 amps is required for the phase time overcurrent element, enter 0.50

PRIMARY SETTING / PROTECTION / PHASE FAST / Function

Range TRIP, TR&AR

Default TRIP Step ~

If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP condition, TRIP and any other selected output relays operate.

PRIMARY SETTING / PROTECTION / PHASE FAST / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.Maximum 4 of Relay outputs can be selected to operate output signal. 0000(off) : No Output Relay is selected. 1234 : Operate output signal through 1, 2, 3, 4 Output Relay.

[PICKUP CURRENT xCT] >Phase: 0.50 Ground: 0.25 S.E.F: 0.010

[PHASE FAST] >Function: TRIP Relays(0-8): OFF Curve: ANSI-SI

[PHASE FAST] Function: TRIP >Relays(0-8): OFF Curve: ANSI-SI

Page 84: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

84 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / PHASE FAST / Curve

Range ANSI-MI, ANSI-NI, … , KG(165)

Default ANSI-SI Step ~

Select the desired curve type :

ANSI : Moderately, Normally, Very, Extremely, Short Inverse, Definite Time(1s ,10s)

IEC : Standard, Very, Extremely, Long, Short Inverse ESB : Normally, Very, Long Very Inverse User programmable curves : U1,U2,U3,U4 McGraw-Edison : Non Standard Curves 37

PRIMARY SETTING / PROTECTION / PHASE FAST / Time Dial

Range 0.05 ~ 15.00

Default 0.50 Step 0.01

A time dial setpoint allows shifting of the selected base curve in the vertical time axis.

PRIMARY SETTING / PROTECTION / PHASE FAST / Time Adder

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

An additional time delay is added to the time delay resulting from the time overcurrent curve function.

PRIMARY SETTING / PROTECTION / PHASE FAST / M.R.T

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The minimum time delay that will occur between pickup and trip, even if the time delay is shorter. This function can be useful for other protective device and line fuse coordination.

[PHASE FAST] Function: TRIP Relays(0-8): OFF>Curve: ANSI-SI

[PHASE FAST] Relays(0-8): OFF Curve: ANSI-SI>Time Dial: 0.50

[PHASE FAST] Curve: ANSI-SI Time Dial: 0.50>Time Adder: 0.00

[PHASE FAST] Time Dial: 0.50 Time Adder: 0.00>M.R.T: 0.00

Page 85: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

85ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / PHASE FAST / Reset Method

Range INST, LINEAR

Default INST Step ~

Overcurrent tripping time calculations are made with an internal energyCapacity memory variable. When this variable indicates that the energy capacity has reached 100%, a time overcurrent trip is generated. If less than 100% is accumulated in this variable and the current falls below the dropout threshold of the pickup value, the variable must be reduced. Two methods of this resetting operation are available, Instantaneous and Linear. The Instantaneous selection is intended for applications with other relays, such as most static units, which set the energy capacity directly to zero when the current falls below the reset threshold. The Linear selection can be used where the relay must coordinate with electromechanical units.

The phase delay time overcurrent settings process is very similarly to the phase fast time overcurrent.

[PHASE FAST] Time Adder: 0.00 M.R.T: 0.00 >Reset Method: INST

Page 86: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

86 ENHANCED TECHNOLOGY

7.2. Phase High Current Trip (50P-1)

The EVRC2A has a phase high current trip element. The phase high current trip element in the EVRC2A, is set based on CT secondary current as connected to the current inputs. The phase high current trip element provides a definite time delay versus current. The operating time of phase high current trip element should be set for equal to or faster than the phase time overcurrent elements. The phase high current trip element is enabled in the Primary, Alternate settings and PROTECTION ENABLED on user interface panel. Phase high current trip is not affected by the cold load pickup scheme. The phase high current trip element in the following five settings should be enabled for phase high current trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-PHA / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C TRIP-PHA / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-PHA / Pickup(xCT)

Range 0.10 ~ 20.00

Default 4.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current trip element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 4000 amps is required for the high current trip element, enter 4.00

[ H/C TRIP-PHA ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-PHA ] Function: OFF>Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-PHA ] Function: OFF Relays(0-8): OFF>Pickup(xCT): 4.00

Page 87: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

87ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C TRIP-PHA / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C TRIP-PHA / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C TRIP-PHA ] Relays(0-8): OFF Pickup(xCT): 4.00 >Time Delay: 0.00

[ H/C TRIP-PHA ] Pickup(xCT): 4.00 Time Delay: 0.00 >Active Trip: OFF

Page 88: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

88 ENHANCED TECHNOLOGY

7.3. Phase High Current Lockout (50P-2)

The EVRC2A has a phase high current lockout element. The phase high current lockout element in the EVRC2A is set based on CT secondary current as connected to the current inputs. The phase high current lockout element provides a definite time delay versus current. When high current lockout element is enabled, high current lockout element is operated prior to any other phase protection elements. If a fault current is higher than the pickup setting value, Lockout is operated. The phase high current lockout element can be set by a number of its active trip that is applied to the full operation to lockout, time delay and fault current. This function is very useful to prevent widespread line faults due to reclosing operations in case of permanent fault. The operating time of phase high current lockout element should be set for equal to or faster than and phase high current trip element. The phase high current lockout element is enabled in the Primary, Alternate setting and PROTECTION ENABLED in user interface panel. The phase high current lockout element is not affected by the cold load pickup scheme. The phase high current lockout element in the following five setting should be enabled for phase high current trip.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-PHA / Function

Range OFF, TRIP, TR&AR

Default TRIP Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-PHA / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

[ H/C LOCKOUT-PHA ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 8.00

[ H/C LOCKOUT-PHA ] Function: OFF>Relays(0-8): OFF Pickup(xCT): 8.00

Page 89: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

89ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-PHA / Pickup(xCT)

Range 0.10 ~ 20.00

Default 8.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current lockout element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 8000 amps is required for the high current lockout element, enter 8.00

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-PHA / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-PHA / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C LOCKOUT-PHA ] Function: OFF Relays(0-8): OFF >Pickup(xCT): 8.00

[ H/C LOCKOUT-PHA ] Relays(0-8): OFF Pickup(xCT): 8.00 >Time Delay: 0.00

[ H/C LOCKOUT-PHA ] Pickup(xCT): 8.00 Time Delay: 0.00 >Active Trip: OFF

Page 90: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

90 ENHANCED TECHNOLOGY

7.4. Ground (Fast/Delay) Time Overcurrent (51G)

The EVRC2A has two ground time overcurrent elements. The ground time overcurrent element in the EVRC2A is set based on CT secondary current as connected to the current inputs. The ground time overcurrent element is the most commonly used as a protective element for distribution systems and also used in both down-line and back-up recloser protection. The ground time overcurrent element provides a time delay versus current for tripping that is used for an inverse time curve characteristic coordinated with current pickup value, curve type, time dial, time adder, minimum response time setting and reset type. This inverse characteristic means that time overcurrent element operates slowly on small values of current above the pickup value and operates faster when current increases significantly above the pickup value. The ground time overcurrent element is enabled in the Primary, Alternate settings and PROTECTION ENABLED in user interface panel. Multiple time curves and time dials are available for the ground time overcurrent element to closely coordinate with other protection elements within the EVRC2A and other external devices on the distribution system. ANSI, IEC, ESB, USER and non-standard time current curves are included in the EVRC2A. A User Programmable curve option is also available allowing the user to create customer time current curves for more enhanced coordination than the standard curve types. The Reset type can be either instantaneous or linear. The ground time delay reset mode applies to the ANSI, IEC, ESB, USER curves. The instantaneous mode is used to coordinate with other instantaneous reset devices such as a recloser or other protective equipment on the distribution system. In the instantaneous mode the time overcurrent element will reset instantaneously when the current level measured by the EVRC2A drops below the pickup setting for one cycle. If the recloser is closed by pressing the CLOSE button on the front panel, or by an remote control or via SCADA, the ground time overcurrent element is prevented from tripping for a period specified by the Cold load pickup scheme. The following setting is used to program the ground time overcurrent element.

Page 91: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

91ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / PICKUP CURRENT / Ground

Range OFF, 0.02 ~ 3.20

Default 0.25 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the ground time overcurrent element starts timing. The dropout threshold is 98% of the pickup threshold curves as a multiple of the source CT. For example, if 1000:1 CTs are used and a phase pickup of 250 amps is required for the ground time overcurrent element, enter 0.25

PRIMARY SETTING / PROTECTION / GROUND FAST / Function

Range TRIP, TR&AR

Default TRIP Step ~

If function = Trip, the feature is operational. When the feature asserts a TRIP condition, which will operate the Trip.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP&AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / GROUND FAST / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / GROUND FAST / Curve

Range ANSI-MI, ANSI-NI, … , KG(165)

Default ANSI-SI Step ~

Select the desired curve type :

ANSI : Moderately, Normally, Very, Extremely, Short Inverse, Definite Time(1s ,10s)

IEC : Standard, Very, Extremely, Long, Short Inverse ESB : Normally, Very, Long Very Inverse User programmable curves : U1,U2,U3,U4 McGraw-Edison : Non Standard Curves 37

[GROUND FAST] >Function: TRIP Relays(0-8): OFF Curve: ANSI-SI

[GROUND FAST] Function: TRIP >Relays(0-8): OFF Curve: ANSI-SI

[GROUND FAST] Function: TRIP Relays(0-8): OFF >Curve: ANSI-SI

[PICKUP CURRENT xCT] Phase: 0.50 >Ground: 0.25 S.E.F: 0.010

Page 92: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

92 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / GROUND FAST / Time Dial

Range 0.05 ~ 15.00

Default 0.50 Step 0.01

A time dial setpoint allows shifting of the selected base curve in the vertical time axis.

PRIMARY SETTING / PROTECTION / GROUND FAST / Time Adder

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

An additional time delay is added to the time delay resulting from the time overcurrent curve function.

PRIMARY SETTING / PROTECTION / GROUND FAST / M.R.T

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The minimum time delay that will occur between pickup and trip, even if the time delay is shorter. This function can be useful for other protective device and line fuse coordination.

PRIMARY SETTING / PROTECTION / GROUND FAST / Reset Method

Range INST, LINEAR

Default INST Step ~

Overcurrent tripping time calculations are made with an internal energyCapacity memory variable. When this variable indicates that the energy capacity has reached 100%, a time overcurrent trip is generated. If less than 100% is accumulated in this variable and the current falls below the dropout threshold of the pickup value, the variable must be reduced. Two methods of this resetting operation are available, Instantaneous and Linear. The Instantaneous selection is intended for applications with other relays, such as most static units, which set the energy capacity directly to zero when the current falls below the reset threshold. The Linear selection can be used where the relay must coordinate with electromechanical units.

The ground delay time overcurrent setting process is very similar to the ground fast time overcurrent setting process.

[GROUND FAST] Relays(0-8): OFF Curve: ANSI-SI>Time Dial: 0.50

[GROUND FAST] Curve: ANSI-SI Time Dial: 0.50>Time Adder: 0.00

[GROUND FAST] Time Dial: 0.50 Time Adder: 0.00>M.R.T: 0.00

[GROUND FAST] Time Adder: 0.00 M.R.T: 0.00>Reset Method: INST

Page 93: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

93ENHANCED TECHNOLOGY

7.5. Ground High Current Trip (50G-1)

The EVRC2A has a ground high current trip element. The ground high current trip element in the EVRC2A is set based on CT secondary current as connected to the current inputs. The ground high current trip element provides a definite time delay versus current. The operating time of ground high current trip overcurrent element should be set for equal to or faster than the ground time overcurrent elements. The ground high current trip element is enabled in the Primary, Alternate settings both PROTECTION ENABLED and GROUND ENABLED in user interface panel. Ground high current trip is not affected by the cold load pickup scheme. The ground high current trip element in the following five settings should be enabled for ground high current trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-GND / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C TRIP-GND / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-GND / Pickup(xCT)

Range 0.10 ~ 20.00

Default 4.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current trip element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 4000 amps is required for the high current trip element, enter 4.00

[ H/C TRIP-GND ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-GND ] Function: OFF >Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-GND ] Function: OFF Relays(0-8): OFF >Pickup(xCT): 4.00

Page 94: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

94 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C TRIP-GND / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C TRIP-GND / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C TRIP-GND ] Relays(0-8): OFF Pickup(xCT): 4.00>Time Delay: 0.00

[ H/C TRIP-GND ] Pickup(xCT): 4.00 Time Delay: 0.00>Active Trip: OFF

Page 95: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

95ENHANCED TECHNOLOGY

7.6. Ground High Current Lockout (50G-2)

The EVRC2A has a ground high current lockout element. The ground high current lockout element in the EVRC2A, is set based on CT secondary current as connected to the current inputs. The ground high current lockout element provides a definite time delay versus current. The operating time of ground high current lockout overcurrent element should be set for equal to or faster than the ground high current trip element. The ground high current lockout element is enabled in the Primary, Alternate settings and both PROTECTION ENABLED and GROUND ENABLED in user interface panel. The ground high current lockout is not affected by the cold load pickup scheme. The ground high current lockout element in the following five settings should be enabled for ground high current lockout. PRIMARY SETTING / PROTECTION / H/C LOCKOUT-GND / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-GND / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-GND / Pickup(xCT)

Range 0.10 ~ 20.00

Default 8.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current lockout element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 8000 amps is required for the high current lockout element, enter 8.00

[ H/C LOCKOUT-GND ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 8.00

[ H/C LOCKOUT-GND ] Function: OFF >Relays(0-8): OFF Pickup(xCT): 8.00

[ H/C LOCKOUT-GND ] Function: OFF Relays(0-8): OFF >Pickup(xCT): 8.00

Page 96: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

96 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-GND / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-GND / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C LOCKOUT-GND ] Relays(0-8): OFF Pickup(xCT): 8.00>Time Delay: 0.00

[ H/C LOCKOUT-GND ] Pickup(xCT): 8.00 Time Delay: 0.00>Active Trip: OFF

Page 97: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

97ENHANCED TECHNOLOGY

7.7. Sensitive Earth Fault (SEF)

The sensitive earth fault (SEF) is applicable to systems that have restricted current flow for phase to earth fault. The SEF is not applicable to the case in 4 wire multi-earthed systems. The sensitivity of SEF element for non-earthed systems is dependent upon available fault current and the accuracy of CTs. For SEF element, EVRC2A has the separate SEF terminal on side panel. This input can be connected in series with the provided phase CT’s (standard) or connected to a separate window type ZCT. The SEF element provides a definite time delay versus current . The SEF element is enabled in the Primary, Alternate settings and PROTECTION ENABLED and SEF ENABLED on user interface panel. For user systems, a directional SEF is available. The directional control is polarized by a zero sequence voltage(V0). The CVD or PTs should be connected Wye-grounded. The SEF element in the following three settings should be enabled.

PRIMARY SETTING / PROTECTION / PICKUP CURRENT / S.E.F

Range OFF, 0.005~0.160

Default OFF Step 0.001

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the SEF element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 10 amps is required for sensitive earth fault element, enter 0.010

PRIMARY SETTING / PROTECTION / SEF ELEMENT / Function

Range OFF, TRIP, TR&AR

Default TRIP Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

[PICKUP CURRENT xCT] Phase: 0.50 Ground: 0.25 >S.E.F: OFF

[ SEF ELEMENT ] >Function: TRIP Relays(0-8): OFF Time Delay: 1.00

Page 98: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

98 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / SEF ELEMENT / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / SEF ELEMENT / Time Delay

Range 0.00 ~ 10.00 sec

Default 1.00 Step 0.01 sec

The Time delay of Sensitive Earth Fault setting programs a definite time delay for the Sensitive Earth Fault. If set to zero, phase high current trip operates instantaneously.

[ SEF ELEMENT ] Function: TRIP>Relays(0-8): OFF Time Delay: 1.00

[ SEF ELEMENT ] Function: TRIP Relays(0-8): OFF>Time Delay: 1.00

Page 99: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

99ENHANCED TECHNOLOGY

7.8. Negative Sequence (Fast/Delay) Time Overcurrent (46)

The EVRC2A has two negative sequence time overcurrent elements. The negative sequence element measures the amount of unbalance current in the system. The negative sequence overcurrent element can also be used to detect phase to ground and two phase ground faults. The negative sequence time overcurrent element provides a time delay versus current for tripping using that an inverse time curve characteristic is operated to coordinate, current pickup value, curve type, time dial, time adder, minimum response time setting and reset type. The negative sequence time overcurrent element is enabled in the Primary, Alternate settings and both PROTECTION ENABLED in user interface panel. Multiple time curves and time dials are available for the negative sequence time overcurrent element to closely coordinate with other protection elements in the EVRC2A and other external devices on the distribution system. The Reset type can be either instantaneous or linear. The negative sequence time delay reset mode applies to the ANSI, IEC, ESB, USER curves. The instantaneous mode is used to coordinate with other instantaneous reset devices such as a recloser or other protective equipment on the distribution system. In the instantaneous mode, the time overcurrent element will reset instantaneously when the measured current level drops below the pickup setting for one cycle. If the recloser is closed by pressing the CLOSE button on the front panel, or by an remote control or via SCADA, the negative sequence time overcurrent element is prevented from tripping for a period specified by the Cold load pickup scheme.

PRIMARY SETTING / PROTECTION / PICKUP CURRENT / NEG Seq

Range OFF, 0.04 ~ 3.20

Default OFF Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase time overcurrent element starts timing. The dropout threshold is 98% of the pickup threshold curves as a multiple of the source CT. For example, if 1000:1 CTs are used and a phase pickup of 500 amps is required for the phase time overcurrent element, enter 0.50

[PICKUP CURRENT xCT] Ground: 0.25 S.E.F: OFF >NEG Seq: OFF

Page 100: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

100 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / NEG SEQ FAST / Function

Range TRIP, TR&AR

Default TRIP Step ~

If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP condition, TRIP and any other selected output relays operate.

PRIMARY SETTING / PROTECTION / NEG SEQ FAST / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / NEG SEQ FAST / Curve

Range ANSI-MI, ANSI-NI, … , KG(165)

Default ANSI-SI Step ~

Select the desired curve type :

ANSI : Moderately, Normally, Very, Extremely, Short Inverse, Definite Time(1s ,10s)

IEC : Standard, Very, Extremely, Long, Short Inverse ESB : Normally, Very, Long Very Inverse User programmable curves : U1,U2,U3,U4 McGraw-Edison : Non Standard Curves 37

PRIMARY SETTING / PROTECTION / NEG SEQ FAST / Time Dial

Range 0.05 ~ 15.00

Default 0.50 Step 0.01

A time dial setpoint allows shifting of the selected base curve in the vertical time axis.

The negative sequence delay time overcurrent setting process is very similar the negative sequence fast time overcurrent setting process.

[NEG SEQ FAST] >Function: TRIP Relays(0-8): OFF Curve: ANSI-SI

[NEG SEQ FAST] Function: TRIP>Relays(0-8): OFF Curve: ANSI-SI

[NEG SEQ FAST] Function: TRIP Relays(0-8): OFF>Curve: ANSI-SI

[NEG SEQ FAST] Relays(0-8): OFF Curve: ANSI-SI>Time Dial: 0.50

Page 101: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

101ENHANCED TECHNOLOGY

7.9. Negative Sequence High Current Trip (46(50)-1)

The negative sequence high current trip in the EVRC2A is set based on CT secondary current as connected to the current inputs. The negative sequence high current trip element provides a definite time delay versus current. The operating time of negative sequence high current trip element should be set equal to or faster than the negative sequence time overcurrent elements. The negative sequence high current trip element is enabled in the Primary, Alternate settings and PROTECTION on user interface panel. The negative sequence high current trip is not affected by the cold load pickup scheme. The ground high current trip element in the following five settings should be enabled for negative sequence high current trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-NEQ / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C TRIP-NEQ / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / H/C TRIP-NEQ / Pickup(xCT)

Range 0.10 ~ 20.00

Default 4.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current trip element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 4000 amps is required for the high current trip element, enter 4.00

[ H/C TRIP-NEQ ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-NEQ ] Function: OFF >Relays(0-8): OFF Pickup(xCT): 4.00

[ H/C TRIP-NEQ ] Function: OFF Relays(0-8): OFF >Pickup(xCT): 4.00

Page 102: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

102 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C TRIP-NEQ / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C TRIP-NEQ / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C TRIP-NEQ ] Relays(0-8): OFF Pickup(xCT): 4.00>Time Delay: 0.00

[ H/C TRIP-NEQ ] Pickup(xCT): 4.00 Time Delay: 0.00>Active Trip: OFF

Page 103: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

103ENHANCED TECHNOLOGY

7.10. Negative Sequence High Current Lockout (46(50)-2)

The EVRC2A has a negative sequence high current lockout element. Negative sequence high current lockout element in the EVRC2A is set based on CT secondary current as connected to the current inputs. The negative sequence high current lockout element provides a definite time delay characteristic versus current. The negative sequence high current lockout element should be set equal to or faster than the negative sequence high current trip element. The negative sequence high current lockout element is enabled in the Primary, Alternate settings and both PROTECTION ENABLED and GROUND ENABLED in user interface panel. Negative sequence high current lockout is not affected by the cold load pickup scheme. The negative sequence high current lockout element in the following five settings should be enabled for the negative sequence high current lockout.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-NEQ / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. When the feature asserts a TRIP condition, Trip operates.

If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-NEQ / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the required relays to operate when the feature generates a Trip.

[ H/C LOCKOUT-NEQ ] >Function: OFF Relays(0-8): OFF Pickup(xCT): 8.00

[ H/C LOCKOUT-NEQ ] Function: OFF >Relays(0-8): OFF Pickup(xCT): 8.00

Page 104: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

104 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-NEQ / Pickup(xCT)

Range 0.10 ~ 20.00

Default 8.00 Step 0.01

Enter the pickup value as a fraction of the source CTs nominal current. The pickup current is the threshold current at which the phase high current lockout element starts timing. For example, if 1000:1 CTs are used and a phase pickup of 8000 amps is required for the high current lockout element, enter 8.00

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-NEQ / Time Delay

Range 0.00 ~ 10.00 sec

Default 0.00 Step 0.01 sec

The Time delay of phase high current trip setting programs a definite time delay for the phase high current trip. If set to zero, phase high current trip operates instantaneously.

PRIMARY SETTING / PROTECTION / H/C LOCKOUT-NEQ / Active Trip

Range OFF, 1 ~ 5

Default OFF Step 1

If Active Trip = OFF, the feature is not operate. If Active Trip = 2, then phase high current trip is enabled for the second trip operation and every following trip operation.

[ H/C LOCKOUT-NEQ ] Function: OFF Relays(0-8): OFF>Pickup(xCT): 8.00

[ H/C LOCKOUT-NEQ ] Relays(0-8): OFF Pickup(xCT): 8.00>Time Delay: 0.00

[ H/C LOCKOUT-NEQ ] Pickup(xCT): 8.00 Time Delay: 0.00>Active Trip: OFF

Page 105: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

105ENHANCED TECHNOLOGY

7.11. Directional Controls (67)

The directional Controls provide time protection in the direction of power flow. The directional Controls are necessary for the protection of multiple feeders, when it has the necessity of finding faults in different directions. The directional controls are composed of phase, neutral, sensitive ground, and negative sequence overcurrent elements. If directional controls are selected, it will determine whether current flow in each phase is in forward or reverse direction, as determined by the connection of the phase CTs, selected Maximum Torque Angle (MTA), voltage and current phasors. To increase security of all directional controls, add one power frequency cycle of intentional delay to prevent incorrect operation. The directional controls have each three settings. The directional controls settings can be different in the Primary and Alternate settings.

NOTE : In case of CVD type Recloser, EVRC2A only measures voltages without checking directional elements.

Page 106: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

106 ENHANCED TECHNOLOGY

7.11.1. Phase Directional Controls (67P) The positive sequence voltage V1 provides the direction of phase pole in the power system. The phase direction is determined as comparing the positive sequence voltage(V1) to the direction

of the positive sequence current(I1). The maximum torque angle is set between ∠0 to ∠359 degree. The factory default value for maximum torque angle has a lead of ∠300 degree over V1. If the polarized voltage drops below minimum polarized voltage, the phase direction control will lose direction and will not trip. Then any fault on the distribution line may trip due to the phase overcurrent element, which is non-directional. The phase direction control can be programmed for non-direction or to provide a trip for current flow in the forward or reverse direction only. Following diagram shows the phasor diagram for I1 directional polarization in the complex plane.

Maxim

um Torque

Line

V1

Zero

Torq

ue Line

Forward

Revers

e

I1

Maximum Torque Angle :set 300 degree

Typical Fault Angle

Polarizing Referance Voltage:

Figure 7-2. Phasor Diagram for I1 Directional Polarization

Page 107: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

107ENHANCED TECHNOLOGY

The phase direction control in the following four settings should be enabled.

PRIMARY SETTING / PROTECTION / DIRECTION / PHASE DIRECTION / Type

Range OFF, FOR, REV

Default OFF Step ~

OFF : None direction FOR : Forward direction REV : Reverse direction

PRIMARY SETTING / PROTECTION / DIRECTION / PHASE DIRECTION / M.T.A

Range 0 ~ 359

Default 300 Step 1

Enter the Maximum Torque Angle. The Maximum Torque Angle setting determines the range of current direction for the polarizing voltage. For typical distribution systems, the faulted angle of the phase will be

approximately ∠30∼∠60 degree

PRIMARY SETTING / PROTECTION / DIRECTION / PHASE DIRECTION / M.P.V

Range 0 ~ 1.25 xVT(secondary nominal voltage)

Default 0.20 Step 0.01

Enter the minimum polarizing voltage as a fraction of the secondary nominal voltage.

PRIMARY SETTING/PROTECTION / DIRECTION / PHASE DIRECTION / BLOCK OC

Range NO, YES

Default NO Step ~

The BLOCK OC setting determines the overcurrent tripping conditions when the polarizing voltage drops below minimum polarizing voltage.

If BLOCK OC = NO, then tripping by the overcurrent elements will be permitted.

If BLOCK OC = YES, then tripping by the overcurrent elements will be blocked.

[PHASE DIRECTION] >Type: OFF M.T.A: 300 M.P.A: 0.20

[PHASE DIRECTION] Type: OFF >M.T.A: 300 M.P.A: 0.20

[PHASE DIRECTION] Type: OFF M.T.A: 300 >M.P.A: 0.20

[PHASE DIRECTION] M.T.A: 300 M.P.A: 0.20 >BLOCK OC: NO

Page 108: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

108 ENHANCED TECHNOLOGY

7.11.2. Ground Directional Controls (67G) The zero sequence voltage 3V0 provides the direction of ground control in the power system. The ground direction is determined as comparing the zero sequence voltage(3V0) to the direction of the

zero sequence current(Ig). The Maximum Torque Angle is set between ∠0 to ∠359 degree. The factory default value for maximum torque angle has a lead of ∠135 degree over 3V0. If the polarized voltage drops below minimum polarized voltage, the ground direction control will lose direction and will not trip. Then any fault on the distribution line may trip due to the ground overcurrent element, which is non-directional. The ground direction control can be programmed to either non-direction or provide a trip for current flow in the forward or reverse direction only. The following diagram shows the phasor diagram for Ig directional polarization in the complex plane.

Max

imum

Tor

que Line

-V0

Zero Torque Line

Forw

ard

Reve

rse

Ig

V0Polarizing Referance

Voltage:

Fault Current

Figure 7-3. Phasor Diagram for Ig Directional Polarization

Page 109: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

109ENHANCED TECHNOLOGY

The ground direction control in the following four settings should be enabled.

PRIMARY SETTING / PROTECTION / DIRECTION / GROUND DIRECTION / Type

Range OFF, FOR, REV

Default OFF Step ~

OFF : None direction FOR : Forward direction REV : Reverse direction

PRIMARY SETTING / PROTECTION / DIRECTION / GROUND DIRECTION / M.T.A

Range 0 ~ 359

Default 135 Step 1

Enter the maximum torque angle, The maximum torque angle setting determines the range of current direction for the polarized voltage. For system with high-resistance grounding or floating neutrals, the

ground maximum torque angle will be approximately ∠135 degree. For system with solidly grounded or resistively grounded the maximum

torque angle will be approximately ∠90 degree.

PRIMARY SETTING / PROTECTION / DIRECTION / PHASE DIRECTION / M.P.V

Range 0 ~ 1.25 xVT(secondary nominal voltage)

Default 0.20 Step 0.01

Enter the minimum polarizing voltage. For systems with high-resistance grounding or floating neutrals, this M.P.V will be approximately 0.20 x VT. For system with solidly grounded or resistively grounded the M.P.V will be approximately 0.10 x VT.

PRIMARY SETTING/PROTECTION/DIRECTION/GROUND DIRECTION/BLOCK OC

Range NO, YES

Default NO Step ~

The BLOCK OC setting determines the overcurrent tripping conditions when the polarizing voltage drops below minimum polarizing voltage.

If BLOCK OC = NO, then tripping by the overcurrent elements will be permitted.

If BLOCK OC = YES, then tripping by the overcurrent elements will be blocked.

[GROUND DIRECTION] >Type: OFF M.T.A: 135 M.P.A: 0.20

[GROUND DIRECTION] Type: OFF >M.T.A: 135 M.P.A: 0.20

[GROUND DIRECTION] Type: OFF M.T.A: 135 >M.P.A: 0.20

[GROUND DIRECTION] M.T.A: 135 M.P.A: 0.20 >BLOCK OC: NO

Page 110: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

110 ENHANCED TECHNOLOGY

The SEF direction control process a very similar method to the ground directional controls.

7.11.3. Negative Sequence Directional Controls (67(46)) The negative sequence voltage V2 provides the direction of negative sequence pole in the power system. The negative sequence direction control is determined as comparing the negative sequence voltage(V2) to the direction of the negative sequence current(I2). The Maximum Torque Angle is set

between ∠0 to ∠359 degree. The factory default value for maximum torque angle has a lead of ∠135 degree over V2. If the polarized voltage drops below minimum polarized voltage, the negative sequence direction control will lose direction and will not trip. Then any fault on the distribution line may trip due to the negative sequence overcurrent element which is non-directional. The negative sequence direction control can be programmed for non-direction or to provide a trip for current flow in the forward or reverse direction only. The following diagram shows the phasor diagram for I2 directional polarization in the complex plane.

Page 111: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

111ENHANCED TECHNOLOGY

Max

imum

Torqu

e Line

-V2

Zero Torque Line

Forw

ard

Reve

rse

I2

Maximum Torque Angle :set 135 degree

V2Polarizing Referance

Voltage:

Fault Current

Figure 7-4. Phasor Diagram for I2 Directional Polarization

The negative sequence directional controls in the following four settings should be enabled.

PRIMARY SETTING / PROTECTION / DIRECTION / NEQ DIRECTION / Type

Range OFF, FOR, REV

Default OFF Step ~

OFF : None direction FOR : Forward direction REV : Reverse direction

PRIMARY SETTING / PROTECTION / DIRECTION / NEQ DIRECTION / M.T.A

Range 0 ~ 359

Default 135 Step 1

Enter the maximum torque angle. The maximum torque angle setting determines the directional operating current for the polarizing voltage.

[NEQ DIRECTION] >Type: OFF M.T.A: 135 M.P.A: 0.20

[NEQ DIRECTION] Type: OFF >M.T.A: 135 M.P.A: 0.20

Page 112: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

112 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / DIRECTION / NEQ DIRECTION / M.P.V

Range 0 ~ 1.25 xVT(secondary nominal voltage)

Default 0.20 Step 0.01

Enter the minimum polarizing voltage. For systems with high-resistance grounding or floating neutrals, this M.P.V will be approximately 0.20 x VT. For system with solidly grounded or resistively grounded the M.P.V will be approximately 0.10 x VT.

PRIMARY SETTING / PROTECTION / DIRECTION / NEQ DIRECTION / BLOCK OC

Range NO, YES

Default NO Step ~

The BLOCK OC setting determines the overcurrent tripping conditions when the polarizing voltage drops below minimum polarizing voltage.

If BLOCK OC = NO, then tripping by the overcurrent elements will be permitted.

If BLOCK OC = YES, then tripping by the overcurrent elements will be blocked.

[NEQ DIRECTION] Type: OFF M.T.A: 135>M.P.A: 0.20

[NEQ DIRECTION] M.T.A: 135 M.P.A: 0.20>BLOCK OC: NO

Page 113: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

113ENHANCED TECHNOLOGY

7.12. Reclose (79)

After a fault has occurred, the Reclose element closes the recloser when the programmed reclose interval time expires. The number of operation lockout setting is programmed one to five, and each reclose shot has its own separate reclose interval timer. If the fault is permanent and the recloser continues to trip and reclose, the Reclose element will continue to increment the operating counter. If this continues to the maximum number of the operating lockout programmed in the Reclose element, the reclose logic lockouts. If the fault is transient, then the reclose logic is reset by the reset logic. The reclosing element can be disabled in the Primary, Alternate settings by one operating lockout or by RECLOSE ENABLED push button on user interface panel. The Reclose Element should be enabled to the following settings.

PRIMARY SETTING / PROTECTION / OPERATIONS / Lockout-PHA

Range 1 ~ 5

Default 4 Step 1

Select the total number of the phase trip operations. This setting is used to change the total number of the phase trip operations.

PRIMARY SETTING / PROTECTION / OPERATIONS / Lockout-GND

Range 1 ~ 5

Default 4 Step 1

Select the total number of the ground trip operations. This setting is used to change the total number of the ground trip operations.

PRIMARY SETTING / PROTECTION / OPERATIONS / Lockout-SEF

Range 1 ~ 5

Default 4 Step 1

Select the total number of the SEF trip operations. This setting is used to change the total number of the SEF trip operations

[OPERATION] >Lockout-PHA: 4 Lockout-GND: 4 Lockout-SEF: 4

[OPERATION] Lockout-PHA: 4 >Lockout-GND: 4 Lockout-SEF: 4

[OPERATION] Lockout-PHA: 4 Lockout-GND: 4 >Lockout-SEF: 4

Page 114: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

114 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / OPERATIONS / Lockout-NEQ

Range 1 ~ 5

Default 4 Step 1

Select the total number of the negative sequence trip operations. This setting is used to change the total number of the negative sequence trip operations.

PRIMARY SETTING / PROTECTION / OPERATIONS / Fast Curve-PHA

Range 0 ~ 5

Default 2 Step 1

Select the number of the phase fast curve operations. This setting is used to change the number of the phase fast curve operations.

The difference between setting [OPERATION] Lockout-PHA and setting [OPERATION] Fast Curve-PHA is the number of remaining phase delay curve operations.

PRIMARY SETTING / PROTECTION / OPERATIONS / Fast Curve-GND

Range 0 ~ 5

Default 2 Step 1

Select a number for the ground fast curve operations. This setting is used to change the number of the ground fast curve operations.

The difference between setting [OPERATION] Lockout-GND and setting [OPERATION] Fast Curve-GND is the number of remaining ground delay curve operations.

PRIMARY SETTING / PROTECTION / OPERATIONS / Fast Curve-NEQ

Range 0 ~ 5

Default 2 Step 1

Select a number for the negative sequence fast curve operations. This setting is used to change the number of the negative sequence fast curve operations.

The difference between setting [OPERATION] Lockout-NEQ and setting [OPERATION] Fast Curve-NEQ is the number of remaining negative sequence delay curve operations.

[OPERATION] Lockout-GND: 4 Lockout-SEF: 4>Lockout-NEQ: 4

[OPERATION] Lockout-GND: 4 Lockout-SEF: 4>Fast Curve-PHA: 2

[OPERATION] Lockout-SEF: 4 Fast Curve-PHA: 2>Fast Curve-GND: 2

[OPERATION] Fast Curve-PHA: 2 Fast Curve-GND: 2>Fast Curve-NEQ: 2

Page 115: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

115ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / INTERVALS / Reclose 1

Range 0.50 ~ 600.00 sec

Default 0.60 Step 0.01 sec

This setting is used to change the first reclose interval time between the first trip operation and the close operation.

PRIMARY SETTING / PROTECTION / INTERVALS / Reclose 2

Range 1.00 ~ 600.00 sec

Default 2.00 Step 0.01 sec

This setting is used to change the first reclose interval time between the first trip operation and the close operation.

PRIMARY SETTING / PROTECTION / INTERVALS / Reclose 3

Range 1.00 ~ 600.00sec

Default 15.00 Step 0.01

This setting is used to change the first reclose interval time between the first trip operation and the close operation.

PRIMARY SETTING / PROTECTION / INTERVALS / Reclose 4

Range 1.00 ~ 600.00 sec

Default 15.00 Step 0.01 sec

This setting is used to change the first reclose interval time between the first trip operation and the close operation.

PRIMARY SETTING / PROTECTION / INTERVALS / Reset T(AR)

Range 1.00 ~ 600.00 sec

Default 30.00 Step 0.01 sec

Select Reset time for auto reclose. The Reset time for auto reclose is used for the recloser to automatically reclose. Traditionally, the Reset time for auto reclose setting is used to set time for a delay longer than the incomplete sequence. If any overcurrent elements are picked up, the reset timer is reloaded. Reset timer can only count if all the overcurrent elements are cleared.

[INTERVALS] >Reclose 1: 0.60 Reclose 2: 2.00 Reclose 3: 15.00

[INTERVALS] Reclose 1: 0.60 >Reclose 2: 2.00 Reclose 3: 15.00

[INTERVALS] Reclose 1: 0.60 Reclose 2: 2.00 >Reclose 3: 15.00

[INTERVALS] Reclose 2: 2.00 Reclose 3: 15.00 >Reclose 4: 15.00

[INTERVALS] Reclose 2: 2.00 Reclose 3: 15.00 >Reset T(AR): 30.00

Page 116: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

116 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / INTERVALS / Reset T(LO)

Range 1.00 ~ 600.00 sec

Default 10.00 Step 0.01 sec

Select the Reset time for lockout. The auto reclose logic is disabled for a setting time delay after the recloser is manually/remotely closed. This prevents a fault from manual reclosing. This delay must be longer than the trip time delay for any protection not blocked after manual closing. If no overcurrent trip occurs after a manual close and this timer expires, the auto reclose logic automatically resets. Traditionally, the Reset Time from lockout setting is set shorter than the Reset time for auto reclose setting.

PRIMARY SETTING / PROTECTION / INTERVALS / C/P Wait

Range 1.00 ~ 600.00 sec

Default 60.00 Step 0.01 sec

Select the close power waiting time. This timer is used to set the close power waiting time delay allowed to reclose. It is activated when the reclose logic is in the reclose cycle state. If this timer expires, the reclose logic is lockouted.

[INTERVALS] Reset T(AR): 30.00 Reset T(LO): 10.0>C/P Wait: 60.00

[INTERVALS] Reclose 3: 15.00 Reset T(AR): 30.00>Reset T(LO): 10.0

Page 117: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

117ENHANCED TECHNOLOGY

7.12.1. Lockout The lockout state occurs under any of the following conditions : After a fault of distribution systems, the RECLOSE ENABLED LED in user interface panel is

not lighted(ON). When the high current lockout has occurred. The recloser is manually closed and a fault occurs before the expiration of the reset time. When recloser is manually opened. After TRIP occurs, the fault current is not removed or the recloser’s 52a contacts do not change

status of the recloser opened. The close power waiting time delay has expired.

The Lockout State is cleared when the recloser has been manually closed by local/remote control and the reset time has expired. The following diagram shows the typical full protection sequence containing 2F2D (two fast and two delay) operations followed by lockout.

(1) (2) (3) (4) (5) (6) (7)

NORMALCURRENT

PICKUPCURRENT

FAULTCURRENT

AMP

TIME

* LOCK-OUT *

(1) 1st Trip - 1st TCC (2) 1st Reclose Interval Time (3) 2nd Trip - 2nd TCC (4) 2nd Reclose Interval Time (5) 3rd Trip - 3rd TCC (6) 3rd Reclose Interval Time (7) 4th Trip - 4th TCC

Figure 7-5. Protection sequence containing 2F2D operations followed by lockout

Page 118: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

118 ENHANCED TECHNOLOGY

7.12.2. Reset If the faulted current is cleared before the lockout condition, the reclosing sequence automatically reset after passing the reset time interval. If the fault condition occurs again during the reset time, the recloser will operate lockout after the completion of the remaining sequence. The following block diagram shows the reset sequence operation after the 3rd reclosing as the fault current is cleared.

(1) (2) (3) (4) (5)

NOMALCURRENT

PICKUPCURRENT

FAULTCURRENT

AMP

TIME

* RESET *

AUTO RESETTIME

(1) 1st Trip - 1st TCC (2) 1st Reclose Interval Time (3) 2nd Trip - 2nd TCC (4) 2nd Reclose Interval Time (5) 3rd Trip - 3rd TCC

Figure 7-6. Reset Sequence operation after the 3rd reclosing as the fault current is cleared

Page 119: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

119ENHANCED TECHNOLOGY

7.13. Cold Load Pickup

The cold load pickup feature is operated to prevent TRIP from the overcurrent elements when an inrush current occurs during the manual closing by local/remote control. The setting values of Cold Load Pickup feature for phase, ground, SEF, negative sequence overcurrent elements can be programmed separately. If cold load pickup feature is activated and the Recloser is closed manually by local/remote control, the overcurrent elements are operated considering the cold load pickup feature. EVRC2A can be programmed to prevent the overcurrent elements and to raise the pickup level of time overcurrent elements when a cold load pickup feature is detected. Under normal operating conditions, the actual load on the distribution system is less than the maximum connected load. When the distribution system is closed after a prolonged outage, the inrush current may be above some overcurrent settings. Such the overcurrent elements are operated due to the fast overcurrent elements are disabled and the delay overcurrent elements and SEF element are activated. If the fault of the distribution system occurs, the overcurrent element is operated due to the cold load pickup feature and the recloser will be lockout after one TRIP. The cold load pickup feature is initiated and overcurrent settings are altered when the recloser is opened for an amount of time greater than the outage time. The cold load pickup feature is immediately activated by asserting the cold load pickup current. The overcurrent settings are returned to normal after any phase current is restored to the nominal load, and then a timer of duration equal to the restore minimum time expires.

Overcurrent Pickup Level

Cold loadPickup Level

Time

Curr

ent

Inrrush Current 2

OutageTime

Restore Minimum Time

Inrrush Current 1

TRIP

Figure 7-7. The Restore Minimum Time Characteristic

Page 120: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

120 ENHANCED TECHNOLOGY

The cold load pickup feature will be operated by the following Rules; When The cold load pickup feature is selected for ON and the cold load pickup level for overcurrent elements are preset, The cold load pickup feature is activated by the overcurrent higher than the cold load pickup level that is detected during the manual closing by local/remote control. The cold load pickup feature is activated with the delay time overcurrent curve only when the inrush current higher than the cold load pickup level or the fault current comes into existence. If transient current remains below the cold load pickup level and the restore minimum time expires, CLPU sequence is changed to the normal sequence. At this time, the cold load pickup level is restored to the nominal pickup current. When fault current, the sequence will be lockout after one TRIP. If High Current Lockout feature is enabled and fault current is higher than the High Current Lockout setting, High Current Lockout feature will be operated prior to the cold load pickup feature.

Overcurrent Pickup Level

Cold loadPickup Level

Trip Area

Tim

e

Current

Delay Curve

Non Trip Area

Figure 7-8. The Cold Load Pickup Characteristic

Page 121: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

121ENHANCED TECHNOLOGY

The Cold Load Pickup feature in the following settings should be enabled.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / Function

Range OFF, TRIP, TR&AR

Default TRIP Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / PHA(xCT)

Range 0.10 ~ 20.00

Default 2.00 Step 0.01

Selects the raised pickup level for the phase overcurrent element while cold load pickup feature is activated.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / GND(xCT)

Range 0.10 ~ 20.00

Default 2.00 Step 0.01

Selects the raised pickup level for the ground overcurrent element while cold load pickup feature is activated.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / SEF(xCT)

Range 0.10 ~ 20.00

Default 2.00 Step 0.01

Selects the raised pickup level for the SEF overcurrent element while cold load pickup feature is activated.

[ COLD LOAD PICKUP ] >Function: TRIP Relays(0-8): OFF PHA(xCT): 2.00

[ COLD LOAD PICKUP ] Function: TRIP >Relays(0-8): OFF PHA(xCT): 2.00

[ COLD LOAD PICKUP ] Function: TRIP Relays(0-8): OFF >PHA(xCT): 2.00

[ COLD LOAD PICKUP ] Relays(0-8): OFF PHA(xCT): 2.00 >GND(xCT): 2.00

[ COLD LOAD PICKUP ] PHA(xCT): 2.00 GND(xCT): 2.00 >SEF(xCT): 2.00

Page 122: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

122 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / NEQ(xCT)

Range 0.10 ~ 20.00

Default 2.00 Step 0.01

Selects the raised pickup level for the negative sequence overcurrent element while cold load pickup feature is activated.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / Outage Time

Range 0.00 ~ 600.00 sec

Default 10.0 Step 0.01 sec

Select the outage time required for a open of recloser to be considered cold.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / RMT Time

Range 0.00 ~ 600.00 sec

Default 5.00 Step 0.01 sec

Select the restore minimum time required for the inrush load. The Restore Minimum Time have to raised pickup levels for overcurrent detection from cold load pickup value back to nominal pickup level.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / RMT Func-PHA

Range OFF, ON

Default ON Step ~

When the cold load pickup is active and RMT Func-PHA = ON, the raised phase pickup level for phase overcurrent element is restored the nominal pickup level if the restore minimum time expires.

If the cold load pickup is active and RMT Func-PHA = OFF, the raised phase pickup level for phase overcurrent element is restored only the nominal pickup level when the cold load reset time expires.

[ COLD LOAD PICKUP ] GND(xCT): 2.00 SEF(xCT): 2.00>NEQ(xCT): 2.00

[ COLD LOAD PICKUP ] NEQ(xCT): 2.00 Outage Time: 10.0>RMT Time: 5.00

[ COLD LOAD PICKUP ] SEF(xCT): 2.00 NEQ(xCT): 2.00>Outage Time: 10.0

[ COLD LOAD PICKUP ] Outage Time: 10.0 RMT Time: 5.00>RMT Func-PHA: ON

Page 123: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

123ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / RMT Func-GND

Range OFF, ON

Default ON Step ~

When the cold load pickup is active and RMT Func-GND = ON, the raised ground pickup level for ground overcurrent element is restored the nominal pickup level if the restore minimum time expires.

If the cold load pickup is active and RMT Func-GND = OFF, the raised ground pickup level for ground overcurrent element is restored only the nominal pickup level when the cold load reset time expires.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / RMT Func-SEF

Range OFF, ON

Default ON Step ~

When the cold load pickup is active and RMT Func-SEF = ON, the raised SEF pickup level for SEF overcurrent element is restored the nominal pickup level if the restore minimum time expires.

If the cold load pickup is active and RMT Func-SEF = OFF, the raised SEF pickup level for SEF overcurrent element is restored only the nominal pickup level when the cold load reset time expires.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / RMT Func-NEQ

Range OFF, ON

Default ON Step ~

When the cold load pickup is active and RMT Func-NEQ = ON, the raised negative sequence(I2) pickup level for I2 overcurrent element is restored the nominal pickup level if the restore minimum time expires.

If the cold load pickup is active and RMT Func-NEQ = OFF, the raised I2 pickup level for I2 overcurrent element is restored only the nominal pickup level when the cold load reset time expires.

PRIMARY SETTING / PROTECTION / COLD LOAD PICKUP / Reset Time

Range 0.00 ~ 600.00 sec

Default 0.60 Step 0.01 sec

Select the cold load reset time required for the inrush load. If the cold load currents drops below nominal pickup levels, the cold load pickup feature is returned the normal sequence when the cold load reset time expires.

[ COLD LOAD PICKUP ] RMT Time: 5.00 RMT Func-PHA: ON >RMT Func-GND: ON

[ COLD LOAD PICKUP ] RMT Func-PHA: ON RMT Func-GND: ON >RMT Func-SEF: ON

[ COLD LOAD PICKUP ] RMT Func-GND: ON RMT Func-SEF: ON >RMT Func-NEQ: ON

[ COLD LOAD PICKUP ] RMT Func-SEF: ON RMT Func-NEQ: ON >Reset Time: 0.60

Page 124: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

124 ENHANCED TECHNOLOGY

7.14. Sequence Coordination

When several Reclosers are connected in series to protect distribution systems, EVRC2A contains Sequence Coordination feature which can prevent the simultaneous trip operations in both of Back-up and Down-line Reclosers due to phase/ground fault. Sequence Coordination feature is activated only if one out of several Down-line Reclosers connected to one Back-up Recloser detects a fault current. The following rules should be kept to activate Sequence Coordination feature. 1) The same characteristics of fast and delay operations in the total number of the trip operations

and identical basic Time Current Curves should be set for all Reclosers connected in series. 2) The identical reclose interval time should be set for all Reclosers in series. 3) To coordinate the protection characteristics, an additional delay operation time (at least 100 ms)

should be applied to the Time Current Curve characteristics of Back-up Recloser, not to those of Down-line Reclosers.

4) The reset time of Back-up Recloser should be set longer than any reclose interval time of all Down-line Reclosers. This setting will prevent the reset operation of Back-up Recloser during the reclose operation of Down-lines.

The Sequence Coordination feature should be enabled to the following settings.

PRIMARY SETTING / PROTECTION / OTHER ELEMENT / Seq' Coordi'

Range OFF, ON

Default OFF Step ~

If function = OFF, the feature is not operational. If function = ON, the feature is operational.

[ OTHER ELEMENT ] >Seq’ Coordi’: OFF L.O Priority: GND F/I Reset: AUTO

Page 125: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

125ENHANCED TECHNOLOGY

As shown in “Figure 7-9. Sequence Coordination Operation Block Diagram”, if Sequence Coordination feature at Back-up Recloser is enabled and a phase/ground fault occurs in distribution systems, the Back-up Recloser operates timing counter by overcurrent elements. During the count at the Back-up Recloser, if the distribution system is restored to normal by TRIP with Down-line Recloser , the number of the trip operations of Back-up Recloser is increased one step. Back-up Recloser performs trip operation instead of activating Sequence Coordination feature at the last sequence of the full sequence. If Auto Reclose switch is set to one TRIP, Sequence Coordination function can not be operated.

EVR 1

EVR 2

Faulted

Back Up

Down lineClose

Open

Close

Open

Time

Starting Reset Time

Counter

Increase Trip Counter without Trip

Lockout Status

Figure 7-9. Sequence Coordination Operation Block Diagram

Page 126: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

126 ENHANCED TECHNOLOGY

7.15. Time Overcurrent Curves

The EVRC2A is equipped Standard ANSI/IEEE curves, IEC curves, ESB curves , user-defined curves and all 37 non standard recloser curves are available. A Configuration setting determines whether elements set to use ANSI/IEEE curves, IEC curves, ESB curves, user-defined curves reset instantaneously, or corresponding with electromechanical. The operation times and reset times refer to ANSI/IEEE C37.112 and IEC 255-3.

The operation times and reset times are defined as follows :

ANSI/IEEE Trip Time(Sec) = TD × (α / (Mβ-1) + γ)

IEC Trip Time(Sec) = TD × (α / (Mβ-1))

ESB Trip Time(Sec) = TD × (α / (Mβ-1) + γ)

USER-DEFINED Trip Time(Sec) = TD × (α / (Mβ-1) + γ) Reset Time(Sec) = TD × (Rt / (1-M2))

Table 7-2. Curve Factor

TD Time dial

α, β, γ Characteristic constant

M Multiples of pickup current

Rt Reset characteristic constant

“Recloser clearing time curves” are used when rated voltage of recloser is 15 or 27, otherwise which added 30(±4) are used when it is 38.

Page 127: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

127ENHANCED TECHNOLOGY

Related Setting Menu 1) USER CURVE 1

PRIMARY SETTING / PROTECTION / USER CURVE SET / USER CURVE 1 / Factor a

Range 0.0000 ~ 150.9999

Default 59.5000 Step 0.0001

User defined curve factor α

PRIMARY SETTING / PROTECTION / USER CURVE SET / USER CURVE 1 / Factor b

Range 0.0200 ~ 150.9999

Default 2.0000 Step 0.0001

User defined curve factor β

PRIMARY SETTING / PROTECTION / USER CURVE SET / USER CURVE 1 / Factor r

Range 0.0000 ~ 150.9999

Default 1.8000 Step 0.0001

User defined curve factor γ

PRIMARY SETTING / PROTECTION / USER CURVE SET / USER CURVE 1 / Factor rt

Range 0.0000 ~ 150.9999

Default 59.5000 Step 0.0001

User defined curve factor rt

2) USER CURVE 2, 3, 4 :

USER CURVE 2 ~ 4, the same as USER CURVE 1 above

[USER CURVE 1] >Factor a: 59.5000 Factor b: 2.0000 Factor r: 1.8000

[USER CURVE 1] Factor a: 59.5000 >Factor b: 2.0000 Factor r: 1.8000

[USER CURVE 1] Factor a: 59.5000 Factor b: 2.0000 >Factor r: 1.8000

[USER CURVE 1] Factor b: 2.0000 Factor r: 1.8000 >Factor rt: 59.5000

Page 128: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

128 ENHANCED TECHNOLOGY

Standard Curve Coefficients

Table 7-3. ANSI/IEEE

Curves α β γ Rt

Moderately Inverse 0.0107 0.020 0.0231 1.0700

Normally Inverse 5.9500 2.000 0.18 5.9500

Very Inverse 3.985 2.000 0.095 3.985

Extremely Inverse 5.9100 2.000 0.0345 5.9100

Short Time Inverse 3.56e-3 0.02 1.95e-2 0.356

Short Time Very Inverse 1.9925 2.000 0.0475 1.992

Table 7-4. IEC

Curves α β γ Rt

Standard Inverse 0.1400 0.0200 0.0 9.700

Very Inverse 13.500 1.000 0.0 13.500

Extremely Inverse 80.000 2.000 0.0 80.000

Long Time Inverse 135.000 1.000 0.0 135.00

Short Time Inverse 0.0500 0.0400 0.0 0.500

Table 7-5. ESB

Curves α β γ Rt

Standard Inverse 0.011 0.02 0.042 9.000

Very Inverse 3.985 1.95 0.1084 3.985

Long Time Very Inverse 15.94 1.95 0.4336 15.94

Table 7-6. User Defined

Curves α β γ Rt

User1 59.5000 2.0000 1.8000 59.5000

User2 39.8500 2.0000 0.9500 39.8500

User3 59.1000 2.0000 0.3450 59.1000

User4 5.6700 2.0000 0.0352 5.6700

Page 129: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

129ENHANCED TECHNOLOGY

Table 7-7. Definite Time

Curves α β γ Rt

Definite Time 1sec 0.0 - 1.0 1.0

Definite Time 10sec 0.0 - 10.0 10.0

Table 7-8. Non Standard Curves

McGraw-Edison recloser curves

Phase Ground

Old New Old New

A 101 1 102

B 117 2 135

C 133 3 140

D 116 4 106

E 132 5 114

F 163 6 136

H 122 7 152

J 164 8 113

KP 162 8* 111

L 107 9 131

M 118 11 141

N 104 13 142

P 115 14 119

R 105 15 112

T 161 16 139

V 137 17 103

W 138 18 151

Y 120 KG 165

Z 134 - -

Page 130: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

130 ENHANCED TECHNOLOGY

1) ANSI/IEEE Moderately Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.0011.00

1.00

0.05

13.00

RECLOSER CLEARING TIME CURVE : ANSI MODERATELY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-10. ANSI/IEEE Moderately Inverse Curves

Page 131: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

131ENHANCED TECHNOLOGY

2) ANSI/IEEE Normally Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.0011.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ANSI NORMALLY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-11. ANSI/IEEE Normally Inverse Curves

Page 132: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

132 ENHANCED TECHNOLOGY

3) ANSI/IEEE Very Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.0011.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ANSI VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-12. ANSI/IEEE Very Inverse Curves

Page 133: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

133ENHANCED TECHNOLOGY

4) ANSI/IEEE Extremely Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.00

11.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ANSI EXTREMELY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-13. ANSI/IEEE Extremely Inverse Curves

Page 134: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

134 ENHANCED TECHNOLOGY

5) ANSI/IEEE Short Time Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.0011.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ANSI SHORT TIME INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-14. ANSI/IEEE Short Time Inverse Curves

Page 135: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

135ENHANCED TECHNOLOGY

6) ANSI/IEEE Short Time Very Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.00

11.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ANSI SHOTR TIME VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-15. ANSI/IEEE Short Time Very Inverse Curves

Page 136: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

136 ENHANCED TECHNOLOGY

7) IEC Standard Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

0.05

0.2

0.3

0.4

0.60.70.8

1

0.5

0.1

RECLOSER CLEARING TIME CURVE : IEC STANDARD INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-16. IEC Standard Inverse Curves

Page 137: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

137ENHANCED TECHNOLOGY

8) IEC Very Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

0 . 0 5

0 . 1

0 . 2

0 . 3

0 . 4

0 . 50 . 60 . 7

RECLOSER CLEARING TIME CURVE : IEC VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ± 5% OR 0.01 SECONDS

0 . 8

1 . 0 0

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-17. IEC Very Inverse Curves

Page 138: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

138 ENHANCED TECHNOLOGY

9) IEC Extremely Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

0 . 0 5

0 . 10 . 2

0 . 3

0 . 4

0 . 5

0 . 60 . 7

RECLOSER CLEARING TIME CURVE : IEC EXTREMELY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

0 . 81 . 0 0

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-18. IEC Extremely Inverse Curves

Page 139: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

139ENHANCED TECHNOLOGY

10) IEC Long Time Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

0 . 0 5

0 . 1

0 . 2

0 . 3

0 . 4

0 . 50 . 60 . 7

RECLOSER CLEARING TIME CURVE : IEC LONG TIME VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

0 . 8

1 . 0 0

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-19. IEC Long Time Inverse Curves

Page 140: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

140 ENHANCED TECHNOLOGY

11) IEC Short Time Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

1.000.80.70.6

0.5

0.2

0.3

0.4

0.1

0.05

RECLOSER CLEARING TIME CURVE : IEC SHORT TIME INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-20. IEC Short Time Inverse Curves

Page 141: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

141ENHANCED TECHNOLOGY

12) ESB Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

0.50

1.00

2.00

3.00

5.00

4.00

7.00

9.00

11.00

RECLOSER CLEARING TIME CURVE : ESB INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

13.0015.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-21. ESB Inverse Curves

Page 142: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

142 ENHANCED TECHNOLOGY

13) ESB Very Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.00

11.00

1.00

0.05

13.00

RECLOSER CLEARING TIME CURVE : ESB VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-22. ESB Very Inverse Curves

Page 143: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

143ENHANCED TECHNOLOGY

14) ESB Long Time Very Inverse Curves

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

2.00

3.00

4.00

5.00

7.00

9.0011.00

1.00

0.50

13.00

RECLOSER CLEARING TIME CURVE : ESB LONG TIME VERY INVERSECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

15.00

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-23. ESB Long Time Very Inverse Curves

Page 144: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

144 ENHANCED TECHNOLOGY

15) Definite Time Curves (D1, D2)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

D1

D2

RECLOSER CLEARING TIME CURVE : D1, D2CURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-24. Definite Time Curves (D1, D2)

Page 145: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

145ENHANCED TECHNOLOGY

16) Non Standard Curves (A, B, C, D, E)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

ED

C

B

A

RECLOSER CLEARING TIME CURVE : A, B, C, D, ECURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-25. Non Standard Curves (A, B, C, D, E)

Page 146: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

146 ENHANCED TECHNOLOGY

17) Non Standard Curves (KP, L, M, N)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

KP

ML

N

RECLOSER CLEARING TIME CURVE : KP, L, M, NCURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-26. Non Standard Curves (KP, L, M, N)

Page 147: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

147ENHANCED TECHNOLOGY

18) Non Standard Curves (P, R, T, V)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

T

R

V

P

RECLOSER CLEARING TIME CURVE : P, R, T, VCURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(S

EC

ON

DS

)

PERCENTAGE OF PICKUP CURRENT

Figure 7-27. Non Standard Curves (P, R, T, V)

Page 148: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

148 ENHANCED TECHNOLOGY

19) Non Standard Curves (W, Y, Z)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

Y

W

Z

RECLOSER CLEARING TIME CURVE : W, Y, ZCURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-28. Non Standard Curves (W, Y, Z)

Page 149: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

149ENHANCED TECHNOLOGY

20) Non Standard Curves (1, 2, 3, 4, 5)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

5

4

2

3

1

RECLOSER CLEARING TIME CURVE : 1, 2, 3, 4, 5CURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-29. Non Standard Curves (1, 2, 3, 4, 5)

Page 150: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

150 ENHANCED TECHNOLOGY

21) Non Standard Curves (6, 7, 8, 8*, 9)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.09

0.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

9

7

8

8*6

RECLOSER CLEARING TIME CURVE : 6, 7, 8, 8*, 9CURVES ARE AVERAGE CLEARING TIMEVARIATIONS ± 5% OR 0.01 SECONDS

TIM

E(S

ECO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-30. Non Standard Curves (6, 7, 8, 8*, 9)

Page 151: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

151ENHANCED TECHNOLOGY

22) Non Standard Curves (11, 13, 14, 15, 16, 17, 18)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

17

15

18

11

14

13

16

RECLOSER CLEARING TIME CURVE : 11, 13, 14, 15, 16, 17, 18CURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-31. Non Standard Curves (11, 13, 14, 15, 16, 17, 18)

Page 152: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

152 ENHANCED TECHNOLOGY

23) Non Standard Curves (F, H, J, KG)

100

200

300

400

500

600

700

800

900 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.9

1

2

3

4

5

6789

10

20

30

40

50

60708090

100

100

200

300

400

500

600

700

800

900

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.01

0.02

0.03

0.04

0.05

0.060.070.080.090.1

0.2

0.3

0.4

0.5

0.60.70.80.91

2

3

4

5

678910

20

30

40

50

60708090100

FKG

J

H

RECLOSER CLEARING TIME CURVE : F, H, J, KGCURVES ARE AVERAGE CLEARING TIMEVARIATIONS ±5% OR 0.01 SECONDS

TIM

E(SE

CO

ND

S)

PERCENTAGE OF PICKUP CURRENT

Figure 7-32. Non Standard Curves (F, H, J, KG)

Page 153: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

153ENHANCED TECHNOLOGY

7.16. Undervoltage (27)

Two undervoltage elements are provided for trip, alarm and control when the voltage drops below a specified voltage for a specified time. The undervoltage element can be ON or OFF in the Primary, Alternate settings. The undervoltage element can be selected the type of operation required with any one phase, any two phase and three phase. The undervoltage element can be used to supervise that torque control other overcurrent protective elements. When the circuit breaker is closed by a local/remote controls, the undervoltage element is disabled from detecting for the cold load pickup during periods. To increase security, all undervoltage elements add two power frequency cycle of intentional delay to prevent incorrect operation. The undervoltage 1 should be enabled to the following settings.

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Pickup(xVT)

Range 0.00 ~ 1.25 × VT(secondary nominal voltage)

Default 0.70 Step 0.01

Enter the pickup value as a fraction of the secondary nominal voltage. For example, if the secondary nominal voltage is 100V, and an alarm is

required whenever the voltage goes below 70V, enter(70/100) = 0.70 × VT for the pickup.

[UNDER VOLTAGE 1] >Function: OFF Relays(0-8): OFF Pickup(xVT): 0.70

[UNDER VOLTAGE 1] Function: OFF >Relays(0-8): OFF Pickup(xVT): 0.70

[UNDER VOLTAGE 1] Function: OFF Relays(0-8): OFF >Pickup(xVT): 0.70

Page 154: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

154 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Time Delay

Range 0.00 ~ 600.00 sec

Default 5.00 Step 0.01 sec

Select the definite time delay.

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Min. V(xVT)

Range 0.00 ~ 1.25 × VT(secondary nominal voltage)

Default 0.10 Step 0.01

Enter the minimum voltage for the undervoltage. Used to prevent the undervoltage 1 element for voltage below this level. Setting to 0.10 xVT will allow a dead line to be considered a trip condition.

PRIMARY SETTING / PROTECTION / VOLTAGE / UNDER VOLTAGE 1 / Pickup Type

Range 1P, 2P, 3P

Default 1P Step ~

Select the type of phase required for operation.

The undervoltage 2 settings process a very similar method to the undervoltage 1.

[UNDER VOLTAGE 1] Relays(0-8): OFF Pickup(xVT): 0.70>Time Delay : 5.00

[UNDER VOLTAGE 1] Pickup(xVT): 0.70 Time Delay : 5.00>Min. V(xVT): 0.10

[UNDER VOLTAGE 1] Time Delay : 5.00 Min. V(xVT): 0.10>Pickup Type: 1P

Page 155: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

155ENHANCED TECHNOLOGY

7.17. Overvoltage (59)

Two overvoltage elements are provided for trip, alarm and control when the voltage rises above a specified voltage for a specified time. The overvoltage element can be ON or OFF in the Primary, Alternate settings . The overvoltage element can be selected the type of operation required with any one phase, any two phase and three phase. When the circuit breaker is closed by a local/remote controls, the overvoltage element is disabled from detecting for the cold load pickup during periods. To increase security, all overvoltage elements add two power frequency cycle of intentional delay to prevent incorrect operation. The overvoltage 1 should be enabled to the following settings.

PRIMARY SETTING / PROTECTION / VOLTAGE / OVER VOLTAGE 1 / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING / PROTECTION / VOLTAGE / OVER VOLTAGE 1 / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING / PROTECTION / VOLTAGE / OVER VOLTAGE 1 / Pickup(xVT)

Range 0.00 ~ 1.25 xVT

Default 1.20 Step 0.01

Enter the pickup value as a fraction of the secondary nominal voltage. For example, if the secondary nominal voltage is 100 V, and an alarm is required whenever the voltage exceeds 120 V, enter 120 / 100 = 1.20 for the pickup.

[OVER VOLTAGE 1] >Function: OFF Relays(0-8): OFF Pickup(xVT): 1.20

[OVER VOLTAGE 1] Function: OFF >Relays(0-8): OFF Pickup(xVT): 1.20

[OVER VOLTAGE 1] Function: OFF Relays(0-8): OFF >Pickup(xVT): 1.20

Page 156: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

156 ENHANCED TECHNOLOGY

PRIMARY SETTING / PROTECTION / VOLTAGE / OVER VOLTAGE 1 / Time Delay

Range 0.00 ~ 600.00 sec

Default 5.00 Step 0.01 sec

Select the definite time delay.

PRIMARY SETTING / PROTECTION / VOLTAGE / OVER VOLTAGE 1 / Pickup Type

Range 1P, 2P, 3P

Default 1P Step ~

Select the type of phase required for operation.

The overvoltage 2 settings process a very similar method to the overvoltage 1.

[OVER VOLTAGE 1] Relays(0-8): OFF Pickup(xVT): 1.20>Time Delay : 5.00

[OVER VOLTAGE 1] Pickup(xVT): 1.20 Time Delay : 5.00>Pickup Type: 1P

Page 157: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

157ENHANCED TECHNOLOGY

7.18. Underfrequency Load Shedding (81)

Underfrequency load shedding element is provided for trip, alarm and control when the voltage rises above a specified voltage setting for a specified time delay. The underfrequency load shedding element can be ON or OFF in the Primary, Alternate settings. The power system frequency is measured from the zero crossing on the VA-N voltage input for Wye connected VTs and VA-B voltage for Delta connected VTs. The underfrequency load shedding element is activated to trip when the distribution system frequency drops below a specified frequency pickup for a specified time. The underfrequency minimum voltage and underfrequency minimum current are used to prevent incorrect operation when the recloser is closed by a local/remote control and the underfrequency load shedding is disabled from tripping for cold load pickup during periods. The underfrequency load shedding element should be enabled to the following settings. PRIMARY SETTING / PROTECTION / FREQUENCY / UNDER FREQUENCY/ Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

If function = OFF, the feature is not operational. If function = Trip, the feature is operational. If function = Trip & AR, the feature is operational. When the feature asserts a TRIP & AR condition, it trips and alarms.

PRIMARY SETTING/PROTECTION/FREQUENCY / UNDER FREQUENCY/ Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates a Trip.

PRIMARY SETTING/PROTECTION/FREQUENCY/UNDER FREQUENCY / Pickup(Hz)

Range 40.00 ~ 65.00 Hz

Default 55.00 Step 0.01 Hz

Enter the level of which the underfrequency element is to pickup. For

example, if the system frequency is 60, and load shedding is required at 55.00, enter 55.00 for this setting.

[UNDER FREQUENCY] >Function: OFF Relays(0-8): OFF Pickup(Hz): 55.00

[UNDER FREQUENCY] Function: OFF >Relays(0-8): OFF Pickup(Hz): 55.00

[UNDER FREQUENCY] Function: OFF Relays(0-8): OFF >Pickup(Hz): 55.00

Page 158: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

158 ENHANCED TECHNOLOGY

PRIMARY SETTING/PROTECTION/FREQUENCY/UNDER FREQUENCY/ Time Delay

Range 0.00 ~ 600.00 sec

Default 2.00 Step 0.01 sec

Select the definite time delay.

PRIMARY SETTING/PROTECTION/FREQUENCY/UNDER FREQUENCY/Min. V(xVT)

Range 0.00 ~ 1.25

Default 0.10 Step 0.01

Enter the minimum voltage required to allow the underfrequency element to Operate.

PRIMARY SETTING/PROTECTION/FREQUENCY/UNDER FREQUENCY/ Min. I(xCT)

Range 0.00 ~ 3.20

Default 0.01 Step 0.01

Enter the minimum value of current required for any phase to allow the underfrequency element to operate.

[UNDER FREQUENCY] Relays(0-8): OFF Pickup(Hz): 55.00>Time Delay: 2.00

[UNDER FREQUENCY] Pickup(Hz): 55.00 Time Delay: 2.00>Min. V(xVT): 0.10

[UNDER FREQUENCY] Time Delay: 2.00 Min. V(xVT): 0.10>Min. I(xCT): 0.01

Page 159: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

159ENHANCED TECHNOLOGY

7.19. Other Element

PRIMARY SETTING / PROTECTION / OTHER ELEMENT / Seq’ Coordi’

Range OFF, ON

Default OFF Step ~

Sequence coordination offers the function of preventing unnecessary operation of the backup recloser when two more reclosers are connected in series.

If function = OFF, the feature is not operational. If function = ON, the feature is operational.

PRIMARY SETTING / PROTECTION / OTHER ELEMENT / L.O Priority

Range PHA, GND

Default GND Step ~

Lockout priority

PHA : Phase prior GND : Ground prior

PRIMARY SETTING / PROTECTION / OTHER ELEMENT / F/I Reset

Range AUTO, MANUAL

Default AUTO Step ~

Faulted Indicator reset method

AUTO : Reset shall be performed by pressing [FI RESET] button or shall be performed automatically after High Voltage line becomes normal.

MANUAL : It shall be reset by pressing [FI RESET] button.

PRIMARY SETTING / PROTECTION / OTHER ELEMENT / D/T M-Close

Range 0.00 ~ 600.00 sec

Default 0.00 Step 0.01 sec

Time delay for manual close

[OTHER ELEMENT] >Seq’ Coordi’: OFF L.O Priority: GND F/I Reset: AUTO

[OTHER ELEMENT] Seq’ Coordi’: OFF >L.O Priority: GND F/I Reset: AUTO

[OTHER ELEMENT] Seq’ Coordi’: OFF L.O Priority: GND >F/I Reset: AUTO

[OTHER ELEMENT] L.O Priority: GND F/I Reset: AUTO >D/T M-Close: 0.00

Page 160: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

160 ENHANCED TECHNOLOGY

7.20. Synchronism Check (25)

EVRC2A provides the manual close for the synchronism check element that synchronism voltages are within the programmed differentials of voltage magnitude, phase angle position, and frequency. If this feature is enabled, the synchronism check will be performed before local/remote close with the exception of automatic reclose for fault. When either or both of the synchronism check voltages are de-energized, the synchronism check can allow for local/remote close. If EVRC2A is the type of CVD, the synchronism check voltage input VL is connected to load side(VR phase) in recloser. The other synchronizing phase can be connected for phase-neutral voltage Vr, Vs or Vt; for phase-phase voltages Vab or Vcb. on load side in recloser. The synchronism check element in the following settings should be enabled.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / Function

Range OFF, ALARM

Default OFF Step ~

If function = OFF, the feature is not operational. If function = ALARM, the feature is operational.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Selects the relays required to operate when the feature generates an Alarm.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / D.V.Max(xVT)

Range 0.00 ~ 1.25

Default 0.50 Step 0.01

Enter the dead line maximum voltage for synchronism check. Used to Prevent the synchronism check element for voltage below this level.

[SYNCHROCHECK] >Function: OFF Relays(0-8): OFF D.V.Max(xVT): 0.50

[SYNCHROCHECK] Function: OFF>Relays(0-8): OFF D.V.Max(xVT): 0.50

[SYNCHROCHECK] Function: OFF Relays(0-8): OFF>D.V.Max(xVT): 0.50

Page 161: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

161ENHANCED TECHNOLOGY

PRIMARY SETTING / MONITORING / SYNCHROCHECK / L.V.Min(xVT)

Range 0.00 ~ 1.25

Default 0.85 Step 0.01

Enter the live line minimum voltage for synchronism check. Used to activate the synchronism check element for voltage over this level.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / M.V.D(V)

Range 0.00 ~ 1.25

Default 0.10 Step 0.01

Enter the maximum voltage difference of the synchronism voltages. A voltage magnitude differential of the two input voltages below this value is within the permissible limit for synchronism.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / M.A.D(Deg)

Range 0 ~ 100 deg

Default 15 Step 1 deg

Enter the maximum angle difference of the synchronism voltages. An angular differential between the synchronism voltage angles below this value is within the permissible limit for synchronism.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / M.F.D(Hz)

Range 0.00 ~ 5.00 Hz

Default 2.00 Step 0.01 Hz

Enter the maximum frequency difference of the synchronism voltages. A frequency differential between the synchronism voltages below this value is within the permissible limit for synchronism.

PRIMARY SETTING / MONITORING / SYNCHROCHECK / Sync Phase

Range R(AB), S(CB), T

Default R(AB) Step ~

Select the synchronism check phase on load side.

[SYNCHROCHECK] Relays(0-8): OFF D.V.Max(xVT): 0.50 >L.V.Min(xVT): 0.85

[SYNCHROCHECK] D.V.Max(xVT): 0.50 L.V.Min(xVT): 0.85 >M.V.D(V): 0.10

[SYNCHROCHECK] L.V.Min(xVT): 0.85 M.V.D(V): 0.10 >M.A.D(Deg): 15

[SYNCHROCHECK] M.V.D(V): 0.10 M.A.D(Deg): 15 >M.F.D(Hz): 2.00

[SYNCHROCHECK] M.A.D(Deg): 15 M.F.D(Hz): 2.00 >Sync Phase: R(AB)

Page 162: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

162 ENHANCED TECHNOLOGY

7.21. Fault Locator

The fault locator calculates the distance to the fault. When fault occurs the magnitude and the phase of voltage and current are varied, and then fault type(phase to ground, (phase to phase to ground), phase to phase, three phase) can be determined by the analysis of these variations, and fault distance can be calculated by the estimation of the apparent impedance. This calculation is based on the assumptions that the feeder positive and zero sequence impedance are a constant per unit distance and fault impedance is composed of pure resistance. In calculating, errors could be introduced by several reasons(fault resistance etc.), the major error due to fault resistance can be reduced by comparing the prefault current and voltage to the fault current and voltage. For more accurate calculation, the prefault data is required at least 2 cycles, and the after fault data is required at least 2 cycles. If the line impedance per unit and total length were known, the fault distance can be easily achieved, but source impedance is not required. Fault data may not be accurate for a close-into-fault condition where there is no prefault power flow. In case of closing, during a reclose sequence, the apparent distance of the first fault is very useful. The algorithm for the fault locator is most applicable to a radial three-phase feeder.

Faulted distribution system is considered as following simplified “Figure 7-33. Faulted distribution system circuit” for example.

mZ (1-m)Z

IAIF

VA RF

LOAD

Figure 7-33. Faulted distribution system circuit

Page 163: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

163ENHANCED TECHNOLOGY

The fault locator settings are as follows :

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Function

Range OFF, ON

Default OFF Step ~

If function = OFF, the feature is not operational. If function = ON, the feature is operational.

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Feeder Length

Range 1.0-99.9 km

Default 50.0 Step 0.1 km

Enter the total length of the feeder in kilometers

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Z1-Resistive

Range 0.1-6000.0

Default 10.0 Step 0.1

Enter the total real components of the feeder positive sequence impedance, in actual ohms.

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Z1-Inductive

Range 0.1-6000.0

Default 10.0 Step 0.1

Enter the total imaginary components of the feeder positive sequence impedance, in actual ohms.

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Z0-Resistive

Range 0.1-6000.0

Default 10.0 Step 0.1

Enter the total real components of the feeder zero sequence impedance, in actual ohms.

PRIMARY SETTING / MONITORING / FAULT LOCATOR \ Z0-Inductive

Range 0.1-6000.0

Default 10.0 Step 0.1

Enter the total imaginary components of the feeder zero sequence impedance, in actual ohms.

[FAULT LOCATOR] >Function : OFF Length(km) : 50.0 Z1(RES) : 10.0

[FAULT LOCATOR] Function : OFF >Length(km) : 50.0 Z1(RES) : 10.0

[FAULT LOCATOR] Function : OFF Length(km) : 50.0 >Z1(RES) : 10.0

[FAULT LOCATOR] Length(km) : 50 Z1(RES) : 10.0 >Z1(IND) : 10.0

[FAULT LOCATOR] Z1(RES) : 10.0 Z1(IND) : 10.0 >Z0(RES) : 10.0

[FAULT LOCATOR] Z1(IND) : 10.0 Z0(RES) : 10.0 >Z0(IND) : 10.0

Page 164: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

164 ENHANCED TECHNOLOGY

8. METERING The following values are contained in the metering elements of EVRC2A. Current Voltage Frequency Synchronism Voltage Power Energy Demand System.

8.1. Metering Elements

8.1.1. Current The following values are contained in the current metering.

IA : Displays the measured phase A RMS current and phasor (A, deg°) IB : Displays the measured phase B RMS current and phasor (A, deg°) IC : Displays the measured phase C RMS current and phasor (A, deg°) IG : Displays the measured ground RMS current and phasor (A, deg°) ISG : Displays the measured sensitive earth RMS current and phasor (A, deg°) I1 : Displays the calculated positive sequence RMS current and phasor (A, deg°) I2 : Displays the calculated negative sequence RMS current and phasor (A, deg°) I0 : Displays the calculated zero sequence RMS current and phasor (A, deg°)

You can confirm in “MAIN MENU / METERING / CURRENT”

MAIN MENU / METERING / CURRENT

Phase A and B Current metering Display

Use [] [] keys to move to next value.

[PHASE A CURRENT] 0 A 000.0 Lag [PHASE B CURRENT] 0 A 000.0 Lag

Page 165: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

165ENHANCED TECHNOLOGY

8.1.2. Voltage The following values are contained in the voltage metering.

VA-N : Displays the measured A-N RMS voltage and phasor(, deg°) VB-N : Displays the measured B-N RMS voltage and phasor(, deg°) VC-N : Displays the measured C-N RMS voltage and phasor(, deg°) VA-B : Displays the measured A-B RMS voltage and phasor(, deg°) VB-C : Displays the measured B-C RMS voltage and phasor(, deg°) VC-A : Displays the measured C-A RMS voltage and phasor(, deg°) VAP : Displays the calculated average of the RMS phase voltage() VAL : Displays the calculated average of the RMS line voltage() V1 : Displays the calculated positive sequence RMS voltage and phasor(, deg°) V2 : Displays the calculated negative sequence RMS voltage and phasor(, deg°) V0 : Displays the calculated zero sequence RMS voltage and phasor (kV, deg°)

You can confirm in “MAIN MENU / METERING / VOLTAGE”

MAIN MENU / METERING / VOLTAGE

Phase A-N and B-N Voltage metering Display.

Use [] [] keys to move to next value.

8.1.3. Frequency The following values are contained in the frequency metering.

Frequency() Frequency decay rate(/Sec)

You can confirm in “MAIN NEMU / METERING / FREQUENCY”

MAIN MENU / METERING / FREQUENCY

Frequency Display

[PHASE A-N VOLTAGE] 0.00 kV 0.0 Lag [PHASE B-N VOLTAGE] 0.00 kV 0.0 Lag

[ FREQUENCY (Hz)] 0.00 Hz 0.00 Hz/Sec

Page 166: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

166 ENHANCED TECHNOLOGY

8.1.4. Synchro Voltage The following values are contained in the synchronism voltage metering.

Synchro Voltage() Synchro Phasor(deg°) Synchro Frequency() Synchrocheck delta(Phasor, voltage, frequency)

You can confirm in “MAIN NEMU / METERING / SYNCHRO VOLTAGE”

MAIN MENU / METERING / SYNCHRO VOLTAGE

Synchronism Voltage, Frequency Display.

Use [] [] keys to move to next value.

8.1.5. Power The following values are contained in the power metering. Real power(MW) Reactive power(Mvar) Apparent power(MVA) Power factor(%)

You can confirm in “MAIN NEMU / METERING / POWER”

MAIN MENU / METERING / POWER

Real Power (A, B, C, 3ф) Display. Use [] [] keys to move to next value.

8.1.6. Energy The following values are contained in the energy metering. Positive watthour(MWh) Negative watthour(MWh) Positive varhour(Mvar) negative varhour(Mvar)

[SYNCHRO VOLTAGE] 0.00 kV 0.0 Leg [SYNCHRO FREQUENCY] 0.00 Hz

[REAL POWER (MW)] Pa: 0.00 Pb: 0.00 P3: 0.00 Pc: 0.00

Page 167: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

167ENHANCED TECHNOLOGY

The updated rate of the energy meters is based on the “Time Constant” setting “MAIN MENU / SETTING / MONITORING / DEMAND” The meters will update every 1/15 of the Demand Constant. For example : if the Demand Constant is set to 15 minutes, the energy meters will update

every 1 minute (15min × 1/15 = 1 min) The watt-hour and VAR-hour meters can be reset to 0 through “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA / MAX DEMAND”

You can confirm in “MAIN NEMU / METERING / ENERGY”

MAIN MENU / METERING / ENERGY

Positive / Negative Watthour Display

Use [] [] keys to move to next value.

8.1.7. Demand The following values are contained in the demand metering. Actual demand & maximum demand with Value (Current, Real power, Reactive power) and Date (Year/Month/Date Hour:Minute,Second) Energy value & start date (Year/Month/Date Hour:Minute,Second) During each demand value, the EVRC2A also captures and stores maximum values for the measurements listed below. It functions as a standard maximum meter. When a new maximum value is determined, the old value is replaced. A time stamp in the following format (Date: Year/Month/Day and Time: Hour:Minute,Second), is placed with the latest maximum values.

The Max demand meters can be reset to 0 through “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA / MAX DEMAND”

You can confirm in “MAIN NEMU / METERING / DEMEND”

MAIN MENU / METERING / DEMAND

Positive / Negative Watthour Display.

Use [] [] keys to move to next value.

[POSITIVE WATTHOURS] 0 MWh [NEGATIVE WATTHOURS] 0 MWh

PHASE A CURRENT DEMAND: 0 A MAX : 0 A 02/01/22 10:24:10

Page 168: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

168 ENHANCED TECHNOLOGY

8.1.8. System The following values are contained in the system metering.

Board power(±12, +5V) Temperature() Battery voltage(V) Gas pressure(Bar)

You can confirm in “MAIN NEMU / METERING / SYSTEM”

MAIN MENU / METERING / SYSTEM

System metering display.

[ SYSTEM METER] +12:11.85 –12:-11.94+5 : 4.99 TMP:27.58 BAT:26.04 GAS: 0.50

Page 169: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

169ENHANCED TECHNOLOGY

8.2. Accuracy

The harmonic components of current and voltage are removed from input voltage and current parameters, so all measurements based on these quantities respond to the fundamental component only.

Table 8-1. Metering Accuracy

Accuracy Measurements Parameters Unit

CVD VT Range

CURRENT

Phase A RMS Current

Phase B RMS Current

Phase C RMS Current

Phase G RMS Current

A ±1% of 2 x CT ±1% of 2 x CT 20 x CT

VOLTAGE

A–N (A–B) RMS Voltage

B–N (B–C) RMS Voltage

C–N (C–A) RMS Voltage

±2.5% ±1% -

SYMMETRICAL

COMPONENTS

I1, I2, 3I0

V1, V2, 3V0

A

±1% of 2 x CT

±2.5%

±1% of 2 x CT

±1% -

POWER

FACTOR

Phase A, B, C

3Φ Phase Rate ±0.05 ±0.02 -1.00 to 1.00

3ΦREAL POWER Phase A, B, C

3Φ Phase MW ±3% ±2% –320.00 to 320.00

3ΦREACTIVE

POWER

Phase A, B, C

3Φ Phase Mvar ±3% ±2% –320.00 to 320.00

3ΦAPPARENT

POWER

Phase A, B, C

3Φ Phase MVA ±3% ±2% –320.00 to 320.00

WATT-HOURS Phase A, B, C

3Φ Phase MW/h ±5% ±3% –32000 to 32000

DEMAND

Phase A/B/C/G Current

A/B/C, 3Φ Real Power

A/B/C, 3Φ Reactive Power

A/B/C, 3Φ Apparent Power

A

MW

Mvar

MVA

±2%

±5%

±5%

±5%

±2%

±3%

±3%

±3%

-

FREQUENCY A-N (A-B) Source

Load Voltage ±0.05 ±0.02 40.00 to 65.00

If the VT connection type is set to delta, all single phase voltage quantities are displayed as zero.

Page 170: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

170 ENHANCED TECHNOLOGY

9. MONITORING EVRC2A has Monitoring function for following items and also has functions for user to output Alarm signal or Trip signal. DEMAND SYNCHRO LINE TRIP COUNTER RECLOSER WEAR

9.1. Demand

9.1.1. Description EVRC2A is programmed to monitor following items to be operated as user sets. Phase Current demand value Ground current demand value Negative sequence current demand value

9.1.2. Related Setting Menu 1) Function Setting

Select for system to operate when Demand elements were picked up.

PRIMARY SETTING / MONITORING / DEMAND / Function

Range OFF, TRIP, TR&AR

Default OFF Step ~

OFF : OFF Monitoring TRIP : Generates Trip signal TR&AR : Generate Trip and Alarm signal

[DEMAND] >Function: OFF Relays(0-8): OFF Type: THM

Page 171: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

171ENHANCED TECHNOLOGY

2) Alarm Output Relay Setting Select Relay output for alarm.

PRIMARY SETTING / MONITORING / DEMAND / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Maximum 4 of Relay outputs can be selected to operate output signal.

0000 : No Output Relay is selected. 1234 : Operate output signal through 1, 2, 3, 4 Output Relay.

3) Demand Method Setting

Setting for Demand calculation method.

PRIMARY SETTING / MONITORING / DEMAND / Type

Range THM, ROL

Default THM Step ~

THM : Calculated by Thermal Exponential demand. ROL : Calculated Rolling demand.

4) Time constant Setting

Setting for 90% Response time in Thermal calculation method.

PRIMARY SETTING / MONITORING / DEMAND / Time Constant(m)

Range 5, 10, 15, 20, 30, 60 min

Default 5 Step ~

Enter the time required for a steady state current to indicate 90% of the actual value.

5) Phase demand pickup current setting

Setting for Phase demand pickup current.

PRIMARY SETTING / MONITORING / DEMAND / PHA PU(xCT)

Range 0.00 ~ 3.20

Default 0.60 Step 0.01

Setting value × CT Phase Ratio. Ex) When CT ratio is 1000:1and setting value is 0.60,

Pickup Current 0.60 × 1000 = 600A

[DEMAND] Function: OFF >Relays(0-8): OFF Type: THM

[DEMAND] Relays(0-8): OFF Type: THM >Time Constant(m): 5

[DEMAND] Function: OFF Relays(0-8): OFF >Type: THM

[DEMAND] Type: THM Time Constant(m): 5 >PHA PU(xCT): 0.60

Page 172: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

172 ENHANCED TECHNOLOGY

6) Ground demand pickup current Setting Setting for Ground demand pickup current.

PRIMARY SETTING / MONITORING / DEMAND / GND PU(xCT)

Range 0.00 ~ 3.20

Default 0.30 Step 0.01

Setting value × CT Ground Ratio Ex) When CT ratio is 1000:1and setting value is 0.30,

Pickup Current 0.30 × 1000 = 300A

7) Negative sequence demand pickup current Setting

Setting for Negative sequence demand pickup current.

PRIMARY SETTING / MONITORING / DEMAND / NEQ PU(xCT)

Range 0.00 ~ 3.20

Default 0.60 Step 0.01

Setting value × CT Phase Ratio. Ex) When CT ratio is 1000:1and setting value is 0.60,

Pickup Current 0.60 × 1000 = 600A

[DEMAND] Time Constant(m): 5 PHA PU(xCT): 0.60>GND PU(xCT): 0.30

[DEMAND] PHA PU(xCT): 0.60 GND PU(xCT): 0.30>NEQ PU(xCT): 0.60

Page 173: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

173ENHANCED TECHNOLOGY

9.2. Synchronism Check

Refer to “7. PROTECTION”

9.3. Trip Counter

9.3.1. Trip Counter Explanation EVRC2A records counter related with System operation. Especially Trip Counter is operated depending on Monitoring function set by user.

Trip : Records trip operation count Fault : Records Fault count System Restart : Records system restart count

MAIN MENU / MAINTENANCE / COUNTERS

User can confirm in “MAIN MENU/MAINTENANCE/COUNTERS”

9.3.2. Related Setting Menu 1) Function Setting

Select for system to operate when Trip Counter reaches Limit value set by user.

PRIMARY SETTING / MONITORING / TRIP COUNTER / Function

Range OFF, ALARM

Default OFF Step ~

OFF : OFF Monitoring TRIP : Generates Trip signal TR&AR : Generate Trip and Alarm signal

2) Alarm Output Relay Setting

Select Relay output for alarm.

PRIMARY SETTING / MONITORING / TRIP COUNTER / Relays(0-8)

Range OFF, 0 ~ 8

Default OFF Step 1

Maximum 4 of Relay outputs can be selected to operate output signal.

0000(off) : No Output Relay is selected. 1234 : Operate output signal through 1, 2, 3, 4 Output Relay.

[ COUNTER ] 1.TRIP : 00000 2.FAULT : 00000 3.RESTART: 00011

[TRIP COUNTER] >Function: OFF Relays(0-8): OFF Limit: 10000

[TRIP COUNTER] Function: OFF >Relays(0-8): OFF Limit: 10000

Page 174: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

174 ENHANCED TECHNOLOGY

3) Limit value Setting Setting for Trip Counter Monitor value.

PRIMARY SETTING / MONITORING / TRIP COUNTER / Limit

Range 1 ~ 20000

Default 10000 Step 1

Select for system to operate when Trip Counter limit value was picked up.

4) Clear value Setting

Use to synchronize EVRC2A counter with Recloser Counter.

PRIMARY SETTING / MONITORING / TRIP COUNTER / Counter set

Range 0 ~ 10000

Default 0 Step 1

Enters a value for Trip Counter Clear.

5) Stored Value Clear

Select “4. DIAGNOSTIC” in “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA” to clear

[TRIP COUNTER] Function: OFF Relays(0-8): OFF>Limit: 10000

[TRIP COUNTER] Relays(0-8): OFF Limit: 10000>Counter set: 0

Page 175: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

175ENHANCED TECHNOLOGY

9.4. Recloser Wear

9.4.1. Explanation Maintenance of contact life of Recloser. Manages the contact life calculated from fault current size when faults interrupted. The initial value is 100%

MAIN MENU / MAINTENANCE / WEAR MONITOR

User can confirm in

“MAIN MENU / MAINTENANCE / WEAR MONITOR”

Phase A Wear : Shows phase A contact life. Phase B Wear : Shows phase B contact life. Phase C Wear : Shows phase C contact life.

9.4.2. Related setting menu 1) Function Setting

PRIMARY SETTING / MONITORING / RECLOSER WARE / Function

Range OFF, ALARM

Default ALARM Step ~

Select for system to operate when Recloser wear elements were picked up.

2) Pickup Setting

PRIMARY SETTING / MONITORING / RECLOSER WARE / Pickup(%)

Range 0.0 ~ 50.0 %

Default 20.0 Step 0.1 %

Enter Pickup value of contact life.

3) Rated Voltage Setting

PRIMARY SETTING / MONITORING / RECLOSER WARE / Rated Volt(kV)

Range 15, 27, 38

Default Note 1 Step ~

Select rated voltage.

NOTE 1) The rated voltage determines the Recloser type.

[WEAR MONITOR (%)] 1.CONTACT A : 98.70 2.CONTACT B : 98.70 3.CONTACT C : 98.70

[RECLOSER WEAR] >Function: ALARM Pickup(%): 20.0 Rated Volt(kV): 15

[RECLOSER WEAR] Function: ALARM >Pickup(%): 20.0 Rated Volt(kV): 15

[RECLOSER WEAR] Function: ALARM Pickup(%): 20.0 >Rated Volt(kV): 15

Page 176: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

176 ENHANCED TECHNOLOGY

4) Interrupter capacity setting

PRIMARY SETTING / MONITORING / RECLOSER WARE / Interrupt(kA)

Range 5.0 ~ 50.0 kA

Default 12.5 Step 0.1 kA

Enter the capacity of rated Interrupter.

5) Maximum Rated Interruption Number Setting

PRIMARY SETTING / MONITORING / RECLOSER WARE / No. Max I

Range 1 ~ 999

Default 100 Step 1

Enter the capacity of rated Interrupter.

6) Stored value Clear

Select WEAR MONITOR in “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA” to clear value. Insert the value set in “PRIMARY SETTING / MONITORING / RECLOSER WEAR / A, B, C Wear” from LCD menu.

[RECLOSER WEAR] Pickup(%): 20.0 Rated Volt(kV): 15>Interrupt(kA): 12.5

[RECLOSER WEAR] Rated Volt(kV): 15 Interrupt(kA): 12.5>No. Max I: 100

Page 177: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

177ENHANCED TECHNOLOGY

10. EVENT RECORDER EVRC2A has recording and maintenance function for following items. FAULT CYCLE WAVEFORM CAPTURE SYSTEM EVENT RECORDER DIAGNOSTIC EVENT RECORDER LOAD PROFILE

10.1. Waveform Capture

In case of Fault, Waveform Capture records 16 Data of 15-Cycle with 16-Smple per 1 Cycle resolution. Fault cycle summary is displayed on LCD screen Captured fault waveforms can be showed by the interface software.

Move to “MAIN MENU / EVENT RECORDER / FAULT CYCLE” to see Fault cycle summary.

MAIN MENU / EVENT RECORDER / FAULT CYCLE

Ex>

① Fault No: There are 16 events are recorded and the latest event is displayed in advance.

② Fault Type

- Fault Pickup - 27: Under Voltage Trip - 59: Over Voltage Trip - 25: Synchronism Check Trip - 81: Under Frequency Trip - A, B, C, G: Fault phase showes LED ON. - S: Sensitive Earth Fault

③ Each phase fault current unit : Ampere(A)

④ Event occurred time : Year/Month/Day(or Month/Day/Year) Hour: Minute: Second

[NO-①] ② IA: ③ IB: ③ IC: ③ IG: ③ ④02/01/14 19:51:58

[NO-01] Fault Pickup IA: 0 IB: 549 IC: 0 IG: 548 02/01/14 19:51:58

Page 178: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

178 ENHANCED TECHNOLOGY

10.1.1. Trigger Source Occurred Protection element pickup Occurred Fault trip command active

Depending on pickup size, if interval between pickup and trip is within 15 cycles including prefault cycles(4 cycles), then record pickup cycles. But if the interval between pickup and trip are not within 15 cycles, then record pickup cycles and trip cycles. These operations are very useful to examine.

10.1.2. Data Channels Stores following data : 4 currents : Ia, Ib, Ic, Ig 3 voltages (Va, Vb, Vc) : not passed digital-filter Frequency 32 logic input states 8Ch output relays 8Ch Input

10.1.3. Sample Rate Captures one period of 16 sampling per 1cycle.

10.1.4. Storage capacity The capacity of storage is last 16 events of 15cycles.

10.1.5. Related Setting Menu 1) ON/OFF Setting

Fault Cycle waveform capture function can be set ON/OFF by user.

PRIMARY SETTING / RELAY SETUP \ EVENT RECORDER \ Fault Cycle

Range OFF, ON

Default ON Step ~

ON : Record fault cycle waveform. OFF : No record of fault cycle waveform.

[EVENT RECORDER] >Fault Cycle: ON Len' of Pre F: 4 Load Profile: ON

Page 179: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

179ENHANCED TECHNOLOGY

2) Pre-fault length Setting User sets the length of pre-fault before Trigger.

PRIMARY SETTING / RELAY SETUP \ EVENT RECORDER \ Len' of Pre F

Range 0 ~ 14

Default 4 Step 1

Usually sets 4 cycles as default.

3) Stored Value Clear

Select “1. FAULT CYCLE” in “PRIMARY SETTING / REALY SETUP / CLEAR SAVED DATA” to clear the stored value.

10.1.6. Interface software Interface software shows Data and captured waveform (below)

Figure 10-1. Data and captured waveform showed by Interface Software

[EVENT RECORDER] Fault Cycle: ON >Len' of Pre F: 4 Load Profile: ON

Page 180: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

180 ENHANCED TECHNOLOGY

10.2. System Event Recorder

Record changes of system status up to 500 lists when trigger source asserted and deasserted.

MAIN MENU / EVENT RECORDER / SYSTEM STATUS

Confirm in

”MAIN MENU / EVENT RECORDER / SYSTEM STATUS”

10.2.1. Trigger Source Protection Element 52A Contact Sequence status Front panel control AC supply External control Fail operation External input status System alarm

NOTE : For more details about Trigger Source, refer to “Appendix C”

10.2.2. Trigger Time Monitors changes of Trigger source status in every 1/4 cycle.

10.2.3. Trigger type Stores type of Trigger source : Pickup(assert) or Dropout(deassert)

10.2.4. Storage Capacity Stores last 500 events.

10.2.5. Related Setting Menu System automatically maintains system event recorder. User can clear only stored events. 1) Stored Value Clear

Select “2.SYSTEM STATUS” in “PRIMARY SETTING / RELAY SETUP \ CLEAR SAVED DATA” to clear.

[NO-001] CONTR LOCKSTATUS : LO/DEASSERTDATE : 02/01/22 TIME : 19:51:58:387

Page 181: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

181ENHANCED TECHNOLOGY

10.2.6. Interface software Interface software shows system status events.

Figure 10-2. System Status Events showed by Interface Software

Page 182: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

182 ENHANCED TECHNOLOGY

10.3. Diagnostic Event Recorder

10.3.1. Trigger Source SYSTEM POWER : AC, Battery, ±12V, +5V A/D Conversion : A/D Fail, Reference Voltage1, Reference Voltage 2 SLEEP MODE POWER DOWN MODE SETTING CHANGE GAS STATUS

For more details about Trigger Source, refer to “Appendix D”

10.3.2. Trigger Time Monitors status of Trigger source in every 1/4 cycle

10.3.3. Trigger type Stores type of Trigger source : Pickup(assert) or Dropout(deassert)

10.3.4. Storage Capacity Stores last 100 events.

10.3.5. Related Setting Menu System automatically maintains Diagnostic event recorder. User can clear only stored events. 1) Stored Value Clear

Select “4.DIAGNOSTIC” in “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA” to clear.

Page 183: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

183ENHANCED TECHNOLOGY

10.3.6. Interface software Interface software shows Diagnostic events.

Figure 10-3. Diagnostic Events showed by Interface Software

Page 184: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

184 ENHANCED TECHNOLOGY

10.4. Load Profile

Record the Demand value when reaches in setting time (5, 10, 15, 20, 30, 60minute). Load profile has 1024 Banks that can store values of 42 days if setting time is 60minute.

LOAD PROFILE

Confirm in

”MAIN MENU / EVENT RECORDER / LOAD PROFILE” To see previous value, press [] key. To see next value, press [] key. On screen ①, use [] or [] key to see ①, ②, ③ screen in tern.

10.4.1. Trigger Source Demand Current(A, B, C, G)

Demand Real Power(A, B, C, 3ф) Demand Reactive Power(A, B, C, 3ф)

10.4.2. Trigger Time 5, 10, 15, 20, 30, 60 Minute

10.4.3. Storage Capacity Stores 1024 events

CURRENT (A) [0001]A: 0 B: 0 C: 0 G: 0 02/01/22 21:45:00

REAL POW(MW) [0001]A: 0 B: 0 C: 0 G: 0 02/01/22 21:45:00

REAC POW(Mvar)[0001]A: 0 B: 0 C: 0 G: 0 02/01/22 21:45:00

Page 185: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

185ENHANCED TECHNOLOGY

10.4.4. Related Setting Menu 1) ON/OFF Setting

Load Profile can be set ON/OFF by user.

PRIMARY SETTING / RELAY SETUP \ EVENT RECORDER \ Load Profile

Range OFF, ON

Default ON Step ~

ON : Records load profile. OFF : No record of load profile.

2) Recording time interval setting

PRIMARY SETTING / RELAY SETUP \ EVENT RECORDER \ L.P save time(m)

Range 5, 10, 15, 20, 30, 60 min

Default 15 Step ~

Sets the interval time between Records.

3) Stored value Clear

Select “LOAD PROFILE” in “PRIMARY SETTING / RELAY SETUP / CLEAR SAVED DATA” to clear.

[EVENT RECORDER] Fault Cycle: ON Len' of Pre F: 4 >Load Profile: ON

[EVENT RECORDER] Len' of Pre F: 4 Load Profile: ON >L.P save time(m):15

Page 186: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

186 ENHANCED TECHNOLOGY

10.4.5. Interface software Interface software shows load profile data.

Figure 10-4. Load Profile Data showed by Interface Software

Page 187: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

187ENHANCED TECHNOLOGY

11. INSTALLATION 11.1. User Interface Door and Power Switch

Figure 11-1. User Interface Door and Power Switch

User Interface Door User Interface Door has two magnets upper and down(or top and bottom).To open the door, pull the handle.

Control Power Switch After opening the User Interface Door, you see 2 Switches. Left side switch is for Battery Power, right side one is for AC Power. Turning on either one of two activates control.

AC Power Outlet For user convenience, AC Power Outlet is located on User Interface Door. Fuse is installed for

safety from overload. Location of fuse is referred to “Figure 11-5. Inner Structure”

Page 188: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

188 ENHANCED TECHNOLOGY

11.2. Vent and Outer Cover

Figure 11-2. Air Vent and Outer Cover

Outer Cover It is for blocking the direct ray of light to delay raising temperature inside of Control Cubicle. The gap between control cubicle and cover is 10mm.

Air Vent To protect control part from humidity by temperature fluctuation, Vents are on left and right side covered with Outer Cover.

Page 189: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

189ENHANCED TECHNOLOGY

11.3. Dimensions and Mounting Plan

Figure 11-3. Dimensions and Mounting Plan EVRC2A has Small size and Large size depending on Recloser Type. Small size is available for EVR1, EVR2, Large size is available for EVR3.

Large size is able to make “User available Space” larger, the space unit is referred to “Figure 11-6”

Page 190: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

190 ENHANCED TECHNOLOGY

Standard for EVR1, EVR2 is small size and for EVR3 is large size.

EVR1 (Recloser Rated Voltage : 15.5) / EVR2 (27) / EVR3 (38) For installation on a Pole, the lifting hole is indicated.

Weight of EVRC2A small size is 85 and large size is 90. EVRC2A should be fixed top and bottom with 16(5/8") Bolt. There is an Exit hole for external cable that can be connected to additional functioning

hardware.

The diameter of the hole is 22(0.866") and two of Standard Receptacle "MS22" Series can be extended.

Page 191: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

191ENHANCED TECHNOLOGY

11.4. Earth Wiring Diagram

Figure 11-4. Earth Wiring Diagram After installation of Control cubicle, connect the ground.

Earth Terminal can connect with core of cable size up to 12(0.470") diameter. Earth cable from Pole Neutral and from EVRC2A Earth Terminal must be connected to the

ground.

Page 192: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

192 ENHANCED TECHNOLOGY

11.5. Inner Structure

Figure 11-5. Inner Structure

Controller Power NFB (No Fuse Breaker) Left side switch is for Battery and right side one is for 220Vac.

Heater Optional Heater is 40W

Battery Use 2 of 12Vdc in series. Use (+) screwdriver for replacement.

Fuse TF1, TF2, TF3 are for circuit protection, refers to (see “11.21. Fuse”)

Terminal Block Place for AC Power line, there are two ports for user.

User Available Space Space for additional hardware connection. Installation and space size refers to “Figure 11-6. Mount Accessories Dimensions”.

Page 193: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

193ENHANCED TECHNOLOGY

11.6. Mount Accessories Dimensions

Figure 11-6. Mount Accessories Dimensions Shows base plate measurements that can be attached in User Available Space.

On Base plate, 10/M6 Nut is used to fix the base plate. Available space for height of base plate is from 101.6 (4”) to 177.8 (7”)

Page 194: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

194 ENHANCED TECHNOLOGY

11.7. User-Available DC Power

Table 11-1. User-Available DC Power

Voltage Rating Voltage Range Maximum Power output Positions

24Vdc 20∼25Vdc

15Vdc 14.0∼15.5Vdc

12Vdc 11.0∼12.5Vdc

30W Continuous 70W 10second Short 1second

Side Panel CN5 (1-VCC/+) (2-AGND/-)

Standard Voltage : 12Vdc / User can select Voltage Rating

30W DC Power is provided. In case of the necessity of larger than 30W, additional power

should be attached. For more details, contact manufacturer. Input of the additional power is

referred to “Figure 11-7. Terminal Block and Fuses” Remove cable coating at the end of cable length of 8mm(0.315"). With using (+) CN5

connector terminal on side panel should be connected to Wire size AWG24 up to 12.

To change Voltage ratings, disconnect Jumper Pin in JP3 “Figure 11-31. ANALOG BOARD”, and connect Jumper Pin to either JPI (24Vdc) or JP2 (15Vdc). Be sure of the voltage rating due to disassembly.

When overload, automatically circuit breaks current. In case long-term overload time, there is a fuse on analog circuits to protect circuits from failure.

Page 195: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

195ENHANCED TECHNOLOGY

11.8. Terminal Block and Fuses

Figure 11-7. Terminal Block and Fuses Caution for an electric shock due to AC Power loaded in Terminal block. Standard AC Power is 220Vac. AC Power input terminal 1, 2 are connected from Receptacle to Terminal block. Terminal 3 is

the ground. Terminal 4, 5 are for connecting additional AC Power. Terminal 4 is connected with TF3 for

protection, terminal 5 is in series with AC Power On TF3 Fuse, AC Power Outlet is connected with 40W Heater. Reference for branching. In AC line connection, blue wired line is for Neutral, white wired line is for Phase wire, green

wired line is for the ground. Terminal 6, 7, 8 are spare for Recloser 52 contact. Terminal 9, 10 are for User Available Terminal block. In need of more terminals, use User

Available Space.

52 Contact Auxiliary Specs Rating (Resistive load) : 30Vdc 5A / 125Vdc 0.6A / 250Vdc 0.3A

Page 196: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

196 ENHANCED TECHNOLOGY

11.9. EVRC2A Wiring Diagram - CVD Type

Figure 11-8. EVRC2A Wiring Diagram - CVD Type

Wiring diagram of EVRC2A standard.

CN1 has different system wirings depending on User system. In “Figure 11-8. EVRC2A Wiring Diagram - CVD Type”, CN1 is marked as Earthing System. For non-Earthing system, refer to “Figure 11-11. Current Inputs Wiring Diagram”

CN2 is Voltage Input Connector. “Figure 11-8. EVRC2A Wiring Diagram - CVD Type” is CVD (Capacitor Voltage Divider) type and “Figure 11-9. EVRC2A Wiring Diagram - VT Type” is VT type.

VT type is standard and CVD type is for optional. CVD type and VT type are not exchangeable.

Page 197: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

197ENHANCED TECHNOLOGY

11.10. EVRC2A Wiring Diagram - VT Type

Figure 11-9. EVRC2A Wiring Diagram - VT Type

“Figure 11-9. EVRC2A Wiring Diagram - VT Type” is wiring diagram of VT type of which Voltage Input is optional.

CN2 is Voltage Input Connector. For wiring, refer to “Figure 11-13. VT Wiring Diagram” CVD type and VT type are not exchangeable. VT type is standard and CVD type is optional.

Page 198: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

198 ENHANCED TECHNOLOGY

11.11. Side Panel

Current Inputs IA,IB,IC,IN,SEF

CN2 Voltage Inputs VA,VB,VC,VL

CN3 AC24V IN Relay Module AC Power Input

CN4 BATT` IN Relay Module DC Power Input

CN5 POWER OUT - Option User-Available DC Voltage Source

CN6 CONTROL Recloser Open, Close

CN7 UPS Monitors and controls Close and Trip Power

CN8 RECLOSER STATUS Open, Close, Lock, Pressure

CN9 CN10 OUTPUTS and INPUTS - Option OUT1~OUT5(A Contact), OUT6~OUT7(B Contact) OUT8(ALARM) IN01~IN08

PORT2 - Option SERIAL RS232

PORT3 - Option SERIAL RS485/422

PORT4 - Option ETHERNET

NOTE : 1) I/O Terminal (CN10, CN9) has functions to

control basic operation of Recloser and can be connected with SCADA System for use.

2) Remove the coating of cable length of 8

(0.315"). Side panel connector for user should be connected to Wire size AWG24 to 12

Figure 11-10. Side Panel

Page 199: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

199ENHANCED TECHNOLOGY

11.12. Current Inputs Wiring Diagram

Current IG is connected with Side Panel IG(A07,A08) in Earthing System. SEF(A09,A10) should be connected, so called “JUMPER”

IG Input Current Range 0.5A Nominal 2A continuous 25A 1 second Burden : 0.19VA(0.5A)

Current IG should be connected with SEF(A09,A10) of Side Panel in. Non Earthing System. IG(A07,A08) should be connected to each other.

SEF Input Current Range 0.05A Nominal 0.16A Continuous 0.6A 1 second Burden : 0.0375VA(0.05A)

Figure 11-11. Current Inputs Wiring Diagram

Recloser Phase should match with User system. Refer to “Figure 11-15. Phase Rotation” CT Phase rotation must be arranged comparing with Voltage Inputs Phase rotation.

Page 200: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

200 ENHANCED TECHNOLOGY

11.13. CVD Wiring Diagram

Figure 11-12. CVD Wiring Diagram

CVD (Capacitor Voltage Divider) measures Voltage with using Capacitor installed in each

Bushing of Recloser. CVD Type and VT Type are not exchangeable. Current Inputs and Voltage Inputs should be the same phase. If CT Inputs changed Phase

rotation, Voltage Inputs phase should be re-arranged.

Option CVD 15, 27, 38 Class Load Side CVD of EPR model is optional.

Page 201: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

201ENHANCED TECHNOLOGY

11.14. VT Wiring Diagram

Figure 11-13. VT Wiring Diagram CVD Type can not be used when VT(Voltage Transformer) Type was selected. VT wiring should match Current Inputs.

For Load Side VT wiring, refer to “Figure 11-14. VL Wiring Diagram” Voltage Inputs VA, VB, VC and VL Load side

Input Voltage Range : Vphase-Vcom Continuous < 300V Burden : 0.6VA(300V), 0.2VA(220V), 0.05VA(120V), 0.02VA(67V)

Page 202: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

202 ENHANCED TECHNOLOGY

11.15. Load Side VT Wiring Diagram

Figure 11-14. VL Wiring Diagram Load Side VT check synchronism for Phase. Phase B should be connected to VL2(Vcom) in Non Earthing System.

Voltage Input Range : VL1-VL2 Continuous < 300V Burden : 0.6VA(300V), 0.2VA(220V), 0.05VA(120V), 0.02VA(67V)

Page 203: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

203ENHANCED TECHNOLOGY

11.16. Current and Voltage Inputs Phase Rotation

Figure 11-15. Phase Rotation

For Metering accuracy, phase rotations of User system and Recloser should be the same.

“Figure 11-15. Phase Rotation” shows the same phase rotation between User System and Recloser.

If the phase rotation is not the same in User system and Recloser, correct CT and CVD wiring in side panel to be matched.

EVR Recloser phase A is the Bushing the nearest from Trip lever on the side.

Page 204: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

204 ENHANCED TECHNOLOGY

11.17. Control Cable Receptacle Pin Descriptions

Table 11-2. Control Cable Receptacle Pin Descriptions

Pin Function Pin Function

A B C D E F G H J K L M N P R S T U V W X Z

C.T Phase C C.T Phase B C.T Phase A C.T Common(G) CVD Source Phase C CVD Source Phase B CVD Source Phase A Ground(CVD Load side Phase T) Ground(CVD Load side Phase S) CVD Load side Phase R Pressure Sensor Output(controller input) not connected Pressure Sensor Power AGND Pressure Sensor Power 12Vdc Cable shield and Ground not connected Recloser Status 69b(locked a connect) Recloser Status Common(24Vdc) Recloser Status 52b(Monitored Trip) Recloser Status 52a(Monitored Close) not connected not connected

a b c d e f g h j k m n p r s

52 common(Auxiliary) 52b(Auxiliary) 52a(Auxiliary) Close and Trip Coil Common Close and Trip Coil Common Close and Trip Coil Common Close Coil Close Coil Close Coil not connected Trip Coil not connected Trip Coil Trip Coil not connected

Control EVRC2A Receptacle : MS3102 28-21S(Female) Recloser Receptacle : MS3102 28-21P(Male) Control Cable : Shield Cable 8meter(31.5”) Cable Shielding layer is connected to Pin “R”

Page 205: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

205ENHANCED TECHNOLOGY

Figure 11-16. Control Receptacle

“Figure 11-16. Control Receptacle” shows Female Receptacle installed in Control EVRC2A.

Page 206: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

206 ENHANCED TECHNOLOGY

11.18. Control Cable Assembling / De-assembling

Do not turn Plug body when Control Cable assembling/de-assembling. For Control Cable assembling, connect with Receptacle check based with Pin Guide position.

Following notices are suggested. Turn Plug nut clockwise carefully to prevent Pin winding or out of gearing. Push Plug Body little by little with shaking left and right side into Receptacle; repeat this to

complete connection. Turn Plug nut to tighten for Control Cable de-assembling, do the opposite way of Control

Cable assembling

Figure 11-17. Recloser Receptacle Figure 11-18. Control Cable

11.19. AC Power Receptacle Pin Descriptions

Table 11-3. AC Power Receptacle Pin Descriptions

Pin Function

A B C

AC Power Input AC Power Input (Neutral) not connected

Standard Input Voltage of Control EVRC2A is 220Vac.

Figure 11-19. Power Receptacle

Page 207: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

207ENHANCED TECHNOLOGY

11.20. AC Power Cable

TYPE : MS22-2S(Female) Cable Length : 2C-3.5 6meter(236")

A PIN Wire Color : White(Phase) B PIN Wire Color : Black(Neutral) C PIN : not connected

11.21. Fuses

Table 11-4. Fuses

Positions Rating /

External AC - Power InputDimensions Purpose

Terminal Block TF1 7A/220Vac

15A/110Vac

0.25×1.25"

(6.385×31.75)

Input Line of Transformer in UPS

Module AC Power

Terminal Block TF2 3A/220Vac

6A/110Vac

0.25"×1.25"

(6.385×31.75)

Input Line of Transformer in

Control EVRC2A AC Power.

Terminal Block TF3 10A 0.25"×1.25"

(6.385×31.75)

AC Power outlet and Heater

User Available AC Power

Inside Relay Module F1

(Analog board) 1A

0.197"×0.787"

(5×20) Trip Control

Inside Relay Module F2

(Analog board) 1A

0.197"×0.787"

(5×20) Close Control

Inside Relay Module F3

(Analog board) 2A

0.197"×0.787"

(5×20) Relay Module Power

Inside Relay Module F4

(Analog board) 5A

0.197"×0.787"

(5×20) User-Available DC Power

Page 208: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

208 ENHANCED TECHNOLOGY

11.22. Battery and Control run time

Table 11-5. Battery Specs

Maker Global & Yuasa Battery Co., Ltd.(Made in Korea)

Battery Type ES18-12

Nominal Voltage 12V

Nominal capacity 18 amp-hours

Dimension 181×76×167(7.126×3×6.575")

Self-discharge Versus Time 12 month at +20(+68), 5 month at +40(+104)

Service life Time 3∼5 years at +20(+68), 1 years at +50(+122)

Battery Connector(CN11) Molex Connector 3191-2R

Controller run time 30 hours at +20(+68), 15 hours at -25(-13)

Recharge Time 60 hours at +20(+68)

Figure 11-20. Battery

Sealed lead - acid Battery Type, use 12Vdc 2 Batteries in series. Harness connector(CN11) from Battery Terminal is connected to

battery switch NFB1. In order to store Battery for a long time,

turn NFB1 “OFF” without disconnecting Harness connector.

The self-discharge rate of batteries is approximately 3% per

month when batteries are stored at an ambient temperature of

+20(+68). The self-discharge rate varies with ambient

temperature.

The approximate depth of discharge or remaining capacity of an

battery can be empirically determined from “Figure 11-21. Open Circuit Voltage”

Turn off NFB1 to disconnect Battery from circuits. Remove

Battery Connector CN11(3191-2R) and measure the battery

voltage.

If the battery voltage is less than 22.5Vdc, the residual capacity is

0%. The voltage can be recharged but requires maintenance.

24Vdc Battery supplies Relay Module and UPS Module through

NFB1(Battery Switch).

Relay Module supplies through CN4 Connector in Side Panel and

UPS Module supplies through P2 Connector of UPS Module.

Figure 11-21. Open Circuit Voltage

Page 209: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

209ENHANCED TECHNOLOGY

11.23. Charge Circuit

Charger uses current-control-circuit to prevent sudden-recharge and use voltage-steady-circuit to prevent over-recharge. Charge inspection use 24Vac the same power as Relay Module has. Disconnecting CN11 may cause spark, turn off NFB1(Battery Switch) and NFB2(Ac Power

switch) before disconnect CN11. Limit Current measuring should be tested on 10Ω in series with CD Ammeter.

Charge Voltage : 27.5Vdc(±0.5V) Charge Current : 300mAdc(±50mAdc)

11.24. Battery Change

Battery Mounting consists of two of Bolt M6-15L. Battery Wire consists of M5 Bolt & Nut and is connected to Battery Terminal. Bolt can be replaced using with (+) screwdriver. For Battery wire de-assembling, disconnect Jumper wire first and disconnect CN11 wire(red and black). When CN11 is disconnected first, battery short is considered in case of worker’s mistake. For Battery wire connection, connect CN11 wire (red and black) first and connect Jumper wire later.

Reference “Figure 11-20. Battery”

Page 210: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

210 ENHANCED TECHNOLOGY

11.25. Communications

1) RS232 Pin Functions for Port1 and Port2

Table 11-6. RS232 Pin Functions for Port1 and Port2

Pin Serial Port1 Serial Port2 Definition

1 N/C DCD Data Carrier Detect

2 RXD RXD Receive Data

3 TXD TXD Transmit Data

4 N/C DTR Data Terminal Ready

5 GND GND Ground

6 N/C DSR Data Set Ready

7 N/C RTS Request To Send

8 N/C CTS Clear To Send

9 N/C N/C No Connection

Positions User Interface Panel(Male) Side Panel (Male)

Cable CC201 CC201,202,203

Purposes Maintenance DNP

Figure 11-22. RS232 Port

2) RS485/422 Pin Functions for Port3

Table 11-7. RS485/422 Pin Functions for Port3

Pin Serial Port3

1 RS485+ 2 RS485- 3 TR1(120Ω) 4 RS422TX+ 5 RS422TX- 6 TR2(120Ω) 7 SHIELD 8 N/C 9 IRIG-B(+) 10 IRIG-B(-) Positions Side Panel (Male) Purposes Modbus

Figure 11-23. RS485/422 Port

Page 211: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

211ENHANCED TECHNOLOGY

3) RJ-45 Pin Functions for Port4

Table 11-8. RJ-45Pin Functions for Port4

Pin Port4 Pin Port4

1 TX+ 6 N/C 2 TX- 7 N/C 3 RX+ 8 N/C 4 RX- Purpose IEC60870-5-1045 N/C Figure 11-24. RJ-45 Port

11.26. Communication Cables

1) Cable CC201: Connect to Computer

Figure 11-24. Cable CC201 (connect to computer)

2) Cable CC202: Connect to Modem, etc. - option

Figure 11-25. Cable CC202 (connect to modem, etc.)

3) Cable CC203: Connect to Modem, etc. - option

Figure 11-26. Cable CC203 (connect to modem, etc.)

Page 212: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

212 ENHANCED TECHNOLOGY

11.27. Hardware Block Diagram

Figure 11-27. Hardware Block Diagram

Page 213: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

213ENHANCED TECHNOLOGY

11.28. Recloser Trip and Close Circuits

Figure 11-28. Recloser Trip and Close Circuits

CC Close Coil TC Trip Coil

MC Magnetic Contactor C Capacitor

IGBT Insulated Gate Bipolar Transistor F Fuse

UPS Uninterruptible Power Supply

Recloser Trip and Close Power is charged from C1, C2, C3 in UPS module. C1 is used for Trip power, C2, C3 are used for Close power. Trip(Close) runs when IGBT is “ON”. MC runs and the charged Capacitor transfer the Power

to TC(CC), eventually Recloser runs. F1, F2 are Fuses to protect IGBT from MC damage. These are on Analog Board.

Page 214: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

214 ENHANCED TECHNOLOGY

11.29. Uninterruptible Power Supply for Trip & Close

Figure 11-29. UPS Module Block Diagram UPS Module charges Capacitor for Trip/Close. Its rated output voltage is 120Vdc. Trip and Close Capacitor are individually located and do not affect to each other during Trip

and Close. UPS Module runs by 120Vac Power or by Backup Battery. Transformer in EVRC2A connected with External AC Power generates 120Vac. Sealed lead-acid Type is used for Battery. Battery voltage does not run under 20Vac, runs over

20Vdc.

Page 215: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

215ENHANCED TECHNOLOGY

11.30. Main Board

Figure 11-30. MAIN BOARD Indicates Firmware Upgrade Port, RTC(Real Time Clock), and main parts location. Also indicates backup battery type.

Page 216: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

216 ENHANCED TECHNOLOGY

11.31. Analog Board

Figure 11-31. ANALOG BOARD

JP1, JP2, JP3 are Jumper Connecter, defining User Available DC Power Output Rating. F1, F2 are use to protect IGBT for Close and Trip. F3 is for Relay Module protection. JP1, JP2, JP3 are Jumper Connectors and define User Available DC Power rating.

Page 217: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

217ENHANCED TECHNOLOGY

11.32. Recloser EVR Wiring Diagram

Figure 11-32. Recloser EVR Wiring Diagram

Recloser EVR standard wiring diagram CT Protection is automatically protected when Control Cable is disconnected.

The capacity of CVD is 20, and also automatically protected when Control Cable is disconnected.

Page 218: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

218 ENHANCED TECHNOLOGY

11.33. Recloser EPR Wiring Diagram

Figure 11-33. Recloser EPR Wiring Diagram

Recloser EPR standard wiring diagram CT Protection is automatically protected when Control Cable is disconnected.

The capacity of CVD is 26, and also automatically protected when Control Cable is disconnected.

Load side CVD-Option.

Page 219: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

219ENHANCED TECHNOLOGY

11.34. Recloser Current Transformer (CT)

Table 11-9. Current Transformer (CT)

Description Pin Function

A C.T Phase C

B C.T Phase B

C C.T Phase A

CT Ratio : (1000:1/standard)

CT Resistance < 5Ω D C.T Common(G)

11.35. Recloser Capacitor Voltage Divider (CVD)

Table 11-10. Capacitor Voltage Divider (CVD)

Description Pin Function

E CVD Source Phase C

F CVD Source Phase B

G CVD Source Phase A

H CVD Load side Phase T

J CVD Load side Phase S

K CVD Load side Phase R

EVR RECLOSER 1) Pin R is connected to Ground.

2) CVD Capacitance : 20 3) For CVD Protection, MOV is connected between

Phase and Ground.

R Cable shield and Ground

E CVD Source Phase C

F CVD Source Phase B

G CVD Source Phase A

K CVD Load side Phase R

R Cable shield and Ground

EPR RECLOSER 1) Pin R is connected to Ground.

2) CVD Capacitance of Source Phase : 26 3) CVD Capacitance of Load side Phase : 20

(Option) 4) For CVD Protection, MOV is connected between

Phase and Ground. For voltage measuring, use High Impedance AC

Voltmeter(Digital Multimeter) at Output Pin.

Voltage Measuring Method 1 measure MOV voltage. (measure a voltage between MOV arms)

Voltage Measuring Method 2 Place the capacitor(C2) in parallel with MOV. and measure MOV voltage.

Figure 11-34. CVD Wiring Diagram

Page 220: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

220 ENHANCED TECHNOLOGY

11.36. Recloser Pressure Sensor (Only EVR Type)

11.36.1. TYPE1 Sensor It is used of Recloser manufactured before JUNE, 2005.

Table 11-11. EVR Pressure Sensor

Description Pin Function

L Pressure Sensor Output

N Pressure Sensor Power AGND

1) Sensor Power is delivered from

Pin P(+12Vdc±0.5 %) and N(-) P Pressure Sensor Power 12Vdc

2) Sensor Output is Pin L(+) and N(-) 3) SF6 Gas is the insulating material and is affected by depending on pressure (density).

4) “Figure 11-35” shows pressure changes depending on temperature and Sensor Output voltage depending on pressure.

5) EVR has 0.5bar at 20

Figure 11-35. Pressure Changes depending on Temperature and Sensor Output voltage

Page 221: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

221ENHANCED TECHNOLOGY

11.36.2. TYPE2 Sensor It is used for Recloser manufactured after JULY, 2005.

Table 11-12. EVR Pressure Sensor

Description Pin Function

L Pressure Sensor Output

N Pressure Sensor Power AGND

1) Sensor Power is delivered from

Pin P(+9~30Vdc) and N(-) 2) Sensor Output is Pin L(+) and N(-)

P Pressure Sensor Power 12Vdc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pressure (bar)

Outp

ut vo

ltage(V

dc)

Figure 11-36. Pressure Changes depending on Sensor Output voltage

Page 222: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

222 ENHANCED TECHNOLOGY

11.37. Recloser 52 contact and 69 contact

Table 11-13. 52 contact and 69 contact

Description Pin Function

T 69b(Monitored locked)

U Common(52 and 69)

V 52b(Monitored Trip)

W 52a(Monitored Close)

a 52 common(Auxiliary)

b 52b(Auxiliary)

69 is b Contact when unlocked.

c 52a(Auxiliary)

11.38. Recloser Trip and Close Coil

Table 11-14. Trip and Close Coil

Description Pin Function

d Close and Trip Coil Common

e Close and Trip Coil Common

f Close and Trip Coil Common

g Close Coil

h Close Coil

j Close Coil

m Trip Coil

p Trip Coil

1) Pin d, e and f are combined as one line. 2) Pin g, h and j are combined and placed as one

line

3) Pin m, p and r are combined and placed as one line.

4) Close Coil Resistance : < 5Ω 5) Trip Coil Resistance : < 2Ω

r Trip Coil

Page 223: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

223ENHANCED TECHNOLOGY

11.39. Recloser Test Kit

1) RTS 2001 Model tests EVRC2A by Fault Simulation. 2) RTS 2001 can display Full Sequence of Trip time, Trip current, Interval on LCD screen and

also can variously test Calibration Mode, OCR Mode, External Mode, Manual Mode.

Figure 11-37. User Interface Panel Figure 11-38. Recloser Test Kit

Standard Ratings and Features Table 11-15. Standard Ratings and Features

CLASSIFICATION RATINGS AND FEATURES

Power AC220V/2A 50/60HZ

Weigh Body (11), Aluminum case (6), Cable (2), Total weight (19)

Dimensions Aluminum case : 500×500×240 (19.68"×19.68×9.45")

Body : 450×300×200 (17.72"×11.82×7.88")

Output Current Maximum_10Arms / 25VA(10A/0.25Ω)

Output Voltage Maximum_20Vpkpk / 200 Continuous / 1A 10second

Recloser Control Interface Cable 6M(23.6")

Ammeter/Voltage ±1% (±3 digit)

Time difference ±1/2 cycle

Scope Terminal Max. current(10A), 10V (±3%, 10% at <50)

Operating Temperature System : -25∼+70(-13∼+158)

LCD : 0∼+70(+32∼+158)

Page 224: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

224 ENHANCED TECHNOLOGY

12. MAINTANANCE 12.1. Warning Events

In control panel warning led if is lighted up bellow table refer and inspects.

Table12-1. Waring Events(1/2)

EVENT LCD TEXT EXPLANATION RECOMMENDED ACTION

AC FAIL External power FAIL

1. Check AC Power NFB

2. Check AC Power fuse

3. Check AC supply, ensure AC -

connector is securely connected

CHGBD FAIL Battery charge circuit

FAIL

1. Check AC supply

2. Check Battery charge Voltage

(range DC 27 ~ DC 28V)

3. Replace Analog Module

BATT FAIL Battery Discharge or

No Battery

1. BATT DISCHG display

2. NO BATTERY display

1) BATTDISCHG Battery Discharge

(Value < 21V)

1. Check AC Power NFB

2. Check AC Power fuse

3. Check AC supply, ensure AC connector is

securely connected

4. Replace Battery charge T.R

2) NO BATTERY NO Battery

(Value < 15V)

1. Check battery NFB

2. Check battery connection

SYSPOW FAIL System power FAIL 1. +12V FAIL display

2. +5 V FAIL display

3. -12V FAIL display

1) +12V FAIL System power

+12V FAIL

1. Check System power connection

2. Check System power cable fault

3. Replace UPS Module

2) +5 V FAIL System power +5V

FAIL

1. Check System power connection

2. Check System power cable fault

3. Replace UPS Module

SYSTEM POWER

3) -12V FAIL System power

-12V FAIL

1. Check System power connection

2. Check System power cable fault

3. Replace UPS Module

SLEEP MODE SLEEP MODE Panel sleep mode 1. No problem

2. Refer to “Panel sleep time”

Page 225: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

225ENHANCED TECHNOLOGY

Table12-2. Waring Events(2/2)

EVENT LCD TEXT EXPLANATION RECOMMENDED ACTION

SLEEP MODE SLEEP MODE Panel sleep mode 1. No problem

2. Refer to “Panel sleep time”

POWER DOWN

MODE POWER DOWN Power down mode No problem

GAS STATUS GAS LOW Gas pressure Low

(Value < 0.1 Bar)

1.Ensure Control cable is securely connected

2. Check Control cable fault

3. Replace Main Processing Module

4. Replace Recloser.

SETTING GAS HIGH Gas pressure High

(Value > 1.5 Bar)

1.Ensure Control cable is securely connected

2. Check Control cable fault

3. Replace Relay Module

4. Replace Recloser

REF1V FAIL

A/D converter

Reference voltage 1

FAIL

Replace A/D Converter Module

SYSTEM RESTART

REF2V FAIL

A/D converter

Reference voltage 2

FAIL

Replace A/D Converter Module

SET CHANGE Setting Changed No problem

RESTART System restarted No problem

MEMORY P-ROM FAIL Parallel EEPROM

FAIL Replace Main Processing Module

COMMUNICATION S-ROM FAIL Serial EEPROM

FAIL Replace Main Processing Module

D-RAM FAIL Data RAM FAIL Replace Main Processing Module

S-RAM FAIL Setting RAM FAIL Replace Main Processing Module

R-RAM FAIL RTC NV RAM FAIL Replace Main Processing Module

RTC FAIL RTC Time FAIL Replace Main Processing Module

RTC BAT LO RTC Battery LOW Replace RTC Battery

I-VAL FAIL Initial Value FAIL

1. Execute All Clear Event

2. Execute System Restart

3. Replace Main Processing Module

I-SET FAIL Initial Setting Value

FAIL

1. Execute System Restart

2. Replace Main Processing Module

C-BD FAIL

Communication

Option

Board FAIL

Replace Communication Module

COLD RST Cold Restarted No problem

Page 226: 03_20061013_V4.00_EVRC2A_Manual_Control

RECLOSER CONTROL EVRC2A http://www.entecene.co.kr

226 ENHANCED TECHNOLOGY

12.2. Malfunction Events

The following table of events describes the malfunction events available from the control and what they indicate. It also suggest steps to follow to assist in determining why the event was generated.

Table12-2. Malfunction Events

EVENT DESCRIPTION POSSIBLE CAUSE RECOMMENDED ACTION

Control Cable

1 Connection state of control cable

2. control Box inside CN8 connection state check

- Table 10-2 - Figure 10-8 - Figure 10-9

- Figure 10-10 - Figure 10-16 Reference

3. control Box inside CN6 connection state check

- Figure 10-8 - Figure 10-9

- Figure 10-10 Reference OPERATION FAIL Operation Fail

Etc..

1.That control switch point of contact check

2. control Box inside FUSE state check

- Figure 10-31 Reference

3. Replace Relay Module

4. Replace Recloser

Current measure

1 Connection state of control cable

2. control Box inside CN1 connection state check

- Table 10-2 - Figure 10-8 - Figure 10-9

- Figure 10-10 - Figure 10-16 Reference Fail of current &

voltage measurement

Voltage

meaasure

Control Cable 1 Connection state of control cable

2. control Box inside CN2 connection state check

- Table 10-2 - Figure 10-8 - Figure 10-9

- Figure 10-10 - Figure 10-16 Reference