42
NJU7512VT Ver.2018-03-19 - 1 - 1200 bps MSK Modem for Data Communication GENERAL DESCRIPTION PACKAGE OUTLINE The NJU7512 is a 1200bps MSK (Minimum Shift Keying) modem IC, which operates from 1.8V power supply. It includes 14.7456MHz oscillator and selectable OSC buffer for an external output, and a frame detector for receiving. MSK modem is especially used for low power data communication, which requires high receiving sensitivity and noise susceptibility characteristics. FEATURES Low Operating Current 1.9mA (Modulation and Demodulation operation, VDD=1.8V) Wide Operating Voltage range 1.8 to 5.5V Baud Rate 1200 bps Oscillating Frequency 14.7456 MHz Selectable OSC Buffer Output 14.7456 MHz or 3.6864 MHz Built-in Frame Detector 2 types of frame data or disable Power Save Function Power control for Modulator and Demodulator blocks respectively Easy to use modem function A few external parts required Wide Operating Temperature range - 40 to +105 °C CMOS Technology Package Outline SSOP20 6.5mm x 6.4mm, t=0.65mm Please refer the IC Package information about the Package outline and Packing. BLOCK DIAGRAM NJU7512VT Detector Clock Recocer y BPF Frame Detector MSK Mod. Standard Bias Timing Generator Limiter Amp. -- + Standard Voltage Bias Voltage Analog Ground Internal Timing Clock Sine Wave LPF XBO FSE VDD1 VSS MX 7 11 20 19 10 PLLS PDRX PDTX BR XOUT XIN VDD2 3 14 12 13 8 9 6 RDT RTM 5 4 AIN AGS 1 2 TRD TD FRK FRS 16 15 18 17

1200 bps MSK Modem for Data Communication: 1200bps MSK ... · MSK demodulating circui t unit power -on / power down selection (PDRX) The M SK demodulati on circuit becomes operational

  • Upload
    others

  • View
    20

  • Download
    1

Embed Size (px)

Citation preview

NJU7512VT

Ver.2018-03-19 - 1 -

1200 bps MSK Modem for Data Communication GENERAL DESCRIPTION PACKAGE OUTLINE

The NJU7512 is a 1200bps MSK (Minimum Shift Keying) modem IC, which operates from 1.8V power supply. It includes 14.7456MHz oscillator and selectable OSC buffer for an external output, and a frame detector for receiving. MSK modem is especially used for low power data communication, which requires high receiving sensitivity and noise susceptibility characteristics.

FEATURES

Low Operating Current 1.9mA (Modulation and Demodulation operation, VDD=1.8V) Wide Operating Voltage range 1.8 to 5.5V Baud Rate 1200 bps Oscillating Frequency 14.7456 MHz Selectable OSC Buffer Output 14.7456 MHz or 3.6864 MHz Built-in Frame Detector 2 types of frame data or disable Power Save Function Power control for Modulator and Demodulator blocks respectively Easy to use modem function A few external parts required Wide Operating Temperature range - 40 to +105 °C CMOS Technology Package Outline SSOP20 6.5mm x 6.4mm, t=0.65mm

Please refer the IC Package information about the Package outline and Packing.

BLOCK DIAGRAM

NJU7512VT

DetectorClock

Recocery

BPF FrameDetector

MSKMod.

Standard Bias

TimingGenerator

Limiter Amp.

--+

StandardVoltage

BiasVoltage

AnalogGround Internal Timing Clock

SineWave

LPF

XBOFSEVDD1VSSMX

7112019 10

PLLS

PDRX

PDTX

BR

XOUT

XIN

VDD2

3

14

12

13

8

9

6

RDT

RTM

5

4

AIN AGS

1 2

TRD

TD

FRK

FRS

16

15

18

17

NJU7512VT

Ver.2018-03-19 - 2 -

PIN CONFIGURATION

2

3

4

5

6

7

8

9

10

1

11

12

13

14

15

16

17

18

19

20A I N

A G S

P L L S

R T M

R D T

V D D 2

X B O

X O U T

X I N

V S S

V D D 1

M X

F R K

F R S

T R D

T D

P D R X

P D T X

B R

F S E

NJU7512VT

NJU7512VT

Ver.2018-03-19 - 3 -

TERMINAL DESCRIPTION

Pin No. SYMBOL Function In Power Down

PDTX = Low PDRX = Low 1 AIN Input terminal of the Input buffer amplifier - - 2 AGS Output terminal of the input buffer amplifier - Low

3 PLLS PLLS Phase correction speed High Low-speed phase correction Low High-speed phase correction

PLL control input terminal Selection of the phase correction speed of PLL of the detector, either low-speed or high-speed correction.

- -

4 RTM MSK demodulation synchronous clock output terminal - High

5 RDT MSK demodulation data output terminal It synchronizes with falling of the MSK demodulation synchronous clock. -

6 VDD2 Oscillator circuit power supply terminal -

7 XBO Output of oscillator circuit buffer This is the output terminal of the oscillator circuit buffer to supply to external circuits. High

8 XOUT Oscillator circuit output terminal A crystal oscillator is connected between this pin and XIN terminals. When using an external clock, This terminal doesn't need to connect (no connection).

High

9 XIN Oscillator circuit input terminal A crystal oscillator is connected between this pin and XOUT terminals. When using an external clock, it becomes an input terminal for it.

- -

10 VSS Grand terminal - -

11 FSE FSE Output Frequency (MHz) High 3.6864 Low 14.7456

Selection of the buffer output frequency Select either oscillating frequency or 1/4 frequency for buffer output frequency. * A frequency of the crystal oscillator is 14.7456 MHz.

- -

12 BR BR speed (bps)

Career frequency (Hz) Data 1 Data 0

High 1200 1200 1800

Transmission-speed control terminal Always Logical High - -

13 PDTX

Control terminal of the modulation block for power down function.

PDTX Operation High Modulation block power-on Low Modulation block power-off

- -

14 PDRX

PDRX Operation

High Demodulation block power-on

Low Demodulation block power-off

Control terminal of the demodulation block for power down function. - -

15 TD MSK modulation data input terminal The modulation data is red at the rise timing of TRD signal. - -

16 TRD MSK modulation data read-timing output terminal The data of TD terminal is red in synchronizing with a rise edge. Low -

17 FRS

Selection of the frame data FRS Frame Data High 1100010011010110 B (C4D6 H) Low 1001001100110110 B (9336 H)

16 bits, 2 types of the frame data When the selected frame data is received, RTM and RDT are output.

- -

18 FRK FRK Operation High Enable Low Disenable

Select enable or disenable of the flame detection - -

19 MX Digital output of MSK modulation signal Low - 20 VDD1 Supply voltage - -

NJU7512VT

Ver.2018-03-19 - 4 -

DEMODULATION OPERATION FLOW CHART The basic structure of the analog MSK modulating signal inputted into AIN is as follows.

1, With a selection frame pattern (Set FRK = 1): Preamble pattern + 16 bits frame pattern + Received Data

2, Without a selection frame pattern (Set FRK = 0): Received Data (It may include preamble and frame patterns.)

The preamble patterns are repetition of "1" and "0" such as 101010 --, and it is required for PLL synchronization, and the number of bits recommends 12 bits or more than 50 bits by setup of a PLLS terminal (Pin 3). In the case of setting FRK = 0, the all received signal are demodulated and output from RDT terminal (Pin 5), even if the data has frame pattern. In the case of setting FRK = 1, the received data is demodulated and it is outputted from a RDT terminal (Pin 5).

PDRX=0FRK=0

PDRX=1

MSKDemod

FRK=1

Reset

Receiving unit pow er-on

Received signal demodulation

Frame patternselection "9336"

RTM,RDT Output

Frame detection

MSK demodulation data,MSK demodulation clock

FRS=0

received "9336"

Y

Y

Y

Y

Y

N

N

N

N

Framepattern"9336"

Framepattern"C4D6"

N

Frame detection disabled

Demodulated outputregardless of the framepattern

Frame patternconfirmation

received ”C4D6”

NJU7512VT

Ver.2018-03-19 - 5 -

DETAILS OF THE TERMINALS AND BLOCKS DESCRIPTION [MSK DEMODULATION CIRCUIT] ● ANALOG RECEIVED SIGNAL INPUT The analog signal is inputted which is changed to a logical high data from 1200Hz tone (1 cycle / bit, 833.3usec) and to a logical low data from 1800Hz (1.5 cycles / bit, 833.3usec) tone. The maximum speed of digital data is 1200 bps. A received analog signal can be identified with one of two kinds of 16-bit frame pattern signals (C4D6 or 9336). When performing the frame signal detection, the FRK terminal (Pin 18) is set to logical high. The frame pattern to distinguish is specified by setting FRS terminal (Pin 17) to a logical high or low. The data composition of the input signal with a frame pattern serves as data for a preamble pattern + frame pattern + received data. The demodulated data are outputted from a RDT terminal (Pin 5) without a preamble and frame data. If the preamble pattern is less length than the recommended value, normal demodulation data may not be obtained. The frame pattern can be disenabled with setting a logical low of FRK (Pin 18). If the frame pattern is disenabled, all received data output from RDT (Pin 5), but the output from RDT (Pin 5) may have a lack of information at beginning of the receiving.

DetectorClock

RecoceryBPF FrameDetector

MSKMod.

TimingGenerator

5

4

3

14

12

13

8

9

71120

6

19 10

16

15

18

17

1 2Limitter

XOUT

XIN

VDD1VSS

AIN AGS

--+

BiasVoltage

AnalogGround

VDDMXMSK Modulation Signal Output

MSK Modulator

MSK Demodulator

Oscillator

Internal Timing ClockModified

SineWaveGenerator

LPF

H/L

H/L

H/L

H/-

H/L

H/L

H/L

StandardVoltage

Analog Signal

FRKFrame Detector on-off

FRSFrame Pattern Select

TDMSK Modulation DataInputTRDMSK Modulation Data Read-timing Output

RDTDemodulated Data OutputRTMClock Output for DemodulatedDataPLLSLow /High-Phase Velocity

PDTXModulator Pow er On/Dow n

PDRXDemodulator Pow er On/Dow n

BRNormally H:1200bps

StandardBias

VDD2

VDDOscillating Circuit Pow er Supply

XBOOscillating Frequency Output

FSEOutput Frequency Selection

Preamble patternMore than 12bit or 50bit

Frame patternC4D6H or 9336H

Received data

tRD RDT, RTMMSK Demodulation data

Analog signal Input

MSK Demodulation Data Output

Received data

RDT, RTMMSK Demodulation Data

Analog signal Input

MSK Demodulation Data Output

tRDLost

NJU7512VT

Ver.2018-03-19 - 6 -

● GAIN CONTROL An analog signal amplifier is placed between AIN (Pin 1) and AGS (Pin 2). The open loop gain of this amplifier is 60dB min. Extra resisters can fix the gain of this amplifier to optimize the level of the output of AGS terminal (Pin 2) to get the best BER. Refer to [Demodulation bit error rate] of the example of the characteristics for optimal level of an AGS terminal (Pin 2). ● MSK DEMODULATION DATA OUTPUT TERMINAL (RDT) It outputs digital data which are demodulated from a received signal. Output voltage is High: VDD to VDD-0.4V and Low: VSS to 0.4V. Data is outputted synchronizing with falling of the signal of RTM. ● MSK DEMODULATION SYNCHRONOUS CLOCK OUTPUT TERMINAL (RTM) The synchronous clock (RTM, Pin 4) of the demodulated data (RDT, Pin 5) is output. RDT is synchronized with the falling edge of the RTM signal.

1200Hz 1800Hz 1200Hz

"H" "H""L"

Limiter amp.output signal

Zero crossingdetection

Delayregister

Shiftregister

Shiftregister

Detection

RDTDemodulated DataOutput

Del

ay d

etec

tion

Analog Signal

RDTDemodulated Data

Zero crossingdetection

PLL clock

RTMClock Output for DemodulatedData : Corrected

Phase correction

"H" "H""L"

NJU7512VT

Ver.2018-03-19 - 7 -

● CONTROL TERMINAL (FRS, FRK, PLLS, PDRX) 1. SELECTION OF FRAME PATTERN (FRS) One from two kinds of 16-bit frame patterns is chosen.

2. SELECTION OF FRAME DETECTION (FRK) Enabled the frame detection or disabled is chosen. When not using the frame detection, all received analog signals serve as data for demodulation. 3. SELECTION OF PHASE CORRECTION SPEED OF CLOCK REPRODUCTION (PLLS) It is a terminal which controls the pull-in bits of PLL. In order to make a synchronous clock, phase correction is applied to the internal clock, but the maximum phase correction angle is 3.75 degrees in slow mode, and is 30 degrees in fast mode. The length of the preamble pattern (repetition of "1" and "0", such as 101010--) is recommended to 50 bits and more for the slow mode, and to 12 bits and more for the fast mode. 4. MSK demodulating circuit unit power-on / power down selection (PDRX) The MSK demodulation circuit becomes operational mode in PDRX power-on function, and becomes non-operational mode in the power down function. Moreover, the frame detection circuit is reset by power down. [IMPORTANT] When the state of a FRK terminal (Pin 18) and a FRS terminal (Pin 17) is changed or after power supplied, please once choose a power down to prevent any malfunction.

FRS Selection frame pattern High 1100010011010110 B (C4D6 H) Low 1001001100110110 B (9336 H)

FRK Operation High Frame detection function enabled Low Frame detection function disabled

PLLS Phase correction speed High Low-speed phase correction Low High rank phase correction

PDRX Operation High Demodulation block power-on Low Demodulation block power-off

NJU7512VT

Ver.2018-03-19 - 8 -

[MSK MODULATION CIRCUIT] ● READ TIMING OF MODULATION DATA (TRD) A clock signal, one cycle is 833.3usec, is outputted. The digital data of TD terminal (Pin 15) for modulation is red at rising edge of the clock signal. ● MODULATION DATA INPUT (TD) The modulation data are synchronized with the clock signal of TRD (Pin 16) and red. ● MODULATION SIGNAL OUTPUT (MX) The digital data red from TD terminal (Pin 15) is outputted to the analog signal such as a logical high data converts to 1200Hz tone (1 cycle / bit, 833.3usec) and a Logical Low data converts to 1800Hz (1.5 cycles / bit, 833.3usec) tone. The output level is -6dBV (typical value, load is 30kΩ //50pF). It is referred to as 0dBV = 1Vrms. In addition, in order to remove the harmonics distortion of a quasi sine wave generating circuit, it is outputted through a second order butterworth low pass filter (cut-off frequency of 16 kHz). ● MODULATION BLOCK POWER DOWN CONTROL TERMINAL (PDTX) The MSK modulation circuit becomes operational mode by PDTX power-on, and becomes non-operational mode by power down. The internal circuit unit is reset by power down. Please once choose a power down to prevent any malfunction at power supply starting. If the power down function is occurred while modulation, the modulation doesn’t finish properly. Please refer to a [Timing diagram] for prevention of any malfunction. After PDTX power-on, the internal circuit delay of power-up time tPU occurs. Please refer to a [timing diagram] MSK demodulation timing chart for details.

[REFERENCE] TERMINAL CONNECTION OF NOT USING When not using a modulation circuit, they are connected such as PDTX terminal (Pin 13) = VSS, TD terminal (Pin 15) = High (VDD) or Low (VSS), TRD terminal (Pin 16) = no connection, and the MX terminal (Pin 19) = no connection.

PDTX Operation High Modulation block power-on Low Modulation block power-off

TDMSK Demodulated

Clock for the MSKmodulation

MXQuasi-sine wave

1200Hz x 1 cycle = 833.3usec 1800Hz x 1.5 cycle = 833.3usec

1 cycle:1/(1800 x 32)sec1 cycle:1/(1200 x 32)sec

128-level

TDMSK Demodulated

TRDClock Outputfor Data Capture

Modulator signalacquisition

NJU7512VT

Ver.2018-03-19 - 9 -

[OSCILLATOR CIRCUIT] ● OSCILLATOR CIRCUIT INPUT TERMINAL (XIN) A crystal oscillator is connected between XOUT terminals (Pin 8) (recommended). 14.7456 MHz should be used for the frequency of a crystal oscillator. When using an external clock signal instead of a crystal oscillator, it becomes an input terminal of an external clock signal. ● OSCILLATOR CIRCUIT OUTPUT TERMINAL (XOUT) A crystal oscillator is connected between XIN terminals (Pin 9). Please use opening, when you use an external clock signal instead of a crystal oscillator. ● OSCILLATOR CIRCUIT POWER SUPPLY TERMINAL (VDD2) VDD2 is used for the main oscillator circuit, and VDD1 is used for the output stage of an oscillator circuit level shifter. Please set the voltage of VDD2 less than VDD1 (VDD2 =< VDD1). The excitation level of an oscillator circuit can be downed by lower VDD2 voltage from VDD1. Please adjust VDD2 and do not exceed the maximum excitation electric power of the crystal oscillator to be used. ● OSCILLATOR CIRCUIT BUFFER OUTPUT TERMINAL (XBO) It is an inverter output terminal. This terminal must be high impedance. The square wave of the frequency selected by FSE is outputted. Although it can be used as a clock of an external device, the specification of an external device is checked enough in this case. ● CONTROL TERMINAL (FSE, BR)

1. OSCILLATOR CIRCUIT BUFFER OUTPUT FREQUENCY CHANGE TERMINAL (FSE) About the frequency of the signal outputted from XBO, one of fx = 14.7456MHz and the fx/4 = 3.6864MHz is chosen.

2. TRANSMISSION SPEED CONTROL TERMINAL (BR) It always sets to a logical high.

FSE Output frequency Hi 3.6864MHz Lo 14.7456MHz

98XOUT XIN

Level shifter

6VDD2

VDD

Timing generato

22p 22p

R1

14.7456MHz

VDD1

C

NJU7512VT

Ver.2018-03-19 - 10 -

PARAMETER DESCRIPTION SYMBOL PARAMETER TERMINAL DESCRIPTION

IDD1 Current Consumption in modulation and demodulation VDD1, VDD2 Total current which flows into VDD1 and VDD2 terminals at the time of

transceiver operation

IDD2 Current Consumption in power down VDD1, VDD2 Total current which flows into VDD1 and VDD2 terminals at the time of a transceiver power down

IDD3 Current Consumption in only modulation VDD1, VDD2 Total current which flows into VDD1 and VDD2 terminals at the time of transmitting operation

IDD4 Current Consumption in only demodulation VDD1, VDD2 Total current which flows into VDD1 and VDD2 terminals at the time of

reception operation

VIH High level input voltage of control input terminal

All control terminals High level voltage which is supplied to each control terminal.

VIL Low level input voltage of control input terminal

All control terminals Low level voltage which is supplied to each control terminal

VHS Control hysteresis voltage width of input terminal

All control terminals

The voltage of the difference between the logical Low -> High and the High -> Low situations

VOL Low level output voltage of digital output terminal

TRD, RTM, RDT Low level voltage outputted from each digital signal output terminal

VOH High level output voltage of digital output terminal

TRD, RTM, RDT High level voltage outputted from each digital signal output terminal

II Control input terminal current All control terminals It is outflow / inflow current to each control terminal

IIA Analog input terminal current AIN Current which flows into AIN terminal VB1 AGS terminal bias voltage AGS DC bias voltage of AGS terminal VB2 MX terminal bias voltage MX DC bias voltage of MX terminal VOS1 AGS terminal offset voltage AGS DC offset voltage of AGS terminal VOS2 MX terminal offset voltage MX DC offset voltage of MX terminal GO Open-loop gain AIN - AGS Open gain of input buffer amplifier fT Input buffer amplifier bandwidth AIN - AGX Frequency bandwidth of input buffer amplifier

VOM MX terminal modulating signal level MX Quasi-sine wave signal level outputted from MX terminal EBR1 Demodulation bit error rate1 RDT BER (Bit Error Rate) of demodulation output data EBR2 Demodulation bit error rate2 RDT BER of demodulation output data EBR3 Demodulation bit error rate3 RDT BER of demodulation output data

NLH PLL Pull-in Bit 1 RTM The number of bits until it pull in less than 22.5 phase difference at the time of a low-speed phase velocity setup

NLL PLL Pull-in Bit 2 RTM The number of bits until it pull in less than 22.5 phase difference at the time of a high-speed phase velocity setup

DF The number of demodulation data synchronization gap bits RTM The gap with demodulation data and a PLL synchronized signal.

MXd MX terminal modulating signal distortion MX Waveform distortion by the setting load conditions of the quasi-sine wave signal outputted from MX terminal

FCK Crystal oscillating frequency XBO Oscillating frequency accuracy of a crystal oscillator circuit tDA Transmitting hold time tDS Data setup time tDH Data hold time tOM Modulation output delay time tFR Frame reset time tPU Power up time tTC Transmitting cycle time Refer to the timing chart. tRD Demodulation delay time tCY Receiving clock period tTH Receiving clock high level width tTL Receiving clock low level width tDD Data output delay time tPD Power down delay time fFR Frame reset time

NJU7512VT

Ver.2018-03-19 - 11 -

ABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL RATINGS UNIT

Supply Voltage VDD 7.0 V

Power Dissipation P D 375 mW

Input Voltage (Control) VIND VSS - 0.5 to VDD1+0.5 V

Operating Temperature T o p r - 40 to + 105 °C

Storage Temperature T s t g - 40 to + 150 °C

Note: Please refer to the test circuit about Supply Voltage (VDD).

RECOMMENDED OPERATIONAL CONDITION (Ta=25°C) PARAMETER SYMBOL MIN. TYP. MAX. UNIT

Supply Voltage 1 VDD1 1.8 - 5.5 V

Supply Voltage 2 VDD2 1.8 - VDD1 V

ELECTRICAL CHARACTERISTICS 1 (Ta = 25°C, VSS = 0V, Please refer to the test circuit, VDD=VDD1=VDD2=1.8V and R1 = 0Ω, unless otherwise noted)

[DC CHARACTERISTICS] PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Current Consumption in modulation and demodulation I DD1 VDD=1.8V, No Signal - 1.9 2.2 mA

Current Consumption in power down I DD2 VDD=1.8V, No Signal - 0.01 10 uA

Current Consumption in only modulation I DD3 VDD=1.8V, No Signal - 1.1 1.2 mA

Current Consumption in only demodulation I DD4 VDD=1.8V, No Signal - 1.7 1.9 mA

Logical High Input Voltage V IH VDD=1.8V, No Signal *NOTE2 0.75 x VDD - VDD V

Logical Low Input Voltage V IL VDD=1.8V, No Signal *NOTE2 VSS - 0.25 x VDD V

Hysteresis Width of Digital V HS VDD=1.8V, No Signal *NOTE3 - 0.5 - V

Logical Low Output Voltage V OL VDD=1.8V, No Signal, Io=-1.6mA

*NOTE4 VSS - 0.4 V

NJU7512VT

Ver.2018-03-19 - 12 -

Logical High Output Voltage V OH VDD=1.8V, No Signal, Io=+0.4mA *NOTE4

VDD - 0.4 - VDD V

Digital Input Leakage Current I I VDD=1.8V, Other Input Pins are connected to VSS or VDD *NOTE2

-200 - 200 nA

Analog Input Leakage Current I I A VDD=1.8V, No Signal, AIN Pin is connected to VSS or VDD -100 - 100 nA

AGS Bias Voltage V B1 VDD=1.8V, No Signal *NOTE3 - 0.39 x VDD - V

MX Bias Voltage V B2 VDD=1.8V, No Signal *NOTE3 - 0.9 - V

AGS Offset Voltage V OS1 VDD=1.8V, No Signal, Criterion Voltage is 0.39 x VDD -50 - +50 mV

MX Offset Voltage V OS2 VDD=1.8V, No Signal, Criterion Voltage is 0.9 V -150 - +150 mV

*NOTE2: The measurement terminals are BR, FSE, PDTX, PDRX, TD, FRS, FRK, and PLLS. *NOTE3: Please refer to the typical characteristics. *NOTE4: The measurement terminals are TRD, RTM, and RDT

Io shows input current of each pins, and negative value means output current.

NJU7512VT

Ver.2018-03-19 - 13 -

[AC CHARACTERISTICS]

PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Open Loop Gain G O VDD=1.8V, No load 60 - - dB

Frequency Bandwidth of Input Buffer Amplifier f T VDD=1.8V, No load 0.8 1.0 - MHz

Modulated Output at MX Pin V OM VDD=1.8V, Load 30kΩ //50pF -7 -6 -5 dBV

Demodulation Bit Error Rate 1 E BR1

VDD=1.8V, PLLS=VSS, BR=VDD S/N=8dB, S= -2 to -32dBV N = Gaussian Noise (5 kHz), *NOTE3

- 1x10-3 - -

Demodulation Bit Error Rate 2 E BR2

VDD=1.8V, PLLS=VSS, BR=VDD S/N=10dB, S= -2 to -32dBV N = Gaussian Noise (5 kHz), *NOTE3

- 5 x 10-5 - -

Demodulation Bit Error Rate 3 E BR3 VDD=1.8V, PLLS=VSS, BR=VDD S/N=6dB, S= -20dBV N = Gaussian Noise (5 kHz),

- - 5 x 10-2 -

PLL Pull-in Bit 1 N LH VDD=1.8V, PLLS=VSS, Less than 22.5deg phase shift - - 12 bit

PLL Pull-in Bit 2 N LL VDD=1.8V, PLLS=VDD, Less than 22.5deg phase shift - - 50 bit

Decoding Reference Frequency Tolerance D F

VDD=1.8V, PLLS=VDD or VSS *NOTE3 - 2.4 - %

Modulation Distortion MXd VDD=1.8V, BR=VDD, TD=VDD, Load=30kΩ // 50pF - 1.5 3 %

Crystal Oscillator Frequency F CK VDD=1.8V, No Signal 14.7440 14.7456 14.7472 MHz

*NOTE3: Please refer to the typical characteristics.

NJU7512VT

Ver.2018-03-19 - 14 -

[TIMING CHARACTERISTICS]

PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Transmit Hold Time t DA VDD=1.8V, BR=VDD *NOTE3 - 400 - us

Data Set Up Time t DS VDD=1.8V, BR=VDD *NOTE3 - 416.7 - ns

Data Hold Time t DH VDD=1.8V, BR=VDD *NOTE3 - 416.7 - ns

Demodulation Output Delay Time t OM VDD=1.8V, BR=VDD - - 300 us

Frame Reset Time t FR VDD=1.8V, BR=VDD 1 - - us

Power Up Time t PU VDD=1.8V, BR=VDD 0.04 - 2.00 ms

Transmit Cycle Time t TC VDD=1.8V, BR=VDD 833 - 834 us

Demodulation Delay Time t RD VDD=1.8V, BR=VDD - - 2 ms

Receive Clock Cycle t CY VDD=1.8V, BR=VDD 755 - 912 us

Receive Clock High Level Width t TH VDD=1.8V, BR=VDD 416 - 417 us

Receive Clock Low Level Width t TL VDD=1.8V, BR=VDD 338 - 496 us

Data Output Delay Time t DD VDD=1.8V, BR=VDD - - 50 ns

Power Down Delay Time t PD VDD=1.8V, BR=VDD - - 200 ns

*NOTE3: Please refer to the typical characteristics.

NJU7512VT

Ver.2018-03-19 - 15 -

ELECTRICAL CHARACTERISTICS 2 (Ta = -40 or +105°C, VSS = 0V, Please refer to the test circuit, VDD=1.8V and R1=0Ω unless otherwise noted)

[DC CHARACTERISTICS] PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Current Consumption in modulation and demodulation I DD1 VDD=1.8V, No Signal - - 2.2 mA

Current Consumption in power down I DD2 VDD=1.8V, No Signal - - 10 uA

Current Consumption in only modulation I DD3 VDD=1.8V, No Signal - - 1.2 mA

Current Consumption in only demodulation I DD4 VDD=1.8V, No Signal - - 1.9 mA

Logical High Input Voltage V IH VDD=1.8V, No Signal *NOTE2 0.75 x VDD - VDD V

Logical Low Input Voltage V IL VDD=1.8V, No Signal *NOTE2 VSS - 0.25 x VDD V

Logical Low Output Voltage V OL VDD=1.8V, No Signal, Io=-1.6mA

* NOTE4 VSS - 0.4 V

Logical High Output Voltage V OH VDD=1.8V, No Signal, Io=+0.4mA *NOTE4

VDD - 0.4 - VDD V

Digital Input Leakage Current I I VDD=1.8V, Other Input Pins are connected to VSS or VDD *NOTE2

-200 - 200 nA

Analog Input Leakage Current I I A VDD=1.8V, No Signal, AIN Pin is connected to VSS or VDD -100 - 100 nA

AGS Pin Offset Voltage V OS1 VDD=1.8V, No Signal, Reference Voltage= 0.39 x VDD -50 - +50 mV

MX Pin Offset Voltage V OS2 VDD=1.8V, No Signal Reference Voltage=0.9V -150 - +150 mV

*NOTE2: The measurement terminals are BR, FSE, PDTX, PDRX, TD, FRS, FRK, and PLLS. *NOTE4: The measurement terminals are TRD, RTM, and RDT

Io shows input current of each pins, and negative value means output current.

NJU7512VT

Ver.2018-03-19 - 16 -

[AC CHARACTERISTICS]

PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Open Loop Gain G O VDD=1.8V, No load 60 - - dB

Frequency Bandwidth of Signal Amplifier f T VDD=1.8V, No load 0.8 - - MHz

Modulated Output at MX Pin V OM VDD=1.8V, Load 30kΩ //50pF -7 - -5 dBV

Demodulation Bit Error Rate 3 E BR3 VDD=1.8V, PLLS=VSS, BR=VDD S/N=6dB, S= -20dBV N = Gaussian Noise (5 kHz),

- - 5 x 10-2 -

PLL Pull-in Bit 1 N LH VDD=1.8V, PLLS=VSS, Less than 22.5deg phase shift - - 12 bit

PLL Pull-in Bit 2 N LL VDD=1.8V, PLLS=VDD, Less than 22.5deg phase shift - - 50 bit

Modulation Distortion MXd VDD=1.8V, BR=VDD, TD=VDD, LOAD=30kΩ // 50pF - - 3 %

Crystal Oscillator Frequency F CK VDD=1.8V, No Signal 14.7440 - 14.7472 MHz

NJU7512VT

Ver.2018-03-19 - 17 -

[TIMING CHARACTERISTICS]

PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT

Demodulation Output Delay Time t OM VDD=1.8V, BR=VDD - - 300 us

Frame Reset Time t FR VDD=1.8V, BR=VDD 1 - - us

Power Up Time t PU VDD=1.8V, BR=VDD 0.04 - 2.00 ms

Transmit Cycle Time t TC VDD=1.8V, BR=VDD 833 - 834 us

Demodulation Delay Time t RD VDD=1.8V, BR=VDD - - 2 ms

Receive Clock Cycle t CY VDD=1.8V, BR=VDD 755 - 912 us

Receive Clock High Level Width t TH VDD=1.8V, BR=VDD 416 - 417 us

Receive Clock Low Level Width t TL VDD=1.8V, BR=VDD 338 - 496 us

Data Output Delay Time t DD VDD=1.8V, BR=VDD - - 50 ns

Power Down Delay Time t PD VDD=1.8V, BR=VDD - - 200 ns

NJU7512VT

Ver.2018-03-19 - 18 -

Terminal conditions when measuring

PARAMETER SYMBOL Terminal conditions: Pin Name (Pin No.)

Note PLLS (3)

FSE (11)

BR (12)

PDTX (13)

PDRX (14)

TD (15)

FRS (17)

FRK (18)

Current Consumption in modulation and demodulation

IDD1 Lo Lo Hi Hi Hi Lo Hi Hi

Current Consumption in power down IDD2 Lo Lo Hi Lo Lo Lo Hi Hi Current Consumption in only modulation IDD3 Lo Lo Hi Hi Lo Lo Hi Hi Current Consumption in only demodulation IDD4 Lo Lo Hi Lo Hi Lo Hi Hi

PLLS Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Hi/Lo Lo Hi Lo Hi *1) Hi Hi *1) TD Pin input signal PLLS=Lo : ( 1,0,1,・・・12bit)+(frame pattern 1) + ( 1,0,1,・・・16bit) PLLS=Hi : ( 1,0,1,・・・50bit)+(frame pattern 1) + ( 1,0,1,・・・60bit)

FSE Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

FCK Lo Hi/Lo Hi Hi Hi Lo Hi Hi

Crystal Oscillator Frequency

BR Pin Logical High Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi Hi Lo Hi Hi

PDTX Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi/Lo Lo Lo Hi Hi

PDRX Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi Hi/Lo Lo Hi Hi

TD Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi Lo Hi/Lo Hi Hi

FRS Pin Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi Hi *2) Hi/Lo Hi *2) TD Pin input signal FRS=Lo : ( 1,0,1,・・・12bit)+(frame pattern 2) + ( 1 continuation ) FRS=Hi : ( 1,0,1,・・・12bit)+(frame pattern 1) + ( 1 continuation )

FRK Logical High/Low Input Voltage Digital Input Leakage Current

VIH , VIL II

Lo Lo Hi Hi Hi Hi Hi Hi/Lo

Hysteresis Width of Digital VHS - - - - - - - - VHS = VOH - VOL RTM Pin Logical High/Low Output Voltage VOL , VOH Lo Lo Hi Lo Hi Hi Hi Lo RDT Pin Logical High/Low Output Voltage VOL , VOH Lo Lo Hi Lo Hi Hi/Lo Hi Lo TRD Pin Logical High/Low Output Voltage VOL , VOH Lo Lo Hi Hi Lo Hi Hi Lo Analog Input Leakage Current IIA Lo Lo Hi Lo Hi Lo Hi Hi

AGS Pin Bias Voltage Offset Voltage

VB1 VOS1

Lo Lo Hi Lo Hi Lo Hi Hi

MX Pin Bias Voltage Offset Voltage

VB2 VOS2

Lo Lo Hi Hi Lo Lo Hi Hi

Open Loop Gain Frequency Bandwidth of Input Buffer Amplifier

GO FT

Lo Lo Hi Lo Hi Lo Hi Hi

MX Pin Modulated Output VOM Lo Lo Hi Hi Lo Lo Hi Hi Demodulation Bit Error Rate 1 EBR1 Lo Lo Hi Lo Hi Lo Hi Lo PLL Pull-in Bit 1 NLH Lo Lo Hi Lo Hi *1) Hi Hi *1) TD Pin input signal

PLLS=Lo : ( 1,0,1,・・・12bit)+(frame pattern 1) + ( 1,0,1,・・・16bit) PLLS=Hi : ( 1,0,1,・・・50bit)+(frame pattern 1) + ( 1,0,1,・・・60bit)

PLL Pull-in Bit 2 NLL Hi Lo Hi Lo Hi *1) Hi Hi Decoding Reference Frequency Tolerance DF Lo Lo Hi Lo Hi *1) Hi Hi Modulation Distortion MXd Lo Lo Hi Hi Lo Hi Hi Hi Transmit Hold Time Data Set Up Time Data Hold Time Demodulation Output Delay Time Frame Reset Time Power Up Time Transmit Cycle Time

tDA tDS tDH tOM tFR tPU tTC

Hi Lo Hi *3) Lo *3) Hi Hi *3) Refer to the MSK modulation timing chart.

Demodulation Delay Time Receive Clock Cycle Receive Clock High/Low Level Width Data Output Delay Time Power Down Delay Time Frame Reset Time

tRD tCY

tTH , tTL tDD tPD tFR

Lo Lo Hi Hi *4) Lo Lo Lo *4) Refer to the MSK demodulation timing chart.

Demodulation Bit Error Rate 3 EBR3 Lo Lo Hi Lo Hi Lo Hi Lo

*NOTE5: The conditions of Hi (“1”) level and Lo (“0”) level 0.75 x VDD < = Hi (“1”) = < VDD VSS < = Lo (“0”) = < 0.25 x VDD *NOTE6: frame pattern 1 = 1,1,0,0,0,1,0,0,1,1,0,1,0,1,1,0 (C4D6H) frame pattern 2 = 1,0,0,1,0,0,1,1,0,0,1,1,0,1,1,0 (9336H)

NJU7512VT

Ver.2018-03-19 - 19 -

TEST CIRCUIT

*NOTE7: R1

R1 must be set to the value in range of the maximum excitation electric power of the crystal oscillator to be used. The test circuit is set as follows: Crystal Oscillator: NX4025DA (U-816-78, NIHON DEMPA KOGYO CO.,LTD.) R1 : VDD = 1.8V condition, R1 = 0Ω

VDD = 5.5V condition, R1 = 3kΩ It checks with a crystal maker about the specification of a crystal oscillator.

①AIN

③PLLS

④RTM

⑤RDT

⑥VDD2

⑦XBO

⑧XOUT

⑨XIN

②AGS

⑫BR

⑬PDTX

⑭PDRX

⑮TD

⑯TRD

⑰FRS

⑱FRK

⑲MX

⑩VSS ⑪FSE

⑳VDD1

VDD

14.7456MHz

SW

SW

SW

SW

SW

SWSW

SW

0.1u 100k

100k

1000p

10000p

0.1u

0.1u

22p

22p

IDD

10u

R1

NJU7512VT

Ver.2018-03-19 - 20 -

TERMINAL FUNCTION (Ta = 25°C, VSS = 0V, VDD = VDD1 = VDD2 = 1.8V, R1 = 0Ω)

Pin SYMBOL Internal equivalent circuit Terminal voltage Remarks

1 AIN

-

It is an input terminal of the input buffer amplifier. The gain of this amplifier is fixed by an external feedback resister connected between this pin and Pin 2 for optimizing of BER (Bit Error Rate). Refer to the [demodulation bit error rate] of example of the characteristic for optimal level.

2 AGS

0.4 x VDD1

It is an output terminal of the input buffer amplifier. The gain of this amplifier is fixed by an external feedback resister connected between this pin and Pin 1 for optimizing of BER (Bit Error Rate). Refer to the [demodulation bit error rate] of example of the characteristic for optimal level.

3 PLLS

-

It is a PLL control input terminal. It is a terminal which controls, the pull-in characteristic of PLL. The maximum phase correction angle

High : Low-speed phase correction (3.75°) Low : High-speed phase correction (30°)

4 RTM

VSS to 0.4, VDD to

VDD-0.4

It is a MSK demodulation synchronous clock output terminal. The clock in sync with the digital data to which it restored outputs. Phase correction is applied to the clock generated by internal PLL, and a clock signal is reproduced.

5 RDT

It is a MSK demodulation data output terminal. The digital data to which it restored is outputted to a received signal. Data is outputted synchronizing with falling of Pin 4 signal.

VDD1

1

VSS

2

VSS

VDD1

VSS

3

VDD1

45

VSS

VDD1

NJU7512VT

Ver.2018-03-19 - 21 -

Pin SYMBOL Internal equivalent circuit Terminal voltage Remarks

6 VDD2

-

It is an oscillator circuit power supply terminal. Please set VDD2 to one or less (VDD2 =<VDD1) VDD. Please adjust VDD2 and do not exceed the maximum excitation electric power of the crystal oscillator to be used.

7

XBO

VSS to VDD1

It is an oscillator circuit buffer output terminal. The square wave of the frequency selected by Pin 11 is outputted. It can be used as a clock of an external device.

8

9 XOUT

XIN

VSS to VDD2

Pin 8 is an oscillator circuit output terminal. Pin 9 is an oscillator circuit input terminal. A crystal oscillator is connected (Recommended). 14.7456 MHz should be used for the frequency of a crystal oscillator. When using an external clock signal instead of a crystal oscillator, please use a No. 9 pin as an input terminal, and the No. 8 pin should make it opening.

10 VSS

- It is a ground terminal.

11 FSE

-

It is a buffer output frequency change terminal. Pin 7 output frequency is chosen.

High : Oscillating frequency Low : 1/4 of oscillating frequency

12 BR It is a transmission speed control terminal. It always sets to High.

13 PDTX It is a modulation block power down control terminal.

High : Modulation circuit unit operational mode Low : Modulation circuit unit non-operational

mode

14 PDRX It is a demodulation block power down control terminal.

High : Demodulating circuit operational mode Low : Demodulating circuit non-operational mode

15 TD

It is MSK modulation data input terminal. The modulation data are red with synchronized clocks signal of Pin 16.

VSS

6

7

VSS

VDD1

9 8

VSS

VDD2

VSS

1112131415

VDD1

NJU7512VT

Ver.2018-03-19 - 22 -

Pin SYMBOL Internal equivalent circuit Terminal voltage Remarks

16

TRD

VSS to 0.4, VDD to

VDD-0.4

It is MSK modulation read data timing output terminal. A clock signal is outputted. The data of a No. 15 pin is red at rising edge of the clock signal.

17

FRS

-

It is a frame pattern selection input terminal. High : C4D6H Low : 9336H

18 FRK

It is a frame detection function selection terminal. High : a frame detection function -- enable Low : Frame detection function – disenable

19 MX

0.9V

It is a MSK modulating signal output terminal. The digital data taken in from the Pin 15 is changed into an analog signal, and is outputted (High: 1200Hz, Low: 1800 Hz). Output level - It is 6dBV. In order to remove the harmonics ingredient of a false sine wave generating circuit, it outputs through a secondary Bata Worth low pass filter.

20 VDD1

-

It is a power supply terminal. VDD2 is used for the main oscillating circuit unit, and VDD1 is used for the output stage and the other circuits of an oscillating circuit level shifter.

16

VSS

VDD1

VSS

1718

VDD1

19

VSS

VDD1

VSS

20

NJU7512VT

Ver.2018-03-19 - 23 -

TIMING CHART

tDS

tPU

tOM

tDH

tFR

tPUtDA

1 1 0 1 1 0 1 0

PDTX

Internal timing

TRD

MX

ModulationData

MSK modulation timing chart

tTC

1

TD

:don't care

tPD

tTH

tFR

tRD

1 0 11 0 0 1

PDRX

ModulationData

MSK demodulation timing chart

Preamble pattern +16-bit frame pattern

tCY

tDDtTL

AGS

Internalsynchronous clock

Internaldemodulati

on Data

RTM

RDT

:don't care

Preamble pattern +16-bit frame pattern 1 0 11 0 0 1

NJU7512VT

Ver.2018-03-19 - 24 -

TERMINAL OPERATION TIMING

PDTX: Transmitting (Modulating) block power down Since PDTX serves as reset of an internal circuit, please set a PDTX terminal (Pin 13) to Low once for the prevention from malfunction at the time of power supply starting. Since the MSK modulating signal currently outputted from MX terminal (Pin 19) stops if PDTX is changed to a logical low from a logical high, depending on the timing of PDTX, the last of a MSK modulating signal may be missing.

PDRX: Receiving (Demodulating) block power down Since PDRX serves as reset of a frame detection circuit, when the state of the time of power supply starting, a FRK terminal (Pin 18), and a FRS terminal (Pin 17) is changed, please set a PDRX terminal (Pin 14) to Low once.

FRK: Selection of a frame detection function At the time of the setting change of FRK, as shown in the following tables, it operates. FRK (Selection of a frame detection function) OPERATION

FRK At the time of frame detection completion

At the time of frame detection un-completing

Low(invalid) ->High (effective) Stopping, RTW and RDT are output starts after frame detection.

High (effective) -> Low(invalid) RTW and RDT output continuously.

RTW and RDT start outputting.

FRS: Frame pattern selection It operates as follows at the time of the setting change of FRS.

FRS (Frame pattern selection) OPERATION

FRS At the time of frame detection completion

At the time of frame detection un-completing

Low -> High, High -> Low *NOTE15 RTW and RDT output continuously.

After detection of the frame data, RTW and RDT start outputting.

*NOTE8: If a PDRX terminal (No. 14 pin) is set to Low once, RTM and RDT come to a halt. After frame pattern detection, RTM and RDT start outputting.

NJU7512VT

Ver.2018-03-19 - 25 -

EVALUATION BOARD PCB Layout

IC1NJU7512

J0

J0

C2

C1

R1

R2

J0J0

J0

J0J0

C4

C3

VDD

AIN

AGSPLLS

RTM

RDT

XBO

XIN

FSE

BR

PDTX

PDRX

TD

TRD

FRS

FRK

MX

NJU7512

C5

J0

J0

J0

J0

J0

J0

(1.8V)

J0

GND

GND

GND

C6

NJU7512VT

Ver.2018-03-19 - 26 -

Circuit Diagram *NOTE9: J0 on the evaluation board are chip jumpers (chip 0Ω register). *NOTE10: An oscillator module (crystal and capacitor) isn’t assembled on the shipped evaluation board from factory.

AIN

PLLS

RTM

RDT

XOUT

XIN

XBO

VSS

VDD2

AGS

FRS

FRK

MX

VDD1

BR

PDTX

PDRX

TD

TRD

FSE

1

+

(10nF)(0.1uF)

(10uF)

(14.7456MHz)

(0.1uF)

(100kΩ)(0.1uF)

VDD

C1 R1

R2

NJU7512

C2

(100kΩ)

C4

C3

C6

C5

(10nF)

20

19

18

17

16

15

14

13

12

11

2

3

4

5

6

7

8

9

10

* VDD=1.8V

NJU7512VT

Ver.2018-03-19 - 27 -

TYPICAL CHARACTERISTICS (Ta = 25°C, VSS = 0V, Please refer to the test circuit, VDD=VDD1=VDD2=1.8V and R1 = 0Ω, unless otherwise noted) [DC CHARACTERISTICS]

Current Consumption in mod. and demod.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8Supply Voltage VDD [V]

Cur

rent

Con

sum

ptio

n I D

D1 [

mA]

(VDD1-VDD2:0Ω, PLLS/FSE/FRS/FRK:VDD, BR/TD:VSS)

Current Consumption in power down

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 2 4 6 8Supply Voltage VDD [V]

Cur

rent

Con

sum

ptio

n I D

D2 [

mA]

(VDD1-VDD2:0Ω, PLLS/FSE/FRS/FRK:VDD, BR/TD:VSS)

Current Consumption in only mod.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8Supply Voltage VDD [V]

Cur

rent

Con

sum

ptio

n I D

D3 [

mA]

(VDD1-VDD2 : 0Ω, PLLS/FSE/FRS/FRK : VDD, BR/TD : VSS)

Current Consumption in only demod.

0

2

4

6

8

10

12

0 2 4 6 8Supply Voltage VDD [V]

Cur

rent

Con

sum

ptio

n I D

D4 [

mA]

(VDD1-VDD2 : 0Ω, PLLS/FSE/FRS/FRK : VDD, BR/TD : VSS)

NJU7512VT

Ver.2018-03-19 - 28 -

[DC CHARACTERISTICS]

Logical High Input Voltage versus

0

1

2

3

4

5

6

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal H

igh

Inpu

t Vol

tage

V IH

[V]

0.75xVDD

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VSS)

PDTX

Logical Low Input Voltage

0

1

2

3

4

5

6

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal L

ow In

put V

olta

ge V

IL [V

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VSS)

0.25xVDD

PDTX

Logical High Input Voltage

0

1

2

3

4

5

6

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal H

igh

Inpu

t Vol

tage

V IH

[V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VDD)

0.75xVDD

Logical Low Input Voltage

0

1

2

3

4

5

6

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal L

ow In

put V

olta

ge V

IL [V

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VDD)

0.25xVDD

FSE

Hysteresis Width of Digital

0.00.20.40.60.81.01.21.41.61.82.0

0 2 4 6 8Supply Voltage VDD [V]

Hys

tere

sis

Wid

th o

f Dig

ital V

HS

[V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VDD)

FSE

Hysteresis Width of Digital

0.00.20.40.60.81.01.21.41.61.82.0

0 2 4 6 8Supply Voltage VDD [V]

Hys

tere

sis

Wid

th o

f Dig

ital V

HS

[V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VSS)

PDTX

FSE

NJU7512VT

Ver.2018-03-19 - 29 -

[DC CHARACTERISTICS]

Logical High Output Voltage

0

1

2

3

4

5

6

7

8

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal H

igh

Out

put V

olta

ge V

OH [V

]

RDT

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS, Io= 0.4mA

Logical Low Output Voltage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8Supply Voltage VDD [V]

Logi

cal L

ow O

utpu

t Vol

tage

V O

L [V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS, Io= -1.6mA

RDT

Digital Input Leakage Current

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8Supply Voltage VDD [V]

Dig

ital I

nput

Lea

kage

Cur

rent

I I [

uA]

FSE

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

Digital Input Leakage Current

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8Supply Voltage VDD [V]

Dig

ital I

nput

Lea

kage

Cur

rent

I I [u

A]

PDTX

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VDD)

Analog Input Leakage Current

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8Supply Voltage VDD [V]

Anal

og In

put L

eaka

ge C

urre

nt I

IA [u

A]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

NJU7512VT

Ver.2018-03-19 - 30 -

[DC CHARACTERISTICS]

AGS Pin Bias Voltage

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8Supply Voltage VDD [V]

AGS

Pin

Bias

Vol

tage

V B

1 [V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V,PDRX : VDD, No load )

0.39xVDD

AGS Pin Offset Voltage

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 2 4 6 8

Supply Voltage VDD [V]

AGS

Pin

Offs

et V

olta

ge V

OS1

[mV]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, Criterion Voltage is 0.4 X VDD)

MX Pin Offset Voltage

-150

-100

-50

0

50

100

150

0 2 4 6 8Supply Voltage VDD [V]

MX

Pin

Offs

et V

olta

ge V

OS2

[mV]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, Criterion Voltage is 0.39 V)

MX Pin Bias Voltage

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 2 4 6 8Supply Voltage VDD [V]

MX

Pin

Bias

Vol

tage

V B

2 [V]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V,PDTX : VDD, No load )

NJU7512VT

Ver.2018-03-19 - 31 -

[AC CHARACTERISTICS] *For demodulation bit error rate, and described elsewhere.

Open Loop Gain

60

65

70

75

80

0 2 4 6 8Supply Voltage VDD [V]

Ope

n Lo

op G

ain

G O

[dB]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

Frequency Bandwidth of Input Buffer Amplifier

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8Supply Voltage VDD [V]

Freq

uenc

y Ba

ndw

idth

f T [

MH

z]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

Frequency Bandwidth of Input Buffer Amplifier

-20

-15

-10

-5

0

5

10

15

20

25

0.1 1 10 100 1000 10000Frequency f T [kHz]

Volta

ge g

ain

[dB]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

PLL Pull-in Bit 2

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8Supply Voltage VDD [V]

PLL

Pull-

in B

it NL

L [bi

t]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V,PLLS : VDD, Less than 22.5deg phase shif t )

Mod. Output at MX Pin

-7.0

-6.8

-6.6

-6.4

-6.2

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0

0 2 4 6 8Supply Voltage VDD [V]

Mod

. Out

put a

t MX

Pin

V OM [d

BV]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX :VDD, PDRX : VDD , MX=1200Hz , Load=30kΩ// 50pF )

NJU7512VT

Ver.2018-03-19 - 32 -

[AC CHARACTERISTICS] *For demodulation bit error rate, and described elsewhere.

Decoding Reference Frequency Tolerance

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8Supply Voltage VDD [V]

Dec

odin

g R

efer

ence

Fre

quen

cy T

oler

ance

D F [%

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V,PLLS : VSS, 1 continuation)

Criterion Frequency is 3.6864MHz

Decoding Reference Frequency Tolerance

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8Supply Voltage VDD [V]

Dec

odin

g R

efer

ence

Fre

quen

cy T

oler

ance

D F [%

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V,PLLS : VDD , 1 continuation)

Criterion Frequency is 3.6864MHz

Crystal Oscillator Frequency

14.743

14.744

14.745

14.746

14.747

14.748

14.749

0 2 4 6 8Supply Voltage VDD [V]

Cry

stal

Osc

illat

or F

requ

ency

F C

X [M

Hz]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

Mod. Distortion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8Supply Voltage VDD [V]

Mod

. Dis

torti

on M

Xd [%

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD,PDRX : VSS, MX=1200Hz, Load=30kΩ// 50pF)

NJU7512VT

Ver.2018-03-19 - 33 -

[TIMING CHARACTERISTICS]

Transmit Hold Time

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8

Supply Voltage VDD [V]

Tran

smit

Hol

d Ti

me

t DA

[us]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, BR : VDD)

Data Set Up Time

0

50

100

150

200

250

300

0 2 4 6 8

Supply Voltage VDD [V]

Dat

a Se

t Up

Tim

e t D

S [n

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

Data Hold Time

0

50

100

150

200

250

300

0 2 4 6 8

Supply Voltage VDD [V]

Dat

a H

old

Tim

e t D

H [n

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

Demod. Output Delay Time

0

50

100

150

200

250

300

0 2 4 6 8

Supply Voltage VDD [V]

Dem

od. O

utpu

t Del

ay T

ime

t OM [u

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

Frame Reset Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

Supply Voltage VDD [V]

Fram

e R

eset

Tim

e t F

R [u

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

Power Up Time

0.0

0.2

0.4

0.6

0.8

1.01.2

1.4

1.6

1.8

2.0

0 2 4 6 8

Supply Voltage VDD [V]

Pow

er U

p Ti

me

t PU [m

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, PDRX : VSS)

NJU7512VT

Ver.2018-03-19 - 34 -

[TIMING CHARACTERISTICS]

Transmit Cycle Time

833

833

833

833

833

834

834

834

834

834

834

0 2 4 6 8Supply Voltage VDD [V]

Tran

smit

Cyc

le T

ime

t TC

[us]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, BR : VDD)

Demod. Delay Time

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. D

elay

Tim

e t R

D [m

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VSS, PDRX : VDD)

Receive Clock Cycle

740

760

780

800

820

840

860

880

900

920

0 2 4 6 8Supply Voltage VDD [V]

Rec

eive

Clo

ck C

ycle

t C

Y [u

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDTX : VDD, BR : VDD)

Receive Clock High Level Width

350

370

390

410

430

450

470

490

510

530

0 2 4 6 8Supply Voltage VDD [V]

Rec

eive

Clo

ck H

igh

Leve

l Wid

th t T

H [u

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VDD, BR : VDD)

Receive Clock Low Level Width

330

350

370

390

410

430

450

470

490

0 2 4 6 8Supply Voltage VDD [V]

Rec

eive

Clo

ck L

ow L

evel

Wid

th t T

L [us

]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VDD, BR : VDD)

Data Output Delay Time

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8Supply Voltage VDD[V]

Dat

a O

utpu

t Del

ay T

ime

t DD [n

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VDD, BR : VDD)

NJU7512VT

Ver.2018-03-19 - 35 -

[TIMING CHARACTERISTICS]

Power Down Delay Time

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8Supply Voltage VDD [V]

Pow

er D

own

Del

ay T

ime

t PD [u

s]

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V, PDRX : VDD, BR : VDD)

NJU7512VT

Ver.2018-03-19 - 36 -

[Demodulation Bit Error Rate]

Demod. BER 3 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

3 E

BR3

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

S/N=6dB

S=-2dBV S=-32dBV

S=-20dBV

Demod. BER 3 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

3 E

BR3

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

S/N=6dB

S=-2dBV

S=-20dBV

S=-32dBV

Demod. BER 1 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

1 E

BR1

S/N=8dB

S=-2dBV

S=-32dBV

S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

Demod. BER 2 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

2 E

BR

2

S/N=10dB

S=-2dBV

S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

S=-32dBV

Demod. BER 1 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

1 E

BR1

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

S/N=8dB

S=-2dBV

S=-32dBV

S=-20dBV

Demod. BER 2 versus Supply VoltagePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 2 4 6 8Supply Voltage VDD [V]

Dem

od. B

it Er

ror R

ate

2 E

BR

2

(VDD1-VDD2 : 0Ω @VDD<5.5V / 3kΩ @VDD>5.5V)

S/N=10dB

S=-2dBV

S=-32dBVS=-20dBV

NJU7512VT

Ver.2018-03-19 - 37 -

[Demodulation Bit Error Rate]

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=8dB

S/N=10dB

S/N=6dB

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=1.8V, S=-2dBV

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V, S=-2dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=10dB

S/N=6dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=8dB

S/N=10dB

S/N=6dB

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=2.0V, S=-2dBV

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=6dB

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=8dB

S/N=10dB

VDD=5.5V, S=-2dBV

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V, S=-2dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=10dB

S/N=6dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V, S=-2dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=6dB

S/N=10dB

S/N=8dB

NJU7512VT

Ver.2018-03-19 - 38 -

[Demodulation Bit Error Rate]

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=10dB

S/N=6dB

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=1.8V, S=-20dBV

Not be measured

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=8dB

S/N=6dB

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=2.0V, S=-20dBV

S/N=10dB Not be measured

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=8dB

S/N=10dB

VDD=5.5V, S=-20dBV

Not be measured

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V, S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=10dB

S/N=6dB

Not be measured

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V, S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=10dB

S/N=6dB

Not be measured

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V, S=-20dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=6dB

S/N=10dB

S/N=8dB

Not be measured

NJU7512VT

Ver.2018-03-19 - 39 -

[Demodulation Bit Error Rate]

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=1.8V, S=-32dBV

S/N=6dB

S/N=10dB

S/N=8dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=1.8V, S=-32dBV

S/N=6dB

S/N=10dB

S/N=8dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=2.0V, S=-32dBV

S/N=6dB

S/N=10dB

S/N=8dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V, S=-32dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=6dB

S/N=10dB

S/N=8dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

(VDD1-VDD2 : 0Ω @VDD<5.5V)

VDD=2.0V, S=-32dBV

S/N=6dB

S/N=10dB

S/N=8dB

Demod. BER versus TemperaturePDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-100 -50 0 50 100 150Ambient Temperature Ta [°C]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V, S=-32dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

S/N=6dB

S/N=10dB

S/N=8dB

NJU7512VT

Ver.2018-03-19 - 40 -

[Demodulation Bit Error Rate]

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V

S=-2dBV

S=-32dBVS=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V

S=-2dBV

S=-32dBV

S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V

S=-2dBV

S=-32dBVS=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V

S=-2dBV

S=-32dBV

S=-20dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V

S=-2dBV

S=-32dBV

S=-20dBV

(VDD1-VDD2 : 0Ω @VDD<5.5V)

Demod. BER versus S/NPDRX:VDD, BR:VDD, PLLS:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

5 6 7 8 9 10S/N [dB]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V

S=-2dBV

S=-32dBV

S=-20dBV

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

NJU7512VT

Ver.2018-03-19 - 41 -

[Demodulation Bit Error Rate]

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dBS/N=10dB

S/N=6dB

S/N=10dB

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=1.8V

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=6dB

S/N=10dB

S/N=10dB

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=10dB

S/N=6dB

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VDD

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

S/N=8dB

S/N=10dB

S/N=6dB

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

VDD=5.5V

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=2.0V

(VDD1-VDD2 : 0Ω @VDD<5.5V)

S/N=8dB

S/N=6dB

S/N=10dB

Demod. BER versus S-LevelPDRX:VDD,BR:VDD,PLL:VSS

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

-40 -30 -20 -10 0S [dBV]

Dem

od. B

it Er

ror R

ate

E B

R

VDD=5.5V

S/N=8dB

S/N=6dB

S/N=10dB

(VDD1-VDD2 : 3kΩ @VDD>5.5V)

NJU7512VT

Ver.2018-03-19 - 42 -

[CAUTION] The specifications on this databook are only

given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.