37
1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70, 220505(R) (2004); Phys. Rev. Lett. 91, 186402 (2003). Kavli Institute for Theoretical Physics, UCSB

1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

Embed Size (px)

Citation preview

Page 1: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

1

T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo

Simulations

Congjun Wu

Reference: Phys. Rev. B 71, 155115(2005);

Phys. Rev. B 70, 220505(R) (2004);

Phys. Rev. Lett. 91, 186402 (2003).

Kavli Institute for Theoretical Physics, UCSB

Page 2: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

2

Collaborators

• S. C. Zhang, Stanford.

• S. Capponi, Université Paul Sabatier, Toulouse, France.

Many thanks to D. Ceperley, D. Scalapino, J. Zaanen for helpful discussions.

Page 3: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

3

• Density matrix renormalization group: restricted one dimensional systems.

• Exact diagonalization: up to very small sample size.

Overview of numeric methods

• Quantum many-body problems are hard to solve analytically because Hilbert spaces grow exponentially with sample size. No systematic, non-perturbative methods are available at high dimensions.

• Quantum Monte-Carlo (QMC) is the only scalable method with sufficient accuracy at .

2D

Page 4: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

4

Outline

• A sufficient condition for the absence of the sign problem.

• The conclusive demonstration of a 2D staggered ground state current phase in a bilayer model.

• Physics of the staggered current state.

• Applications in spin 3/2 Hubbard model.

Page 5: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

5

1. Start from a configuration {s} with probability w({s}). Get a trial configuration by flipping a spin.

2. Calculate acceptance ratio: .

3. If r>1, accept it; If r<1, accept it wit the probability of r.

• Metropolis sampling:

Classical Monte-Carlo: Ising model

ZHw ii /})]({exp[})({ ij

zj

ziJH

})({/})({ wwr trial

• Probability distribution:

• Observables: magnetization and susceptibility.

}{

)}({1

iiw

NM

2

}{2

)}({1

iiw

N

Page 6: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

6

• How to sample fermionic fields, which satisfy the anti-commutation relation?

Fermionic systems

• Strongly correlated fermionic systems: electrons in solids, cold atoms, nuclear physics, lattice gauge theory, QCD.

In particular, high Tc superconductivity: 2D Hubbard model in a square lattice.

ijij cc ],[

)ˆ)(ˆ(ˆ}.{2

1

2

1

ii

ii

ijij

i nnUnchcctH

Page 7: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

7

Auxiliary Field QMC Blankenbecler, Scalapino, and Sugar. PRD 24, 2278 (1981)

Probability: positive number

Fermions:Grassmann

number

Auxiliary field QMC

• Decouple interaction terms using Hubbard-Stratonovich (H-S) bosonic fields.

• Integrate out fermions and the resulting fermion functional determinants work as statistical weights.

• Using path integral formalism, fermions are represented as Grassmann variables.

• Transform Grassmann variables into probability.

Page 8: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

8

The Negative U Hubbard model(I)

)ˆ)(ˆ(||ˆ}.{2

1

2

1

ii

ii

ijij

i nnUnchcctH

}{ )()1)((2

||exp

exp

2

0

0

IKiii

i

IKii

HHccnU

dDcDnDc

HHccdDcDcZ

• H-S decoupling in the density channel: 4-fermion interaction quadratic terms.

iiiiiiI nccccUH )(||

• H-S decoupling becomes exact by integrating over fluctuations.

Page 9: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

9

The Negative U Hubbard model(II)

)}det()1)((exp{ 2

02

|| BInddnZi

iU

• Integrating out fermions: det(I+B) as statistical weight.

),()()(||)(

})(exp{

,,

0

inccUH

HHdB

ii

iI

IK

• B is the imaginary time evolution operator.

0|)det(|)det()det()det( 2 BIBIBIBI

• Factorization of det(I+B): no sign problem.

Page 10: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

10

The Positive U Hubbard model

)ˆ)(ˆ(ˆ}.{2

1

2

1

ii

ii

ijij

i nnUnchcctH

• H-S decoupling in the spin channel.

)}det()det()(exp{ 2

02 BIBIsddnZ

izi

U

• Half-filling in a bipartite lattice (=0). Particle-hole transformation to spin down electron .)(

ii

i cc

B exp{ d HK HI ( )0

}

HI () U c i ( )c i c i

()c i () szi( ) i

)det(const)det( BIBI no sign problem.

Page 11: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

11

Antiferromagnetic Long Range Order at Half-filling

AF structure factor S() as a function of =1/T for various lattice sizes. (White, Scalapino, et al, PRB 40, 506 (1989).

Page 12: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

12

Pairing correlation at 1/8 filling

(White, Scalapino, et al, PRB 39, 839 (1989).

Pairing susceptibility in various channels.

Solid symbols are full pairing correlations.

Open symbols are RPA results.

small size results:4*4 lattice

Page 13: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

13

The sign (phase) problem!!!

• Huge cancellation in the average of signs.

• Generally, the fermion functional determinants are not positive definite. Sampling with the absolute value of fermion functional determinants.

signsign / OO

• Statistical errors scale exponentially with the inverse of temperatures and the size of samples.

• Finite size scaling and low temperature physics inaccessible.

Page 14: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

14

The T (time-reversal) invariant decomposition.

• Applicable in a wide class of multi-band and high models at any doping level and lattice geometry.

• Need a general criterion independent of factorizibility of fermion determinants.

The bi-layer spin ½ models : staggered current phase

A general criterion: symmetry principle

Reference: CW and S. C. Zhang cond-mat/0407272, to appear in Phys. Rev. B; C. Capponi, CW, and S. C. Zhang, Phys. Rev. B 70, 220505(R) (2004).

Page 15: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

15

Digression: Time reversal symmetry

• Kramers’ degeneracy in fermionic systems.

HTHTT 12 ,1

|f>, T|f> are degenerate Kramer doublets <f|T|f>=0.

• Effects in condensed matter physics:

Anderson theorem for superconductivity;

Weak localization in disordered systems etc.

Page 16: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

16

• Eigenvalues of I+B appear in complex conjugate pairs (

• If is real, then it is doubly degenerate.

T-invariant decompositionCW and S. C. Zhang, to appear in PRB, cond-mat/0407272; E. Koonin et. al., Phys. Rep. 278

1, (1997)

0)())(()det( **22

*11 nnBI

• Theorem: If there exists an anti-unitary transformation T

IIKK HTTHHTTHT 112 ,,1

for any H-S field configuration, then

0)det( BI

• T may not be the physical time reversal operator.

Generalized Kramer’s degeneracy

• I+B may not be Hermitian, and even not be diagonalizable.

Page 17: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

17

Distribution of eigenvalues

Page 18: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

18

The sign problem in spin 1/2 Hubbard model

• U<0: H-S decoupling in the density channel.

T-invariant decomposition absence of the sign problem

STSTnTnT

11 ,

• U>0: H-S decoupling in the spin channel.

Generally speaking, the sign problem appears.

• The factorizibility of fermion determinants is not required.

Validity at any doping level and lattice geometry.

Application in multi-band, high spin models.

Page 19: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

19

Outline

• A sufficient condition for the absence of the sign problem.

• The conclusive demonstration of a 2D staggered ground state current phase in a bilayer model.

• Physics of the staggered current state.

• Application in spin 3/2 Hubbard model.

Page 20: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

20

The ground state staggered current phase

• D-density wave: mechanism of the pseudogap in high Tc superconductivity?

Chakravarty, et. al., PRB 63, 94503 (2000);

Affleck and Marston, PRB 37, 3774 (1988);

Lee and Wen, PRL 76, 503 (1996);

Bosonization+renormalization group:

Lin, Balents and Fisher, PRB 58, (1998);

Fjarestad and Marston, PRB 65, (2002);

CW, Liu and Fradkin, PRB 68, (2003).

• Staggered current phase in two-leg ladder systems.

Numerical method: Density matrix renormalization group:

Marston et. al., PRL 89, 56404, (2002); U. Schollwöck et al., PRL 90, 186401, (2003).

Page 21: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

21

Application: staggered current phase in a bilayer model

top view d-density wave

• Conclusive results: Fermionic QMC simulations without the sign problem.

S. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

• T=Time reversal operation

*flipping two layers

• 2D staggered currents pattern: alternating sources and drains; curl free v.s. source free

Page 22: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

22

The bi-layer Scalapino-Zhang-Hanke Model

D. Scalapino, S. C. Zhang, and W. Hanke, PRB 58, 443 (1998)

)1()1()())((

)(}.{}.{

,,2

1,,2

1,,

//

dii

cicii

ciij

idic

iji

ijij

iji

nnVdcnnUSSJ

inchdctchddcctH

//t

t V J

U c

d

• U, V, J are interactions within the rung.

• No inter-rung interaction.

Page 23: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

23.

T-invariant decoupling (Time-reversal*flip two layers)

JVUgJ

VUgJVUg

ingingining

inintchddcctH

c

i icAF

icurtbond

iibondjij

ijiSZH

4

334,

44,

4

34

)2)(()()}()({

)()(}.{

2222

//

• When g, g’, gc>0, T-invariant H-S decoupling

absence of the sign problem.

)()(2

1 iiiiAF ddccin

)()(2 iiiii

curt cddcin

)()(2

1 iiiibond dccdin )()( iiii ddccin

c

d

• T-invariant operators: total density, total density;

bond AF, bond current.

Page 24: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

24

Fermionic auxiliary field QMC results at T=0K

0.2,5.0,0,1.0,1// JVUtt

),()()(

)()(1

)(2

QrJeQJ

rrnrnL

rJ

r

rQi

iicurricurr

• Finite scaling of J(Q)/L2 v.s. 1/L.

• True long range order:

Ising-like order

• The equal time staggered current-current correlations

S. Capponi, CW and S. C. Zhang, PRB 70, 220505 (R) (2004).

Page 25: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

25

Outline

• A sufficient condition for the absence of the sign problem.

• The conclusive demonstration of a 2D staggered ground state current phase in a bilayer model.

• Physics of the staggered current state.

• Application in spin 3/2 Hubbard model.

Page 26: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

26

Strong coupling analysis at half-filling

• Low energy singlet Hilbert space: doubly occupied states, rung singlet state.

• The largest energy scale J>>U,V.

UJVU4

3:E

• Project out the three rung triplet states.

-=

+

Page 27: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

27

Pseudospin SU(2) algebra

)()(2

1 iiii ddcciQ

)()(2 iiiii

curt cddcin

)()(2

1 iiiibd dccdin

rung current

bond strength

cdw

• The pseudospin SU(2) algebra v.s. the spin SU(2) algebra.

c

d

• Pseudospin-1 representation.

down,up|

• Rung current states

2

1

2

i

UJVU4

3:E

1,0;1: Q

cba ;

Page 28: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

28

• Anisotropic terms break SU(2) down to Z2 .

Pseudospin-1 AF Heisenberg Hamiltonian

• t// induces pseudospin exchange.

)}()()()(

)()({

jQiQjnin

jninJH

bdbd

ijcurtcurtpseudoex

field external uniform:t

)2

1)(()(2 2

ibd iQEintH

c

d

t

//t //t

E

anisotropy site-on :E)(

4

3 JVUE

Page 29: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

29

Competing phases

rung singlet

staggered current

• Neel order phases and rung singlet phases.

CDW

staggered bond order

Page 30: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

30

Competing phases

ppz zJEzJt 0),4(2

• Subtle conditions for the staggered current phase.

is too large polarized pseudospin along rung bond strength

is too large rung singlet state

the easy axis of the staggered current

SU(2)Z2

favors the easy plane of staggered current and CDW.

t

0E favors the easy plane of staggered current and bond order.

t

E

• 2D spin-1 AF Heisenberg model has long range Neel order.

Page 31: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

31

Fermionic auxiliary field QMC results at T=0K

0.2,5.0,0,1.0,1// JVUtt

),()()(

)()(1

)(2

QrJeQJ

rrnrnL

rJ

r

rQi

iicurricurr

• Finite scaling of J(Q)/L2 v.s. 1/L.

• True long range order:

Ising-like order

• The equal time staggered current-current correlations

S. Capponi, CW and S. C. Zhang, PRB 70, 220505 (R) (2004).

Page 32: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

32

Disappearance of the staggered current phase

ti) increase

ii) increase

)(4

3 JVUE

iii) increase doping

Page 33: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

33

Outline

• A sufficient condition for the absence of the sign problem.

• The conclusive demonstration of a 2D staggered ground state current phase in a bilayer model.

• Physics of the staggered current state.

• Application in spin 3/2 Hubbard model.

Page 34: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

34

• The generic Hamiltonian with spin SU(2) symmetry.

• F=0 (singlet), 2(quintet); m=-F,-F+1,…F.

The spin 3/2 Hubbard model

)()(;|;)(2

3

2

3

2

3

2

3 rrFmrPFm

0,1,2,22200000

,,,

2

1,

2

3,

,

)()()()(

.}.{

mimm

i

ii

ij

ij

i

rPrPUiPiPU

ccchcctH

• Optical lattices with ultra-old atoms such as 132Cs, 9Be, 135Ba, 137Ba.

Page 35: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

35

T-invariant decoupling in spin 3/2 model

• T-invariant operators: density and spin nematics operators.

,,,, )(,)( ia

ia

ii ccinccin

)31,()51(}{ jiaSSSS ijjiaij

a

• Five spin-nematics matrices = Dirac G matrices:

abba 2},{

)}()2)(({.}.{ 22

51,,,,

,, iWninVccchcctH a

aii

iij

iji

4,

16

53 0220 UUW

UUV

• Explicit SO(5) symmetric form: Wu, Hu and Zhang, PRL91, 186402 (2003).

V, W>0 absence of the sign problem.

Page 36: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

36

Application in spin 3/2 system

Page 37: 1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, 155115(2005); Phys. Rev. B 70,

37

Summary

.

• The “time-reversal” invariant decomposition criterion

for the absence of the sign problem.• Applications:

The bilayer spin 1/2 modelstaggered current phase.• Other applications:

High spin Hubbard model;

Model with bond interactions: staggered spin flux phase