21
APPENDIX D.12 Ventilation Calculations and Data 1. Hydration Pump Station Electrical Room Ventilation Calculations 2. Inflow Pump Station Engine Room Ventilation Calculations 3. JennFan Data

61589691 Ventialtion Calculation Sample

Embed Size (px)

Citation preview

Page 1: 61589691 Ventialtion Calculation Sample

APPENDIX D.12

Ventilation Calculations and Data

1. Hydration Pump Station Electrical Room Ventilation

Calculations

2. Inflow Pump Station Engine Room Ventilation

Calculations

3. JennFan Data

Page 2: 61589691 Ventialtion Calculation Sample
Page 3: 61589691 Ventialtion Calculation Sample

1

APPENDIX D.12 item 1 Calculation - Hydration Pump Station

Purpose: Ventilation for electrical room. System Description: The electrical room shall house the electrical, instrumentation and control, and the communication equipment. The ventilation system shall consist of an exhaust fan that will exhaust the heated air from the room with an intake louver to permit the cooler outside air to enter the room. The exhaust fan shall be thermostatically controlled. Design Criteria:

1. Allowable free air velocity for a intake louver = 700 fpm 2. Maximum 104 degrees F temperature in pump station. 3. Add 16 percent additional free area for bug screen. 4. The Outdoor design conditions shall be based on those of Fort Lauderdale,

Florida. Assumptions:

1. Lighting heat gain ~ 2W/ft^2 2. Fan heat gain ~ 80 Btu/hr/fan 3. Ignore operating floor cooling effect 4. Assume box-like structure fully exposed. The building will have no windows and

be constructed of cast-in-place concrete and 8” fully grouted masonry units. The roof shall be 10” hollow core slabs. The solar heating loads shall be addressed by a 10 percent increase in the ventilation air supply. At 30% design the solar heat load will be calculated due to the large openings required for detailing the building design. Other building heat loads shall be assumed to be negligible.

Calculations: Determine ventilation supply fan sizing: Lighting heat load = 16 x 21 x 2 = 672 W = 38.2 btu/min Fan heat load = 80 Btu/hr = 1.33 Btu/min Heat Gain Equipment Electrical Room (preliminary estimate) ≈5 kW = 285 Btu/min Total heat load = 285 + 38.2 + 1.33 = 325 Btu/min + 10% envelop heat load + 15% heat load contingency = 406 Btu/min q = 1.08 x Q x (Ti – to) = (40.6) x (60) = 1.08Q (Δ9 deg F) Q = 2,500 CFM

Page 4: 61589691 Ventialtion Calculation Sample

2

Determine louver size: 2,500 CFm/700 = 3.6 sq. ft. Add 16% for bug screen = 3.6 + 16% = 4.2 sq. ft. Required fan rating: 2,500 CFM JennFan model 203A: rating of 1,800 CFM, 1/3 Hp motor, requiring a 24” x 24” wall opening. (Reference – JennFan data Appendix D.12 item 3)

Page 5: 61589691 Ventialtion Calculation Sample

3

APPENDIX D.12 item 2 Calculation - Inflow Pump Station

Purpose: Ventilation for engine pump room at the Inflow Pump Station. System Description: A forced air ventilation system will be provided for the operating floor area of the pump station. The ventilation system will be available during all times of the year to remove space heat gains and will utilize wall mounted fans for supply and for exhaust.

INFLOW PUMP STATION VENTILATION REQUIREMENT

Design Assumption: Remarks:

1. The equipment enclosure (pump room) is not air

conditioned

2. The operating floor inside station temperature is 100 deg.F, dry

bulb

District Standard “Ventilation”

3. The outdoor air temperature is 95 deg.F dry bulb

4. The safety factor is 5%.

5. 500 fpm ventilation air velocity Min. 400 fpm by District

6. Diversity Factor is .75

Part I. Heat Gain Calculation

A. Electrical Pump Motor

Qty of 2 of 200 Hp Electrical motors

Usage factor (UF) is .5 and Load Factor (LF) is .9

And assuming the efficiency is 85%.

LFUFEff

EffPqep **1* −=

hrBTUqep 101070=

Per pump motor sensible heat gain

hrBTUQep 101070=

Heat Gain of 2 pumps

B. Diesel Pump Engines

Page 6: 61589691 Ventialtion Calculation Sample

4

INFLOW PUMP STATION VENTILATION REQUIREMENT

Design Assumption: Remarks:

1. Qty of 3, 800 Hp Diesel Engine Caterpillar C27DITA

.min166,7 Btuqdp=

Heat Rejection to Atmosphere per

Product specification at 90% load.

..880,289,1

HrBtuQdp=

Total Heat Rejection by three 800

Hp Diesel pumps(90% load)

C. Diesel Generators

Qty of two 600 KW Diesel Generators and lead/lag operated Cummins Genset 600KW

Usage Factor = .5

Load Factor = 1

MinBTUq g 7790=

Per manufacturer product

specification

hrBTUQtyUFLFqQ gg 467400*** ==

D. Total Heat Gain

Q = (Qep + Qdp + Qg)*(1+SF)*.D.F. Total Heat Gain

.450,463,1

HrBtuQdp=

Heat Gain after applying safety

factor and diversity factor

Total heat gain including solar heating load is addressed in

Part II.A. by 10% increase in the Make up air supply

Part II. Ventilation Requirement ( H.I.)

A. Make up Air

cfmt

QCFM ake 009,271)95100(*08.1

450,463,1*08.1int =

−=

Δ=

Refer to design assumption

(6) Greenheck SBCS-3H72-150

Intake air velocity = 500 fpm

2542500

009,271 ftA == Free area of intake louvers opening

(Gravity intake)

B. Exhaust Air

Page 7: 61589691 Ventialtion Calculation Sample

5

INFLOW PUMP STATION VENTILATION REQUIREMENT

Design Assumption: Remarks:

- Generator 2,280 cfm

- 800hp engine 1650cfm

- Total combustion air 7,230cfm

Standby

90%

90%

Total exhaust air 290,880cfm (6) Greenheck SBCE-3H72-150

Part II. Ventilation Requirement ( USACE)

A. Make up Air

cfmt

QCFM ake 560,150)95104(*08.1

450,463,1*08.1int =

−=

Δ=

Refer to design assumption

(4) Greenheck SBCS-3L54-75

Intake air velocity = 500 fpm

2301500

560,150 ftA == Free area of intake louvers opening

(Gravity intake)

B. Exhaust Air

- Generator 2,280 cfm

- 800hp engine 1650cfm

- Total combustion air 7,230cfm

Standby

90%

90%

Total exhaust air 158,386cfm (4) Greenheck SBCS-3L48-75

Part II. Ventilation Requirement ( USACE-Ft. Lauderdale)

A. Make up Air

cfmt

QCFM ake 815,115)3.92104(*08.1

450,463,1*08.1int =

−=

Δ=

Using USACE req. and Ft Laud.

climatic design ASHRAE info.

(4) Greenheck SBCS-3H54-75

Intake air velocity = 500 fpm

2232500

815,115 ftA == Free area of intake louvers opening

(Gravity intake)

B. Exhaust Air

- Generator 2,280 cfm

- 800hp engine 1650cfm

Standby

90%

Page 8: 61589691 Ventialtion Calculation Sample

6

INFLOW PUMP STATION VENTILATION REQUIREMENT

Design Assumption: Remarks:

- 2000hp engine 5455cfm

- Total combustion air 7,230cfm

90%

Total exhaust air 153,750cfm (4) Greenheck SBCE-3H48-75

Note: At 30% design the solar heat load will be calculated due to the large openings required for detailing the building design.

Reference – fan and filter data (see Appendix D.12 item 3)

Page 9: 61589691 Ventialtion Calculation Sample
Page 10: 61589691 Ventialtion Calculation Sample
Page 11: 61589691 Ventialtion Calculation Sample
Page 12: 61589691 Ventialtion Calculation Sample
Page 13: 61589691 Ventialtion Calculation Sample
Page 14: 61589691 Ventialtion Calculation Sample
Page 15: 61589691 Ventialtion Calculation Sample
Page 16: 61589691 Ventialtion Calculation Sample
Page 17: 61589691 Ventialtion Calculation Sample
Page 18: 61589691 Ventialtion Calculation Sample
Page 19: 61589691 Ventialtion Calculation Sample
Page 20: 61589691 Ventialtion Calculation Sample
Page 21: 61589691 Ventialtion Calculation Sample