3_Analog_SP

Embed Size (px)

Citation preview

  • 8/19/2019 3_Analog_SP

    1/29

    3 Analog Signal Processing- Data Acquisition

    3.1 Analog Measurement Procedures

    3.3 Measurement of Impedances

    3.2 Measurement of Resistances

    Three- and Four-Wire-Method, Self-Heating

    ¼-Bridge, ½-Bridge, and Full-Bridge

    3.3.1 AC-Current-Bridges

    3.3.2 Measurement with Oscillator 

    P. 3-1Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    3.3.4 Power Measurement Method

    3.4 Measurement of Capacitances

  • 8/19/2019 3_Analog_SP

    2/29

    3.1 Analog Measurement Procedures

    Why analog measurement procedures?

    Most sensors have an analog output signal

    No quantization-error and no conversion time

    Current, voltage, resistance

     Analog measurement systems can be faster!

    Low-cost signal processing and realization

    P. 3-2Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    3/29

    Impedance

    L

     jX R Z   

    R Z  

    L j Z L  

    C  j Z C 

      1

    L j R Z  Coil real L    ,

    C  j G

     jBGY 

    losses

    lossesreal 

     

    L R Coil 

    00   C 

    G j 

    B

     j  r r r 

    Glosses

    cabel cabel    C  j R R Z     ||

    cabel C 

    R cabel 

    ideal real

    3.1 Analog Measurement Procedures

    P. 3-3Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    4/29

    4-Wires-Method

    3.2 Measurement of Resistances

    2-Wires-Method

    Error by• Temperature dependence of

    wires

    Cable length RL

    4-Wires-Method

    Total separation between current-

    and voltage-wires

    Rx

    RL

    RL

    U

    I

    UL

    UL

    Utarget valueRx

    RL

    RL

    I

    RL

    UM

    RL

    I

    IU≈0

    U R    M  x  

    IU≈0

    P. 3-4Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    5/29

    3.2 Measurement of Resistances

    P. 3-5Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Compensation of cable resistance and itstemperature dependence

    3-Wires-Method

    Prerequisit

    • 3 wires have the identical length and

    temperature

    Rx

    RL

    RL

    IRL

    IU≈0    IRR2U xL3L  

     x M 

    L   R I 

    U R   

      I R R U  L x M   

    I R U U   x M L    23

    U U R    LM  x 

    32  

    3-Wires-Method

    2-Wires-Method

    Error by• Temperature dependence of

    wires

    Cable length RL

    Rx

    RL

    RL

    U

    I

    UL

    UL

    Uwahr 

  • 8/19/2019 3_Analog_SP

    6/29

    Which current schould be used?

    3.2 Measurement of Resistances

    P. 3-6Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    I

    U R  

    Signal to noise

    Ratio

    ISNRIresolution limit

    ILow Energy Consumption

    Self-Heating

    I SH

    Under this limitsensor signal

    disappears in

    the noise

  • 8/19/2019 3_Analog_SP

    7/29

     x R I P   2

    Converted electric power 

    P R T  W th  

    Self-heating through accumulated heat Tth

    Rw: Heat resistance is dependent on:

    - Packaging

    - Surrounding media, its temperature and velocity!

    Self-Heating

    3.2 Measurement of Resistances

    P. 3-7Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    8/29

    Comparison with a reference resistance (reference principle)

    Us

    Ur 

    Ux

    Rr 

    Rx

     x  x    R 

    U R  

    Rr and Rx should have the same order of

    magnitude

    Reduction of uncertainty through

    common mode rejection

    Typical values Rr = Rx, max

    Rr : Reference resistance

    Rx: Resistance to be measured

    3.2 Measurement of Resistances

    P. 3-8Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    9/29

    Voltage Devider

    Suitable for high resistance values

    r  x 

    U

    UURR

      0

    0U

    RR

    RU

     x r 

    r   

    R r 

    U 0

    R x

    U r 

    3.2 Measurement of Resistances

    P. 3-9Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Realization with op-amps

    Rx >> Rr 

    Ur 

  • 8/19/2019 3_Analog_SP

    10/29

    P. 3-10

    Supply with a constant voltage

    Supply with a constant current

    4 –Wires-connection and constant

    current supply

    Inverting Amplifier 

     x a   R R 

    U U 

    0

    0

     x a   R I U  0

    I4=0

    I3=0

     x a   R I U  0

    Offset-currents and offset-voltages are

    problematic if resistances have small

    changes!

    U0 =

    3.2 Measurement of Resistances

  • 8/19/2019 3_Analog_SP

    11/29

    Wheatstone-Bridge

    Bridge Voltage

    Sensitivity

    Proportional to supply voltage

    Dependence on Rx is nonlinear!

    3.2 Measurement of Resistances

    P. 3-11Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    R R R R      321

     

      

     

     x 

    d R R 

    R U U 

    2

    10

      02U 

    R R 

    U E 

     x  x 

    R1 R2

    R3Rx

    Ud

    U0

      0321312

    3

    3

    21

    20

    U R R R R 

    R R R R R R 

    R R 

    R U U 

     x 

     x 

     x 

     

     

     

     

  • 8/19/2019 3_Analog_SP

    12/29

    12P. 3-12Prof. Dr.-Ing. O. KanounProfessur für Mess- und Sensortechnik

    R1 R2

    R3Rx

    Ud

    U0

    R R R  x      0

     x  x 

     x d 

    R R R R 

    R R R R 

    R R 

    R R 

    U U 

     

     

     

     

    321

    312

    3

    3

    21

    2

    0

    0

    0

    0

    0

    0

    0000

    0000

    424U 

    R U 

    R R 

    U R R R R R 

    R R R R R U d 

    0

    04U R 

    R U d 

    0321   R R R R   

    Wheatstone-Bridge

    3.2 Measurement of Resistances

  • 8/19/2019 3_Analog_SP

    13/29

    P. 3-13

    ))(( 4321

    41320

    R R R R 

    R R R R U U d 

    [Schrüfer]

     

      

       

    4

    4

    3

    3

    1

    1

    2

    20

    4   R 

    R U U d 

    For small R

    + R0+R

    -   R0-R

    R0

    U d near a certain working point

    ¼-brücke

    ½-brücke

    Fullbridge

    1/4-, 1/2- and Fullbridge

    3.2 Measurement of Resistances

  • 8/19/2019 3_Analog_SP

    14/29

     AC-Bridge

    Z2 Z1

    Ud

    U0

    Z4 Z3

    0

    34

    4

    21

    2

    U Z Z 

    Z Z 

    Z U d     

     

     

     

    3.3 Measurement of Impedances

    2341   Z Z Z Z    Balancing for :

    k  j 

    k k    eZ Z    

    2341

    2341       j  j  j  j 

    eZ eZ eZ eZ   

      23412341

             j  j  eZ Z eZ Z 

    With

    Necessary conditions for Balancing:

    2341   Z Z Z Z   

    2341         

    2. Modulus condition

    1. Phase condition

    !P. 3-16Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    15/29

    Capacitance bridge by Wien(measurement of lossy capacitances)

    Ud

    U0

    R4 R3

    C2 C1

    R2 R1

    4

    1

    1

    1

    1

    3

    2

    2

    2

    2

    11  R

    C  j R

    C  j R

     R

    C  j R

    C  j R

     

     

     

     

    1

    3

    42   R

     R

     R R  

    1

    4

    3

    2  C  R

     RC  

    R 2,C 2 are unknownt

    R 1,C 1 are modifiable

    Condition for balancing

    3.3.1 AC-Current-Bridge

    P. 3-17Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    16/29

    Inductivity-Bridge by Maxwell(Measurement of lossy Inductivities)

    Inductivity-Bridge by Maxwell-Wien(Measurement of lossy Inductivities)

    L2, R2 are unknown

    L2, R2 are unknown

    3.3.1 AC-Current-Bridge

    P. 3-18Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    17/29

    U d

    U dU d

    3.3.1 AC-Current-Bridge

    P. 3-19Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    18/29

    Checking the phase condition

    03  

    04   

    02  

    03  

    04   

    01  

    02  

    03  

    04   

    01  

    02  

    04   

    023     

    041     

    023     

    041     

    23       

    Balancing is

    possible

    Balancing is

    not possible

    Balancing is

    possible

    beliebig

    The judgement of the modulus condition is in the special case necessary!

    3.3.1 AC-Current-Bridge

    P. 3-20Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 3_Analog_SP

    19/29

    Frequency dependent

    Balancing

    3.3.1 AC-Current-Bridge

    Frequency dependence of the bridge balancing

    2341   Z Z Z Z   

    111   L j R Z     

    22   R Z   

    33   R Z   

    444

    1

    C  j R Z   

      234

    4111

    R R C 

     j R L j R     

      

     

      

    234

    141   R R 

    C LR R   

    414

    1 R LC 

    R  

     

    P. 3-21Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    3 3 1 AC C B id

  • 8/19/2019 3_Analog_SP

    20/29

    2341  Z Z Z Z   

    Frequency independent balancing!

    3.3.1 AC-Current-Bridge

    Frequency dependence of the bridge balancing

    111   L j R Z     

    22   R Z   

    33   R Z   

    44

    4 11

    C  j R 

     

    4123   R R R R   

    32

    14

    R R 

    LC   

    P. 3-22Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    3 3 2 Measurement with Oscillators

  • 8/19/2019 3_Analog_SP

    21/29

    G  

      

     

    C L j R  X  j R Z 

      1

    C L

    r r 

      1

    Resonance frequency:

    LC f r 

    1

    2

    1

    L or C measurement

    L

    C

    R

    ~~

    Example

    f  = constant

    L= constant

    C

    U R

    C 0C 0-C   C 0+C

    3.3.2 Measurement with Oscillators

    P. 3-23Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    3 3 2 Measurement with Oscillators

  • 8/19/2019 3_Analog_SP

    22/29

    24

    Parallel resonant circuit

    series resonant circuit

    Serie resonant circuit

    Resonance: maximum currentminimum impedance

    The resonance frequency:    =1

    2  =

    1

    3.3.2 Measurement with Oscillators

    P. 3-23Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Parallel resonant circuit

    Resonance: minimum current

    maximum impedance

    3 3 3 Power Measurement Method

  • 8/19/2019 3_Analog_SP

    23/29

    P. 3-25Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    0 R 

    uu pw 

    2

    ˆˆ10

    Measurement of active power 

    )sin(ˆ)cos(ˆ)sin(ˆ

    100 t ut C ut R u p       

    t uu    sinˆ00  

    R  x    i i i   

          t uu   sinˆ11  selectable

    )sin()cos(ˆˆ)(sinˆˆ

    10

    201 t t C uut R 

    uu      

    )2sin(2

    ˆˆ

    )2cos(2

    ˆˆ

    2

    ˆˆ100101

    t C 

    uu

    t R 

    uu

    uu

        

    y  x y  x y  x      sinsin21

    )cos()sin(

    )2cos(12

    1)(sin2  x  x   

    Case 1:

     R

    uudt t  p

    T  p

    w2

    ˆˆ110

    0

    Low-passMultiplication

    3.3.3 Power Measurement Method

    3 3 3 Power Measurement Method

  • 8/19/2019 3_Analog_SP

    24/29

    90    X 

    Measurement of the idle power 

    2

    ˆˆ10uuC  pB    

    t uu    sinˆ00  

    R  x    i i i   

          t uu   sinˆ11 selectable

    90 Case 2:

    3.3.3 Power Measurement Method

    P. 3-26Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    )cos(ˆ)cos(ˆ)sin(ˆ

    100 t ut C ut R u p       

    )(cosˆˆ)cos()sin(ˆˆ 2

    1001 t C uut t 

    uu      

    )2cos(12

    ˆˆ

    )2sin(2

    ˆˆ1001

    t C 

    uu

    t R 

    uu

        

    y  x y  x y  x      sinsin2

    1)cos()sin(

    )2cos(121)(sin2  x  x   

      C uu

    dt t  pT 

     pT 

    w     2

    ˆˆ1 10

    0

    )2cos(12

    1)(cos2  x  x   

    Low-passMultiplication

    3 4 Capacitance Measurement

  • 8/19/2019 3_Analog_SP

    25/29

    Practical capacitance has:

    • Losses

    • Stray field outside the electrodes

    • Further stray capacitances to the environment:

    Between the electrodes and the shielding screen

    Between the electrodes and the measurement circuit

    Cp1, Cp2: Stray capacitanceson circuit side

    Cs1, Cs2: Stray capacitances

    on sensor side

    3.4 Capacitance Measurement

    P. 3-27Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Practical aspects

    Measured Capacitance

    3 4 Capacitance Measurement

  • 8/19/2019 3_Analog_SP

    26/29

    P. 3-28

    3.4 Capacitance Measurement

    Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    S1: On , S2: Off Charging

    S1: Off , S2: On Discharging

     = ( 1 −

      )    =

     × (1

    )

    During the charging:

    During the discharging:

     =  × −

         =

     × (

    )

    The measurement is affected by :

    • Stray capacitance between the capacitance electrodes and earth

    • Stray capacitance caused by the switches (S1, S2)

    Charging/Discharging Method

    3 4 Capacitance Measurement

  • 8/19/2019 3_Analog_SP

    27/29

    C x

  • 8/19/2019 3_Analog_SP

    28/29

    Up

    U0

    r  x  p

    C C U U 

      0

    P. 3-30Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Voltages F1 und F2 are switched together with the relai “Control”

    During F1 is switched on U p :

    - Relay “Control” is closed

    - The (-)-Input of the OPV is on ground

    - The capacitance C x is loaded

    During F2 is switched on U p :

    - The Relay “Control” is opened

    - It flows a current from C x over C i

    3.4 Capacitance MeasurementCharge-Transfer Method (2)

    3 4 Capacitance Measurement

  • 8/19/2019 3_Analog_SP

    29/29

    P. 3-31Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    3.4 Capacitance Measurement

    Reference Method

    V0  =  (     +  

    ´ + ( 

    ´ ))

    Phase 1: Charging S1: On , S2: Off

    Phase 2: Discharging S1: Off , S2: On

     Assumptions: Stay capacitances are symmetrical

    Quality of reference capacitance

    Reference

    CapacitanceMeasured

    Capacitance