21
262: Agriculture A"er this lecture you should be able to… Iden5fy and describe the factors that contribute to the suitability of soil for agriculture. Explain the integrated role of air, water, fer5lizers and soil in the produc5on of agricultural goods. Iden5fy and analyze the impacts that large scale agriculture has on soil and the surrounding ecosystems. Describe various soil conserva5on techniques and evaluate their effec5veness. Explain what it sustainable agriculture means with respect to soil.

262:%Agriculture% - Mr. Doc's Online Labmrdocsonlinelab.com/index/APES_II_files/2-6-2 Agriculture.pdf · Soil%“Fertility”% For%bestgrowth,%plants%need% arootenvironmentthat supplies

Embed Size (px)

Citation preview

2-­‐6-­‐2:  Agriculture  

  A"er  this  lecture  you  should  be  able  to…    Iden5fy  and  describe  the  factors  that  contribute  to  the  suitability  of  soil  

for  agriculture.  

  Explain  the  integrated  role  of  air,  water,  fer5lizers  and  soil  in  the  produc5on  of  agricultural  goods.  

  Iden5fy  and  analyze  the  impacts  that  large  scale  agriculture  has  on  soil  and  the  surrounding  ecosystems.  

  Describe  various  soil  conserva5on  techniques  and  evaluate  their  effec5veness.  

  Explain  what  it  sustainable  agriculture  means  with  respect  to  soil.  

Soil  conservation  

  Healthy  soils  are  essen5al  for  agricultural  produc5on    Human  ac5vi5es  (overcul5va5on,  overgrazing,  deforesta5on)  cause  

erosion  

  Sustainability  means  doing  all  we  can  to  reduce  erosion    Because  of  the  slow  process  of  soil  forma5on,  it  is  considered  a  

nonrenewable  resource.    When  it’s  gone,  it’s  gone!  

  Soil  conserva5on  must  be  prac5ced  at  two  levels    Individual  landholders  can  best  preserve  soil  through  tradi5onal  

knowledge  and  prac5ces    Public  policies  can  lead  to  conserva5on  or  disaster  

Soil  “Fertility”  

  For  best  growth,  plants  need  a  root  environment  that  supplies    Mineral  nutrients,  water,  

oxygen    The  proper  pH  and  salinity  

  Soil  fer)lity:  the  soil’s  ability  to  support  plant  growth    The  presence  of  proper  

amounts  of  nutrients  and  all  other  needs  

  Farmers  refer  to  a  soil’s  ability  to  support  plant  growth  as  )lth  

  Ini5ally  become  available  through  rock  weathering    Phosphate,  potassium,  calcium,  

etc.    Much  too  slow  to  support  

normal  plant  growth    Breakdown  and  release  

(recycling)  of  detritus  provides  most  nutrients  

  Leaching:  nutrients  are  washed  from  the  soil  by  water    Decreases  soil  fer5lity    Contributes  to  water  pollu5on    Nutrient-­‐holding  capacity:  the  

soil’s  capacity  to  bind  and  hold  nutrient  ions  un5l  they  are  absorbed  by  roots  

Fertilizer    Agriculture  removes  nutrients  

from  the  soil  

  Fer)lizer:  nutrients  added  to  replace  those  that  are  lost  

  Inorganic  fer)lizer:  chemical  formula5ons  of  nutrients    Lacks  organic  maTer    Much  more  prone  to  leaching    

  Organic  fer)lizer:  plant  or  animal  wastes  or  both    Manure,  compost  (roTed  

organic  material)    Leguminous  fallow  crops  

(alfalfa,  clover)      Food  crops  (len5ls,  peas)  

Fertilizer  Use  

  Can  provide  op5mal  amounts  of  nutrients  efficiently    But  it  lacks  organic  maTer  to  support  organisms  and  build  soil  

structure  

  It  can  keep  nutrient  content  high  under  intensive  cul5va5on  (two  or  more  cash  crops/year)      But  mineraliza5on  and  soil  degrada5on  proceed    Addi5onal  fer5lizer  leaches  into  waterways  

  Chemical  fer5lizers  have  a  valuable  place  in  agriculture    Organic  fer5lizers  may  not  have  enough  nutrients  

  Growers  must  use  each  fer5lizer  as  necessary  

Water  is  crucial  for  plants    Transpira)on:  water  is  absorbed  by  roots  and  

exits  as  water  vapor  through  pores  (stomata;  singular  =  stoma)  in  the  leaves    Oxygen  enters,  and  carbon  dioxide  exits,  

through  stomata    Loss  of  water  through  stomata  can  be  drama5c  

  Wil6ng:  a  plant’s  response  to  lack  of  water    Conserves  water    Shuts  off  photosynthesis  by  closing  stomata    Severe  or  prolonged  wil5ng  can  kill  plants  

  High  enough  salt  levels  can  draw  water  out  of  a  plant    By  osmosis    Dehydrates  and  kills  plants  

  Novice  gardeners  also  kill  plants  by  overwatering  (drowning)      Roots  must  breathe  to  obtain  oxygen  for  

energy  

Water  and  water-­‐holding  capacity    Water-­‐holding  capacity:  soil’s  ability  to  hold  water  

a"er  it  infiltrates  

  Poor  holding  capacity:  water  percolates  below  root  level    Plants  must  depend  on  rains  or  irriga5on    Sandy  soils  

  Evapora5ve  water  loss  depletes  soil  of  water    The  O  horizon  reduces  water  loss  by  covering  

the  soil  

  Land  plants  depend  on  loose,  porous  soil    Soil  aera)on:  allows  diffusion  of  oxygen  into,  

and  carbon  dioxide  out  of,  the  soil    Overwatering  fills  air  spaces  

  Compac)on:  packing  of  the  soil    Due  to  excessive  foot  or  vehicular  traffic    Reduces  infiltra5on  and  runoff    Strongly  influenced  by  soil  texture  

Irrigation    Irriga5on:  supplying  water  to  croplands  ar5ficially  

  Drama5cally  increases  produc5on  

  Is  a  major  contributor  to  land  degrada5on  

  Flood  irriga5on:  river  water  flows  into  canals  to  flood  fields  

  Center-­‐pivot  irriga5on:  water  is  pumped  from  a  well  into  a  giant  pivo5ng  sprinkler  

  Drip  irriga5on:  tubes  are  run  parallel  with  crop  lines  and  provide  slow,  constant  water  supply  

  The  U.S.  Bureau  of  Reclama5on  is  involved  with  supplying  irriga5on  water  to  the  western  states  

  Irriga5ng  4  million  hectares  (10  million  acres)  

  Worldwide  irriga5on  is  huge  and  is  s5ll  rising  

The  soil  community  

  To  support  plants,  soils  must    Have  nutrients  and  good  nutrient-­‐holding  capacity  

  Allow  infiltra5on  and  have  good  water-­‐holding  capacity  

  Resist  evapora5ve  water  loss  

  Have  a  porous  structure  that  allows  aera5on  

  Have  a  near-­‐neutral  pH  

  Have  low  salt  content  

  According  to  the  principle  of  limi5ng  factors,  the  poorest  aTribute  is  the  limi5ng  factor  

Soil  degradation  

  Turnover  of  plant  material  produces  detritus    When  humans  cut  forests,  graze  livestock,  or  plant  crops,  the  soil  

is  managed  or  mismanaged  

  Soil  degrada6on:  occurs  when  key  soil  aTributes  required  for  plant  growth  or  other  ecosystem  services  deteriorate  

  Some  reports  on  soil  degrada5on  are  incorrect  or  outdated    75%  of  the  land  in  Burkina  Faso  was  said  to  be  degraded  

  But  agricultural  yields  have  increased  due  to  soil  and  water  conserva5on  

Mineralization  

  If  detritus  is  lost,  soil  organisms  starve    Soil  will  no  longer  be  kept  loose  

and  nutrient-­‐rich    Humus  decomposes,  breaking  

down  the  clumpy  aggregate  structure  of  glued  soil  par5cles    Water-­‐  and  nutrient-­‐holding  

capaci5es,  infiltra5on,  and  aera5on  decline  

  Mineraliza)on:  loss  of  humus  and  collapse  of  topsoil    All  that  remains  are  the  

minerals  (sand,  silt,  clay)    Topsoil  results  from  balancing  

detritus  and  humus  addi5ons  and  breakdown  

Drylands  and  desertification  

  Clay  and  humus  are  the  most  important  parts  of  soil    For  nutrient-­‐  and  water-­‐holding  

capacity    Their  removal  results  in  nutrients  

being  removed  

  Regions  with  sparse  rainfall  or  long  dry  seasons  support  grasses,  scrub  trees,  and  crops  only  if  soils  have  good  water-­‐  and  nutrient-­‐holding  capacity    Erosion  causes  these  areas  to  become  

deserts  

  Deser)fica)on:  a  permanent  reduc5on  in  the  produc5vity  of  arid,  semiarid,  and  seasonally  dry  areas  (drylands)    Does  not  mean  advancing  deserts  

Salinization  

  Saliniza)on:  the  accumula5on  of  salts  in  and  on  the  soil    Suppresses  plant  growth  

  Even  the  freshest  irriga5on  water  has  some  salt    Watering  dryland  soils  dissolves  

minerals  in  the  soil    Evapora5on  or  transpira5on  

leaves  salts  behind  

  Saliniza5on  is  considered  a  form  of  deser5fica5on    1.5  million  hectares  (3.7  million  

acres)  are  lost  each  year  to  saliniza5on  and  waterlogging  

  160,000  hectares  (400,000  acres)  in  California  are  unproduc5ve,  cos5ng  $30  million/year  

  Enough  water  must  be  used  to  leach  salts  downward    Insufficient  drainage  results  in  

waterlogged  soils    Installing  drainage  pipes  is  

expensive    Kesterson  Na5onal  Wildlife  Refuge  

received  drainage  from  selenium-­‐enriched  soils    Killing  birds,  fish,  insects,  and  

plants    It  was  declared  a  toxic  waste  

dump    It  has  been  drained  and  capped  

with  soil    Over  14  other  U.S.  loca5ons  have  

toxic  irriga5on  water    The  “Kesterson  Effect”  

Erosion  

  Erosion:  the  process  of  soil  and  humus  par5cles  being  picked  up  and  carried  away  by  water  and  wind    Occurs  any  5me  soil  is  bared  and  

exposed  

  Soil  removal  may  be  slow  and  gradual  (e.g.,  by  wind)  or  drama5c  (e.g.,  gullies  formed  by  a  single  storm)  

  Vegeta5ve  cover  prevents  erosion  from  water    Reducing  the  energy  of  raindrops    Allowing  slow  infiltra5on  

  Grass  is  excellent  for  erosion  control  

  Vegeta5on  also  slows  wind  velocity  

Splash,  sheet,  and  gully  erosion  

  Splash  erosion:  begins  the  process  of  erosion    Raindrops  break  up  the  clumpy  structure  of  topsoil    Dislodged  par5cles  wash  between  other  aggregates    Decreases  infiltra5on  and  aera5on  

  Sheet  erosion:  the  result  of  decreased  infiltra5on    More  water  runs  off,  carrying  away  fine  par5cles  

  Gully  erosion:  water  converges  into  rivulets  and  streams    Water’s  greater  volume,  velocity,  energy  remove  soil  

  Once  started,  erosion  can  turn  into  a  vicious  cycle    Less  vegeta5on  exposes  soil  to  more  erosion  

Causes  of  erosion:  overcultivation  

  Plowing  to  grow  crops  exposes  soil  to  wind  and  water  erosion    Soil  remains  bare  before  plan5ng  and  a"er  harvest  

  Plowing  causes  splash  erosion      Destroying  soil’s  aggregate  structure  

  Decreasing  aera5on  and  infiltra5on  

  Tractors  compact  soil    Reducing  aera5on  and  infiltra5on  

  Increasing  evapora5ve  water  loss  and  humus  oxida5on  

  Rota5ng  cash  crops  with  hay  and  clover  is  sustainable  

No-­‐till  planting  

  No-­‐)ll  agriculture:  a  technique  allowing  con5nuous  cropping  while  minimizing  erosion    Rou5nely  prac5ced  in  the  U.S.  

  A"er  spraying  a  field  with  herbicide  to  kill  weeds    A  plan5ng  apparatus  cuts  a  furrow  

through  the  mulch    Drops  seeds  and  fer5lizer    Closes  the  furrow  

  The  waste  from  the  previous  crop  becomes  detritus    So  the  soil  is  never  exposed  

  Low-­‐5ll  farming  uses  one  pass  (not  6–12)  over  a  field  

Reducing  soil  erosion  

  Contour  strip  cropping:  plowing  and  cul5va5ng  at  right  angles  to  contour  slopes    Shelterbelts:  protec5ve  belts  of  trees  

and  shrubs  planted  along  plowed  fields  

  The  U.S.  Natural  Resource  Conserva)on  Service  (NRCS)    Established  in  response  to  the  Dust  

Bowl    Regional  offices  provide  informa5on  to  

farmers  and  others  regarding  soil  and  water  conserva5on  prac5ces  

  U.S.  soil  erosion  has  decreased  through  conserva5on    Windbreaks,  grassed  waterways,  

vegeta5on  to  filter  runoff  

Overgrazing  

  Livestock  graze  on  grasslands  and  cleared  forest  slopes    65%  of  drylands  are  grasslands  

  Land  is  o"en  overgrazed    Barren  land  is  eroded  and  degraded  

  In  the  1800s  American  buffalo  (bison)  were  slaughtered    Rangelands  stocked  with  caTle  were  overgrazed    Leading  to  erosion  and  growth  of  unpalatable  plants  

  U.S.  western  rangelands  produce  less  than  50%  of  the  forage  they  produced  before  commercial  grazing    Yet  20%  of  rangelands  remain  overstocked  

The  other  end  of  the  erosion  problem  

  Water  that  does  not  infiltrate  enters  streams  and  rivers    Causing  flooding  

  Sediment:  eroded  soil  carried  into  streams  and  rivers    Clogs  channels,  intensifies  floods,  fills  reservoirs    Kills  fish  and  coral  reefs    Damages  streams,  rivers,  bays,  estuaries  

  Excess  sediments  and  nutrients  from  erosion  are  the  greatest  pollu5on  problem  in  many  areas  

  Groundwater  is  depleted    Rainfall  runs  off  and  does  not  refill  soil  or  ground  water  

End-­‐of-­‐Lecture  Objectives  

  Iden5fy  and  describe  the  factors  that  contribute  to  the  suitability  of  soil  for  agriculture.  

  Explain  the  integrated  role  of  air,  water,  fer5lizers  and  soil  in  the  produc5on  of  agricultural  goods.  

  Iden5fy  and  analyze  the  impacts  that  large  scale  agriculture  has  on  soil  and  the  surrounding  ecosystems.  

  Describe  various  soil  conserva5on  techniques  and  evaluate  their  effec5veness.  

  Explain  what  it  sustainable  agriculture  means  with  respect  to  soil.