44
CMC Braking Materials: Current Status and Perspectives Walter Krenkel Ceramic Materials Engineering University of Bayreuth Germany 8 th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 8) September 22 nd 26 th , 2013 Xi‘an, China Courtesy of Porsche AG

2013_krenkel_xian_htcmc_8

Embed Size (px)

DESCRIPTION

2013_krenkel_xian_htcmc_8

Citation preview

  • CMC Braking Materials:

    Current Status and Perspectives

    Walter Krenkel

    Ceramic Materials Engineering

    University of Bayreuth

    Germany

    8th International Conference on High Temperature Ceramic Matrix Composites (HT-CMC 8)

    September 22nd 26th, 2013 Xian, China

    Courtesy of Porsche AG

  • HT

    -CM

    C 8

    2013 /

    2

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Development History and Fundamentals of Braking Performance

    C/SiC Composites: Processing, Microstructure, Properties

    Specific Requirements on Braking Materials

    Design Aspects of Disk Brakes

    Applications in High Performance Transportation Systems

    Challenges and Outlook

    Outline

  • HT

    -CM

    C 8

    2013 /

    3

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    The brakes (along with the streering system) are the most safety-critical accident avoidance

    components of a transportation system

    Brakes convert the kinetic and potential energy of a vehicle into heat at the friction surface

    Limits: 1. Product of tire normal force and tire-road coefficient of friction

    2. Ultimate thermal stability of the

    braking materials (rotor, pads)

    Ventilated brake disks show considerably higher cooling effectiveness compared to

    solid disks

    Fundamentals of Braking Performance

    Brake malfunctioning (London, 22.10.1895)

  • HT

    -CM

    C 8

    2013 /

    4

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Status quo: Grey Cast Iron Brake Disks

    Local overheating of a metallic brake disk

    Ten

    sil

    e s

    tren

    gth

    Temperature

    Th

    erm

    al

    sh

    oc

    k r

    esis

    tan

    ce K

    Temperature

    Crack

    Hot spot

    Established in series cars since more than 50 years

    Casting process results in low costs

    Worldwide production > 350 Mio. rotors per year

    Limited thermal and corrosive stability

    High density of 7.2 g/cm3

  • HT

    -CM

    C 8

    2013 /

    5

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Train Aircraft Automotive Elevator (emergency)

    Crane (emergency)

    ICE 1 Boeing 777 Porsche GT2 Schindler 700 Mayr roba-stop

    Max. speed [m/s] 91.7 72.2 88.9 13.8 30

    Mass [103 kg] 440 208 1.7 18 3.1

    Deceleration [m/s2] 1.3 2.4 14.5

    Brake energy [MJ] 1850 542 6.7 1.7 1.4

    No. of brake disks 192 48 4 8 1

    Energy per brake disk

    [MJ]

    7.21 4.52 / 203 1.7 0.21 1.4

    Train (Knorr Bremse) Aircraft (Goodrich) Automotive (Ferrari)

    Elevator (Schindler)

    Crane (Mayr)

    1 75 % of brake energy 2 40 % of brake energy 3 emergency (RTO)

    Braking Energy of Different Transportation Systems

  • HT

    -CM

    C 8

    2013 /

    6

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Brembo SGL Ceramic Brakes GmbH

    PANOX-based Aircraft Brake System

    First use in aircraft (Concorde, 1970s) and racing cars

    (Formula 1, 1980s)

    + Low density of less than 2 g/cm3

    + High mass-specific energy absorption

    + High thermal shock resistance

    - Friction coefficient highly dependent on

    temperature and humidity

    Not usable for road vehicles

    Carbon/Carbon Composites for Aircraft and Racing Cars

  • HT

    -CM

    C 8

    2013 /

    7

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

    Start of LSI

    process

    development

    (DLR)

    Development

    of disks for

    train brakes

    (DLR, DASA) First C/SiC

    brake pads for

    passenger

    cars (Basic

    patents, DLR)

    First prototypes

    of ventilated

    brake disks

    (DLR)

    Limited editions

    in passenger

    cars (Daimler)

    Joint venture

    Brembo/Daimler

    Series

    production of

    pads (FCT)

    Start of industrial

    series production

    (SGL Brakes/Porsche) Options in different

    models of Audi, Ferrari,

    Mercedes, Porsche, etc.

    DLR SGL Brakes Brembo

    Joint venture

    Brembo/SGL

    Schunk Kohlenstofftechnik

    Development History of C/SiC Friction Pads and Disks

    Standard

    equipment in

    premium cars

  • HT

    -CM

    C 8

    2013 /

    8

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Fiber Resin Additives (opt.)

    Conditioning

    Compounding/Mixing

    Warm Pressing and Curing

    CFRP

    Pyrolysis

    C/C

    First Machining (opt.)

    Joining (opt.)

    Siliconizing

    C/SiC

    Final Machining

    In-process coating (opt.)

    Reaction zone Diffusion of

    Si-atoms

    F. Gern, Research Report DLR, 95-26

    Infi

    ltra

    tio

    n h

    eig

    ht [m

    ]

    Melt-Infiltration of Silicon into C/C-Preforms (Three Step LSI-Process)

  • HT

    -CM

    C 8

    2013 /

    9

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    SEM micrograph of a 2D fabric-reinforced

    composite (cross section)

    Composition 25.1% SiC

    (by weight) 72.5% C

    2.4% Si

    Three different interphases

    Fiber/Matrix CF-SiC (strong)

    Fiber/Matrix CF-C (weak)

    Matrix/Matrix SiC-Si (strong)

    C-fiber

    Amorphous

    C-matrix

    C/C-Segment

    SiC

    Residual silicon

    embedded in SiC

    Strong bondings in

    the CF-SiC interphase

    Weak bondings in

    the CF-C interphase

    LSI-C/SiC Composites with Different Interphases (No Fiber Coating)

  • HT

    -CM

    C 8

    2013 /

    10

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Continuous fibers (fabrics)

    Density 1.8-2.3 g/cm3 SiC-fraction 25-50 %

    Porosity < 6 % Flex. strength 130-290 MPa

    Chopped fibers

    Density 2.0-2.4 g/cm3 SiC-fraction 25-70%

    Porosity < 5 % Flex. strength 65-140 MPa

    Si

    SiC

    C-fibers

    Longitudinal section

    (friction surface)

    Cross section

    Longitudinal

    section

    (friction surface)

    Cross section

    Typical Microstructures of C/SiC Composites

  • HT

    -CM

    C 8

    2013 /

    11

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Short-Fiber C/SiC

    (Sigrasic SGL) GG-20

    Al-MMC (SiC-Particles)

    C/C

    Density kg/dm3 2.3 2.45 7.25 2.7 1.7 - 1.8

    Mass-Specific Heat Capacity J/kg K 800 500 820 - 886 700

    Volume-Specific Heat Capacity J/dm3 K 1800 3600 2350 1200

    CTE (in-plane) 10-6 1/K 1 (RT)

    2 (300 C)

    9 (RT)

    12 (300 C) 14 - 21 0.3

    Thermal Conductivity (transverse) W/m K 40 54 160 - 185 13

    Tensile Strength (in-plane) MPa 20 - 40 150 - 250 310 - 370 70 - 100

    Youngs Modulus (in-plane) GPa 30 90 - 110 86 - 125 40

    Bending Strength MPa 50 - 80 150 - 250

    Strain (in-plane) % 0.3 0.3 - 0.8 0.4 - 1.2

    Thermal Shock Resistance W/m > 27000 < 14000

    Maximum Temperature C 1350 700 400 > 1350

    Source: D. Neudeck, A. Wllner, H. Dietl: Bremsen mit nichtmetallischen Bremsscheiben, in: B. Breuer, K.H. Bill (editors), Bremsenhandbuch, 2006

    Comparison of Braking Materials (Typical RT-Properties)

  • HT

    -CM

    C 8

    2013 /

    12

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    13

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    'K

    Courtesy of SGL Group, Germany

    E

    )1(R'K m

    Thermal Shock Stability of C/SiC

    Thermal shock parameter

  • HT

    -CM

    C 8

    2013 /

    14

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    15

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Braking Power P/A = pv [W/m]

    Low thermal conductivity results in high surface temperatures

    and a decrease in the coefficient of friction

    DLR Stuttgart

    Effect of Low Transverse Thermal Conductivities

  • HT

    -CM

    C 8

    2013 /

    16

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Short Fiber Reinforced C/C-SiC Composites

    20

    22

    24

    26

    28

    30

    20 30 40 50 60

    Fiber Content (CFRP Stage) [Vol.%]

    Tra

    nsvers

    e T

    herm

    al

    Co

    nd

    ucti

    vit

    y

    [W/m

    K]

    W. Krenkel

    Adv.Eng.Mat., 2002

    Thermal Conductivity (at 50 C) Versus Fiber Volume Content

  • HT

    -CM

    C 8

    2013 /

    17

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    30,0

    35,0

    40,0

    1,80 2,00 2,20 2,40

    Density [g/cm]

    Tra

    ns

    ve

    rse

    Th

    erm

    al

    Co

    nd

    uc

    tiv

    ity

    [W/m

    K]

    W. Krenkel

    Adv.Eng.Mat., 2002

    Thermal Conductivity (at 50 C) as a Function of Density

  • HT

    -CM

    C 8

    2013 /

    18

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    C/SiC (HT fibers)

    C/SiC (HM fibers)

    C/SiC (high transverse fiber fraction)

    C/SiC (high SiC fraction)

    Average sliding speed m/s

    Co

    eff

    icie

    nt

    of

    fric

    tio

    n

    Test conditions:

    n = 3000 min-1

    E = 145 kJ

    p = 0.34 MPa W. Krenkel

    Adv.Eng.Mat., 2002

    Effect of Transverse Thermal Conductivity on CoF

  • HT

    -CM

    C 8

    2013 /

    19

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    20

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Rotor

    Friction

    surface

    Stator

    MPA Stuttgart

    Test of C/C-SiC Disks in a High Energy Test Facility

  • HT

    -CM

    C 8

    2013 /

    21

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    0 20 40 60 800

    0,2

    0,6

    0,8

    1

    Time [s]

    0 20 40 60 800

    0,2

    0,6

    0,8

    1

    0 20 40 60 800

    0,2

    0,4

    0,6

    0,8

    1

    Time [s]

    C/C-SiC

    SiC

    C/C

    Coeff

    icie

    nt

    of

    Fri

    cti

    on

    low energy

    Performance of C/SiC composites as a superposition of the tribological behavior of SiC and C/C

    W. Krenkel

    Adv.Eng.Mat., 2002

    CoF of C/SiC Composites (No Additives)

  • HT

    -CM

    C 8

    2013 /

    22

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    23

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    - High surface temperatures result in higher wear rates

    - SiC coatings are extremely wear-resistant

    75

    45 41

    5

    95

    76 73

    12

    0

    20

    40

    60

    80

    100

    Standard C/C-SiC

    (orthotropic)

    C/C-SiC of

    high conductivity

    (orthotropic)

    C/C-SiC with

    optimized

    fibre orientation

    C/C-SiC with

    CVD-SiC coating

    Wear

    [m

    m/

    MJ]

    Disk

    Pads

    W. Krenkel

    Techn. Keramische

    Werkstoffe, 2000

    Wear Behavior of C/SiC (Disk and Pads of Identical Materials)

  • HT

    -CM

    C 8

    2013 /

    24

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Silicon granulate

    Intermediate carbon layer

    (open porosity 40% - 95%) C/C-Substrate

    Silicon granulate

    RB-SiSiC layer

    C/C-SiC Composite

    Siliconizing

    SiC boundary

    layer

    Silicon SiC Relaxation crack

    T Tmelt

    RB-SiSiC layer

    36% wt. SiC

    64% wt. Si

    C/SiC substrate

    SiSiC Coated C/SiC Composites (Process-Integrated Technique)

  • HT

    -CM

    C 8

    2013 /

    25

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    radial cracks

    randomly

    oriented cracks

    circumferentially

    oriented fibers

    randomly orien-

    ted fibers

    SiCralee-

    Coating

    Hub-

    Attachment

    Pads

    Friction surface coated

    with SiSiC

    Uncoated Coated

    W. Krenkel:

    Ceramic Matrix Composite Brakes,

    TECHNA, 2003

    SiSiC Coatings Improve the Wear Stability

  • HT

    -CM

    C 8

    2013 /

    26

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    friction layer

    load-bearing body

    (chopped carbon fibers, Si and

    SiC matrix)

    reaction bonded joint

    Separate friction layer

    Ansprechverhalten

    B CA

    diameter

    Wear indicators in the friction layer

    A: wear indicator arrangement

    B: detail wear indicator

    C: oxidized wear indicator

    wear

    indicator

    friction

    surface

    Courtesy of Porsche AG, Germany

    Friction layer and joining

    Load-bearing body

    Wear indicator

    Wear Indicators in the Friction Surface

    Wear indicator

    Friction layer and joining

    Load-bearing body

  • HT

    -CM

    C 8

    2013 /

    27

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    28

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    SGL Group

    The lower heat conductivity and heat storage capacity of C/SiC necessitate optimized cooling channels

    Weight reduction of 30 50 % in unsprung mass compared to a typical gray cast iron disk

    Internal Ventilation Requires High Degree of Freedom in the Design

    Porsche AG

  • HT

    -CM

    C 8

    2013 /

    29

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    First generation Current design

    One-part design

    Removable cores CFRP FORMING Pressing

    T up to 250C

    PYROLYSIS T up to 1000C

    Inert gas

    SILICONIZING

    Si + C

    T 1600C

    Under Vacuum

    SiC (Matrix) Internally ventilated

    brake disk

    Symmetric parts

    Joining of pyrolized parts Cut-out ring

    Solid brake disk

    Prototype

    Square plate

    Brake disk with involute-

    shaped cooling ducts

    From Solid to Internally Ventilated Brake Disks

  • HT

    -CM

    C 8

    2013 /

    30

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Short Fibers (6mm)

    Fiber Orientation

    0 15 30 45 60 75 90 Mean

    Value Isotropic

    Flexural Strength

    [MPa] 67 62 48 43 30 28 25 44 45,6

    Youngs Modulus [GPa]

    45 40 30 25 22 19 16 28 25

    Strain [%] 0,17 0,16 0,17 n.a. 0,17 0,16 0,16 0,16 0,17

    Flexural Strength

    [MPa]

    Fiber Length MV Max Min SD Var

    3 mm ISO 43 57

    6 30 30

    6 mm ISO 44 57

    8 80 26

    9 mm ISO 88 115

    12 197 63

    Influcence of Fiber Length and Fiber Orientation on the 3-Pt-Bending Strength

    Fle

    xu

    ral S

    tren

    gth

    in

    MP

    a

    90 oriented

    67

    46

    25

    0 oriented Random

    distribution

    Flex. Strength with 6 mm fibers

  • HT

    -CM

    C 8

    2013 /

    31

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    32

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Specific Requirements on Braking Materials for HP Transportation Systems

    1. High thermal shock stability K (avoiding rupture and deformation)

    2. High transverse thermal conductivity (low thermal stresses)

    3. High and stable coefficient of friction (short stopping distance)

    4. Low wear rates (lifetime extension)

    5. High degree of freedom in the design (NNS manufacture,

    short fiber reinforcement)

    7. Novel inorganic pads (NVH improvement)

    6. Strain-compatible joining techniques with the metallic substructure

    (compensation of different CTE)

  • HT

    -CM

    C 8

    2013 /

    33

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    The lower heat absorption of C/SiC results in an overall increase of the temperature at the contact surface

    between disk and pads

    The tribologically active layer (third body layer, TBL) significantly influcences the CoF

    Replacement of organic-based NAO (non-asbestos) or Low-Met pad materials by ceramic materials

    A. Stenkamp, Eurobrake 2013

    Main components of a brake pad (m = 1.1 kg) Composition of a Low-Met pad for C/SiC brake disks

    N. Langhof et al., The Tribological Investigation of C-fiber

    Reinforced Ceramic Brake Pads Manufactured by Liquid

    Silicon Infiltration (LSI) And Chemical Vapour Infiltration (CVI)

    S 9, Wednesday, Hall C, 16:50

    Wiaterek: Bremsenhandbuch, 2012

    Comfort Behavior (NVH Noise, Vibration, Harshness)

    Nonferrous metals: 25,0%

    Steel wool: 15,0%

    Alumina: 5,0%

    Silicon carbide: 3,0%

    Glimmer: 4,0%

    Barite: 2,0%

    Sulphide: 10,0%

    Graphite: 4,0%

    Petrol coke: 12,0%

    Fiber (e.g. PAN): 2,0%

    Rubber: 1,0%

    Resin: 5,0%

    Confidential: 12,0%

  • HT

    -CM

    C 8

    2013 /

    34

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Material Low density (1.8 2.4 g/cm3)

    Extreme thermal stability (up to 1300 C)

    High thermal shock stability

    High corrosion stability (e.g. de-icing salt)

    Low thermal expansion (no distortion)

    Tribology Low wear rates (lifetime brakes)

    High coefficients of friction (0.4 to 0.5)

    High stability of CoF under dynamic and static conditions

    No influence of humidity (no early morning effect)

    Construction/Design High degree of freedom (NNS-technique, integral or modular design)

    Joining by reaction bonding (non-detachable)

    Lightweight design (50 % weight saving)

    Costs About 2,000 per brake unit (disk, pads, calliper, bell, fasteners)

    Characteristics of C/SiC Friction Materials

  • HT

    -CM

    C 8

    2013 /

    35

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Increasingly used in

    premium cars and sports

    cars

    Production volume about

    150 000 disks per year

    Organic pads, ceramic pads

    under development

    More than 250 patents cover

    all aspects of design,

    material composition and

    process parameters Brembo SGL Carbon Ceramic Brakes

    Carbon/Ceramic Automotive Brake Disks

  • HT

    -CM

    C 8

    2013 /

    36

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Left: ceramic clutch PCCC

    Right: conventional clutch (Turbo)

    Porsche AG

    Dual disk clutch of Porsche Carrera GT

    Clutch plate in titanium, clutch lining in C/SiC

    Maximum torque > 1000 Nm

    Diameter 169 mm

    High wear resistance

    Small size (lower gearbox mounting) and low

    mass (improved motor dynamic)

    C/SiC Clutches for Passenger Cars

  • HT

    -CM

    C 8

    2013 /

    37

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    High and stable coefficients of friction Low wear rates

    High material costs result in hybrid brake

    systems (C/SiC rotor, cast iron stators)

    C/SiC

    stators

    C/SiC

    rotor

    Courtesy of Chr. Mayr GmbH, Germany

    Bra

    kin

    g T

    orq

    ue

    [N

    m]

    Bra

    kin

    g T

    orq

    ue

    [N

    m]

    Braking Time [s]

    Organic

    linings

    C/SiC

    rotor and

    C/SiC

    stators

    Braking Time [s]

    Emergency Brakes for Conveying Systems

  • HT

    -CM

    C 8

    2013 /

    38

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Schindler / CH

    vmax: ~ 13,5 m/s

    Mass: ~ 18 000 kg

    Tmax: ~ 1200 C

    0,20

    0,25

    0,30

    0,35

    0,40

    0,45

    0,50

    0 200 400 600 800

    p . v [W/mm]

    D

    yn

    am

    ic c

    oeff

    icie

    nt

    of

    fric

    tio

    n

    DLR11 DLR14 DLR16 DLR19 DLR20 DLR15 DLR17 DLR18 DLR21 DLR22C-shaped

    Spring Pack

    C/SiC

    Friction

    Pad Carrier

    Plate

    Friction pad: Graded C/SiC materials

    L x B x T: 142 x 34 x 6 mm

    Friction partner: Metallic guide rail St 44

    Emergency Brakes of High-Rise Lifts

  • HT

    -CM

    C 8

    2013 /

    39

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Through-thickness gradient of SiC SiSiC coatings

    Two Approaches for Lifetime Brake Pads

  • HT

    -CM

    C 8

    2013 /

    40

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Prognosis:

    Cost reduction potential

    due to volume effects and

    due to the implementation

    of new technologies

    D. Neudeck, A. Wllner, H. Dietl:

    Bremsen mit nichtmetallischen Bremsscheiben, in:

    B. Breuer, K.H. Bill (editors), Bremsenhandbuch, 2006

    Technology I Technology II Technology III

    Laboratory scalediscontinuous processing,expensive fibers

    Interlinking productionprocessesone-piece manufacture,heavy tows

    Continuos processesnew carbon fibers,continuous furnaces

    2005

    10 000 20 000 40 000 80 000 160 000 1 000 000

    Prognosis

    Effectivetrend

    Effective trend:

    Only marginal cost reductions

    because of volume effects (high

    diversity of geometries)

    Standardization of brake

    disks necessary

    Cost Reduction Potentials (Brake Disks)

  • HT

    -CM

    C 8

    2013 /

    41

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Reibring

    Kreissegmente

    Reibring

    Friction ring

    Friction ring

    Cooling duct segments

    Manufacture of standardized and optimized C/C friction rings and cooling

    duct segments separately

    Subsequent siliconizing after joining

    Modular Design Concept Using in-situ Joining Techniques

    Cooling duct segments

    Friction ring

    Friction ring

  • HT

    -CM

    C 8

    2013 /

    42

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    Cost estimation based on the series production of C/SiC rotors

    (without metallic bell and fasteners)

    Share of Total Costs

    33%

    45%

    11%

    11%

    Raw Materials

    Green Body Shaping

    Final Machining Fibers

    CFRP warm pressing

    Long processing time

    Matrix

    Near net shape manufacture

    High tooling costs

    High amount of manual work

    100% inspection

    Thermal Processes

    Long processing times

    High investment costs

    High energy costs

  • HT

    -CM

    C 8

    2013 /

    43

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    High manufacturing costs, high amount of manual labor

    Development of automated and fast processes of all manufacture steps

    Simplier design for new applications (design is still metal-like) CFRP manufacture

    - Infiltration of preforms of chopped fibers (instead of warm pressing of

    fiber/matrix compounds)

    - Injection molding or injection compression technologies Pyrolysis

    - Microwave assisted heating

    - Continuously operated processes instead of batch based furnaces Siliconizing

    - Electric field assisted processes

    - Continuously operated silicon infiltration Quality assurance

    - Standardization of engineering guidelines and test methods

    - Development of a closed simulation process chain (including relability and

    lifetime prediction)

    Limiting Factors and Main Challenges

  • HT

    -CM

    C 8

    2013 /

    44

    University of Bayreuth Lehrstuhl Keramische Werkstoffe

    The breakthrough for mass production has not yet been attained (niche applications in high-end transportation systems)

    Possible scenario: Key technology for brake systems in high performance cars (worldwide production of about 600 000 vehicles/year in the luxury class)

    New developments of brake systems (brake-by-wire) and the increasing electrification of future generations of vehicles (e.g. weight sensitive wheel hub motors) widen the

    field of applications

    Mid-term goal is a cost reduction to