67827_apdxg

Embed Size (px)

Citation preview

  • 7/29/2019 67827_apdxg

    1/9

    APPENDIXVII

    Vector Analysis

    VII.1 VECTOR TRANSFORMATIONS

    In this appendix we present the vector transformations from rectangular to cylindrical

    (and vice versa), from cylindrical to spherical (and vice versa), and from rectangular

    to spherical (and vice versa). The three coordinate systems are shown in Figure VII.1.

    VII.1.1 Rectangular to Cylindrical (and Vice Versa)

    The coordinate transformation from rectangular (x, y, z) to cylindrical (,,z) is

    given, referring to Figure VII.1(b)

    x = cos

    y = sin

    z = z

    (VII-1)

    In the rectangular coordinate system, we express a vector A as

    A = axAx + ayAy + azAz (VII-2)

    where ax , ay , az are the unit vectors and Ax , Ay , Az are the components of the vector

    A in the rectangular coordinate system. We wish to write A as

    A = aA + aA + azAz (VII-3)

    where a , a , az are the unit vectors and A , A , Az are the vector components in the

    cylindrical coordinate system. The z-axis is common to both of them.

    Referring to Figure VII.2, we can write

    ax = a cos a sin

    ay = a sin + a cos

    az = az

    (VII-4)

    Antenna Theory: Analysis Design, Third Edition, by Constantine A. BalanisISBN 0-471-66782-X Copyright 2005 John Wiley & Sons, Inc.

    1079

  • 7/29/2019 67827_apdxg

    2/9

    1080 APPENDIX VII

    Figure VII.1 Rectangular, cylindrical, and spherical coordinate systems.

    Using (VII-4) reduces (VII-2) to

    A = (a cos a sin)Ax + (a sin + a cos)Ay + azAz

    A = a(Ax cos + Ay sin) + a(Ax sin + Ay cos) + azAz (VII-5)

    which when compared with (VII-3) leads to

    A = Ax cos + Ay sin

    A = Ax sin + Ay cos

    Az = Az

    (VII-6)

  • 7/29/2019 67827_apdxg

    3/9

    APPENDIX VII 1081

    Figure VII.2 Geometrical representation of transformations between unit vectors of rectangu-

    lar and cylindrical coordinate systems.

    In matrix form, (VII-6) can be written as

    AA

    Az

    =

    cos sin 0 sin cos 0

    0 0 1

    AxAy

    Az

    (VII-6a)

    where

    [A]rc = cos sin 0

    sin cos 00 0 1

    (VII-6b)

    is the transformation matrix for rectangular-to-cylindrical components.

  • 7/29/2019 67827_apdxg

    4/9

    1082 APPENDIX VII

    Since [A]rc is an orthonormal matrix (its inverse is equal to its transpose), we can

    write the transformation matrix for cylindrical-to-rectangular components as

    [A]cr = [A]1rc = [A]

    trc =

    cos sin 0

    sin cos 0

    0 0 1

    (VII-7)

    or AxAy

    Az

    =

    cos sin 0sin cos 0

    0 0 1

    AA

    Az

    (VII-7a)

    orAx = A cos A sin

    Ay = A sin + A cos

    Az = Az

    (VII-7b)

    VII.1.2 Cylindrical to Spherical (and Vice Versa)

    Referring to Figure VII.1(c), we can write that the cylindrical and spherical coordinates

    are related by

    = r sin

    z = r cos

    (VII-8)

    In a geometrical approach similar to the one employed in the previous section, we can

    show that the cylindrical-to-spherical transformation of vector components is given by

    Ar = A sin + Az cos

    A = A cos Az sin

    A = A

    (VII-9)

    or in matrix form by

    Ar

    AA

    =

    sin 0 cos

    cos 0 sin 0 1 0

    A

    AAz

    (VII-9a)

    Thus the cylindrical-to-spherical transformation matrix can be written as

    [A]cs =

    sin 0 cos cos 0 sin

    0 1 0

    (VII-9b)

    The [A]cs matrix is also orthonormal so that its inverse is given by

    [A]sc = [A]1cs = [A]

    tcs =

    sin cos 00 0 1

    cos sin 0

    (VII-10)

  • 7/29/2019 67827_apdxg

    5/9

    APPENDIX VII 1083

    and the spherical-to-cylindrical transformation is accomplished by

    AA

    Az

    =

    sin cos 00 0 1

    cos sin 0

    ArA

    A

    (VII-10a)

    orA = Ar sin + A cos

    A = AAz = Ar cos A sin

    (VII-10b)

    This time the component A and coordinate are the same in both systems.

    VII.1.3 Rectangular to Spherical (and Vice Versa)

    Many times it may be required that a transformation be performed directly fromrectangular-to-spherical components. By referring to Figure VII.1, we can write that

    the rectangular and spherical coordinates are related by

    x = r sin cos

    y = r sin sin

    z = r cos

    (VII-11)

    and the rectangular and spherical components by

    Ar = Ax sin cos + Ay sin sin + Az cos

    A = Ax cos cos + Ay cos sin Az sin

    A = Ax sin + Ay cos

    (VII-12)

    which can also be obtained by substituting (VII-6) into (VII-9). In matrix form, (VII-12)

    can be written as

    ArA

    A

    =

    sin cos sin sin cos

    cos cos cos sin sin

    sin cos 0

    AxAy

    Az

    (VII-12a)

    with the rectangular-to-spherical transformation matrix being

    [A]rs =

    sin cos sin sin cos cos cos cos sin sin

    sin cos 0

    (VII-12b)

    The transformation matrix of (VII-12b) is also orthonormal so that its inverse can

    be written as

    [A]sr = [A]1rs = [A]

    trs =

    sin cos cos cos sinsin sin cos sin cos

    cos sin 0

    (VII-13)

  • 7/29/2019 67827_apdxg

    6/9

    1084 APPENDIX VII

    and the spherical-to-rectangular components related by

    AxAy

    Az

    =

    sin cos cos cos sinsin sin cos sin cos

    cos sin 0

    ArAA

    (VII-13a)

    orAx = Ar sin cos + A cos cos A sin

    Ay = Ar sin sin + A cos sin + A cos

    Az = Ar cos A sin

    (VII-13b)

    VII.2 VECTOR DIFFERENTIAL OPERATORS

    The differential operators of gradient of a scalar (), divergence of a vector ( A),

    curl of a vector ( A), Laplacian of a scalar (2), and Laplacian of a vector

    (

    2

    A) frequently encountered in electromagnetic field analysis will be listed in therectangular, cylindrical, and spherical coordinate systems.

    VII.2.1 Rectangular Coordinates

    = ax

    x+ ay

    y+ az

    z(VII-14)

    A =Ax

    x+

    Ay

    y+

    Az

    z(VII-15)

    A = ax

    Az

    y

    Ay

    z

    + ay

    Ax

    z

    Az

    x

    + az

    Ay

    x

    Ax

    y

    (VII-16)

    = 2 =2

    x2+

    2

    y2+

    2

    z2(VII-17)

    2A = ax2Ax + ay

    2Ay + az2Az (VII-18)

    VII.2.2 Cylindrical Coordinates

    = a

    + a 1

    + az z

    (VII-19)

    A =1

    (A) +

    1

    A

    +

    Az

    z(VII-20)

    A = a

    1

    Az

    A

    z

    + a

    A

    z

    Az

    + az

    1

    (A)

    1

    A

    (VII-21)

    2 =1

    +

    1

    2

    2

    2+

    2

    z2(VII-22)

    2A = ( A) A (VII-23)

  • 7/29/2019 67827_apdxg

    7/9

    APPENDIX VII 1085

    or in an expanded form

    2A = a

    2A

    2+

    1

    A

    A

    2+

    1

    2

    2A

    2

    2

    2

    A

    +

    2A

    z2

    + a2A

    2 +

    1

    A

    A

    2 +

    1

    2

    2A

    2 +

    2

    2

    A

    +

    2A

    z2

    + az

    2Az

    2+

    1

    Az

    +

    1

    2

    2Az

    2+

    2Az

    z2

    (VII-23a)

    In the cylindrical coordinate system 2A = a2A + a

    2A + az2Az because the

    orientation of the unit vectors a and a varies with the and coordinates.

    VII.2.3 Spherical Coordinates

    = ar

    r+ a

    1

    r

    + a

    1

    r sin

    (VII-24)

    A =1

    r2

    r(r2Ar) +

    1

    r sin

    (A sin ) +

    1

    r sin

    A

    (VII-25)

    A =ar

    r sin

    (A sin )

    A

    +

    a

    r

    1

    sin

    Ar

    r(rA)

    +a

    r

    r

    (rA) Ar

    (VII-26)

    2 =1

    r2

    r

    r2

    r

    +

    1

    r2 sin

    sin

    +

    1

    r2 sin2

    2

    2(VII-27)

    2A = ( A) A (VII-28)

    or in an expanded form

    2A = ar 2Ar

    r2

    +2

    r

    Ar

    r

    2

    r2Ar +

    1

    r2

    2Ar

    2

    +cot

    r2

    Ar

    +1

    r2

    sin2

    2Ar

    2

    2

    r2

    A

    2 cot

    r2A

    2

    r2 sin

    A

    + a

    2A

    r2+

    2

    r

    A

    r

    A

    r2 sin2 +

    1

    r2

    2A

    2+

    cot

    r2

    A

    +1

    r2 sin2

    2A

    2+

    2

    r2

    Ar

    2cot

    r2 sin

    A

    + a2A

    r2 +2

    r

    A

    r 1

    r2 sin2 A +

    1

    r2

    2A

    2 +cot

    r2

    A

    +1

    r2 sin2

    2A

    2+

    2

    r2 sin

    Ar

    +

    2 cot

    r2 sin

    A

    (VII-28a)

  • 7/29/2019 67827_apdxg

    8/9

    1086 APPENDIX VII

    Again note that 2A = ar2Ar + a

    2A + a2A since the orientation of the unit

    vectors ar , a, and a varies with the r, , and coordinates.

    VII.3 VECTOR IDENTITIES

    VII.3.1 Addition and Multiplication

    A A = |A|2 (VII-29)

    A A = |A|2 (VII-30)

    A + B = B + A (VII-31)

    A B = B A (VII-32)

    A B = B A (VII-33)

    (A + B) C = A C + B C (VII-34)

    (A + B) C = A C + B C (VII-35)

    A B C = B C A = C A B (VII-36)

    A (B C) = (A C)B (A B)C (VII-37)

    (A B) (C D) = A B (C D)

    = A (B DC B CD)

    = (A C)(B D) (A D)(B C) (VII-38)

    (A B) (C D) = (A B D)C (A B C)D (VII-39)

    VII.3.2 Differentiation

    ( A) = 0 (VII-40)

    = 0 (VII-41)

    ( + ) = + (VII-42)

    () = + (VII-43)

    (A + B) = A + B (VII-44)

    (A + B) = A + B (VII-45)

    (A) = A + A (VII-46)

    (A) = A + A (VII-47)

    (A B) = (A )B + (B )A + A ( B) + B ( A) (VII-48)

    (A B) = B A A B (VII-49)

    (A B) = A B B A + (B )A (A )B (VII-50)

    A = ( A) 2A (VII-51)

  • 7/29/2019 67827_apdxg

    9/9

    APPENDIX VII 1087

    VII.3.3 Integration

    C

    A dl =

    S

    ( A) ds Stokes theorem (VII-52)

    #S

    A ds =

    V

    ( A)dv Divergence theorem (VII-53)

    #S

    (n A)ds =

    V

    ( A)dv (VII-54)

    #S

    ds =

    V

    dv (VII-55)

    C

    dl =S

    n ds (VII-56)