7_LossesOptimization_2010

Embed Size (px)

Citation preview

  • 7/28/2019 7_LossesOptimization_2010

    1/29

    7LOSSES and OPTIMIZATION

  • 7/28/2019 7_LossesOptimization_2010

    2/29

    Solar cell operating principles

    1.Absorption of photons

    generation of electron-hole pairs

    2. Separation of carriers in the internal electric field created by p-njunction and collection at the electrodes

    potential difference and current in the external circuit

    3. Potential difference at the electrodes of a p-njunction injection and recombination of carriers losses

    The resulting current in the external circuit: I = IL - ID (V)

    photocurrent IL dark (diode) current ID

  • 7/28/2019 7_LossesOptimization_2010

    3/29

    - 56% spectral mismatch

    - 9% reflection & transmission

    - 13% fundamental recombination

    - 7% excess recombination,

    resistance, etc

    15%

    Typical commercial c-Si solar cellsunlight

    solar cell

    electricity

    waste

    heat

    Solar cell performance

    Single-junction solar cell:

  • 7/28/2019 7_LossesOptimization_2010

    4/29

    Non-absorptionThermalization

    Reflection

    Transmission

    Area loss

    Recombination

    - bulk

    - surface

    ( ) 0 ( )R1

    g opt QE

    t

    f

    A

    A

    elQE

    Solar cell performance

    Optical and collection losses:

  • 7/28/2019 7_LossesOptimization_2010

    5/29

    ( )

    =0

    0

    I d

    hcP

    ( )0 Photon flux density: number of photons per

    unit area per unit time and unit wavelength

    Non-absorption Eph

  • 7/28/2019 7_LossesOptimization_2010

    6/29

    ( )

    ( ) d

    ch

    dE

    0

    0

    0

    0g

    g

    g

    EC

    EV

    EphEG

    Thermalization

    Eph

    >EG

    g

    Thermalization

    g ph >

    Solar cell performance

    Optical losses: Thermalization

    ( )

    =0

    0

    I d

    hcP

    ( )0 Photon flux density: number of photons per

    unit area per unit time and unit wavelength

  • 7/28/2019 7_LossesOptimization_2010

    7/29

    EC

    EV

    Eph EG

    Thermalization

    Eph

    >EG

    EC

    EV

    EphEG

    Non-absorption Eph

  • 7/28/2019 7_LossesOptimization_2010

    8/29

    ( ) 0 ( )R1

    elQE

    Optical losses: Reflection and transmission

    Reflection:

    Different refractive indices

    Transmission:

    finite thickness of a cell

    absorption coefficient

    Area loss:

    metal electrode coverage

    t

    f

    A

    A

    g opt QE

    Solar cell performance

  • 7/28/2019 7_LossesOptimization_2010

    9/29

    ( ) 0 ( )R1 Recombination:

    bulk recombination

    (minority carrier lifetime)

    surface recombination

    (surface recombinationvelocity)

    g opt QE

    t

    f

    A

    A

    elQE

    ( )t

    felgoptmaxsc

    A

    AQEQER1JJ =

    ( )

    =

    g

    0

    0

    max dqJ

    Collection losses: Recombination

    Solar cell performance

  • 7/28/2019 7_LossesOptimization_2010

    10/29

    I

    ocsc

    P

    ffVJ =

    ( )0I0

    hcP d

    =

    ( ) ( )g

    0fsc opt g el

    t 0

    AJ 1 R QE QE q d

    A=

    ( )

    ( )( )

    g

    0

    0 f

    g opt el oc0 t

    0

    q dA

    = 1-R QE QE V ff Ahc d

    ( )

    ( )

    ( )

    ( )

    ( )

    g g

    g

    0 0

    G

    0 0 ocfg opt el

    0 t G0

    0 0

    h c

    E d d q VA= 1-R QE QE ff

    A Ehc h c d d

    Solar cell performance

    Efficiency:

    Overstraeten, Mertens: Physics, technology and Use of Photovoltaics, Adam Hilger 1986

  • 7/28/2019 7_LossesOptimization_2010

    11/29

    8. Fill factor

    7. Voltage factor

    6. Loss due to recombination5. Loss by incomplete absorption due to the finite thickness

    4. Loss by reflection

    3. Loss by metal electrode coverage2. Loss by excess energy of photons

    1. Loss by long wavelengths

    ( )

    ( )

    ( )

    ( )

    ( ) ffE

    VqQEQER1

    A

    A

    d

    ch

    dE

    d

    ch

    d

    ch

    g

    oceloptg

    t

    f

    0

    0

    0

    0

    g

    0

    0

    0

    0

    g

    gg

    =

    Solar cell performance

    Overstraeten, Mertens: Physics, technology and Use of Photovoltaics, Adam Hilger 1986

  • 7/28/2019 7_LossesOptimization_2010

    12/29

    Optical losses:

    Non-absorption

    Thermalization

    ReflectionTransmission

    Area loss

    Optical gap

    Optical gap

    Refractive indicesAbsorption coefficient

    Metal grid design

    Properties:

    Solar cell performance

  • 7/28/2019 7_LossesOptimization_2010

    13/29

    Collection losses:

    Recombination

    - surface

    - bulk

    Surface recombination velocity

    Minority carriers lifetimeDiffusion coefficient

    Solar cell performance

    Properties:

  • 7/28/2019 7_LossesOptimization_2010

    14/29

    Total current: LkTqV

    0T I1eII =

    Short circuit current (V=0):

    LSC II =

    High Isc :

    Minimize front surface reflection

    -

    antireflection coatings

    Minimize transmission losses

    -

    thick absorber

    Minimize surface recombination

    -

    passivation

    layers

    Minimize bulk recombination

    -

    large diffusion lengths

    -

    high electronic quality material

    Solar cell performance

    Optimal design:

  • 7/28/2019 7_LossesOptimization_2010

    15/29

    Total current: LkTqV

    0T I1eII =

    Open circuit voltage (I=0):

    += 1lnV

    0

    OCI

    I

    q

    kT L

    +=

    Dp

    ip

    An

    in

    NL

    nDq

    NL

    nDqAI

    22

    0

    Low I0: High doping densities

    Low surface recombination

    velocities

    Large diffusion lengths

    Solar cell performance

    Optimal design:

  • 7/28/2019 7_LossesOptimization_2010

    16/29

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Absorption versus collection:

    Thickness of the absorber layer

    Minority carrier diffusion length

    Al

    Solar cell performance

    Optimal thickness of absorber layer:

  • 7/28/2019 7_LossesOptimization_2010

    17/29

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Al

    Le

    Solar cell performance

    Optimal thickness of absorber layer:

    Absorption versus collection:

    Thickness of the absorber layer

    Minority carrier diffusion length

  • 7/28/2019 7_LossesOptimization_2010

    18/29

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Le

    Le

    Solar cell performance

    Optimal thickness of absorber layer:

    Absorption versus collection:

    Thickness of the absorber layer

    Minority carrier diffusion length

  • 7/28/2019 7_LossesOptimization_2010

    19/29

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-typec-Si

    Le

    p++ p++

    Al

    Solar cell performance

    Optimal thickness of absorber layer:

    Absorption versus collection:

    Thickness of the absorber layer

    Minority carrier diffusion length

  • 7/28/2019 7_LossesOptimization_2010

    20/29

    p++ p++

    Al

    Al Al

    SiO2 n+

    p-type

    c-Si

    Solar cell performance

    Optimal thickness of absorber layer:

    Absorption versus collection:

    Thickness of the absorber layer

    Minority carrier diffusion length

  • 7/28/2019 7_LossesOptimization_2010

    21/29

    Increase absorption:

    -

    Surface texture

    -

    Antireflection coating

    Avoid surface recombination:-

    Surface passivation

    SiO2

    n+

    p++ p++

    Al

    AlAl

    Solar cell performance

    Optimal thickness of absorber layer:

  • 7/28/2019 7_LossesOptimization_2010

    22/29

    IL1 2 V

    +

    -

    I

    current source IL diode diffusion current

    diode recombination current

    1

    2

    I-V characteristics

    Voltage

    Curr

    ent

    IL

    ID

    IT

    ISC

    VOC

    Solar cell performance

    Equivalent circuit:

  • 7/28/2019 7_LossesOptimization_2010

    23/29

    RS

    RshIL

    1 2 V+

    -

    I

    series resistorRS

    parallel resistorRsh

    ( )ph

    p

    sasa JR

    ARJV

    Tkn

    ARJVqJJ

    +

    = 1exp0

    Jph

    = 400 A/m2

    Voc

    = 0.6904 V

    = 16 mm2

    Solar cell performance

    Equivalent circuit:

  • 7/28/2019 7_LossesOptimization_2010

    24/29

    Series resistance (RS)

    Bulk resistance of semiconductor

    Bulk resistance of metal electrodes

    Contact resistance between semiconductor and metal

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-400

    -300

    -200

    -100

    0

    100

    200

    Voltage [V]

    C

    urrentDensity[A/m2]

    Rp = 1e4 Ohm

    Voc

    Rs = 0 Ohm

    Rs = 2.5 Ohm

    Rs = 5 Ohm

    Rs = 7.5 Ohm

    Rs = 10 Ohm

    Rs

    Solar cell performance

  • 7/28/2019 7_LossesOptimization_2010

    25/29

    Shunt (parallel) resistance (RP)

    Leakage across the p-n junction around the edge

    Crystal defects, pinholes, impurity precipitates

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-400

    -300

    -200

    -100

    0

    100

    200

    Voltage [V]

    C

    urrentDensity[A/m2]

    Rs = 0 Ohm

    Voc

    Rp = 0.001 Ohm

    Rp = 0.005 Ohm

    Rp = 0.01 Ohm

    Rp = 0.03 Ohm

    Rp = 1e4 Ohm

    Rp

    Solar cell performance

  • 7/28/2019 7_LossesOptimization_2010

    26/29

    n-type Si

    p-type Si

    (+) (+)

    (-)

    Fabricated in 1954 wrap-around structure

    p-n junction formed by B

    dopant diffusion high resistive losses in the p-

    layer

    efficiency 6%

    Crystalline Si solar cells

    First c-Si solar cell:

  • 7/28/2019 7_LossesOptimization_2010

    27/29

    University of New

    South Wales (Australia)

    Crystalline Si solar cells

    Efficiency improvement:

    C lli Si l ll

  • 7/28/2019 7_LossesOptimization_2010

    28/29

    Passivated

    Emitter and

    Rear Locally diffused

    External parameters:

    Jsc

    =42.7 mA/cm2

    Voc

    =0.705 V

    ff = 0.828

    = 25.0 %

    Record c-Si solar cell: PERL structure (UNSW)

    Crystalline Si solar cells

    C lli Si l ll

  • 7/28/2019 7_LossesOptimization_2010

    29/29

    Surface texture (inverted pyramids for light trapping)

    Selective emitter(n+-layer for contact, n-layer for active part ofsurface)

    Passivation of surface (SiO2 on both sides of solar cell)

    Thin metal fingers on the front side

    Back side metalization with small contact area to the basematerial

    Locally diffused regions under contact points at the back(BSF field)

    Minority diffusion lengths well in excess of device thickness

    Crystalline Si solar cells

    Key attributes for high efficiency solar cells: