232
ISL Engineering and Land Services Ltd. islengineering.com ISL is proud to be Bullfrog Powered | A Green 30 Employer | One of Canada’s Best Small and Medium Employers Choose an item. DESIGN TABLE OF CONTENT I. CONTENT AND CORRESPONDING DESIGN FILE. 11_ DESIGN LOADING DESIGN CODE : ABC2014 PART 9 WITH PART 4 COMPONENTS. ANY STRUCTURE NOT SPECIFICALLY DETAILED IN THESE DRAWINGS TO CONFORM TO PART 9 IMPORTANCE FACTOR (Is) = 1 ROOF DEAD LOADS: ROOF & INSULATION ---------------------------------------------------- 0.17kPa FRAMING--------------------------------------------------------------------- 0.30kPa CEILING, MECHANICAL & ELECTRICAL -------------------------- 0.25kPa TOTAL DEAD LOADS ---------------------------------------------------- 0.72 kPa ENVIRONMENTAL LOADS: GROUND SNOW LOAD (Ss)---------------------------------------------- 1.10 kPa RAIN LOAD (Sr) ------------------------------------------------------------ 0.10 kPa FRAMING FLOOR DEAD LOADS FRAMING, DECKING & ACCESSORIES ----------------------------- 0.57 kPa LIVE LOADS: COMMERCIAL/ MEZZANINE ----------------------------------------4.80 kPa RESIDENTAL-------------------------------------------------------------1.90 kPa WIND LOADS: HOURLY WIND PRESSURE (1/50) --------------------- 0.48 kPa SEISMIC DATA: Sa(0.2) = 0.15 Sa(0.5) = 0.084 Sa(1.0) = 0.041 Sa(2.0) = 0.023 PGA = 0.088 SITE CLASS: D (ASSUMED)

60724 Foss Equestrian Stables

Embed Size (px)

DESCRIPTION

DASD

Citation preview

ISL Engi neer i ng and Land Ser vi ces Lt d.islengineering.com ISL is proud to beBullfrog Powered|A Green 30 Employer|One of Canadas Best Small and Medium Employers Choose an item. DESIGN TABLE OF CONTENT I. CONTENT AND CORRESPONDING DESIGN FILE. 11_ DESIGN LOADING DESIGN CODE : ABC2014 PART 9 WITH PART 4 COMPONENTS. ANY STRUCTURE NOT SPECIFICALLYDETAILED IN THESE DRAWINGS TO CONFORM TO PART 9 IMPORTANCE FACTOR (Is)=1 ROOF DEAD LOADS: ROOF & INSULATION ---------------------------------------------------- 0.17kPa FRAMING--------------------------------------------------------------------- 0.30kPa CEILING, MECHANICAL & ELECTRICAL -------------------------- 0.25kPa TOTAL DEAD LOADS ---------------------------------------------------- 0.72 kPa ENVIRONMENTAL LOADS: GROUND SNOW LOAD (Ss)---------------------------------------------- 1.10 kPaRAIN LOAD (Sr) ------------------------------------------------------------ 0.10 kPa FRAMING FLOOR DEAD LOADS FRAMING, DECKING & ACCESSORIES ----------------------------- 0.57 kPa LIVE LOADS: COMMERCIAL/ MEZZANINE ----------------------------------------4.80 kPa RESIDENTAL-------------------------------------------------------------1.90 kPa WIND LOADS: HOURLY WIND PRESSURE (1/50) --------------------- 0.48 kPa SEISMIC DATA:Sa(0.2) =0.15 Sa(0.5) =0.084Sa(1.0) =0.041 Sa(2.0) =0.023 PGA =0.088 SITE CLASS: D (ASSUMED) Page 2 of 5 DESIGN DEFLECTION LIMITS: * ROOF FRAMINGLIVE LOAD: LL=L/360 TOTAL LOAD: TL=L/240LATERAL DRIFT : H/500 * FLOOR FRAMINGLIVE LOAD: LL=L/480 TOTAL LOAD: TL=L/360 SOIL CONDITIONS: THE FOUNDATION HAS BEEN DESIGNED BASED ON SERVICE BEARING CAPACITY------------------------------------------ 145 kPa ULTIMATE BEARING CAPACITY --------------------------------------- 190 kPa HEATED FROST DEPTH---------------------------------------------------- 4-0 UNHEATED FROST DEPTH------------------------------------------------ 7-0 Page 3 of 5 12_FOUNDATION DESIGN DESCRIPTION 12_1_ PAD FOOTING PF1#1 PF1#2 PF4#5 PF6#6 PF7#7 PF2#8 PF2#9 PF6#10 PF6#11 PF7#12 PF7#13 PF6#14 PF8#15 13_GRAVITY_DESIGN

13_1_ MEZZ. FLOOR FRAMING PLAN DESCRIPTION 13_1_1_BEAMS B7#2 B7#3 B2#4 B2#5 B3#6 13_1_2_JOISTS J 1J 1 13_2_ROOF FRAMING PLANDESCRIPTION 13_2_1_BEAMS B10#1 Page 4 of 5 B9#2 B6#3 B10#4 B10#7 B10#8 B10 #10 B5 #13 B6#16 B4#16A B6#17 B8#18 B9#19 B1#19A B6#20 13_2_2_JOISTS J 5$1 J 2$2 J 2$3 J 2$4 J 4$5 J 3$6 13_2_2_COLUMNS P5$1 P5$2 P1$3 13_2_2_WIND COLUMNS P2$W1 P2$W2 P2$W3 14_ROOF DIAPHRAGM 14_1_ ROOF DIAPHRAGM Page 5 of 5 CHECK ROOF DIAPHRAGM 15_BASE PLATE AND NELSON STUD DESIGN 16_TUDOR ARCH. DESIGN (SEE RISA MODEL AND CALCULATION SHEET) UPRAMP DOWNRAMP DOWNDNDNDNDNDNDNDN100' - 0"100' - 0"100' - 0"100' - 0"99' - 8"99' - 8"99' - 8"99' - 8"100' - 0"100' - 0"99' - 2"99' - 2"99' - 2"99' - 2"UP UPUP UP3ABCDEFGHIJ2 2212' - 8"21' - 2"21' - 2"21' - 2"21' - 2"21' - 8"21' - 8"21' - 2"21' - 2"21' - 2"21' - 2"SF1PF1PF1PF1PF1SF1PF1PF1SF1FW1FW1FW11.11.21.31.41.51.6PF1PF1PF1PF1PF1PF1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C2C2C1C1C11PF1PF13.1 3.21.12 1.13C1C1C1C11.11PF2PF1PF2PF1PF1PF1PF1PF1PF2PF2PF1PF1PF1PF1C2C2C1C1C1C1PF2 PF1PF1PF2C1C2C2 C146' - 0" 46' - 0"19' - 3" 54' - 7 1/2" 29' - 3 1/2" 3' - 0"25.7861612.7665912.7665925.7861625.6669425.7803125.6669325.78032PF8SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF2SF1SF1SF1SF1FW1FW1FW1FW1SF2SF2SF2FW1FW1P1PF4 PF4PF4 PF4PF4PF4PF4 PF4 PF4PF4PF4PF4 PF4 PF4PF4 PF4PF4PF4PF4PF4PF9PF4 PF4C3 C3 C4C4C4C3 C3C5 C2C4C4C4C5C2C3C3C3C1C6C6C6C1C6P3P2P4PF6PL1PL1PL1PL1PL1PL1PL1PL1PL1PL1PL1PL1PF6 PF7 PF7 PF6 PF6PF6 PF6 PF7 PF7 PF6 PF6SF2PF9C3C3C3T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0" T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 99' - 0"11' - 6 1/2"15' - 9 1/8"5' - 7"5' - 8"6' - 11 1/8"6' - 2 1/2"8' - 0 3/8"4"3' - 5 3/8" 8' - 1 1/8"6' - 5" 2' - 6 3/4"T.O.FTG 99' - 0"1' - 5" 8' - 1 1/8" 12' - 3 1/4" 8' - 11 3/4"T.O.FTG 99' - 0"T.O.FTG 99' - 0"6' - 2 5/8"9' - 8"14' - 11" 13' - 8" 14' - 6" 9' - 4" 9' - 4" 14' - 6" 13' - 8" 8' - 6" 6' - 5"6' - 5" 8' - 6" 13' - 8" 14' - 6" 9' - 4" 9' - 4" 14' - 6" 13' - 8" 8' - 6" 6' - 5"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 99' - 0"T.O.FTG 95' - 6" T.O.FTG 99' - 0"T.O.FTG 98' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6" T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6" T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6" T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.FTG 98' - 6"T.O.FTG 99' - 0"9' - 11 7/8"7' - 11 7/8"T.O.FTG 98' - 8"T.O.FTG 98' - 8"T.O.FTG 98' - 8"T.O.FTG 98' - 8"T.O.FTG 98' - 8"T.O.FTG 95' - 6"T.O.FTG 99' - 0"T.O.FTG 99' - 0"T.O.FTG 95' - 6"34' - 0"5' - 0"5' - 0"34' - 0"27' - 8 1/2"9' - 4 7/8" 9' - 4 7/8"T.O.FTG 98' - 6"T.O.SLAB 99' - 4"T.O.SLAB 99' - 4"T.O.SLAB 100' - 0"T.O.SLAB 102' - 0"T.O.SLAB 102' - 0"T.O.FTG 99' - 0"1' - 5" 8' - 1 1/8" 12' - 3 1/4" 8' - 11 1/4"SF2FW1FW1FW1FW1FW1SF2FW1FW1FW1FW1FW1FW1FW1T.O.SLAB 100' - 0"T.O.SLAB 99' - 8"T.O.SLAB 99' - 8"T.O.FTG 95' - 6"T.O.FTG 95' - 6"T.O.SLAB 99' - 4"T.O.SLAB 100' - 0"T.O.SLAB 99' - 8"T.O.SLAB 99' - 4"T.O.SLAB 102' - 0" T.O.SLAB 102' - 0"T.O.SLAB 100' - 0" SLAB ON GRADE6" THICK CONCRETE SLABR/W152x152xM.W.9.1xM.W.9.1WWMON MIN. 8" DP. GRANULARFILL COMPACTEDTO 98%SPDD.T.O.FTG 95' - 6"SLAB ON GRADE6" THICK CONCRETE SLABR/W152x152xM.W.9.1xM.W.9.1WWMON MIN. 8" DP. GRANULARFILL COMPACTEDTO 98%SPDD.SLAB ON GRADE6" THICK CONCRETE SLABR/W152x152xM.W.9.1xM.W.9.1WWMON MIN. 8" DP. GRANULARFILL COMPACTEDTO 98%SPDD.T.O.FTG 95' - 6"T.O.FTG 99' - 0"SF1FW1FW1SF1FW1SF2C3C3C3C3FW1FW1FW1FW1SF2FW1FW1FW1SF2FW1FW1FW1SF1FW1SF1FW1FW1FW1SF1FW1FW1SF1FW1FW1SF2FW1SF18' - 2 5/8"T.O.FTG 99' - 0"SLAB ON GRADE6" THICK CONCRETE SLABR/W152x152xM.W.9.1xM.W.9.1WWMON MIN. 8" DP. GRANULARFILL COMPACTEDTO 98%SPDD.1S4.02S4.03S4.04S4.05S4.06S4.07S4.03S4.0SIM.8S4.09S4.02S4.0SIM.2S4.0SIM.8S4.0SIM.2S4.0SIM.#5Fz = 191 kNFx = 168 kN#6Fz = 213 kNFx = 260 kN#7Fz = 420 kN + 138 kN = 558 kNFx = 407 kN#14Fz = 302+125 kN = 427 kNFx = 315 kNF =179 kN#8F = 324 kN#9F = 302 kN #10Fz = 278 kNFx = 244 kN#9F = 302 kN #11Fz = 280 kNFx = 248 kN#12Fz = 467 kNFx = 431 kN#13Fz = 353 kNFx = 431 kN#1#2#15Fz = 335 kNFx = 372 kNProject: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz138.8 Vertical direction force (Axial) Fx0 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 0 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw1250 Depth of underground water level from natural groundFooting parameters: x 900 Plan size parallel to X axis y 900 Plan size parallel to Y axis t 250 Pad thickness dt300 TOF to finished ground df300 TOF to load applied point db300 BOT. of footing to natural ground cx200 Column size parallel to X axis cy200 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb148.32= Fx0= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb0 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex0 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6150 =y6150 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq900 yeq y 2 ey= yeq900E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf177.26=qsfqsr0.93 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax40.14 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay40.14= sliding LATERAL RESISTANCE CONDITION IS OKSt th d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 150 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv1801. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr1.24 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.58=vfvr0.47 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.21 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.68On section parallel to X axis:= vfx0.17 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.25= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.17 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.25= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc9.77 Factored moment and shear forces at face of column= Vfxc55.84A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy195.232Area of rebar required as per calculation= Asymin4502Minimum area of rebar required along Y axis barsidey20M Trial bar sized quantityy5 Trial number of bar expected a= s 182.6 Rebar distance results from number of bar= Arys15002Total area of rebars as arrangement=Arysmax, Asymin Asy3.33 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc9.77 Factored moment and shear forces at face of column= Vfyc55.84= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx195.232Area of rebar required as per calculation= Asxmin4502Minimum area of rebar required along X axis barsidex20M Trial bar size quantityx5 Trial number of bar expected= s 182.6 Rebar distance results from number of bar= Arxs15002Total area of rebars as arrangement=Arxsmax, Asxmin Asx3.33 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz51 Vertical direction force (Axial) Fx0 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 0 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw1250 Depth of underground water level from natural groundFooting parameters: x 600 Plan size parallel to X axis y 600 Plan size parallel to Y axis t 200 Pad thickness dt300 TOF to finished ground df300 TOF to load applied point db300 BOT. of footing to natural ground cx200 Column size parallel to X axis cy200 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb54.81= Fx0= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb0 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex0 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6100 =y6100 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq600 yeq y 2 ey= yeq600E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf146.39=qsfqsr0.77 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax15.33 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay15.33= sliding LATERAL RESISTANCE CONDITION IS OKSt th d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 100 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv1441. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr1.24 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.33=vfvr0.27 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.21 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.68On section parallel to X axis:= vfx0.06 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.08= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.06 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.08= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc1.76 Factored moment and shear forces at face of column= Vfxc17.57A= RSy0Deepbeam action Section behaviour: Flexual or Deepbeam action= Asy64.582Area of rebar required as per calculation= Asymin2402Minimum area of rebar required along Y axis barsidey20M Trial bar sized quantityy3 Trial number of bar expected a= s 215.3 Rebar distance results from number of bar= Arys9002Total area of rebars as arrangement=Arysmax, Asymin Asy3.75 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc1.76 Factored moment and shear forces at face of column= Vfyc17.57= RSx0Deepbeam action Section behaviour: Flexual or Deepbeam action= Asx64.582Area of rebar required as per calculation= Asxmin2402Minimum area of rebar required along X axis barsidex20M Trial bar size quantityx3 Trial number of bar expected= s 215.3 Rebar distance results from number of bar= Arxs9002Total area of rebars as arrangement=Arxsmax, Asxmin Asx3.75 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz191 Vertical direction force (Axial) Fx168 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 172 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angleS il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw4000 Depth of underground water level from natural groundFooting parameters: x 3600 Plan size parallel to X axis y 2400 Plan size parallel to Y axis t 350 Pad thickness dt1370 TOF to finished ground df2080 TOF to load applied point db1200 BOT. of footing to natural ground cx2400 Column size parallel to X axis cy400 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb493.18= Fx168= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb236.24 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex479.01 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6600 =y6400 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq2641.98 yeq y 2 ey= yeq2400E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf54.38=qsfqsr0.29 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax195.64 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay231.25= sliding LATERAL RESISTANCE CONDITION IS OK----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 250 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv2521. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr0.82 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.23=vfvr0.28 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.21 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.68On section parallel to X axis:= vfx0.16 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.24= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.08 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.24= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc97.88 Factored moment and shear forces at face of column= Vfxc195.77A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy1171.22Area of rebar required as per calculation= Asymin25202Minimum area of rebar required along Y axis barsidey15M Trial bar sized quantityy13 Trial number of bar expected a= s 286.2 Rebar distance results from number of bar= Arys26002Total area of rebars as arrangement=Arysmax, Asymin Asy1.03 This value must be greater than 1.0= ResultyArrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #5 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc23.49 Factored moment and shear forces at face of column= Vfyc78.31= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx278.042Area of rebar required as per calculation= Asxmin16802Minimum area of rebar required along X axis barsidex15M Trial bar size quantityx9 Trial number of bar expected= s 279.3 Rebar distance results from number of bar= Arxs18002Total area of rebars as arrangement=Arxsmax, Asxmin Asx1.07 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz213 Vertical direction force (Axial) Fx260 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 256 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw4000 Depth of underground water level from natural groundFooting parameters: x 4200 Plan size parallel to X axis y 3000 Plan size parallel to Y axis t 400 Pad thickness dt1370 TOF to finished ground df2080 TOF to load applied point db1200 BOT. of footing to natural ground cx2400 Column size parallel to X axis cy400 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb668.55= Fx260= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb388.8 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex581.55 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6700 =y6500 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq3036.89 yeq y 2 ey= yeq3000E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf49.98=qsfqsr0.26 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax262.93 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay300.65= sliding LATERAL RESISTANCE CONDITION IS OK----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 300 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv2881. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr0.82 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.26=vfvr0.32 = Two_wayshear_check 2 way shear ok----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.18 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.58On section parallel to X axis:= vfx0.18 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.3= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.11 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.3= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc177.38 Factored moment and shear forces at face of column= Vfxc272.9A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy1771.112Area of rebar required as per calculation= Asymin33602Minimum area of rebar required along Y axis barsidey15M Trial bar sized quantityy21 Trial number of bar expected a= s 201.7 Rebar distance results from number of bar= Arys42002Total area of rebars as arrangement=Arysmax, Asymin Asy1.25 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #6 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc60.73 Factored moment and shear forces at face of column= Vfyc134.95= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx600.522Area of rebar required as per calculation= Asxmin24002Minimum area of rebar required along X axis barsidex15M Trial bar size quantityx14 Trial number of bar expected= s 218 Rebar distance results from number of bar= Arxs28002Total area of rebars as arrangement=Arxsmax, Asxmin Asx1.17 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz558 Vertical direction force (Axial) Fx407 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 993 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angleS il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw4000 Depth of underground water level from natural groundFooting parameters: x 5400 Plan size parallel to X axis y 3600 Plan size parallel to Y axis t 600 Pad thickness dt1370 TOF to finished ground df2080 TOF to load applied point db1200 BOT. of footing to natural ground cx2400 Column size parallel to X axis cy750 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb1352.61= Fx407= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb97.76 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex72.28 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6900 =y6600 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq5255.45 yeq y 2 ey= yeq3600E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf48.09=qsfqsr0.25 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax481.35 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay551.44= sliding LATERAL RESISTANCE CONDITION IS OK----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 500 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv4501. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr0.87 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.18=vfvr0.21 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.16 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.52On section parallel to X axis:= vfx0.1 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.2= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.11 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.2= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc263.68 Factored moment and shear forces at face of column= Vfxc370.07A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy1562.682Area of rebar required as per calculation= Asymin64802Minimum area of rebar required along Y axis barsidey20M Trial bar sized quantityy24 Trial number of bar expected a= s 227.4 Rebar distance results from number of bar= Arys72002Total area of rebars as arrangement=Arysmax, Asymin Asy1.11 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #7 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc194.77 Factored moment and shear forces at face of column= Vfyc259.7= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx1155.282Area of rebar required as per calculation= Asxmin43202Minimum area of rebar required along X axis barsidex20M Trial bar size quantityx16 Trial number of bar expected= s 228.7 Rebar distance results from number of bar= Arxs48002Total area of rebars as arrangement=Arxsmax, Asxmin Asx1.11 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz324 Vertical direction force (Axial) Fx0 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 0 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw1250 Depth of underground water level from natural groundFooting parameters: x 1500 Plan size parallel to X axis y 1500 Plan size parallel to Y axis t 300 Pad thickness dt300 TOF to finished ground df300 TOF to load applied point db300 BOT. of footing to natural ground cx200 Column size parallel to X axis cy200 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb353.09= Fx0= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb0 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex0 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6250 =y6250 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq1500 yeq y 2 ey= yeq1500E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf151.08=qsfqsr0.8 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax94.48 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay94.48= sliding LATERAL RESISTANCE CONDITION IS OKSt th d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 200 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv2161. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr1.24 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.99=vfvr0.8 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.21 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.68On section parallel to X axis:= vfx0.3 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.44= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.3 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.44= checkY1One way shear is ok for this direction----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc47.87 Factored moment and shear forces at face of column= Vfxc147.3A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy726.692Area of rebar required as per calculation= Asymin9002Minimum area of rebar required along Y axis barsidey15M Trial bar sized quantityy5 Trial number of bar expected a= s 333.5 Rebar distance results from number of bar= Arys10002Total area of rebars as arrangement=Arysmax, Asymin Asy1.11 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #8 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc47.87 Factored moment and shear forces at face of column= Vfyc147.3= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx726.692Area of rebar required as per calculation= Asxmin9002Minimum area of rebar required along X axis barsidex15M Trial bar size quantityx5 Trial number of bar expected= s 333.5 Rebar distance results from number of bar= Arxs10002Total area of rebars as arrangement=Arxsmax, Asxmin Asx1.11 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz302 Vertical direction force (Axial) Fx0 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 0 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw1250 Depth of underground water level from natural groundFooting parameters: x 1500 Plan size parallel to X axis y 1500 Plan size parallel to Y axis t 300 Pad thickness dt300 TOF to finished ground df300 TOF to load applied point db300 BOT. of footing to natural ground cx200 Column size parallel to X axis cy200 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb331.09= Fx0= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb0 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex0 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6250 =y6250 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq1500 yeq y 2 ey= yeq1500E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf141.3=qsfqsr0.74 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax88.93 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay88.93= sliding LATERAL RESISTANCE CONDITION IS OKSt th d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 200 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv2161. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr1.24 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.92=vfvr0.75 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.21 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.68On section parallel to X axis:= vfx0.28 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.42= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.28 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.42= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------3. Flexural design: Vfxc y cy2x qsfFactored shear forces at face of column Vfyc x cx2y qsf Mfxc Vfxc y cy4Factored moments at face of column Mfyc Vfyc x cx4 Asxmin 0.002 y t Minimum area of rebar required along X axis and Y axis Asymin 0.002 x tFlexural rebar along y axis:= Mfxc44.78 Factored moment and shear forces at face of column= Vfxc137.77A= RSy0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asy678.22Area of rebar required as per calculation= Asymin9002Minimum area of rebar required along Y axis barsidey15M Trial bar sized quantityy5 Trial number of bar expected a= s 333.5 Rebar distance results from number of bar= Arys10002Total area of rebars as arrangement=Arysmax, Asymin Asy1.11 This value must be greater than 1.0= ResultyArrangement is adequateFl l b l i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 7 of 8Project: Foss Equestrian Stables Project number: 60724Footing location:#9 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Flexural rebar along x axis:= Mfyc44.78 Factored moment and shear forces at face of column= Vfyc137.77= RSx0Normal Flexural Section behaviour: Flexual or Deepbeam action= Asx678.22Area of rebar required as per calculation= Asxmin9002Minimum area of rebar required along X axis barsidex15M Trial bar size quantityx5 Trial number of bar expected= s 333.5 Rebar distance results from number of bar= Arxs10002Total area of rebars as arrangement=Arxsmax, Asxmin Asx1.11 This value must be greater than 1.0= Result Arrangement is adequate----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 8 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:-------------------------------------------------------------------------------------------------------------------------------------------PAD FOOTING - DESIGN WORKSHEETThis worksheet determines the working capacity of Pad footing using concrete, and steel reinforcing. The design is based on CSA A23.3 2004 and Canadian FoundationEngineeringManual 4th Edition ____________________________________________________________________________OBJ ECTIVE: Factored reactions include axial, moment and shear values should be predetermined from analysis by other means and entered into this worksheet. The user will then enter footing sizes, soil bearing capacity and appropriate material in the applicable fields. This worksheet will calculate and check with soil bearing capacity and let the user know if the footing sizes are adequate for the factored reactions provided. Then it helps to determine neccessary reinforcement required to keep the pad footing working properly.Superimpose forces (taken from factored load combination): Fz278 Vertical direction force (Axial) Fx244 X - axis forces Fy0 Y - axis forces Mx 0 Moment around X - axis My 339 Moment around Y - axis Soil parameters: qsr190 Factored bearing capacity ' 25 Friction angle19 5 S il lf i ht----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 1 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:------------------------------------------------------------------------------------------------------------------------------------------- 19.53Soil self weight dw4000 Depth of underground water level from natural groundFooting parameters: x 4200 Plan size parallel to X axis y 3000 Plan size parallel to Y axis t 400 Pad thickness dt1370 TOF to finished ground df2080 TOF to load applied point db1200 BOT. of footing to natural ground cx2400 Column size parallel to X axis cy750 Column size parallel to Y axis cv 75 Concrete coverMaterial properties:Rebar: Es200000 Modulus of Elasticity fy400 Specified Yield Strength for Reinforcing Bars 15-M or larger s0.85 Resistance Factor for Reinforcing BarsConcrete: fc' 25 MPa Specified Compressive Strength of Concrete Ec 45002fc' Modulus of Elasticity for f'c between 20 and 40 MPa 1 Modification Factor for Concrete Density as per Clause 8.6.5 (1.0 for Normal Density) c0.65 Resistance Factor for Concrete 1max, 0.85 0.0015 fc' 0.67Factors for Equivalent Rectangular Concrete Stress Block Distribution as per Clause 10.1.7 1max, 0.97 0.0025 fc' 0.67Ch ki df ti b i l t f ti th d----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 2 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Checking pad footing by equivelent footing method:( )Uplift causes by underground water: = u 0Forces acting at bottom centre of footing: Fzb+ Fz x y + t 23.63 dt u= Fzb733.55= Fx244= Fy0 Mxb Mx Fy+ dft= Mxb0 Myb+ My Fx+ dft= Myb266.12 1. Eccentric condition - ex|||MybFzb|||Eccentricity of Fzb for equal effects with Mxb= ex362.78 ey|||MxbFzb|||Eccentricity of Fzb for equal effects with Myb= ey0=x6700 =y6500 Max allowable eccentricities along X and Y axis= Checkeccentricity ECCENTRIC CONDITION IS OK2. Pressure condition - xeq x 2 exEquivalent footing size on plan as per clause 10.2.5 - formula 10.12 and 10.13= xeq3474.44 yeq y 2 ey= yeq3000E i l t f t d b i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 3 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Equivalent factored bearing pressure: Fzb xeq yeqTotal factored bearing pressure under bottom of footing. qsf dbFactored bearing pressure caused by superimposed forcesp= qsf46.98=qsfqsr0.25 If this ratio is greater than 1, increase footing sizes= pres. PRESSURE CONDITION IS OK3. Lateral resistance condition (): s0.8 Sliding resistance factor p0.5 Horizontal Passive resistance factor a tan(( 0.7 ')) sCoefficient of friction= a0.25 a tan+ 45'22tan 45'22 pEquivelent passive fluid density= a20.073 Vfax+ Fzb a 0.5 a y + dtt2Factored shear resistance along X axis= Vfax279.33 Vfay+ Fzb a 0.5 a x + dtt2Factored shear resistance along Y axis= Vfay317.05= sliding LATERAL RESISTANCE CONDITION IS OKSt th d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 4 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:-------------------------------------------------------------------------------------------------------------------------------------------Strength design - 125 Max Rebar diameter: d t cv 1Effective Flexural depth= d 300 dvmax(( , 0.9 d 0.72 t)) Effective Shear depth= dv2881. Two way shear checking: s4 Factor adjusts vc for column dimensions b0 2 + + + cxd cydPerimeter of critical section for shear vr1 + 12c0.19 c min, 8fc'Factored shear stress resistance as formula (13-5) vr2 + s db00.19 c min, 8fc'Factored shear stress resistance as formula (13-6) vr3 0.38 c min, 8fc'Factored shear stress resistance as formula (13-7) vr min, , vr1 vr2 vr3 min, 11300+ 1000 dMaximum shear stress resistance without shear reinforcement as per clause 13.3.4= vr1 vf qsf x y + cxd+ cyd b0 dFactored shear stress on critical section= vf0.2=vfvr0.2 = Two_wayshear_check 2 way shear ok2 O h h ki----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 5 of 8Project: Foss Equestrian Stables Project number: 60724Footing location: #10 Notes:-------------------------------------------------------------------------------------------------------------------------------------------2. One way shear checking:= 0.18 Factor accounting for shear resistance of cracked concrete determined as per clause 11.3.6.2 and 11.3.6.3 vr1w c min, 8fc'One way shear stress resistance determined base on formula 11-6= vr1w0.58On section parallel to X axis:= vfx0.14 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.24= checkX1One way shear is ok for this directionOn section parallel to Y axis:= vfy0.1 Factored one way shear stress at critical section at distance equal dv from face of column=vfxvr1w0.24= checkY1One way shear is ok for this direction3 Fl l d i----------------------------------------------------------------------------------------------------------------------------------------------Designer: Hung Dao Checked by:---------------------------------------------------------------------------------------------------------------------------------------------CASCADENGINEERINGROUPPage 6 of 8Project: Foss Equestrian Stables Project number: 60724Footing lo