36
A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Embed Size (px)

Citation preview

Page 1: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD)

Advisers : J.- W. Shi, Y.- J. Chan

Student : Y.- S. Wu

Page 2: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

National Central UniversityNational Central University

Micro-Optoelectronic LabsMicro-Optoelectronic Labs

TaiwanTaiwan

Page 3: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Outline

Page 4: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 5: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

+

Transmitter for Fiber-Radio Communication System

+ mm-Wave Detector

Photodiode Matching Circuit Antenna

Transmitter Module

The loss of electrical signal can be reduced through wireless

communication system.

To simplify the base station by eliminating the costly post amplifiers

and cables.

Page 6: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

+

Transmitter for Fiber-Radio Communication System

+ Mm-Wave Detector

Photodiode Matching Circuit Antenna

Transmitter Module

The loss of electrical signal can be reduced through wireless

communication system.

To simplify the base station by eliminating the costly post amplifiers

and cables.The model extraction of PD serves as a key approach to design the transmitter module

Page 7: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 8: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Epi-Layer structure

ECPD

Geometric structure

ECPD: Three major target can be achieved simultaneously

Epi-layer structure: Partially p-doped photo-absorption layerGeometric structure: Evanescently coupled waveguide

The ECPD We Used in Our Model Extraction!!

Page 9: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

0 10 20 30 40 50-20

-15

-10

-5

0

5

10

-1V -3V -5V

Frequency (GHz)

Rel

ativ

e R

espo

nse

(dB

) Photocurrent: 2mA

Active area: 200m2

Electrical Bandwidth (with Different Reverse Bias )

The measured frequency responses of device A under three different dc bias voltages.

Page 10: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

1 10-25

-20

-15

-10

-5

0

5

10

100m2

150m

200m2

DC photocurrent (mA)

40 G

Hz

Outp

ut R

F P

ow

er

(dB

m)

f= 40GHzBias voltage: -5V

(23mA, 6.5dBm)

RF power versus dc photocurrent of ECPD for different reverse at 40GHz.

High Power Performance

Page 11: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 12: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Heterodyne-Beating Measurement Setup (Large Signal Measurement)

Bias Tee

Mechanical Pump

(fasten the sample)

Power supply & current meter

Polarization controller

EDFA (for high power generation )

Coupler

Polarization controller

Tunable laser

Tunable laser

OM

Power meter

Spectrum (for high frequency 40GHz)

Holder

Piezoelectrical stage

sample

Fiber

electric cord (DC)

electric cord (AC)-

By increasing the wavelength difference, the bandwidth response is available through recording the amplitude of RF tone signal.

Can measure the BW response and power generation

Page 13: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

LNA Measurement Setup (Small Signal Measurement)

Port 1

Port 2

EDFA

Power supply

Tunable Laser

Polarization Controller

Polarization Controller

1. Calibrate the packaged Modulator and save as s2p file

2. Don’t change the bias voltage & polarization of the Modulator

3. De-embedded the Modulator

Lightning Network Analyzers

Step 1

Step 2

Modulator

Not only measure amplitude response but also phase response

Anritsu 37300C VNA + MN4765A (commercial PD)

Page 14: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 15: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Rs

Z=50 ΩCpCsc

Rt

CtCdxCj

L

RC delay time region (fRC)

Space charge screen effect reg

ion (fsc)

The Equivalent Circuit Model

Transit time region (ft)

G=0.013 S

Z=50 Ω

The frequency response can be determined by three major factors

Gang Wang, and Tsuneo Tokumitsu, IEEE Trans. Microwave Theory Tech., 15 (2003) 1227.

Page 16: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Rs

Z=50 ΩCpCsc

Rt

CtCdxCj

L

The Equivalent Circuit Model

G=0.013 S

Z=50 Ω

S22

The components in right hand of the equivalent circuit can be verified by fitting the S22 parameter.

Electrical signal

Electrical signal

Page 17: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Rs

Z=50 ΩCpCsc

Rt

CtCdxCj

L

The Equivalent Circuit Model

G=0.013 S

Z=50 Ω

S22

S21

All the components in the equivalent circuit can be verified by fitting the S21 parameter.

Space charge screen effect region (fsc)

Transit time region (ft)

Optical signal Electrical signal

Page 18: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Rc Contact Resistance

Rj Junction Resistance

Cj Junction Capacitance

Cdx BCB Capacitance

Cp Pad Capacitance

Lg Inductance of Contact Metal

Ls Inductance of Pad

The Definition of Parameters in This Equivalent Circuit

Page 19: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Frequency (50MHz to 40GHz)M

easu

red

S22

Page 20: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of

coplanar electrical pad

Frequency (50MHz to 40GHz)

PA

D M

easu

red

S22

Page 21: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of copl

anar electrical pad (L, Cdx, Cp)

Cdx Cp

L

Page 22: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of cop

lanar electrical pad (L, Cdx, Cp)

Perform the I-V measurement

-3 -2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cu

rren

t (m

A)

Bias Voltage (V)

I-V Curve

Differential Resistance : 150ohm

Page 23: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of cop

lanar electrical pad (L, Cdx, Cp)

Perform the I-V measurement (Rs)

Rs

Page 24: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of cop

lanar electrical pad (L, Cdx, Cp)

Perform the I-V measurement (Rs)

Perform the C-V measurement (total capacitance)

-3 -2 -1 0-100

-50

0

50

100

150

200

250

Cap

acit

ance

(fF

)Bias Vlotage (V)

C-V Curve

Average Capacitance : 79 fF

Page 25: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 1 : Determine right hand of equivalent circuit

Measure the S22 parameters of ECPD

Measure the S22 parameters of cop

lanar electrical pad (L, Cdx, Cp)

Perform the I-V measurement (Rs)

Perform the C-V measurement (total capacitance)

Cj

Page 26: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 2 : Determine left hand of equivalent circuit

Measure the S21 parameters of ECPD under different

photocurrent and bias voltage 0 10 20 30 40 50

-20

-15

-10

-5

0

5F

req

uen

cy R

esp

on

se (

dB

)

Frequency (GHz)

-1V -3V -5V

Active Area : 150 m2

Photocurrent : 4 mA

0 10 20 30 40 50-20

-15

-10

-5

0

5

F

req

uen

cy R

esp

on

se (

dB

)

Frequency (GHz)

0.2mA 2mA 4mA

Active Area : 150 m2

Bias Voltage : -1 V

Page 27: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 2 : Determine left hand of equivalent circuit

Measure the S21 parameters of ECPD under different

photocurrent and bias voltage

Fit the S21 parameters under high bias voltage and low photocur

rent (Rt, Ct)

Rt

Ct

Page 28: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Step of Model Extraction!!

Part 2 : Determine left hand of equivalent circuit

Measure the S21 parameters of ECPD under different

photocurrent and bias voltage

Fit the S21 parameters under high bias voltage and low photocur

rent (Rt, Ct)

Fit the S21 parameters under low bias voltage and high photocurrent (Csc)

Csc

Page 29: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 30: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

The Fitting Result of S22 Parameter

The demonstrated model can fit well with the measurement result that obtained under -3V bias voltage with 150 μm2 active area.

Page 31: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

0 10 20 30 40 50 60 70-20

-15

-10

-5

0

5

S (-1V) S (-3V) S (-5V)

Fre

qu

ency

Res

po

nse

(d

B)

Frequency (GHz)

M (-1V) M (-3V) M (-5V)

Active Area : 150 m2

Photocurrent : 4 mA

The Fitting Result of S21 Parameter

The space charge screen effect will reduce as the bias voltage increases !!

Page 32: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

0 10 20 30 40 50 60 70-20

-15

-10

-5

0

5

S (0.2mA) S ( 2mA) S ( 4mA)

Fre

qu

ency

Res

po

nse

(d

B)

Frequency (GHz)

M (0.2mA) M ( 2mA) M ( 4mA)

Active Area : 150 m2

Bias Voltage : -1 V

The Fitting Result of S21 Parameter

The space charge screen effect is very obvious under low bias voltage and high current generation.

Page 33: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

-5 -4 -3 -2 -1-50

0

50

100

150

200

250

Csc (4mA) Csc (2mA) Csc (0.2mA)

Active Area : 150 m2

CS

C (

fF)

Bais Voltage (V)

The Bias & Photocurrent-Dependent Csc Parameter

The device speed performance won’t degrade under high bias voltage as the photocurrent increases due to the elimination of space-charge capacitance.

Page 34: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

IV. Model Extraction

I. Motivation

III. Measurement System

II. The Structure of ECPD

V. The Fitting Results

VI. Conclusions

Page 35: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

Conclusions

By concerning the relationship between

the influence of bias voltage and

photocurrent in the equivalent circuit-model

of high power PD, such model is more

convenient for systems and circuits

integration especially under high RF power

applications.

Page 36: A Bias-Dependent Equivalent-Circuit Model of Evanescently Coupled Photodiode (ECPD) Advisers : J.- W. Shi, Y.- J. Chan Student : Y.- S. Wu

0 10 20 30 40 50-20

-15

-10

-5

0

5

Fre

qu

ency

res

po

nse

(d

B)

Frequency (GHz)

Simulated 01mA Simulated 20mA Measured 01mA Simulated 20mA

Active Area : 320 m2

Bias Voltage : -5 V

About 35GHz

freq (40.00MHz to 50.00GHz)

Sim

ula

ted

20

mA

S

(2,2

)S

imu

late

d 1

mA

S

(2,2

)

Frequency (0.0000 Hz to 50.00GHz)

Measu

red

1m

A S

(2,2

)M

easu

red

20

mA

S

(2,2

)

Bias Voltage -5V

J. W. Shi and Y. S. Wu, IEEE Photon. Technol. Lett., 17 (2005) 1929.High-Speed, High-Responsivity, and High-Power Performance of Near-Ballistic

Uni-Traveling-Carrier Photodiode at 1.55m Wavelength

The Model Extraction of BUTC Under High Photocurrent