36
Monroe L. Weber-Shirk School of Civil and Environmental Engineering Open Channel Flow June 14, 2011

10 Viscous Flow Open Channel

Embed Size (px)

Citation preview

Page 1: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 1/36

Monroe L. Weber-Shirk  School of Civil andEnvironmental Engineering

Open Channel Flow

June 14, 2011

Page 2: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 2/36

Hydraulic radius

Steady-Uniform Flow:

Force Balance

 U

W

 U

W sin U

(x

a

 b

c

d

Shear force

Energy grade line

Hydraulic grade line

Shear force =________ 

sin !(( x P  x Ao

X UK 

UK X  sin

 P 

 A

o!

hR =

 P 

 AU

U

Usi

cos

si$S 

W cos U

 g 

2

2

Wetted perimeter = __ 

Gravitational force = ________ 

XoP (x

P

K%(x sin U

Dimensional analysisRelationship between shear and velocity? ___________________ 

Page 3: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 3/36

Geometric parameters

 ___________________ 

 ___________________ 

 ___________________ 

Write the functional relationship

 P 

 A R

h!Hydraulic radius ( R

h)

Channel length (l )

Roughness (I)

Open Conduits:

Dimensional Analysis

 gl 

!

ReVl  V

 Q

Uniform flow

Kinetic Energy

Potential Energy

R e r  p

h h

l C f  

 R R

I ¨ ¸! © ¹

ª º,M,W

Page 4: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 4/36

Pressure Coefficient for Open

Channel Flow?

2

2C

 p p

 V

(

2

2C

 ghl hl !

2

f 2

Cf 

l S S  !

l S hl  f !

l h p K (Pressure Coefficient

Mechanical Energy Loss

Friction slope coefficient

Friction slope

The friction slope is the slope of the EGL. The friction slope is

the same as the bottom slope (S o) for steady, uniform flow.

Kinetic Energy

Page 5: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 5/36

Dimensional Analysis

R eS 

h h

l C f  

 R R

I ¨ ¸! © ¹

ª º

P!l 

 RC  h

S f 

P!

 R

l S h

2

f 2

P

h R gS V  f 

! h RS V f 

2

P!

f ,Re

h h

l  f  

 R R

I ! Head loss w length of channel

f  ,R e

h

S h

 R

 f  l R

I ! !

2

f 2

l  gS S  !

(like f in Darcy-Weisbach)

2

f 2

h

h S  l   RP! !

Page 6: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 6/36

Chezy formula

Open Channel Flow Formulas

VAQ !

2/13/21oh S  A R

nQ !

1/2

o

2/3

h SR 1

nV  !

hS  R g 

V P

2!

Dimensions of n?

Isn

only a function of roughness?

hSRC !

Manning formula (MKS units!)

 NO!

T /L1/3

Page 7: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 7/36

Manning Formula

The Manning n is a function of the boundar y 

roughness as well as other geometric parameters

in some unknown way... ____________________ 

 _______________________________ 

Hydraulic radius for wide channels

1/2

o

2/3

hR 1

nV  !

 P h

A bh

  P b h 2

 Rbh

b h

h

2

Channel curvature (bends)Cross section geometr y

1 2

 P 1

<  P 2

 Rh1

>  Rh2

h

 b

Page 8: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 8/36

Why Use the Manning Formula?

Tradition

 Natural channels are geometrically complex and

the errors associated with using an equation thatisn¶t dimensionally correct are small comparedwith our inability to characterize stream geometr y

Measurement errors for Q and h are large

We only ever deal with water in channels, so wedon¶t need to know how other fluids wouldrespond

Page 9: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 9/36

Values of Manning n

Lined Canals n

Cement plaster 0.011

Untrea ted gunite 0.016

Wood, planed 0.01

Wood, unplaned 0.013Concrete, trow led 0.01

Concrete, wood orms, un inished 0.015

Rubble in cement 0.0 0

Aspha lt, smooth 0.013

Aspha lt, rough 0.016

N atural Channels

G ra vel beds, stra ight 0.0 5

G ra vel beds plus la rge boulders 0.040

Earth, stra ight, w ith some gra ss 0.0 6

Earth, w inding, no vegeta tion 0.030

Earth , w inding w ith vegeta tion 0.050

The worst

channel

has«Roughness at

many scales!

Page 10: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 10/36

Example: Manning Formula

What is the flow capacity of a finished

concrete channel that drops 1.2 m in 3 km? 

1

2

3 m

1.5 m

solution

Page 11: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 11/36

Depth as f(Q)

Find the depth in the channel when the flow

is 5 m3/s

Hydraulic radius is function of depth

Area is a function of depth

Can¶t solve explicitly

Use trial and error or solver 

/ 3 /

h oQ A S 

n!

Page 12: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 12/36

Open Channel Energy 

Relationships

 L

  p V p V    z z h

 g g E E

K K 

2 2

1 2

1 2

2 2o f  

V V   y S x y S x

 g g  ( (

Turbulent flow (E $ 1)

z - measured from

horizontal datum

y - _____________ 

Pipe flow

Energy Equation for Open Channel Flow

11 o f    y x y x

 g g 

( (

From diagram

2g

V2

1

1E

2g

V2

2

2E

 xS    (

2 y

1 y

 x(

 L f  h S x= D

depth of flow

Page 13: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 13/36

Specific Energy

The sum of the depth of flow and the

velocity head is the specific energy:

 g 

V  y E 

2

2

If channel bottom is horizontal and no head loss E  E  !

 y - _______ energy

 g 

V - _______ energy

For a change in bottom elevation

  E h E   !

 xS  E  xS  E  o(!(

f 1

 potential

kinetic

h

EGL

HGL

1 E 

 E 

Page 14: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 14/36

Specific Energy

In a channel with uniform discharge, Q

V  AV  AQ !!

2

2

2 gA

Q y E 

 g 

V  y E 

2

2

where A=f(y)

Consider rectangular channel (A = By) and Q = qB

2

2

2 g 

q E 

A

B

y

3 roots (one is negative)

q is the discharge per unit width of channel

How many possible depths given a specific energy? _____ 2

Page 15: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 15/36

0

1

3

4

5

6

7

8

9

10

0 1 3 4 5 6 7 8 9 10

E

     y

Specific Energy: Sluice Gate

 gy

q y

1

2

21 E  E  !

sluice gate

 y ¡ 

 y2

EGL

y1 and y2 are ___________ depths (same specific energy)

Why not use momentum conservation to find y1?

q = 5.5 m2/s

y2 = 0.45 m

V2 = 12.2 m/s

E2 = 8 m

alternate

Given downstream depth and discharge, find upstream depth.

vena contracta

Page 16: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 16/36

0

1

2

3

4

0 1 2 3 4

E

     y

Specific Energy: Raise the Sluice

Gate

2

2

2 gy

q y E 

1 2

 E 1! E 

2

sluice gate

 y ¢ 

 y2

EGL

as sluice gate is raised y approaches y2

and E is minimized:

Maximum discharge for given energy.

Page 17: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 17/36

 NO! Calculate depth along step.

0

1

2

3

4

0 1 2 3 4

     y

Step Up with Subcritical Flow

Short, smooth step with rise h in channel

h

1 2  E E h= +

Given upstream depth and discharge find y2

Is alternate depth possible? __________________________ 

0

1

2

3

4

0 1 2 3 4

     y

Energy conserved

Page 18: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 18/36

0

2

3

4

0 2 3 4

E

Max Step Up

Short, smooth step with maximum rise h in channel

h2

  E E h= +

What happens if the step is

increased further ? ___________ 

0

2

3

4

0 2 3 4

E

     y

Choked flow

Page 19: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 19/36

0

2

3

4

0 2 3 4

E

     y

Step Up with Supercritical flow

Short, smooth step with rise h in channel

h

2  E E h= +

Given upstream depth and discharge find y2

What happened to the water depth? ______________________________ Increased! Expansion! Energy Loss

0

2

3

4

0 2 3 4

E

     y

Page 20: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 20/36

Hydraulic Jump: Dimensional

Analysis

y1

y2

To what depth will the water rise (y2) given y1?

What forces are important?

Page 21: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 21/36

Hydraulic Jump

in in out out  V y V y!

y1

in out  in out LV V   y y h

 g g 

y2

Energy

Mass Per unit width

Unknown losses

cs1

cs2

Page 22: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 22/36

Hydraulic Jump

 y p y p yV  yV  V V

y1

y2

22

22212

2

21

2

1 y y yV  yV  K K  V V

 g 

 yV  y y y 1

2

1

2

11

2

2

22¹

 º

 ¸©

ª

¨

Momentumx ssx p p x x F  F  F  M  M  x x

2121

2

1

1

 y  p K 

2

12

1

1 1 8

2

 Fr  y

 y

or 

x

r V 

 gl !

Page 23: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 23/36

Summar y

Open channel flow equations can beobtained in a similar fashion to the Darcy-

Weisbach equation (based on dimensionalanalysis)

The dimensionally incorrect Manningequation is the standard in English speakingcountries

The free surface (an additional unknown)makes the physics more interesting!

Page 24: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 24/36

Turbulent Flow Losses in Open

Conduits

Maximum

shear stress

 No shear 

stress

Page 25: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 25/36

Example

Qn A R S 

h o

1 2 3 1 2/ /

Q m m1

0 0129 0 927 0 0004

2 2 3 1 2

.. .

/ /c ha f a f  

 R

A

 P  mh 0 927.

  A m m m m m 3 15 3 15 92a fa f a fa f . .

  P m m m m 3 2 3 15 9 712 2 2a f a f a f  . .

n 0 01.

Q m s14. /

S m

m0

1 2

300000004

..

Page 26: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 26/36

Grand Coulee Dam

http://users.owt.com/chubbard/gcdam/html/galler y.html

Page 27: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 27/36

Page 28: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 28/36

Pumps

At the time of original construction the pumping plant contained six 65,000horsepower pumps. In 1973 work began on extending the plant. The pump bay was doubled in length to the south and six 67,500 horsepower  pump/generators were added (the last in 1983) providing 12 pumps in all.

Each pump lifts water from Lake Roosevelt up through a 12 foot diameter discharge pipe to the feeder canal above. For most of their length thedischarge pipes are buried in the rock y cliff to the west but at the top of thehill they emerge and can be seen as 12 silver pipes leading to the headworksof the feeder canal. The original pumps can supply water to the feeder canalat a rate of 1,600 cubic feet of water a second while the newer units cansupply 2,000 cubic feet of water a second. They also have the advantage of  being reversible. During times of peak power need the new pumps can bereversed thus turning them into generators. Water flows back down throughthe outlet pipes, through the generators and into Lake Roosevelt. Whenoperating in this mode each pump can produce 50 megawatts of electrical power.

Page 29: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 29/36

Page 30: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 30/36

Page 31: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 31/36

Grand Coulee Feeder Canal

The Grand Coulee Feeder Canal is a concretelined canal which runs from the outlet of the

 pumping plant discharge tubes to the north end of Banks Lake. The original canal was completed in1951 but has since been widened to accommodatethe extra water available from the six new pump/generators added to the pumping plant. The

canal is 1.8 miles in length, 25 feet deep and 80feet wide at the base. It has the capacity to carr y 16,000 cubic feet of water per second.

Page 32: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 32/36

Columbia Basin Irrigation Project

Page 33: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 33/36

Unsteady Hydraulics!

The base width of the feeder canal was increased

from 50 to 80 feet; however, the operating

capacity remained at 16,000 cubic feet per second.Water depth was reduced from 25 to about 20 feet

to safely accommodate wave action when the

water flow is reversed as the pump-generators are

changed from pumping to generating and vice-versa.

Page 34: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 34/36

Gates

Page 35: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 35/36

Gates

Page 36: 10 Viscous Flow Open Channel

8/6/2019 10 Viscous Flow Open Channel

http://slidepdf.com/reader/full/10-viscous-flow-open-channel 36/36

Banks Lake