43
平成28年度 修 士 論 文 延び変形に対する AgI 薄膜のイオン伝導応答の研究 指導教員 古澤 伸一 准教授 群馬大学大学院理工学府 理工学専攻 電子情報・数理教育プログラム 井田 知里

AgI 薄膜のイオン伝導応答の研究¹³成28年度 修 士 論 文 延び変形に対するAgI 薄膜のイオン伝導応答の研究 指導教員 古澤 伸一 准教授

Embed Size (px)

Citation preview

  • AgI

  • 1 1

    1

    2

    3

    1

    3

    3

    2 4

    1

    2

    3

    Debye

    4

    11

    12

    3 15

    1

    2

    3

    AgI

    15

    15

    16

    4 20

    5 X 24

    6 25

    1

    2

    25

    29

    7 30

    1

    2

    3

    4

    5

    6

    AgI X

    ColeCole

    -AgI

    -AgI

    -AgI

    -AgIX

    30

    33

    34

    35

    36

    37

    8 39

    40

    41

  • 1

    1

    framework

    framework

    Fig.1-1

    Li+ framework

    Fig.1-1 framework

  • 2

    Poly ethylene terephthalate (PET)

    PET

    PET

    (1) Poly ethylene terephthalate (PET)

    (2)

    -AgI

  • 3

    2

    1961B. S. H. ROYCEK+

    KCl[1]B. S. H. ROYCE

    KCl 10 0.2 eV

    2000S. FurusawaK+KTiOPO4 (;KTP)

    S. FurusawaKTP

    GPa

    KTPc-

    framework

    [2]

    [3-10]

    frameworkframework

    2

    framework

    -AgI

  • 4

    ()

    mobile ion

    thermal activated

    barrierU(x)

    a

    ZZe

    0

    P

    hopping

    T1P

    Pk TB

    exp

    (2-1)

    kB

    [s-1]0

    0 0P

    k TBexp (2-2)

    xx

  • 5

    Fig.2-1-1 HollanditeK+

    Ze0

    a

    x

    U(x)

    Fig.2-1-2 E=0

    site

    1hopping1

    10attempt

    frequencyhopping

    rate

  • 6

    xE

    U'(x)U(x)

    (x)

    U'(x)=U(x)+Ze(x)=U(x)ZeEx+k k(2-3)

    x

    U(x)

    Ze0

    +Zea

    2E

    Zea

    2E

    E

    Fig.2-1-3 E0

    x

    EZea

    2

    x

    EZea

    2

    E

    xhoppingx(2-2)

    Tk

    ZeaE

    B

    0x

    /2exp

    Tk

    ZeaE(

    B

    /2exp (2-4)

    1v(2-4)hopping rate +xa

    av x

    Tk

    ZeaE

    Tk

    ZeaE

    Tk

    a

    BBB

    02

    exp2

    expexp

  • 7

    Tk

    ZeaE

    Tk

    a

    BB

    02

    sinh2exp (2-5)

    EakBT

    12

    Tk

    ZeaE

    B

    Tk

    ZeaE

    Tk

    ZeaE

    BB 22sinh

    (2-6)

    Tk

    Tk

    Zeav

    BB

    exp2

    0 (2-7)

    ZeNi

    ETk

    Tk

    ZeaNvNZei

    BB

    exp

    2

    0(2-8)

    i

    Ei = (2-9)

    (2-8)(2-9)

    Tk

    Tk

    aZeN

    BB

    22

    exp0 (2-10a)

    (2-10a)f

    Tk

    f

    Tk

    aZeN

    BB

    22

    exp0 (2-10b)

    (2-10)

    (2-10b)T

    T

    ek

    T

    1logloglog

    B

    0

    fk

    aZN 0

    B

    22

    0

    e

    (2-11)

    T

    e

    k

    T

    3

    3

    B

    0

    10

    10

    logloglog

    (2-12)

  • 8

    log(

    ek

    B

    log10 3

    Arrenius plot

    log(

    T)

    1000/T

    kB10-3log10e

    Fig.2-1-4

    [11]

    (1)

    Li 1

  • 9

    (2)

    (1)(2)

    (3)(7)

    (3)

    (4)

    Li

    AgI

    Table 2-1-1 [12,13]

    Table 2-1-1 e=Pe/E

    ion e=Pe/E [cm3] ion e=Pe/E [cm

    3]

    Li+ 0.0310-24 O2- 0.53.210-24

    Na+ 0.4110-24 I- 6.4310-24

    K+ 1.3310-24 Si4+ 0.0210-24

    Rb+ 1.9810-24 Sn4+ 3.410-24

    Cs+ 3.3410-24 Ge4+ 1.0010-24

    Ag+ 2.410-24

    (5)

    (6)

    (7)

  • 10

    D*=fDrandom f

    Haven ratio1/31

  • 11

    Debye

    0

  • 12

    Fig.2-1-6

    Z'

    RB

    RB

    CB

    max

    -Z" (a)

    Fig.2-1-6 Cole-Cole

    RB CB

    Z*()

    BB

    B

    RCi

    RZ

    1)(* (2-15a)

    2

    BB

    B

    RC

    RZZ

    )(1)('Re *

    (2-15b)

    2

    2*

    )(1)("Im

    BB

    BB

    RC

    RCZZ

    (2-15c)

    (1-b)(1-c)

    2

    2

    2

    2"

    2'

    BB R

    ZR

    Z (2-16)

    (2-16) ZZCole-Cole

    (RB/2, 0) RB/2

    Z RBCole-Cole

    Z0=RB

    max 1/(RB CB) RBmax

  • 13

    CB

    RB

  • 14

    RB

    CB

    Rg

    Cg-Z"

    Z'

    RB

    (c)

    Rb

    Cb

    Re

    Ce

    or

    RB+Rgor

    RB+Re

    Fig.2-1-8 Cole-Cole

    2

    2 Ri

    Ci

    Z'

    RB

    RB

    CB

    max

    -Z" (f)

    RB

    Fig.2-1-9

  • 15

    1 AgI

    AgI

    PET (Ag)(Fig.3-2 )

    (I2)(Ag)(I2) 2

    X -AgI

    2

    -AgI 3D (OLYMPUS OLS4000 LEXT)

    Ag2 mAg -AgI 8.5 m

  • 16

    3

    Ag Ag

    Fig.3-1 Table 3-1

    VPC-260F

    ROUGH

    FORE

    Fig. 3-1 VPC-260F

  • 17

    Table 3-1 VPC-260F

    110-5 Torr1.310-3 Pa

    310-5 Torr4.010-3 Pa20

    100 V 5060 Hz 1.2 kW

    010 VMax 150 A

    200 V 5060 Hz 1.5 kW

    Fig. 3-2 (Ag)

    Ag AgI

    Ag AgI

    1 AgI

    AgIAg

    AgIAg

    Fig. 3-2

  • 18

    Fig. 3-3 (a),(b)

    Fig. 3-3 (b)

    Fig. 3-3 (b) Table 3-2

    Fig. 3-3

    (a) (b)

    Table 3-2 Fig. 3-3(b)

    PET film AgI thin film

    x [mm] 20 17

    y [mm] 60 10

    z [m] 100 8.5 8.7

    (a) (b)

  • 19

    d l d/l1 E

    l l=1.0 mm

    d=9 m d/l= 910-31

    [][film ][Sample ](Fig. 3-4)

    S = d W

    W

    S

    l

    sample film

    d ()

    = filmsample

    E

    A

    AA

    A

    A

    d

    l

    10 mm17 mm 8

    Fig. 3-4

  • 20

    4

    Fig. 4-1

    LCB04K150K Table 4-1 LOAD CELL

    Fig. 4-2

    Fig. 4-3

    Fig. 4-1 (a)(b) (

    (a)

    (b)

  • 21

    Fig. 4-2

    -

    +

    0 V

    +12 V

    Fig. 4-3

    Table 4-1 LOAD CELL

    LCB04K150L

    1.5 kN

    2 mV/V10 %

    DC12 V

    100 ][ L

    L (4-1)

    L L

  • 22

    1878

    Tomlinson

    [14]

    LOAD CELL

    LOAD CELL 12 V 2 mV/V

    24 mV 1.5 kN

    1.5 kN 24mV 2mV/V mV2

    1 mV F0[N] 24

    1500 [N/mV]

    measureVFF 0 measureV LOAD CELL [mV]

  • 23

    PET

    Fig. 4-4 0 ~ 20 N

    20 N

    0 ~ 20 N PET

    20 N

    PET PET

    0 N 0

    PET

    PET

    0

    20

    40

    60

    80

    100

    0 0.2 0.4 0.6 0.8 1

    [%]

    F [

    N]

    Fig. 4-4 PET

  • 24

    5 X

    Fig. 5-1

    Table 5-1

    X

    X

    X

    ()

    (R185mm)

    2

    2

    Fig.5-1 X

    Table 5-1 X

    RIGAKU RINT2000

    CuK= 1.5406 )

    -2

    40 kV

    20 mA

    -2

    2390

    0.010

  • 25

    6

    .

    1

    HP4194A Impedance/Gain-Phase

    AnalyzerHEWLETT PACKARDHP4194A

    RDUTDevice Under Test

    IDUTFig. 6-1-1L(

    =0)Fig. 6-1-1

    L

    DUTZx

    IRZx

    V1V2IRV2=RI

    V1V2

    2

    1

    2

    11

    V

    VR

    R

    V

    V

    I

    VZx

    (6-1-1)

    ZxV1

    V212

    1111111 sincose 1

    iVVVVi

    (6-1-2)

    2222222 sincose 2

    iVVVVi

    (6-1-3)

    21212

    1

    2

    1

    2

    1 sincosee

    e21

    2

    1

    i

    V

    VR

    V

    VR

    V

    VRZ

    i

    i

    i

    x (6-1-4)

  • 26

    LFHF20 Hz110 MHz

    Fig. 6-1-2

    ()

    HP4194A 50

    31440A

    HP4194A 31440A GP-IB 1)

    PC-9821V13

    IANAZ

    1GP-IB

    IEEE 488 HP-IB (Hewlett-Packard Instrument Bus)GP-IB

    V1 V2

    H L

    DUT

    Zx R

    Fig. 6-1-1

  • 27

    Fig. 6-1-2 Table. 6-1-1

    Fig. 6-1-2

  • 28

    Table 6-1-1

    HP4194A ImpedanceGain-Phase AnalyzerHEWLETT PACKARD

    100 Hz 15 MHz( 1 m)

    1 mHz

    20 ppm(235 )

    |Z |, |Y |, , R, X, G, B, L, C, D, Q

    10 m100 M

    100

    31440AAgilent

    Alumel Chromel

    PC-9821V13NEC

    IANAZ

    OS MS-DOS N88BASIC

  • 29

    2

    Table 6-2-1

    Table 6-2-1

    0120 N (5 N )

    290325 K

    100 Hz10 MHz

    N2

    Ag

    AgI S l

    Table 6-2-2 -AgI S l

    l [mm] S [mm2]

    OHP Film (PET) 1.0 0.69

  • 30

    7

    1 AgI X

    AgI X

    Fig.7-1-1 Fig.7-1-1

    Table 7-1-1 -AgI PDF (No. 01-078-1613) -AgI

    -AgI

    PDF -AgI

    (002)(102)(110)(103)(112)

    26

    PET

    0 10 20 30 40 50 60 70 80 90

    2 [deg]

    102

    103

    112

    -AgI thin film

    Substrate:PET

    Thickness 2 m

    CuK

    PDF2Plus No.01-078-1613

    -AgI

    110

    002

    002

    102

    110 103

    112

    PET

    Inte

    nsi

    ty [

    Arb

    . U

    nit

    s]

    100

    101

    203

    213

    Fig.7-1-1 -AgI X

  • 31

    Table 7-1-1 -AgI PDF

    01-078-1613 QM=*

    AgI

    Silver Iodide

    Rad: CuKa1 Lambda: 1.5406 Filter: d-sp: Calculated

    Cutoff: Int: Calculated I/Icor: 6.81

    Ref. Anharmonic thermal vibrations in wurtzite-type Ag I., Yoshiasa, A., Koto,

    K., Kanamaru, F., Emura, S., Horiuchi, H., Acta Crystallogr., Sec. B:

    Struct. Sci., 43, 434 (1987), Calculated from ICSD using POWD-12++

    Sys: Hexagonal S.G.: P63mc(186) Aspect:

    a: 4.591(1) b: c: 7.511(4) A: C: 1.636027

    A: B: C: Z: 2.00

    mp:

    Ref. Ibid.

    Dx: 5.687 Dm: SS/FOM: F30=1000(.000,32)

    ANX: AX. Analysis: Ag1 I1. Formula from original source: Ag I. Delete

    duplicate: Delete: see 01-078-1614, JMB 7/00. ICSD Collection Code: 62789.

    Temperature of Data Collection: 123 K. Wyckoff Sequence: b2 (P63MC). Unit

    Cell Data Source: Single Crystal. Peak height intensities. Single-crystal

    data used.

    2 [de] Int h k l 2 [de] Int h k l

    22.34241 100 100 92.94596 7 215

    23.67217 57 002 93.29958 1 206

    25.32536 63 101 93.44423 2 312

    32.77674 34 102 96.07385 1 107

    39.21436 77 110 99.51207 6 313

    42.64136 73 103 101.6038 1 305

    45.59591 12 200 102.8368 1 401

    46.31888 44 112 103.7345

  • 32

    63.03395 6 211 114.9206 1 108

    64.00974

  • 33

    2 -AgI Cole-Cole

    Fig. 7-2-1 -AgI 0.0 %Cole-Cole (at 300 K)

    0

    5000

    1 104

    1.5 104

    0 5000 1 104

    1.5 104

    2 104

    -Z''

    [cm

    ]

    Z' [cm]

    -AgI thin film

    Thickness 8.7 m

    0.0 %

    300 K

    Fig. 7-2-1-AgI 0.0 %Cole-Cole

    i

    1

    ZZZZ 0* (2-13)

    Z0 Z

    Z=0

  • 34

    3 -AgI

    Fig. 7-3-1 -AgI

    0

    1 10-5

    2 10-5

    3 10-5

    4 10-5

    5 10-5

    6 10-5

    7 10-5

    0 0.2 0.4 0.6 0.8 1

    [%]

    -AgI thin film

    thickness 8.7 m

    at 300 K

    [

    -1cm

    -1]

    Fig. 7-3-1-AgI

    PET -AgI

    -AgI

    X

  • 35

    4 -AgI

    -AgI

    Fig. 7-4-1

    0.001

    0.01

    0.1

    3.1 3.2 3.3 3.4

    T

    [

    -1cm

    -1K

    ]

    1000/T [K-1]

    -AgI thin film

    Thickness 8.7 m

    0.00% 0.19% 0.44% 0.69% 0.94%

    Fig. 7-4-1 -AgI

    Tk

    TB

    exp0 (7-4-1)

    fk

    aZeN

    B

    0

    22

    0

    )( (7-4-2)

    fittingN

    a

    fittingfitting2

  • 36

    5 -AgI

    Fig. 7-5-1 -AgI

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    102

    103

    104

    105

    106

    0 0.2 0.4 0.6 0.8 1

    [

    eV]

    0 [

    -1cm-1]

    [%]

    1000/T=3.27-3.4 [K-1]

    1000/T=3.1-3.4 [K-1]

    1000/T=3.1-3.27 [K-1]

    -AgI thin film

    Thickness 8.7 m

    Fig. 7-5-1 AgI

    framework

    framework X

    X

  • 37

    6 -AgI X

    X

    ( EXTRA4020)

    2

    -AgIXFig.7-6-1

    2 = 22.524.5 Fig. 7-6-3

    20 30 40 50

    (b)

    2[deg]

    (a)Inte

    nsi

    ty [

    Arb

    . U

    nit

    s]

    00

    2

    10

    2

    11

    0

    10

    3

    11

    2

    1.0 %

    0.0 %

    Fig. 7-6-1 -AgI X

    (a)( 0.0 %) (b)( 1.0 %)

    22.5 23 23.5 24 24.5

    1.0 %

    2[deg]

    00

    2

    Inte

    nsi

    ty [

    Arb

    . U

    nit

    s]

    0.0 %

    Fig. 7-6-2 Fig. 7-6-1 2 = 22.524.5

    Fig. 7-6-1 Fig. 7-6-2

    Table 7-6-1

  • 38

    -AgI -AgI

    framework

    Table 7-6-1 -AgI

    dhkl []

    h k l *0.0 *1.0 [%]

    002 3.766 3.748 0.499

    102 2.736 2.728 0.297

    110 2.300 2.295 0.196

    103 2.120 2.118 0.134

    112 1.961 1.958 0.163

    *

  • 39

    8

    -AgI

    (1) -AgI

    (2) -AgI

    (3) XRD

    -AgI-AgI framework

    -AgI

    (Fig.

    3-3(b) x )(Fig. 3-3(b) z )

    (Fig. 8-1(a))(Fig. 8-1(b), 8-1(c))

    AgI

    (1)(Fig. 3-3(b) x )(Fig. 3-3(b) z )

    (2)(Fig. 8-1(a))(Fig. 8-1(b),8-1(c))

    (3)

    (4)

    Fig. 8-1 (a) (b) (c)

    (b)

    (c)

    (a)

  • 40

    [1] B. S. H. ROYCE, R. SMOLUCNOWSKI, Effect of Plastic Deformation on the

    Low-Temperature Ionic Conductivity of Potassium Chloride, Physical Review Vol. 122, No.4,

    (1961) pp.1125-1128

    [2] S. Furusawa, H. Sugiyama, F. Itoh, A. Miyamoto and T. Sasaki; Ionic Conductivity of

    Quasi-One-Dimensional Ionic Conductor KTiOPO4 (KTP) Single Crystal at High Pressure J. Phys.

    Soc Jpn., 69 (2000) pp. 2087-2091

    [3] B. Morosin and P. S. Peercy; Physcs Letters A, Vol.53 (1975) pp. 147-148.

    [4] G.A. Samara; Pressure and temperature dependences of the ionic conductivities of cubic and

    orthorhombic lead fluoride (PbF2) Journal of Physics and Chemistry of Solids, Volume 40, Issue 7,

    1979, Pages 509522

    [5] G.A. Samara; High-Pressure Studies of Ionic Conductivity in Solids Solid State Physics, Vol38,

    (1984) pp. 180

    [6] J. Zhang, J. Ko, R. M. Hazen, C. T. Prewitt; High-pressure crystal chemistry of KAlSi3O8

    hollandite American Mineralogist, Vol.78 (1993) pp. 493-499

    [7] A. Yagi, T. Suzuki, M. Akaogi; High Pressure Transitions in the System KAlSi3O8-NaAlSi3O8

    Phys Chem Minerals 21 (1994) pp. 12-17

    [8] Aimin Hao et al.; Conductivity of AgI under high pressure J. Appl. Phys. 101 (2007) pp.

    053701

    [9] T. Katsumata, Y. Inaguma, M. Itoh, and K. Kawamura; Influence of Covalent Character on High

    Li Ion Conductivity in a Perovskite-Type Li Ion Conductor: Prediction from a Molecular Dynamics

    Simulation of La0.6Li0.2TiO3 Chem. Mater. 2002, 14, 3930-3936

    [10] Fabrice Bruneta, Nikolai Bagdassarov, Ronald Miletich Na3Al2(PO4)3, a fast sodium conductor

    at high pressure Solid State Ionics 159 (2003) 35 47

    [11] JME

    [12] p.212e=Pe/E

    [13]p.8 11

    [14] ,

    http://www.aandd.co.jp/adhome/products/loadcell/introduction/cell_intro02_01.html

  • 41

    29 3 6