A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

  • Upload
    tamzmsc

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    1/72

    A S Y l ~ B O L I C A l ~ A L Y S I S

    OF

    by

    Claude

    Elwood

    Shannon

    B . S .

    U n iv ersity o f E ic hig an

    Submitted

    in Par t i a l Ful f i l l m e nt of

    th e

    Requirements f o r th e

    Degree

    of

    lLASTER OF SCIE JCE

    from

    tile

    : :assachusetts Inst i tute o f Technolcgy

    1940

    Sigl18.ture 1 Author _

    Department of

    Electr ical Engineering August 10

    9 7

    i g n t ~ r e of

    P ro fesso r

    in Char38 o f R es e a r c h

    S i ~ Y J c l t u r e o f

    Cnclirman

    of Deuartment

    COfficittee on Graduate Students ~ L ~ ~ ~ ~ _ . ~ ~ ~ ~

    y

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    2/72

    ; \

    ~

    T BLE OF O ~ T T E N T S

    page

    I n t r o d u c t i o n ; Types o f Problems

    1

    ser ies Para l le l

    Two Terminal

    ircui ts

    Fundamental Def in i t ions a n d P o s t u l a t e s

    Theorems 6

    A nal og ue W ith th e c al c u lu s o f

    P r o p o s i t i o n s

    8

    I I I Mul t l

    I

    rarminal and

    N o n S a r i e s P a r a l l e l

    Networks

    18

    Equivalence o f n Term1nel

    Networks

    18

    star Ivlash an d Delts Nye T r a n s f o r m a t i o n s 19

    Hinderance

    Function

    o f a

    N o n S a r l e s P a r a l l e l

    Network 21

    S1roul t a n a o u s

    Equa

    t ions

    ~

    Matrix Methods

    25

    Spec ia l

    Types o f R e l a y s

    an d

    S ~ i t o h e s

    8

    \

    IV

    ~ ~ t h a s s

    o f

    Networks

    31

    G eneral Theore ms on Networks and

    Functions

    31

    Due 1 N e tw or ks

    36

    s y n t h e s i s o f th e G apersl Symmetric Function

    39

    Equations

    from Given

    O perating harac t e r i s t i c s

    47

    v

    I l lus t r a t ive Examples

    A s e l e c t i v e

    ircu i t

    An Elec t r ic Comb1nat1 on Lock

    A Vote O U ~ t ng C

    1 r c u 1 t

    An

    Adder

    to th e

    Ba sa

    Two

    5 1

    52

    55

    58

    59

    A

    F a c t o r

    References

    69

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    3/72

    KNOvVLEDG ffiNT

    The

    au

    thor i s

    in e te

    PrOfeSSOI F.

    L.

    Hitchcock

    who supervised the

    thesis for helpful

    cri t icism

    and

    advice.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    4/72

    In t roduc t ion : Types o f Prob lams

    I n

    th e

    c o n t r o l

    an d

    p r o t e c t i v e

    c i rcu i t s

    o f

    com

    p l e x

    e lec t r i ca l

    systems t

    i s f r e q u e u t l y

    n e c e s s a r y

    to

    make in t r i ca te i n t e r c o n n e c t i o n s o f relay o n ~ t s and

    swi tches Examples o f

    these c i r cu i t s

    o c c u r

    in

    au to-

    ma.tic t e l e p h o n e e x c h a n g e s , indust r5 a l m ot or con t ro l

    equipment

    an d in almost any c i r c u i t s designed to

    g e r

    f or m c or np le x

    o p e r a t i o n s

    a . u t o m a t i c a l l y .

    wu

    problems

    tha t

    oc c ur in

    c on ne ct io n w it h such n e ~ w o r k s o f switches

    w i l l

    be t r e a t ed

    he r e rb e

    f i r s t

    w h i c h w i l l be

    c9.11ed

    ana lys i s

    i s to cietermine

    th e

    o p e r ~ i n g charac te r j s-

    t i c s of a g i v e n c i r cu i t t i s

    of

    course alwa.ys p o s

    s ib le

    to analyze any given c i r cu i t y set t ing up

    a l l

    p o s s i b l e

    s e t s

    o f

    i n i t i a l

    c o n d i t i o n s

    p o s i t i o n s o f

    switches and r e l a y s )

    a n d following thr ough th e

    c h a i n

    o f

    event

    so

    ins t iga ted T h i s

    method

    i s

    h o w e v e r ,

    very tedious a n d open GO frequent e r r o r .

    The

    s ec on d p ro ble m i s tha t

    o f syn thes i s

    Given

    c e r t a i n c h a r a c t e r i s t i c s t

    i s r e q u i r e d

    t o f ind

    c i r c u i t

    ir Lco r p o r atin g

    t h e s e

    c h a r a c t e r i s t i c s

    s o l u t i o n

    o f th i s

    type of problem i s n o t unique and

    t

    i s

    -cI-J.erefore

    addi t io l la l ly

    d e s i r a . b l e

    t h a t the c i r c u i t

    r equ i r ing the

    l e a s t number o f

    sVii

    t

    h

    blades an d r e l ay

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    5/72

    C O L ~ a c s be

    ~ o u n d Although

    a solut ion

    can

    usual ly

    be

    obta i ned. by a

    lieu

    t and

    t ry

    m tho d f i rs t sa s fy i

    ng

    one

    requirement

    and

    then

    making

    addi t ions

    un t i l

    a l l

    are sa t i s f i ed the

    c i rcu i t so

    obtained

    wi l l seldom

    be

    the

    s i m p l e s ~ .mis

    method 9.1so ha.s

    the disadvan-

    tages of

    being long,

    and

    the

    resul t ing design

    often

    conta ins hidden sneak c i r cu i t s .

    The

    method o f so lu tio n

    o f

    these problems which

    wi l l be developed here

    may

    be described br ie f ly

    as

    fo l lows: An; c i r eu i t

    i s

    represented a

    se t o f

    equa-

    t i ons the terms

    of

    th e e qu atio ns

    represent ing

    the

    v a r i o t ~ s re lays an d sw itch es o f the

    c i r c u i t .

    A ca l -

    culus is developed for

    manipulating these equations

    simple

    mathematical

    processes ,

    most of

    which

    are

    s imi l a r to

    ordinary

    a lgebra ic

    a lgor i sms .

    This Ca.l-

    culus i s shown

    to

    be

    exact ly

    analogous

    to

    the Qalcu-

    lUs

    o f

    P ropos i t ions \ l sed i n

    the s ymbolic

    s tudy

    o f

    log ic .

    For

    the synthesis problem

    the

    desired charac-

    t e r i s t i c s

    a re f ~ r s t wri t ten as a s ~ r s t e m o f e au atio ns

    and the equat ions are then ffianipulated into tha form

    represent ing the

    simplest c i rcu i t .

    The

    c i r c u i t

    may

    then

    be inwediately

    drawn from the equat ions.

    th i s nethod

    i s

    always

    possible to

    find

    the

    simplest

    c i r c ~ i t

    containing

    only series and 9ara l l e l connec t ions

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    6/72

    and for c e r t a in

    types of funct ions t

    i s 9 3s ib le

    to

    find the simplest c i r c u i t conta in ing

    any

    type of con-

    nec t ion In

    the

    analys is

    problem

    the

    equations

    r e ~ r e -

    sen t ing th e given

    c i r c u i t a re wri t t en

    and

    may

    then be

    in terpre ted in terms

    of

    the

    ogerating c h a r a c t e r i s t i c s

    o f th e c i r c u i t t i s alGo

    possible

    with the ca lcu lus

    to ob ta in any

    number

    o f c i r c u i t s

    equ iva len t

    to

    given

    c i r c u i t

    phraseology

    wil l

    be

    borrowed

    frJm

    ordinary

    network theory

    fo r con 6pts in swi tch ing c i r cu i t s

    tha t are r o u g h ~ y ~ l o g o u s to those of

    iffipedencJ

    networks

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    7/72

    4

    I I ~ e r i e s p a r a l l e l

    wo

    Terminal J i rcu i t s

    u n d a ~ e n t a l Definit ions and

    Postula tes .

    Tve sha

    11

    l imi t our tre atrn8n t

    to c i rcu i t s

    conta ining only

    re

    lay contacts

    and

    switches,

    and

    therefore a t any given

    t ime

    the

    r u t between any

    tVifo

    termi

    nals

    must be

    e i the r open

    inf in i te

    impedance) or Closed (zero

    impedance). Let us associa te a

    symbol

    X

    ao

    or more

    simply

    X,

    with the terminals a ana

    b.

    This var iable ,

    funct ion

    o f

    t ime, lNill e

    ca l l ed the hinderance

    of the

    two

    terminal ~ i r c u i t

    a-b. The

    symbol

    0

    (zero)

    wil l

    be

    used to represent th e h inde ranc e

    of

    a

    closed

    c i r cu i t , and th e

    s-ymbol

    1 un i ty to represent the

    hinderance o f an open c i r c u i t . trhus when the c i r -

    \ cu l t a-b

    i s open

    X

    ab

    1

    and

    when closed X

    h

    =

    O.

    wo hinderances X

    ab

    and

    Xed

    will oe said to

    be equal

    \ Vhenever the

    c i r c u i t

    a -b

    i s o'pen, tl1.8 c i r cu i t c -d

    i s open,

    qnd v Jhenevc:r

    a-b i s

    c losed ,

    c -d

    i s

    c losed .

    oW

    l e t the

    symbol (plUS)

    be

    defined

    to mean the

    ser ies connect ion o f the tvY terr l inal c i r c u i t s

    whose

    hinderanc as a re ad1ied

    toge thel

    Thus

    X

    a

    b

    i:3

    the Ilderanc e

    0 f the

    e i r e u i

    t a.cd

    when

    b a n d c a r e

    c o ~ n e c t e d together .

    Similarly the

    product of

    two

    hinderances

    X

    ab

    Xed)

    wil l

    be defined to mean

    the

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    8/72

    5

    hinderance of

    the

    i r ~ u i t

    formed

    by connecting the

    c i r cu i t s

    a -b

    and c -d

    in

    pa r a l l e l .

    A re lay

    con tac t

    o r

    swi tch wi l l

    be

    rep resen ted in a c i r c u i t

    by

    the

    symbol in Fig . 1 the l e t t e r being the corresponding

    hinderance

    func t ion .

    Fig . 2

    shows

    the

    i n t e r p r e t a -

    t ion of the plus

    s ign

    and Fig . the r:lul t i p l ic q t io n

    s i gn .

    Xab

    a ..._IIIlIftIO Do---..b

    x y _ X+Y

    .......

    0 0

    e o

    x

    -Ci}.

    _ Xy

    0

    Fi

    g.

    1

    Fig .

    2

    Fig.

    This cho ice o f

    symbols makes

    th e manipu la t ion o f

    hinderancea very

    s imilar

    to ordinary

    numerical l g e ~

    bra .

    It

    i s evident tha \vi th

    the

    a b o ~ l e de f i n i

    t ions

    th e fo l luwing postula tes wil l ho ld :

    Po s tula. te s

    1 .

    a .

    0 -0

    = 0

    b.

    1

    at

    1

    =

    2.

    a .

    1 0

    =

    0 1

    =

    1

    o 0-1 ~ ~ =

    A

    closed Ci r c u i t

    in

    para l l e l

    vii th a c los e

    d

    c

    i

    rcu

    i

    tis

    c lo s ed e i re ui t

    An

    aoen

    c ir c u i t in se r ies

    vv1th an open

    c i r c u i t

    i s an

    open c ir c u i

    t.

    An

    o?en ~ i r u i t

    in

    ser ies

    with

    a

    c lo sed

    c i r c u i t

    in

    e i ~ h e r

    order

    i s

    an

    ogen

    e i re u i t .

    A c losed c ir c u i t in para l le l

    with an open ~ i r u i t

    i n

    e i t h e r o rde r is a

    c losed

    ~ i r u i t .

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    9/72

    3 . ~

    0

    0

    =

    0

    A closed ~ i r c u i t in 8eries

    with a closed c i r c u i t i s a

    c l as ad

    r C \ J . i

    t

    6

    b.

    1-1

    =

    1 An ODen c i r c u i t in p a r a l l e l

    with

    an open c i r c u i t i s an

    open c i r e u i

    t .

    At

    g i

    van tj.me

    e l

    t h e r

    X

    =

    0

    or

    X :

    These are

    s u f f i c i e n t

    to develop a l l the theo-

    rems ;J hich w i l l be

    \ l s e d

    i n

    connect ion \vith c i r

    4

    c u i t 3

    c o n t a i n i n g

    only

    s e r i e s and

    p a r a l l e l c o n n e c t i o n s . The

    p o s ~ L 1 1 a t e s a r e

    a r r a n g e d

    i n p a i r s to emphasize a d u a l i t y

    r e l a t i o n s r J . i p betweerl the

    o p e r a t i o n s

    o f a d d i t i o I l

    and

    ml11t ipl icat ion ar Ld th e q .u an ti t ie s

    zero

    ind o n ~ Thus

    y

    i i n any

    of the B p O s t u l a t e s the

    z e r o s

    a r e replaced

    t;y o n e s and the m u l t i p l i c a t i o n s by a d d i t i o n s

    and

    vice

    v9rs

    a

    , tb_e corresponding

    b

    i

    p o s t u l a t e

    wil l . reS' tllt.

    This

    f g c t

    i s

    of

    g r e a t

    importance.

    I t

    gives

    e ach theorem

    e

    t l l ~

    it being n e c e s s a r y

    t o prove only

    o ne

    to

    e s t a -

    b l i s h both. T ~ e

    only

    one of

    these p o s t u l a t e s which

    d i f f e r s from

    ordinary algebra

    i s l b . However,

    t h i s

    ens b l

    e s

    g J ~ e f t

    s i

    mpl

    i f i

    os

    ti

    on

    sin

    th_e

    me lipula t i on

    of

    Theorems.

    Irl.

    t h i s

    s e c t i o n a

    numbar

    of theorems gov-

    erning the combination of hinderances w i l l be ~ i v e n

    Ina smucl:1 a s an;T of the theorems ma - he ruved y a

    very

    s imple p r o c e s s tl e proofs

    w i l l not be

    g:iver

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    10/72

    7

    except fo r

    an

    i l l u s t r ~ t i v e example.

    Tbe

    method of

    Proof i s

    t h a t

    of per fec t induc t ion i e the ve r i -

    f ica t ion o f

    the theorem

    fo r a l l possi

    ble

    cases .

    Since

    o s ~ l l p t e 4 each

    var iab le

    i s l imi ted to the values

    o Bn

    d

    1

    th i s i s

    B

    simple r t t e r . Some of the

    the orems

    may

    be

    Droved

    more

    e legant ly by recourse

    to

    p ~ e v i o u s

    theorems, Cut

    the method

    o f pe rfec t induct ion i s

    so un i -

    versal

    tha

    i s pro ba b ly to be pre fe r red .

    1 .

    8 .

    X

    Y

    y

    x

    b . xy

    =

    yx

    2 . a . x y = x y g

    b.

    X(YIi)

    xy)

    3 .

    a

    x y

    ii )

    xy

    X5

    -

    b.

    x +

    yfll

    -

    x

    y

    x

    a-

    4.

    a

    l-x

    x

    -

    b.

    0

    x

    -

    x

    -

    5.

    a

    1

    x

    1

    b.

    Ox

    =

    0

    For

    example,

    to

    Drove

    theo

    rem

    4A,

    note

    the t

    X i s e i t he r o r

    1.

    If it

    i s 0, the theorem f ollows

    from 1)ostll1ate

    2b; if 1 it folLOWS from

    rOs tu la te 3b.

    Je

    sha l l now def ine a

    new

    ope at ion to be

    oal l ed negs t ion . rhe negat ive

    o f

    a

    ~ i n d e r n c e

    X Wil l

    be

    Writ ten X

    t

    and i s defined as

    a var iable Which

    i s

    equa l to

    1 When

    X equals

    0 and

    equal to

    0 When X

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    11/72

    8

    equals

    1

    X

    is the

    }1 ind =Jr 3TIce

    of the make contac t s

    o f a

    rela:T:i

    then

    XI

    i s

    trte hinderance o f the break con-

    t ac t s

    of

    the same re lay.

    The def in i t ion

    of

    the

    nega-

    t ive

    of

    8

    hinder8nce

    gives th e fo llowing theorems:

    6.

    8

    X

    XI

    1

    b.

    V

    0

    n ~ \

    7 .

    a .

    0

    -

    1

    -

    b.

    1

    1

    -

    0

    -

    8 .

    X t

    I

    -

    X

    -

    Analogue ~ f l i t h the ca l cu lus o f P r o p o s t i o t L ~ s Te Rre

    now

    in

    A posi t ion

    to

    demonstrate

    the

    equ iv alence o f

    th i s calculus vvith

    cer ta in elementary p3r t s of th e

    calCtl1u_s of propos i t i ons . Yne a lgebra o f o ~ (1)

    2 ) , 3 ) or ig ina t ed

    e o r ~ e

    Ecole , i s

    a

    symoolic

    method

    of

    i nve st ig a ti ng l og ic a l r e la ti on sh i p s.

    The

    symbols o f

    Boolean algebra admit of

    two log ica l i n t e r -

    pl e ta t i6ns .

    i n t e rp r e t ed in terms

    of

    c lasses ,

    th e

    varta

    b1

    33

    are no t l im i t ed to

    tn.G

    p os sib le v alu es

    o and 1 . This in te rp re ta t ion is k n o ~ v n as the algebra

    of c la s se s . I f , hoVJ8Ver, the terms a re taken

    to

    r e p r ~ e

    sen t

    propos i t ions , \ve

    have

    th e calClll1 . .1S o f p,roposi

    t i ons

    in W ~ i c h

    var iables

    are

    l imi ted

    to

    the

    values 0 and

    1*,

    *I his

    r e f 3 r s

    on ly to the

    c18

    s s i c8 l

    theory o f

    the oa1

    cul J.s

    o f Propos i t ions Recent ly some ~ v o r k ha

    s been

    done

    vvi

    trt l og i ca l systems in vVhich

    pro

    posi

    t ion s ma T

    ha

    ve

    more than

    tvvo

    t t ru th vallIe s .

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    12/72

    9

    as

    a re

    th e h i n d e r a n c e functions above. U sually

    ~

    two

    sUbjects a r e developed simultaneously from ta e Same

    se t

    01

    postula tes except

    f o r

    the

    a dd iti o n in

    ~ case o f

    th e

    Cctlculus of

    Pr o p o s i t i o n s of

    a

    p o s t u l a t e

    ~ u i v l n t

    to p o s t u l a t e

    4

    aoove. S.V. Huntington

    4) gives tne

    followin5

    se t

    of

    p o s t u l a t e s f o r symbolic l o g i c :

    1 . Tne c l a s s K contains a t lea s t two dis t inc t

    elements.

    2. I f a and b

    are

    in tne c l a s s K tnen

    a+

    b

    i s

    in tl e c l a s s

    K

    a b z b a

    4.

    a .

    b)

    C = a + b

    c)

    5.

    a a a

    6. ab

    ab

    ::

    a

    where

    ab

    is

    defined a s

    a + b

    )

    I f we l e t ~ class K be ~

    c la s s

    c o n s i s t i n g of the

    two

    l m ~ n t s

    0

    an d

    1 , taen tnese

    p o s t u l a t e s follow

    from

    those

    given

    on

    pages

    5

    and

    6.

    Also

    p o s t u l a t e s

    1

    2,

    and 3 given t n e r e can be deduced from

    Huntington s

    p o s t u l a t e s . Aduing 4 an d res t r ic t ing

    our

    d i s c u s s i o n

    to tile CEi.lculus of p ro p o s i t ions i t is evident t ha t a

    p e r f e c t tine.logy exis ts between tn e

    calculus

    fo r swi t c n -

    ing

    c i r e u i

    ts B.Jlli

    t I l i s

    br2J1Ch of s y mb o l i c

    loSlc

    The

    tw o

    in terpre tc t ions

    o f

    t ~

    symbols

    a re

    sh:wn

    in

    Table

    1 .

    * T h i s 8.nalogy lllay also be s een from a s l i sh t l y d i f fe ren t

    view point. I n s t e a d o f

    a s s o c i a t i n g Xab di rec t ly wltfi

    th e

    c i rcu i t a-b

    l e t

    Xab r e p r e s e n t

    t ~ g r o o o s i t i o n t n a t

    the

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    13/72

    10

    O le to t h i s anal ogy any theorem 0

    f

    tre c a l c u l u s

    o f

    P r o p o s i t i o n s

    i s a l s o a

    t r u e

    theorem

    if

    i nt e rp re te d in

    terms o f ~ a l a y c i r c u i t s . Th e

    remaining

    theorems

    in t h i s

    s e c t i o n a re

    taken d i r e c t l y

    from

    t h i s f i e l d .

    I

    De M o r ~ n s theorem:

    9 .

    X Y

    ) t = X t . y . Z

    b X Y Z

    ) =

    X y Z

    This

    theorem

    gives the

    n e g a t i v e

    o f

    a

    sum o r product in

    terms

    o f the n e g a t i v e s o f th e summands or f a c t o r s . I t

    may

    be

    e a s il y v e r if ie d

    f o r

    two

    terms by ~ ~ b s t l t u t n g

    a l l

    p o s s i b l e v a l u e s and then

    extended

    to any n u m b e ~ n

    o f v a r i a b l e s

    by mathematicsl

    i n d u c t i o n .

    A f u n c t i o n o f c e r t a i n v a r i a b l e S

    X l ,

    ~ - - - Xx . 1 s

    any e x p r e s s i o n

    formed fl om t h e

    v a r i a b l e s

    w i t h th e o p a r a -

    t10n

    S 0

    f

    a

    ddi

    t 1 o n ,

    mul

    t i p l

    i

    ca

    t 1 o n ,

    and ne

    ga t 1 o n .

    The

    n o t a t i o n

    t X

    l

    , X

    2

    ,

    Xu

    w i l l b e

    u s e d to r e p r e s e n t a

    f l J : ~ t o n Thus

    we

    m @:ht h a v e f{X, Y , Z ) ) = XY +

    X

    y Z ) .

    I n i n f i n i t e s i m a l

    c a l c u l u s

    it i s shown t h a t

    any

    r u n ~ t o n

    p r o v i d i n g i t

    is

    continuous an d

    a l l

    d e r i v a t i v e s e r a eon-

    ,

    t i n u o u s ) may be ex p an d ed

    i n

    8 T8:rlor S e r i e

    s A

    somewha t

    s i m i l a r expansion i s p o s s i b l e i n the calculus o f propos1-

    t i o n s .

    To

    develop the

    s e r i e s

    expansion of

    f u n c t i o n s

    F oo tn ote c on tin ue d from p r e c e d i n g page)

    c i r c u i t a - b i s open. Then

    a l l

    the

    symbols

    a r e

    d i r e c t l y

    i nt er p r et ed a s P:-- oposit1ons and

    th e

    o p e r a t i o n s o f a d d i t i o n

    an d

    ~ u l t i p l l c a t o n w i l l seen to

    r e p r e s e n t

    s e r i e s

    and

    p a r a l l e l c o n ~ e c t i o n s ~

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    14/72

    11

    TABLE I

    n l o ~ u e

    Between

    the

    Calculus

    o f

    P r o p o s i t i o n s

    and

    the Symbolic

    Relay

    A n s l y s i s

    s ymbol

    x

    o

    X Y

    =

    n terpre ta t ion

    in

    relay

    clrcu1cs

    The

    c 1 r c u l

    X.

    The c1rcl A i

    1 s c losed

    The c l r ru 1 i s open.

    fhe

    ser ies

    connection of

    c1reu1

    s X and Y

    The para l le l

    connection

    of c 1 r e u 1 t s X and Y

    rhe

    c i r e u 1

    whic

    h

    1

    S

    pen

    when

    X

    i s c l o s e d , and

    c l o s e d when X i s open.

    The

    a t

    rcu1 t s open and

    c l o s e

    s i m u l t a n e o u s l y .

    n terpre ta t ion

    in

    th e

    c a l c u l u s o f P ro po sitio ns

    Th e p r o P o s i t i o n X.

    The p ro p o sitio n 1s

    fa l se

    The p r o p o s i t i o n 1 s

    t rue

    Th e p r o p o s i t i o n which

    1

    s t r u e a1 the r

    X o:r

    Y

    1s

    tru e . ,

    The p r o p o s i t i o n

    Which

    1 s

    true b o t h

    X an d

    y a r e t rue

    The

    c o n t r a d i c t o r y

    o f

    p r o p o s i t i o n

    X.

    Each p ro p o sitio n

    i m p l i e s th e

    other

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    15/72

    10.

    12

    f i r s t

    note

    th e fo llowing

    equations:

    a .

    f X l

    X

    2

    Y ::

    { l X

    2

    y + X r 0 , X2 X

    n

    -0 ,

    f ,

    11

    I ,

    b. f(Xl X

    n

    > [f(O,X2

    Xn

    +

    x1l.(f(l,X2

    Xn +Xi

    These reduce to iden t i t i e s i f . we le t Xl aqual

    ei ther

    o or

    1 .

    In

    these

    equations the fUnction f is sa id to

    be expanded

    arout

    Xl. The coeff ic ients of

    X

    end

    Xi

    1 1

    in

    ~ r func tio ns of

    the n- l

    variati les X

    2

    and may

    thus

    be expanded

    smu t any

    o.f these var iables

    in

    the

    same

    manner. The addi t ive terms in \a:ke1so may

    be

    exnanded in th i s

    manner.

    Thus

    we

    get :

    11. a . f(XI X

    n

    =X

    I

    X

    2

    f l ~ l , X 3

    Xn

    +

    X I X ~

    f(I,O,X3 Xn

    +

    X

    1

    X

    2

    f(O,1,X

    3

    X

    n

    + X X ~ f O,O,X

    5

    X

    n

    b. f(Xl

    X

    n

    ) e

    [Xl

    + + f O.O,X

    3

    X

    n

    ]

    [Xl +

    X ~ + f(O, l l .X

    n

    ] - [Xi + X

    2

    + f(l.O X

    n

    ]

    lX

    +

    XI

    +

    f l , l ,X

    x

    )]

    1 2 3

    n

    Continuing

    th is

    process n t imes we wil l arive a t the

    complete

    ser ies expansion haVing

    the fo

    I m:

    1

    1) X

    t

    X

    2

    X + + f O,O,O O

    1 n

    XIX

    x

    1 2

    n

    b.

    f(XI

    X

    n

    : [Xl

    +

    X

    2

    +

    + f O,O,O

    O ]

    - [X i + X

    2

    + X

    n

    + f(l,O O O

    [Xl

    + Xl

    +

    x

    t

    + f l , l ,

    l ]

    2

    n

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    16/72

    13

    By 1 2 9 ,

    f

    1s e q u a l

    to

    th e

    sum

    o f t he produ

    c ts formed

    by p er mu tin g pri m es on th e

    t e r m s of

    X

    1

    X

    2

    in a l l

    P o s s i b le ways a n d g i Vi n g e a c h p r o d u c t a coe f f i c ien t

    equal to th e va lu e o f the fU.nction when

    tha t

    product

    i s S im ilarly fo r 1 2 b .

    As

    an

    appl icat ion

    of

    th e

    se rie s

    expansion

    t

    should be

    n o t e d

    tha t we wish

    to f i nd

    a c i rcu i t

    represent ing

    any g i

    van f u n c t i o n

    we ca n a l w a y s expand

    th e

    f u n c t i o n by

    a t

    t he r

    lO a o r

    lO b

    in s u c h

    a

    way t ha t

    an y

    g iv en variable

    appear s a t m ost

    t w i c e ,

    onc e as

    a

    make

    c o n t a c t

    and

    onc e

    8 S 8 b r e a k contac t T h i s

    i s

    shown in F i fl 4:

    x

    1

    x

    ={

    Fig

    Simi la r ly

    by

    11

    any

    o the r

    var iab le need

    a p J E s r no

    more

    than

    times two make

    an d

    tw o br eak c ont a c t s )

    e t c .

    A

    general izat ion of

    De Morgans theorem

    i s

    rep resen ted symbolically

    in th e following equation:

    13. [ r X l , x 2 1

    . ]1.

    =

    f X i X ~ X r i , + )

    By th is we mean

    t ha t

    th e n eg ativ e o f any function ma y

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    17/72

    l ~

    be obtained

    b y r e p l a c i n ~

    each

    v a r i a b l e by i t s negat ive

    and l n t a r c h

    a

    nging

    th e and s YUlools. E X P l i c i t

    and

    i m p l i c i t parentheses w i l l , o f course, remain

    i n the

    same

    plaees . For example, th e n eg ativ e of

    X +

    y .

    (Z

    fIX

    w i l l be XI

    y

    Z X).

    Soma other theorems usefUl

    i n

    s i m p l i y i n g

    express ions e re

    g1

    van below:

    14.

    8

    X

    X

    + X

    =

    X

    + X

    X

    -

    e t c .

    -

    b.

    X

    -

    X

    X

    X

    X

    X

    e t c .

    -

    -

    15a

    S .

    X

    XY

    =

    X

    b.

    X X y

    =

    X

    16.

    XY+

    X ~

    -

    Y

    x t ~ ye

    b.

    X

    Y ) X f

    =

    X

    Y)

    (XI

    ~ } y

    1 7 .

    a

    Xf X)

    =

    Xf(l)

    b. X

    f(X)

    =X

    f{O)

    18.

    X f(X).

    =

    X1f(O)

    b

    X

    f (X)

    =X

    .

    f l )

    ...

    A n ~ e x p r e s s i o n

    formed

    w i t h the o p e r a t i o n s

    o f

    a d d i t i o n , m u l t i p l i c a t i o n , and n eg atio n

    represents

    eXPlic i t ly a

    c 1 r ~ ~ 1 t containing

    only ser ies

    and

    pa

    r a l l s l

    connec

    tior . s

    Su

    ch a

    c i rou1

    t w i l l be

    c a l l a

    d

    a

    s e r i e s - p a r a l l e l

    c i r c u i t .

    Each l e t t e r

    in

    an axpres-

    sian

    of

    t h i s s o r t represents a

    make or

    break r e l a y

    conts

    c t ,

    o r e swi toh

    blade and

    conts c t

    o f i n d th e

    c i r c u i t r e q u i r i n g

    the

    l e a s t

    number o f c o n t a c t s , it i s

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    18/72

    15

    t h e r e f o r e n ec es sa ry to

    man ip u late th e

    e x p r e s s i o n i n t o

    th e form i n w h i c h th e l e a s t n u m b ~ r

    o f l e t t e r s a p p e a r .

    The theorems ~ i v e n above

    a re always

    s u f f i c i e n t to do

    t h i s . A ] 1 t t l e

    p r a c t i c e

    i n t he m a ni pu la tio n

    o f t h e s e

    s;rm :o s i s

    811 t h a t i s r e q u i r e d .

    F o r t u n a t e l y

    m o s t o f

    th e

    t h eo rems a r e e x ac t l y th e

    same a s t h o s e o f

    n u m e r i -

    cal

    a l ~ e o r a - - t h e

    a s s o c i a t i v e

    commutative, an d d i s t r i b -

    u t 1 v e

    laws

    o f a l g e b r a

    h o l d h e r e . Th e

    w r i t e r

    h a s found

    theorems

    3 , 6 , 9 1 4 1 5 , 1 6 a ,

    1 7 ,

    and 1 8 to be

    e s -

    p e c l a l l y

    u s e f u l

    i n

    t h e

    s i m p l i f i c a t i o n

    o f

    complex

    ax-

    p r e s s i an s .

    AS a n examp l e

    o f

    th e

    81

    mp

    f i c a t i o n

    o f e x -

    p r e s s i o n s

    c o n s i d e r th e

    c i r c u i t shoWn

    i n F i ~ .

    5 .

    5

    ~

    v y

    . . . . .

    x

    F i Q; .

    5

    o

    z

    . . . . . .

    0

    Z

    The h in d 3 r a n c e f u n c t i o n

    X

    ab

    f o r t h i s c i r c l l i t w i l l

    b e :

    X

    ab

    =W+\\II X+Y) X + ~ H S + W + e ) ~ + Y + S V )

    i\ [

    =

    ~ + X + Y + X + ~ ) S + l + g ) g l + Y + s t V )

    = W + X + y + g ~ + S V )

    lthesa r e d u c t i o n s

    walee

    made

    \ V1 tth

    1 7 b

    u s i n g f i r s t then X and

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    19/72

    16

    y as the

    XU

    o f

    17b . }IO\iV mul t ip ly ing ou t :

    X

    ab

    =

    W X Y

    gel ~ ~ V

    : W

    x y

    ~ S V

    The c i rcu i t corresponding to

    th is expression

    i s

    shown

    in F ig . 6 . Note the la rge reduct ion

    i n

    the

    number

    o f elemen ts.

    z

    w Y

    a _ lI O Vi

    l

    _ .n .o a a

    Fig .

    6

    It i s convenient in drawing c i r c u i t ~ to l abel

    a re lay

    With the

    same l e t t e r

    as

    the

    hinderance

    of

    make contacts of the

    re lay .

    Thus i f a relay i s

    con

    neoted to

    e

    source

    of

    voltBQ:6 through

    a network whose

    hlnder8nce

    funct ion i s

    X

    the

    relay

    and any make

    con

    t ec ta on i t would be labeled

    X.

    Break aontects would

    be

    labeled

    XI.

    This assumes t r ~ t the relay

    operates

    instarl t lY and tha t the make oontacts

    close

    end the

    break

    contacts

    open

    s1multaneousl

    y . Cases in which

    there

    1s time delay wi l l be

    t rea ted

    l a t e r .

    It i s also poss ib le to use

    th e

    analogy between

    Booleian

    algebra

    and

    re lay c i r c u ~ s

    in

    th9 opposite

    di rec t ion i . e .

    to

    represent

    logical re la t ions by

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    20/72

    7

    m ns of e le c tr ic c ir cu its

    om

    interest ing resul tz

    have been

    obtained

    o n ~

    th i s

    l i ne h l t are of

    no im-

    portance here

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    21/72

    18

    I I I Multi terminal

    end

    Non aeries paral lel Circui ts

    Equivalence o f

    n Tetlminal

    Networks

    control i r r n ~ t

    wil l take the

    form

    of

    Fig

    7 where

    x X X are re lays or other devices controlled

    1 2

    by the e i r eu i t and N i s a network o f relay

    contacts

    and

    w t ches

    Fig 7

    I t

    i s desirable

    to f ind t ransformations tha t ~ be

    applied

    to

    N which

    wil l

    keep the operation of a l l

    the rela:v

    s

    Xl X

    n

    the same So f r he ve only

    cons ide red t rans fo rma ti on

    s Which m y

    e

    apPl ied to

    a

    two ;terminel

    ne twork keeping

    the

    opera t ion 0 one

    re lay in s 3 1 ~ i e s With th is

    network

    the

    sama To

    t h i s en d we s h al l de fine

    equivalence

    o f two n term ..

    ina 1

    networks

    s fol lows:

    Def in i t i on :

    TvvQ

    n termina 1

    networks

    h

    an

    d N

    wi

    11

    be sa id

    to

    be

    equi

    valen t

    wi

    th

    respec t

    to th e se

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    22/72

    19

    t e rmina l s

    if

    and only if X jk =Y jk .j, k =

    1

    2 :3 -. n

    r 7 r ~ e r e X i s the

    hinderance

    on

    network T e t ~ v e e n

    t e rmi

    jk

    ne ls

    and

    k

    and

    Y

    i s

    tha t

    fo r

    between

    the

    co r

    jk

    r e s p o n i n ~ terminals .

    Thus

    under t h i s de f in i t i on th e

    equ_ivelenc3s

    o f the preceding sec t ions

    were

    \\ 1 th respec t to two

    Star-Mesh end Delta-vVye Transformat ions .

    -

    As in ordi

    nary

    network

    theory

    there ex ie t

    l;l:1r to me

    fJh

    2nd

    de l t a

    to vvy-e

    t ransforms

    t i on s .

    The

    de l t a

    to

    y t l ~ n

    sforms-

    t ion

    i s

    shown

    in Fig .

    8 .

    These

    two

    n e t w o ~ k s are

    equivalent

    with respect to the three t e r m i n l ~ a

    b,

    and c ,

    since by

    the

    d i s t r l l n t i v e

    law X

    ab

    = R S

    T

    =RS

    RT and

    s imi lar ly for

    the

    o the r pai rs of

    termi-

    nels

    a-c

    end

    b-c.

    b-

    -

    b

    1

    R

    S

    RS

    -

    ReT

    ST

    c

    T

    Fig . 8

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    23/72

    20

    The y

    to

    de l

    ta

    t ran sformation

    i s shown in

    Fig

    9 This

    follovJS

    from the f ac t

    tha t X

    ab

    = R S :

    R

    S R

    T

    T

    S .

    R ~ S

    a

    Tot-a

    c

    An n po in

    t

    s ta r a1

    so

    he s a me s h e qu

    1

    va 1 en

    t

    w ith the cent ra l node el iminated

    This

    i s formed

    axe

    c t ly

    8 s

    in

    the simple

    th ree pain

    t s

    ta

    r by

    Con-

    nect1ng each

    pair

    of

    terminals

    of the mesh through

    8 h1nderan ce which

    i s

    the

    sum

    f

    the

    co

    z ~ e s p o n d i n g

    For n

    ::

    5 t h i s i s s h..Q\vn i n ~ F i g 10

    b

    arms of

    the

    s t a r

    b

    R

    e

    c

    F ig 10

    a

    c

    - - - - . ~ ~

    t I I ~ - - - . .

    e

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    24/72

    21

    Hinderance Function of

    a Non-Ser ies-paral le l

    Network

    The

    methods of par t I I were

    not

    s u f f i c i e n t

    to

    handle

    c i r c u i t s which

    contained

    connections o t h e r

    than those

    of

    a

    s e r i e s - p a r a l l e l t y p e .

    The

    bridge

    o f Fig.

    11

    fo r

    examPle

    i s a

    n o n - a e r i e s - p a r a l l e l

    network.

    These

    n e t

    works v i l l l e handled

    y reducing

    t o

    en

    e q u i v a l e n t

    s e r i e s - p a r a l l e l

    c i r e u i t .

    rhree methods

    have

    baen

    developed fo r

    f i n d i n g the

    equivalent

    of a network

    such e s the br idge .

    v

    s

    F i g .

    The

    f i r s t

    i s

    the

    obVious method

    of

    aPPlying

    the t ransformst ions

    u n t i l

    the network i s o f

    the

    s e r i e s - p a r a l l e l

    typ

    an d

    then

    wr1 t1ng the h1nderan ce

    function v inspect ion. This process i s

    exact ly

    th e

    same a s

    i s used in s i m p l i f y i n g

    complex impedal1

    c

    e

    networks.

    apply

    t h i s

    to

    the c i r c u i t of F i g . 11

    f i r s t

    el iminate

    the

    node

    c

    y

    applying

    the

    s t a r

    to

    mesh

    t ransformation t o the

    s t a r

    a - c

    b-c d-c.

    This ves the network o f

    F i g . 1 2 .

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    25/72

    22

    Fig .

    12

    The hinderance function may be wri t ten dovvn

    from

    inspect ion

    for t h i s network.

    X

    ab

    = R

    S)[U R T V T S }

    S l m p f y i n ~

    by the

    theorems gives :

    x = RU S

    TV

    SID

    ab

    The second

    method

    of anal:rs1 s

    i s

    to

    draw

    sll Pas

    8

    ble

    paths between the

    points

    under oonsid-

    ere t ion throu.gh

    the network. These paths ere

    drawn

    l o n ~

    the l i n e s represent ing th component hinder-. .

    Bnce

    eleJllents

    o f

    the c i r cu i t .

    I f anyone of these

    pa ths h8 s zero hinderen as the

    requ

    i red :f\ln et len

    must be

    zero.

    Hence

    the

    ~ e s u l t is writ ten 8S

    a

    product

    the

    hirlderanes

    o f

    each path

    vl i l l

    a

    f ac to r

    of t h i s

    product. The required

    resul t may

    therefore

    be

    wr1 t t an

    as

    the product

    of the hlnder

    ances

    o f

    a l l

    pass i

    b le

    pe

    th s b9tween the

    two po in t s .

    P ath s whioh

    touCh the

    sarna po in t

    more than

    once need

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    26/72

    23

    no t be

    con sid-3red. In F i ~ 13 t h i s

    method

    i s

    apPl ied

    to

    the b r idge .

    The

    paths are marked in

    red.

    ~

    Fig . 13

    The

    :f\.lnction

    1s therefore

    g

    van by:

    X

    ab

    =

    R

    sHu

    V) R

    T

    V U

    T

    S

    v

    :; U

    SY

    RTV

    UTS

    The

    same

    re su l t

    is th us obta in ed as

    with the f i r s t

    method.

    The tl1.ird

    method, the

    dual o f the second,

    is

    to draw a l l poss ib le l ines Which VJould br-e8k t

    he

    c i r

    cui

    t

    between the

    point s

    under

    cons dara

    t i on

    making

    the

    l i ne s go through th e hinderances of

    the

    c i rcu i t .

    The ras111t i s writ ten as sum

    each

    term corres

    pending to

    a

    Qdrtain

    l i n e . The

    sa t arms

    a re

    the J:Jrod-

    ucts

    of

    a l l

    the

    hinderances on

    the

    l i ne . This

    method

    i s ap nlied to

    the

    bridge in F ~ 14, the l ines b e n ~

    drawn

    in

    red .

    b

    F ig .

    14

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    27/72

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    28/72

    25

    Sometimes

    the re la t ion

    ab

    t

    =

    0 ob t a ins between

    two

    re lays 8

    end

    b. This 1s t ru e , fo r example,

    in a

    sequ

    ent1Bl

    sy stem

    whe

    re

    ee

    ch

    re lay of

    the

    sequen

    ce

    1.oCks i t s e l f

    in

    and

    a

    precedes

    b in

    t he sequence .

    Nhenever

    b

    i s o perated

    8

    i s

    operated.

    In such

    a

    case

    the following s impl i f i ca t i ons may be

    made:

    a

    b

    l

    = 0

    Then

    a

    b

    t

    =

    s , b

    l

    a b -

    b

    l

    -

    ab

    -

    eb

    a b

    l

    =

    8

    -

    8 I

    b = 1

    (a

    b

    l

    (a

    l

    b ){e

    -

    a

    l

    -

    a

    = (e

    8

    =

    b

    Matrix

    Methods.

    I t i s also poss ib le to t r sa t mult1-

    terminal networks by means of matr ices .

    Although

    use -

    fu l

    fo r

    t h eo re t i c a l

    work

    the

    method

    i s

    cumbersome

    ox

    prac t i ca l

    problems and wi l l

    th 3r

    l

    3fore on ly

    e

    br i e f ly

    sketched . e sha l l

    as

    mma

    th e

    same ru19s

    of m n i p u l a t ~ o n

    o f m atr ic es

    as

    usuell-:T def ined in v/orks on

    higher

    a lge -

    bra,

    the only

    difference

    b a n ~

    tha t the elements

    of

    our matr ices wi l l be

    hinderance

    funct ions r a t he r

    than

    ordina ry

    a lgebra ic

    numbers

    o r

    va r i ab le s . The

    XI

    matr ix

    o f

    8 ne two rkw i t h n nodes wi l l be de f in ed as th e fo l -

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    29/72

    6

    I

    I

    I

    1

    X

    12

    X

    13

    X

    n

    I

    I

    X

    21

    1

    X

    23 X

    n

    X

    I

    1

    n

    where

    X j

    is the negative

    o f the hinder ance

    common to

    nodes

    j

    and k

    Theorem:

    The X matrix

    o f

    a network

    formed

    by

    con

    n ectin g two n

    node

    ne t works

    p a ~ e l oorrespond-

    ing n o d e s

    t o g e t h s I )

    i s the sum

    of

    tr18 1nd1 V i d u a l XI

    m a t r i c e s .

    This

    theorem 1s

    more g e n e r a l

    thaD might

    appear a t f i r s t

    since any i n t e r c o n n e c t i o n

    of

    two n e t -

    works

    may be

    oonsidered S

    a

    paral le l

    connection o f

    two ne t works wi th

    th e same

    numb3r o f node s

    by

    a ddi ng

    nodes S ~

    whose mutual

    hinderances

    to

    th e o t h e r

    n o d e s

    i s

    o n e .

    ow

    d efin e

    s

    matrix

    to be

    c e l l e d th e U m

    t r ix

    o f a

    network

    S

    f o l l o w s :

    ~

    U

    12

    Ul

    n

    U

    21

    1 U

    2n

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    30/72

    7

    Wh A-rA

    TIl

    1 g th e n e ~ a t i v e

    of

    trle hinderance fu n ctio n

    .- . - - jk

    from node j

    to

    k , th e

    network

    considered 8 S

    a

    two t ~

    1 n a l

    c i re l l i

    t .

    Thus fo r the t h r e e

    node

    ne twork of

    F i g . 16 th e

    X and TIl

    m a t r i c e s

    a re as shown

    a t th e

    r igh t .

    2

    xl\y

    1

    X l

    z

    1 X y Z I

    z x1y

    x

    1

    y

    x y z

    1

    y X 7 .

    l ~

    Z l

    y

    1

    z x y

    : f l X Z

    1

    z

    Fig . 1 6

    X

    Matrix

    U

    Matrix

    T h e o ~ e m Any p ~ e r o f th e XI matrix o f 8 network

    g i v e s

    a netvlork which i s e q u i v a l e n t With r e s p e c t

    to 811

    nodes. The matrix is r a i s e d

    to a

    powsr

    by

    th e

    u s u a l

    r u le f o r

    m u l t i p l i c a t i o n

    o f m a tr ic es .

    Theorem:

    I

    t

    I

    1

    U12

    .

    .

    .

    .

    U

    1n

    1

    X

    12

    ..

    .

    X

    1n

    s

    I

    t

    Xl

    U

    21

    1

    ...

    .

    U

    n

    X

    21

    1

    .

    .

    .

    -

    2rl

    -

    .

    .. . . . . . . . ..

    .

    ..

    .

    ~

    ...... .

    X

    n

    1

    s ~

    n-l

    Theorem: An y node., s a y th e kth may be alirnina ted

    l es t l i n g th e ne twork e q u i v a l e n t with respec t t o

    remaining no des by

    a d d i n g

    to

    each eleraent

    X ~ s of

    th e

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    31/72

    28

    Xi

    m a t r i x

    th e o r o d u c t o f th e

    elemoo.ts

    X k and X

    k

    a n d

    r _8

    s c r i k i n g

    a u t

    t h e

    k t h r o w a n d

    column.

    Thu s e l i m i n a t i n t h e 3 r d node o f F i g . 16 we p;et:

    L z

    z

    t

    x z y

    l y y

    I:

    1

    x J1 z

    X y 1 z l

    1

    The p ro o fs o f these theorems a re

    o f

    a simple

    n a t u r e ,

    ut

    q u i t e

    l o n ~ e n d

    w i l l no t

    be

    g i v e n .

    S p e c i a l

    TyP3

    s o f

    R e l a y s Band SVrl

    t c h e s .

    I n c e r t a i n type s

    o f

    c i r c u i t s it i s n e c e s s a r y to p r e s e r v e d e f i n i t e

    s e q u e n t i a l

    r e l a t i o n

    in t he o p e r a t i o n o f

    th e

    c o n t a c t s

    o f a

    r e l a y . T h i s

    is

    d o n e w i t h

    make-barare-break

    o r

    con t i n u i ty an d brae

    k-make

    o t

    t r a n s f e r )

    con t a c t s .

    I n

    hand11np;

    t h i s t y p e

    o f

    01 r o u t t t h e simple

    s t

    t h a d

    seems

    to

    be

    to assume i n

    s e t t i n g u p t h e

    e q u a t i o n s

    t h a t

    th e make

    and

    br eak contaots

    o p e r a t e s1 mu ltan e-

    o u s l y , a n d aft:3I a l l s i m p l i f i c a t i o n s

    o f t h e

    e q u a t i o n s

    have

    been

    made

    en d

    th e

    r e s u l t i n g c i I c u l t drawn

    th e

    r e q u i r e d ty p e o f c o n t a c t sequence i s found

    from

    i n -

    s p e c t i o n .

    R e la ys h a Vi n g a

    t i m e

    d e l a y i n o n s r a t 1 n g

    o r

    d e o n e r 8 t i n g may

    be t r e a t e d s i m i l a r l y

    o r

    by s i t i n ~

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    32/72

    29

    tha t iu t ix is .

    'rnus

    'elay co i l i s

    Con_naeted

    to

    battery through

    a

    hinderance

    X

    and the re lay has

    a

    de lay of

    seconds

    in

    opere t ing and r e l ea s ing , then

    th a h in deran ce fUnction

    of

    the

    eontacts

    o f the

    re lay

    wi l l also be

    X,

    but a t

    a

    time seconds

    l a t e r . This

    may

    be ind ica ted

    wri t ing

    X t for the

    hinderance in

    se r i e s With

    the

    r e l ay ,

    and X t-p) fo r

    t h a t

    o f the r e

    l a t oontacts .

    There Bre

    many

    spec ia l types of re lays end

    sWitches fo r

    pa r t i cu l a r

    Plr-poses, such

    as the

    s t e p p n ~

    switches

    and

    selector switches

    of

    various

    s o ~ t s

    multi-winding re lays ,

    cross-bar switches, e t c . The

    opera t ion of

    a l l

    these

    types

    may be descr ibed with

    the words

    or , and,n

    i f ,

    l1oparated,

    and not

    opera ted.

    This i s a su f f i c i en t eondi t lon t ha t

    may

    be

    desc r i bed

    in

    terms o f hinderance fUnctions with

    the

    operat ions

    of

    addi t ion ,

    mul t iP l ica t ion , nega

    t i on , end equa l i ty . Thus two w i n d i n ~ re lay might

    be

    const ructed tha t

    t

    i s operated

    the f i r s t

    or the second winding

    i s

    opera ted ac t iva ted)

    and

    the

    f i r s t

    the

    seeond windings are

    not operated.

    Usual ly ,

    however,

    these

    specia l

    relays

    occur

    only

    a t

    the end of

    a

    complex a i rcu i t and

    may

    be omitted en

    t i re ly

    from

    the

    o alc ule tio ns to

    be added a f t e r the

    re s t of the c i r cu i t i s designed.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    33/72

    m ~ ~ ~ m e s a r e l a y X

    1s

    to opera te when

    B c i r -

    cu i t r c l o s e s and to

    remain closed

    i nde pe nde nt o f r

    un t i l

    a c i r cu i t S

    opens

    Suoh

    c i r cu i t

    i s known as

    e l ock i n

    c i r cu i t

    I t s e q u a t i o n

    i s :

    X

    =

    rX

    S

    R ep lacin g

    X b y X.

    v e s :

    = rX S

    o r

    X :

    l

    X S

    In

    t h i s c a sa X i s

    opened when

    r

    closes and rem ains

    open

    unt i l

    S

    opens.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    34/72

    31

    IV S y n t h e s i s

    o f

    Networks

    Some

    Gen er al

    Theorems on }letworks and

    F U n c t i o n s .

    he

    3 bee n shown

    _that

    an y furl

    e t t o n may be

    e xpa nde d i n a

    s e r 1 e s con 81 s t 1 n

    g 0

    f a sum o f produ e t a , e a c h prodU a t

    beinp; o f

    t h e

    form XlX

    2

    X

    n

    wi

    t h

    some p e r m u t a t i o n o f

    primes

    on

    th e

    l e t t e r s ,

    and

    each

    p ro du ct h av in g

    th e

    co

    e f f i c i e n t

    0 o r

    1 .

    ow

    since

    each

    o f th e

    n

    v a ria b le s

    m a y o r may

    n o t

    have a

    pr ime,

    t h e r e 1 s 8 t o t a l o f 2

    n

    d i f f e r e n t

    products o f t h i s form .

    S i m i l a r l y each prod

    u c t ma y have

    th e

    c o e f f i ~ a n t

    0 o r

    th e c o e f f i c i e n t

    1

    2

    2n

    t h

    o t h e r e

    a r e

    p o s s i b l e

    sums

    o f

    1 s S O I t .

    E ach o f

    t h e s e sums w i l l r e p r e s e n t a u n i q u e f u n c t i o n , b ut

    some

    o f t h e f u n c t i o n s may

    a c t u a l l y involve

    l e s s t h a n n v a r i -

    a

    b l e s i . e . ,

    t h e y e r e of

    su ch a form thQ

    t fo r

    one o r

    more

    o f

    t h e

    n

    v a r i a b l e s ,

    say

    X ~

    we

    have

    i d e n t i o a l l y

    f Xl , k ~ l 0 ,

    Xk+l X

    n

    =f X1.Xk-1J 1 , X

    k

    1

    X

    n

    so

    th e

    t

    u n d e r no

    oo.ndi t n s

    do

    as th e va

    lue o f

    th e fu nc tio n

    depend

    on the value o f

    X

    k

    Hence we have th e

    theorem:

    Theorem: The number o f fu n ctio n s

    o f

    n v a r i a b l e s o r

    2

    n

    l e s s

    i s

    2

    To

    f i n d

    th e number o f f u n c t i o n s

    W h i c h

    8 0 t u

    a

    l l y

    i n v o l v e

    n

    v a r i a b l e s

    we

    p r o ce e d a s f o l l o w s . L e t r/ n

    be

    th e

    r e q u i r e d

    number.

    Then Q th e theorem

    j u s t

    given:

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    35/72

    32

    where

    ~ :

    nl /k

    Hn-k) i s

    the

    number of comb1.nation s

    of

    n t h ings taken k

    a t

    a t ime .

    S o l v 1 n ~

    fo r ~ n

    gives:

    2n

    ; n = 2 ~ R);{k)

    k=O

    y

    5Ubst1 tu t ing

    fo r

    , n-l)

    on th e r i g h t the

    s imi la r

    expression found by replacing n by n -l

    in

    th is

    equation,

    x

    then s imi lar ly

    sUbsti tut ing fo r

    ~ n - 2 in the expres-

    s ian thus obta ined ,

    e tc ,

    an

    equat ion

    m y be obtained

    involv ing only

    ~ n .

    This equat ion may

    than

    be

    slm

    p11

    f i

    ad

    to t he form:

    ~

    2

    k

    n

    ; n) :

    [ k 2 -1)

    ]

    k :

    As n increases th i s

    x ~ s s o n

    approaches i t s

    leading

    term 2

    2

    asymptot ical ly .

    The e r ro r in uSing o nly

    t h i s

    term

    fo r n :

    5

    i s

    l e ss

    than

    .01 .

    e

    sha l l now

    determine

    those fUnctions of

    n

    vert.s ble s which requi re tb.e mo

    s t

    re lay

    con tac ts to re -

    e l iza ,

    and find th e

    number

    of

    contacts r equ i r ed .

    In

    o rde r

    to do t h i s , 1s

    necessary

    to define a

    func t ion

    of two var iab les krtown

    s

    th e sum modulo

    two

    o r d i s -

    junct

    of

    the ~ l a r i e b l e s .

    This

    funct ion

    1s wr i t t en

    l

    ex

    2

    end i s def ined

    by

    the equa t ion:

    X l ~ X 2 =

    X

    X

    2

    X X

    2

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    36/72

    33

    i s easy to sPw tha t the sum modulo two obeys the

    commutat ive , asso }ia t ive ,

    and the d i s t r i h l t i v e

    law

    with

    resoect

    to

    mult ip l ica t ion

    i . e .

    x

    1

    2

    : ~ x

    X

    1

    eX

    2

    eX

    3

    =X

    1

    8 X

    2

    e

    3

    Also:

    x el :

    1 1

    Since the sum modulo two

    obeys

    the

    assoc ia t ive law,

    we may omit

    parentheses

    in

    a

    sum

    of

    several terms

    Without ambiguity_ The sum modulo

    two

    of

    th e

    n var1-

    ables

    1

    n

    wi l l

    fo r

    convenience

    be

    wri t t en :

    n

    X l e x e x e ~ = ~ X k

    Theorem:

    The two

    funct ions

    of n variables which re -

    quire the most elements

    re lay

    contacts in a ser ies -

    n n

    pa r a l l e l

    r ea l i za t ion Bre

    ~ X a n d ~ X ~ ) I , each o f wlUch

    2 1

    requi res

    32

    n

    -

    1

    _2 elements .

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    37/72

    This

    wil l

    be proved by mathematical induct ion.

    F i r s t

    note

    tha t

    t

    i s

    t rue fo r

    n

    = 2 .

    There

    Bre 10

    fUnctions

    of

    2 variaQles,

    namely,

    r

    X Y

    Xty, XI+Y,

    XY',

    X+Y X'Y' J

    XI

    +Y', XY

    X'Y,

    XY+X'Y'. All of

    these

    but

    the l a s t two require two elements; the l e s t

    two r ~ r four elements

    and ara

    XfY and X8Y)

    respec t ive ly . Thus the

    theorem

    i s t r u ~

    fo r

    n = 2 .

    oW

    8 SBuming 1 t true fo r n - l , we sha l l

    prove

    1

    t t rue

    fo ' n and thus complete the induet lon Any

    function

    o f

    n

    var iab les

    may be V /rl t t an by

    lOa :

    l ~ o w the terms f (1 ,X

    2

    X

    n

    ) and f O,Xe:> X ) are f\1nc

    n .

    t iona of n - l va r iab le s ,

    and

    t hey

    ind iv idua l ly

    re -

    quire

    the most elements

    for n - l

    varia

    b le s , ' then f wi l l

    require

    the

    most

    elements

    fo r

    n

    var iables ,

    providing

    there

    i s no other method

    of writ ing

    f so tha t le ss

    elements ere required. t ~ J e

    have

    assumed tha t the

    most

    elements for these n - l var iab les are required by

    ~ X k

    and ~ X k f - I f we therefore su bs t i tu te for

    n

    f{1,X

    2

    -- .X

    n

    ) th e

    funct ion

    and

    for f{O,X

    2

    - _X

    n

    )

    n

    k

    the

    ~ u n t o n

    t eXk ) f

    we

    get:

    2

    n n n

    f =Xl. Xk

    I

    X if

    2Xk

    t =

    ~ 2 X k

    I

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    38/72

    35

    From

    the

    symetry

    of th i s funct lon

    there

    is

    no

    other Vv y

    o f

    e x p a n d i n ~

    vhich

    v ~ i l l

    reduce

    the number of elements .

    the r11nctions ere s t lbs t i tu ted in the o th er o rd er ,

    w ~ t

    This

    oomvletes

    the proof tha t

    these functions require

    the

    most

    elements- To show that

    each

    requires

    3_2

    n

    _2)

    elements, l e t

    the

    number

    of

    elements required

    be de

    noted

    by s n . Then from 19) w

    ~ a t

    the

    differenoe

    equat ion:

    s n : 2s n-l) 2

    With s 2 = 4 . This

    i s

    l i n ea r , ~ v t h cons tan t coe f f i

    c i en t s ,

    end

    may

    be solved by

    the usua l

    thods 5 .

    The

    solution

    i s :

    n - l

    s n

    =

    3 .2 -2

    a s may be ~ a s Uy verlf1 ad by

    su

    bst1

    tu

    t in g in the d l

    te rence

    equation

    and toundary condi t ion .

    Note

    t hat the above only apPl ies

    to 8

    s s r i e s -

    para l le l r e a l i z a t i on . In a l a t e r sect ion it Wil l be

    n

    shown

    t h a t the

    f l l n c t i o n ~ X k

    and i t s negative may be

    r es l i zed

    with

    4: n-l)

    elements

    u s i n ~

    8

    more

    p:eneral

    type

    of c i r c u i t . The

    fUnction

    requir ing the most

    elements u s i n ~

    any

    type

    of c i r c u i t

    has

    no t as yet

    been

    determined.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    39/72

    Dual

    l{et\vorks.

    36

    The n e ~ e t v e of any network m87 be

    found y De ~ l o r g n l s theorem, bu ne t v ~ o r k must

    f i r s t

    be transformed into an eQUivalent ser ies-para l le l

    c i r c u i t un less i s a l ready o f t h i s t ype . A theorem

    Will

    be

    developed With which th e

    nega t ive o f

    any

    planar

    two-terminal c i rou i t may

    be round

    di rec t ly . As B

    coro

    l l a ry a method o f f ind ing a constsn t current 1

    rcu i

    t

    equivalent to e

    ~ i v e n

    constant voltage c i rcu i t and

    vice

    versa Wil l

    be g i van.

    Let

    N represent a planer network of hinder

    snoas , With the function

    X

    ab

    between th e

    terminals

    a and b Which are on the outer

    edge

    of

    the

    network.

    For def in i teness

    eon sld er th e

    netwo k of Fig . 17

    (here

    the

    hinderances

    are shown merely as

    l ine s .

    NoW

    l e t

    M rep rese nt th e

    dual of N, as

    found

    the

    follow np pro cess;

    fo

    r

    as ch

    c on

    tour or me

    sh

    N

    assign a n9de o r junction point of M For eaoh

    element of

    N

    say

    X

    k l

    s e p i r 8 t i n ~

    the

    contours

    r a nd

    s

    there

    corresponds

    an e l ~ m e n t

    X

    k

    connecting the

    nodes

    r a n d

    s o f M

    The

    area

    e x t 3 r o ~

    to N i s to

    be considered as tVlQ meshes, c and

    d,

    corresponding

    to nodes

    c

    end

    d

    of

    M

    Thus th e dual o f F ~

    17

    i s

    the

    network of F i ~ 18.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    40/72

    a

    m esh c

    s

    mesh d

    Fig .

    17

    b

    Fig .

    c

    Theorem: I f M

    and

    N

    bear th i s

    dua l i ty

    re la t ionship

    then

    X

    a

    b =

    ~

    To

    pro

    va th i S J

    l t

    t

    he networks M end N

    be

    superimposed, the nodes o f

    M

    within

    the

    corresponding

    meshes

    of M and

    corresponding elements

    cross ing. For

    the

    network of Fig . 17 ,

    th i s

    1s shoWn

    in

    Fig. 19,

    With

    N in

    black and

    M

    in

    red .

    Inc identa l ly the

    sa s i e

    s t me

    thad 0 f f inding the

    dual

    of a ne two rk .

    Whether of t h i s type

    or

    an 1mpedlnce nstwork

    1s

    to

    draw the required

    ne two

    rk

    superlmpo sed

    on

    t

    h.e g van

    networtk.

    Now

    i f

    X

    ab

    : 0 ,

    then

    there

    must

    be

    some

    -path

    fI om

    to

    b l o n ~ the l ines

    of

    N

    such

    th t

    every

    element on th i s

    path

    equals z ero . But th i s path

    repre-

    sents

    a pa th across

    M d1

    v i

    ding the c i r cu i t

    from c to d

    along w n i ~ every element of M 1s ona. Hence Xed =

    1 .

    Similar ly ,

    i f Xed

    =

    0, then X

    ab

    =

    1 and follows tha t

    X

    V

    8b

    -

    ad-

    a

    Fig .

    b

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    41/72

    38

    In a eonstan t-vo lt age re lay system

    a l l

    the

    re lays

    are in paral le l

    across

    the

    l ine

    To open a

    relay a

    ser ies conneotion 1s

    o p e n ~ d The

    general con-

    s tant-vol tage system

    1s shown in Fig.

    20. In

    a constant-

    currant

    system the re lay s

    a re

    a l l

    in

    se r ies

    in the

    l i ne

    To

    d e ~ o p e r a t e

    a

    re lay

    t

    i s

    shor t c l rou i tad

    The

    gen-

    e ra l constant-current

    c i rcu i t

    corresponding to

    Fig. 20

    i s

    shown

    in

    F ~ 21. I f

    the relay

    Y

    k

    of

    F i ~

    21 is

    to

    be

    operated

    whenever

    the relay

    X

    k

    of F i ~ 20

    i s

    opera ted

    and not

    otherwi

    se than eVidentl y the

    hin-

    der8tlCe in pa ra l l e l

    wi

    th Y

    k

    whi_ch Shorts 1.t out mus

    t

    be

    the na ga t va

    f

    the hinderan

    ce .

    in s a r i

    as vii

    th

    X

    k

    Which

    connects

    t

    across

    the

    vol tage sou rc e. I f

    t h i s i s

    t rue

    fo r a l l th e re lay s we sha l l say t ha t the

    oonstant-currant and constant-voltage systems

    are

    equiv-

    a l en t The ove theorem y be used to f ind equivalent

    C ircuits of

    th is sor t

    For

    we make the networks

    N end M of Figs.

    20

    and 21 duels in the

    sense

    described

    than

    the

    condit ion

    wi l l

    be

    sa t i s f i ed

    E

    constant voltage

    source.

    Fig 20

    Constant

    I current

    t

    source.

    ~ Y

    n

    l

    Fig 21

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    42/72

    A simple example o f t h i s i s shown i n F i g s . 22 and

    2 3 .

    R

    F i g . 22

    R

    F ~

    2 3

    y

    , S y n t h e s i s

    o f th e G e n e r a l S x m e t ~ c FUn ctio n .

    As ha s

    been shown any f u n c t i o n r e p r e s e n t s e x p l i c i t l y a

    s e r i e s p a r a l l e l c i r c u i t . The s e r i e s p a r a l l e l ~ e 8 z 8

    t i o n may r e q u i r e re e l e m e n t s J howev61 , th e n some

    o t h e r

    c i r c u i t

    re p re se n tin g . th e same

    f u n c t i o n .

    I n

    t h i s sectio n a m e t h o d w i l l be

    g i v e n

    f o r f i n d i n g a c i r -

    o u i t r e pr e s e nt i ng B c e rta in type o f f Un ct io n which

    in

    ~ e n e r a l i s much more economical o f elements

    t h a n

    th e

    b e s t

    s e r i e s p e r a l l e l

    c i r c u i t .

    This type

    o f

    fUnc-

    t 1 0 n

    f r e q u e n t l y a p p e a r s in r e l a y c i r c u i C s

    and

    i s o f

    much i m p o r t a n c e .

    A f u n c t ion

    0

    f

    th e

    n v a r i a b l

    e s X l

    X

    2

    .X

    n

    i s s a i d t o be symmetric in

    t h e s e v a r i a b l e s i

    any

    t n t e r c h a n ~ e

    o f

    th e

    sa

    v ar ia b le s l e a ve s th e f u n c t i o n

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    43/72

    ident ica l ly th e same. Thus

    XY XZ y z i s symmetr1a

    i n

    th e

    var iab les

    X,

    Y , and

    Z .

    Si nc e a ny p e r m u t a t i o n

    o f var iab les may be o b t a i n e d y s u c ae s s iv e 1 n te rc h en g as

    o f

    tw o

    var iab les , a n e c e s s a r y

    an d

    su f f i c i en t c o n d i t i o n

    tha t f u n c t i o n

    be

    symmetric

    i s tha t

    any n t e r c h a n ~ e

    of

    two v a r i a b l e s l e a v e s th e fUnction u n a l t e r e d .

    now give a theorem Which

    forms

    th e b e s i s

    of

    th e method o f s y n t h e s i s

    to

    be d ~ a c r b e d

    Theorem:

    Th e

    n e c e s s a r y a nd

    suf f ic ien t c o n d i t i o n

    tha t 8 fUnction

    be

    sym metric 1 s

    t ha t

    t

    may

    be

    spec1-

    t ied f s ta t ing a

    se t o f numbers

    8 1

    8

    2

    ,

    8

    k

    such

    thB

    t

    i f axa

    c

    t y

    a

    j ( j

    =

    1 , 2 ,

    :3,

    k

    0 f t he va r a b e s

    a r e z ero ,th en th e fUnction

    i s zero and n o t

    o t h e r w i s e .

    T h i s f o l l o w s eas i ly f ~ o m the de f in i t ion . F o r th e ex-

    ample

    g1 van

    t h e

    sa num b a r s a re 2

    an d

    3 .

    Theorem:

    There

    a re

    2n

    +

    1 symma tric

    functions

    o f

    n

    v a t - 1 a b l e s . F o r eV8 I y se lec tio n o f 8 s e t

    of

    numbal s

    from

    the

    numbers 0 , 1 ,

    2 ,

    n

    cor r esponds to on e

    a n d

    only

    ona

    s ~ ~ e t r i c

    f u n c t i o n .

    Since t he r e a re n+ l numbers

    e a c h

    o f Which ma y be a1 t he r t a k e n o r no t i n our se l ec

    n + l

    t1on,

    th e

    to ta l number o f

    f u n c t i o n s

    i s

    2

    wo o f

    these

    fUnctions

    a re

    t r iv ia l , however,

    namely

    the

    se -

    la ctia ns in

    Which

    none and a l l o f th e numbers a re

    t a k e n .

    These g i v e

    th e func t ions l

    and 0

    respec t ive ly .

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    44/72

    41

    B

    proper s e l e c t i o n o f the

    v a r i a l b e s

    many

    a p p a r e n t l y u n s ~ r m m e t r i c

    f u n c t i o n s

    may t

    made symmetric.

    For e xamp le ,

    XY Z

    X YZ

    1

    X Y Z ,

    al though

    n o t

    symmetric

    i n

    Y, end

    Z, i s

    symnetl io

    in

    X, Y, and Z .

    s e t

    of

    ~ m e r s a

    l

    , a

    2

    , sk

    wil l fo r con

    venience

    be

    c a l l e d

    the 8-n'umbers

    of t funct ion.

    The theorems concerning comtlnations

    of

    symmetric

    functions

    ere

    most

    e a s i l y

    s t a t e d in terms

    of the

    0 1 8

    s

    sa

    S 0

    f

    8

    -num

    bar

    s

    For

    t h i

    s

    rea

    son

    we

    dena

    t a

    the

    c l e s s of a-numbers

    by

    a s n ~ l e l e t t e r

    A. I f two

    d i f f e r -

    ent

    s e t s

    of a-numbers are under

    consideration

    they

    will

    be denoted

    by A

    1

    and

    A

    The symmetric function

    of n

    v a r i a ble s he

    ving th e

    a -num bel 'S 8

    1

    , 82

    s k w i l l be

    written Sn{a

    l

    , 8

    2

    a

    k

    ) or

    an(A).

    Theorem: 3

    n

    (A

    l

    )

    Sn(A

    2

    )

    =

    Sn(A

    l

    + A

    2

    )

    where

    A

    1

    A

    2

    means the l06 c

    a

    l sum

    or

    the classes Al

    and A

    2

    i.e.,

    the c la ss of tho

    sa numbers

    which B

    re members

    of e i t h e r A

    l

    o r A

    2

    or

    both. Thus 36(1,

    2,

    3 ) . 8

    6

    (2 , 3 , 5)

    i s equa 1 t S6 1 , 2 , 3 , 5).

    Theorem: 3

    n

    (A

    l

    ) + 5n(A

    a

    )

    Sn(A

    1

    ,A2)

    where

    AlwA

    2

    i s

    the

    l o g i c a l

    product

    of

    the

    mlassas

    i . e . ,

    the

    a la s s 0 f

    numbers Which

    are

    common

    t o

    A

    1

    and

    A2.

    Thus

    5

    6

    1 ,

    2 , 3) + S6 2 , 3 , 5) C 3 6 2 , 3 ) .

    These

    theorems follow from the f a c t t h a t 8 product i s

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    45/72

    42

    zero

    i

    e i ther factor i s zero, while 8 sum i s zero

    only

    i both

    terTI1S

    are zex o. The negs t i

    va

    of

    8

    se t o f

    a

    -numbers

    wi l l be \ I1 1tten

    AI

    and

    meBns

    the

    c la ss o f

    a l l

    the numbers

    from

    to n 1nclus i

    va which

    a

    re

    not members

    o f

    A.

    Thus

    i A

    i s

    the se t of

    numbers 2 ,

    3 , and 5, and n 6 then

    AI i s the set of numbers 0 , 1 , ~ and 6.

    Theorem:

    These thaorams

    are useful

    i

    several

    symmetric

    functions

    are

    to

    be

    obtained

    simultaneously

    Before w

    study the synthesis

    of

    8 network for

    the

    general

    symmetric fUnction consider

    the

    c i rcu i t 8-b

    of

    Fig .

    2 ~

    Th1 s c i rcu i t

    represents 33 2 .

    L o X ~

    2

    L

    :n

    3

    The

    l ine o m ~ g

    in s t a f i r s t

    encounters

    a

    pa i r o f

    h1nderancas

    Xl

    and xl I f

    Xl = 0, the

    l ine i s switched

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    46/72

    up to th e l evel

    marked

    1 meaning tha t 1

    o f

    th e var1eQles

    1 s

    z e r o .

    I f Xl

    =

    1 th e l ine stays

    on th e leve l marked

    0 ;

    n e x t

    h i n d e r a n a a s

    X

    2

    and

    ~

    Bra

    e n c o u n t e r e d .

    I f

    X

    2

    i s ~ e r o th e l ine is

    switched

    up

    a leve l ;

    i not it

    s tays a t

    the

    same

    l e ve l .

    Fir ls l ly r e a c h i n g th e r igh t

    hand

    s e t o f

    te rmina l s

    the

    l i ne h a s

    been

    s w i t c h e d u p

    to

    l eve l

    represent ing

    th e

    number o f var iab les w h i ch

    ;

    a re

    dqua]. to

    ze ro .

    T e r min a l

    b 1 s

    co n n ected to leva l

    2

    an d

    therefore

    th e c i r cu i t a b

    wi l l be comPleted i

    and only i 2 o f the v a r i a b l e s

    are

    z e r o .

    Thus

    th e

    funct ion 2 i s r e p ~ e s e n t e 3 3 0 , 3 )

    h ad been

    des i red t e rminal b would be c o n n e c t e d to

    b o t h

    l eve l s

    o end

    3 .

    I n

    f igure

    24 cer tain o f th e

    elements

    Bre

    e v l d e n

    t ly

    Sll p e r f l u o u s . The c1 r o u t t may

    be

    s impl i f ied

    to th e

    form o f F ig . 2 5 .

    Fig .

    25

    For th e general function e x a c t l y the same

    m e t h o d

    i s follov Jed. U s i n g th e genera l CirC1 1it fo r n

    b

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    47/72

    var ia

    bles

    o f

    Fig. 26, the

    te rminal

    b

    i s cOllnected

    t

    the

    l eve l s

    c o r r e s ~ o n d i n g

    to the a-numbers of the

    desired

    svmmetric

    funct ion.

    In

    Fig . 26

    th e h in de ra nc es

    Bra

    represented

    by

    simple l i ne s ,

    and

    the

    t t ~ s

    are omitted

    from the

    c i r cu i t ,

    u

    the

    hinderance of

    each l ine may

    eas i l y

    be seen y gene r a l i z i ng

    Fig .

    24:.

    NOTE:

    All

    s loping

    l i n e s

    have hinderance of the

    var i a ble \vri t ten below;

    hor izon ta l l i nes

    have

    negative

    of

    th is

    hinder-

    ance.

    ~ b

    to

    a

    numbers

    o

    n-:-l)

    n

    a

    Fig . 26

    Aftar terminal b i s

    connected,

    a l l

    superfluous ele-

    ments

    may be

    deleted.

    In

    cer ta in

    c ses

    i s

    poss i b le

    to grea t ly

    s impl i fy

    th e

    c i r cu i t

    y sh i f t i ng the

    l eve l s

    down.

    Supnose the rbnction 3

    6

    0 ,3 ,5 1s

    des i red .

    Ins tead

    of continuing

    the c i rcu i t up to the 6th

    l eve l ,

    we

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    48/72

    oonnect the

    2nd l eve l

    ts down to the zero l eve l

    as

    shown in F ig

    27. The

    zero l eve l

    then

    a lso becomes

    the 3rd

    leve l and

    the 6th

    l eve l

    2 5

    1 4

    0 3 6

    a . j . . . . . ~ I 1 1 ~ ~ b

    th t e rmina l

    b

    connected to th is le ve l

    we have r e a -

    l1zed the

    function

    with a

    great

    saving

    of

    elements.

    El iminat ing unnecessary elements tIlo c i r c u i t o f Fig 28

    1s

    obtained.

    This deV ice 1 s e 3p ec ia l ly usefu l

    i

    the

    8-numbers form an r i t ~ m e t c progression,

    although

    it

    can

    sometimes

    be applied

    in

    other cases

    The fUnctions

    n n

    l :2

    X

    k end

    2

    X

    k

    1 Which were shown to

    require

    the most

    io

    elements for a s e r e s ~ p r l l e l real izat ion

    have

    very

    simple c i rcu i t s when developed in t h i s

    mann,er.

    t

    n

    Jan

    be

    eas i ly shown

    t h a t

    i n i s

    even,

    then :2Xk i s

    the

    symmetric function

    with a l l

    the even numbers

    fo r

    a-numbers ,

    i

    n

    i s

    odd

    it

    has

    a l l

    the

    odd numbers

    n

    fo r a-numbers . The funct ion ~ k i s o f course ,

    jus t the opcos1te.

    Using the sh i f t i ng down process

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    49/72

    46

    the

    c i rcui t s

    are- as shown

    in Fig.

    29.

    ~ ~ _ w : ~ _

    n

    ~ X

    k

    for n odd;

    1

    ~

    b

    Xl X

    3

    xn X

    n

    n n

    l:2

    X

    k

    for n even; 1;2

    Xk 1 fo r

    n odd

    1 1

    Fig

    These

    circui ts

    each

    require

    4{n-l

    elements. They

    wi l l be

    re co gn iz ed a s

    the f ami l i a r

    c i r cu i t

    fo r con

    t ro llinJ2; a 11 ght from n pain

    t s ; I f

    a t

    an:,

    one of

    the

    points the posi t ion

    of the switch

    1s changed,

    the

    to ta l number

    of

    vAriables which

    e q u l ~

    ~ e r o i s changed

    by one, so t h a t i

    the

    l igh t 1s

    on,

    it will- be turned

    o ff end i a l r ~ a d ~ r o f f it wi l l be

    turned

    on

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    50/72

    47

    The g e n e r a l

    n etwo r k o f Fig .

    2 6 c o n t a i n s

    n n

    1

    elemen ts. t can be shown t ha t fo r any ~ i v e n s ~ l e c t i o n

    o f

    a-numbers a t l ea s t

    n o f

    the e l e m e n t s wil l be super

    f l u o u s . I t f o l l o w s t ha t any symmetric

    f u n c t i o n

    o f n

    var iab les

    can be raa l ized With a t most n

    e l e m e n t s .

    E q u a t i o n s from Given o p e r a t i n ~ Charac te r i s t i c s .

    I n

    gen-

    e ra l

    t h e r e i s a c e r t a i n

    s e t

    o f i n d e p e n d e n t

    variables

    A,

    B

    a Which

    may

    be s \n tches e x t e ~ l e l l o p e r a t e d

    or protect ive

    re lays .

    Thera

    i s

    also

    a

    se t

    o f

    d e p e n d ~ n t

    v a r i a b l e s

    x

    y , z

    Which

    r e p r e s e n t re lays

    motors or

    o the r d e v i ~ e s

    to be cont ro l l ed by

    th e c 1 rc u i

    t .

    t 1 s

    r e q u i r e d

    to

    f ind a n et wo rk

    which

    ~ v a s fo r e a c h poss ible

    c omta ne tion of v a lu e s o f

    th e

    independent var iab les th e

    cor rec t v al u e

    s

    fo r a l l th e d e p e n d e n t va r i ab le s . Th e

    f o l l o w i n ~

    pr inc ip l e s

    g i

    va

    th e

    genera l

    m e t h o d

    o f

    s o l u -

    t ion .

    1 .

    A d d i t i o n a l de pe nde nt v a r i a b l e s

    must be

    i n t r o d u c e d fo r e a c h

    a d d e d

    p h a s e

    o f opera t ion of 8

    sequen t i a l s y s t e m .

    Thus i

    it

    i s des i red to

    c o n s t r u c t

    8

    syste m

    wh i ch op era tes in th ree s teps tw o addi t iona l

    v 8 r i a b l e s must be in tro d u ced to r e p r e s e n t t h ~ b e g i n n i r ~

    of the l a s t t\ Vo st 3ps T h e se add i t i ona l var iab les

    may r e p ~ e s e n t c o n t a c t s on

    a

    s t e p p i n g s w i t c h

    o r

    r e l a y s

    Which l o c k in

    sequentia l ly . Simi la r ly

    e a c h

    r e q u i r e d

    t ime

    d e ~ T

    wl11

    reqt1.ire

    a nevv va r i ab l e represent ing

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    51/72

    8

    a t i m e delay relB;T o f s o n a so r t

    O t h e r

    fo rm s o f r e l ays

    which may

    be u s c e s s a r y wi l l usua l ly be obvious from

    the

    nature

    o f the p r o b l e m .

    2 . Th e h i n d e r a n c e

    equat ions

    fo r each

    of the

    dependent

    var iab les s h o u l d

    o

    be writ ten down. These

    t ~ n c t i o n s may i n v o l v e

    any

    o f

    th e

    var iab les , de pe nde nt

    or i n d e p e n d e n t

    i n c l u d i n g th e

    var iab le whose

    fUnction

    i s

    b ein g

    de t e rmi ne d

    a s ,

    for

    ex amp le in a l o ~ k in

    c i rCUi t ) . Th e c o n d i t i o n s ma y be ei ther c o n d i t i o n s

    fc\r

    o p e r a t i o n or

    fo r

    n o n - o p e r a t i o n . E q u a t i o n s are

    w r i t t e n from o p e r a t i n g

    charac te r i s t i c s

    c c o r d i n ~ to

    T a b l e I I . T i l l u s t r a t e th e

    use

    o f t h i s

    t ab le s t lP -

    pose a r e l a y A i s to

    o p e r a t e

    i x 1s o p ~ r t e d a n d y

    or

    z

    i s operated

    end x o r w

    o r

    z

    1s

    n ot o pe ra te d.

    The

    e x p r e s s i o n fo r

    A wi l l 1 8:

    A

    =

    x yz

    X W Z I

    Lock

    in

    r e l ay e q u a t i o n s h av e a lr -g ad v been d i s o u s s e d .

    t does no t , o f c o u r s e

    matter

    i the

    seme c o n d i t i o n s

    are

    t

    in t e e x p r e s s i o n more

    t ha n once - - s l l

    s u p e r

    f luous

    mater ia l

    wi l l d i s a p p e a r in th e f in a l s im p lif i

    ca t ion .

    3 .

    The

    e x p r e

    s

    s i a n

    s

    fo r

    th e

    va

    r ious

    d e p e n d e n t

    var iab les sh o u ld n e x t

    be

    s impl i f i ed

    a s

    much

    s

    poss ib le

    by means o f

    th e

    t he or e m s on

    m a n i p U l a t i o n o f

    these q u a n

    ti t i e s . Jus t ho\v

    mtlch t h i s 0811

    be

    done

    d ep en d s somewhat

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    52/72

    T LE

    I I

    R E L T I O ~ OF OPERATlllG F ~ R T E R I S T I S

    tTD

    EQUArIOrIS

    Symool

    X

    XI

    +

    ,

    In Terms o f o p e r a t i o n

    The switch or r e l a y

    X is 0 pe ra ted .

    I f .

    The switoh

    o r

    r e l a y

    X

    i s

    no t

    o p e r a t e d .

    Or

    And.

    The

    c i rcu i t

    - -

    i s n o t

    c l o s e d o r

    a p p l y De

    Morgan s Theorem.

    In Terms o f Non- oper ation

    The switch

    or re la y

    X

    s

    n o t

    o p e r a t e d .

    I f .

    The swi tch o r relay X

    s

    0

    ra

    t ad .

    And.

    O r.

    Th e c i rc u it - - i s

    c l o s e d o r apply De

    Morgans Theorem.

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    53/72

    5

    on the in g n u ~

    the de s1

    er

    4

    The resul t ing c i rcu i t should now be

    drawn Any

    necessary

    addit ions

    dic ta ted

    pract ica l

    oonsidera t ions such as

    current

    oarrying ab i l i t y se -

    quence of contact operat ion e t c shculd be made

  • 8/12/2019 A Symbolic Analysis of Relay and Switching Circuits, Shannon C.E., 1936

    54/72

    51

    v

    I l lus t r a t ive

    Examples

    In

    th i s sect ion several problems

    wil l

    be

    so lv ed with

    the methods

    whiah

    have

    been

    developed.

    he examples are

    intended

    more to show the versa t i l -

    i t y of

    relay

    and sWitching

    c i rcui t s and to

    i l lus t ra te

    the

    us e

    o f

    the ca lcu lus in

    aotual

    pro blems

    than

    to

    de

    s -

    cr ibe

    prac t ica l

    devices.

    i s

    p oss ib le to ~ r o r

    complex mathematical

    or;>eretions

    y

    means o f re lay c i r cu i t s . lTumbers

    may e

    represented

    the

    pos i t i ons

    of

    relays

    or s t epp ing

    sWitches ,

    and i n t e rconnec t ions

    between

    se t s

    o f

    re lays

    can

    be

    m de

    to

    represent various mathematioal opera