AM64_440

Embed Size (px)

Citation preview

  • 8/22/2019 AM64_440

    1/6

    American Mineralogist, Volume 64, pages 440445, 1979

    Measurementf refractivendex n thin section singdispersiontaining ndoil immersiontechniquesTsoues E. LesrowsKI,De.vIDM. Scornonp

    Department f Geology,Miami UniuersilyOxford,Ohio45056nNoDoNnLoE. Lnsrowsrt

    Department f Pathology, uhmanHospitalCanton,Ohio447l0

    AbstractWith the aid of a 10X dispersion tainingobjectiveadapted or aperturaland centralscreening,nd a iquid-grain nterface roducedwith a cutting ool, the ndexof refractionofa crystal n thin section an be measured irectly.Accuracyof i0.001 is attained.

    IntroductionPetrographers re commonly acedwith the neces-sity or desirability f obtaining he ndexof refraction(n) of a specific rystal n a thin section, et with nowayof doingsowithout emovinghegrain rom he

    thin section,whichcan be a laborious ask, or bymaking a mineralseparationrom the rock sample.In the lattercasehere s no assurancehat the sepa-rated grains are identical with the specificone ofinterest n the thin section.The dispersion tainingmethod,described nd evaluated ere,offersa rela-tively rapid technique or determiningat least oneindexofrefractionfor a selectedrain n thin section.The procedures particularlyuseful, or example,orobtaining he n of a memberof an isomorphousseries,which commonly allows chemicalcharacter-izationof the mineral.Petrographers re familiar with the theory andmethodologyof index of refraction determinationusingdispersion olors (Bloss,1967). f the n of agrain s close o a matchwith that of the oil in whichit is immersed, dispersion f white ight is observedwhich produces olor fringesaround the mineral.Observation f these olorscan ead o a reasonablyprecise etermination f n.A lOX dispersion tainingobjectiveW. C. Mc-Crone nc.,Chicago,ll inois)canbeused san aid nmaking this determination.n caseswhere he n of agrain and iquid match at onewavelength,ut not atothers, t is possiblewith the l0X dispersion taining

    objectiveo make hegrain o appear o havecoloredborders.The color observeds ndicativeof thewave-length or which a match between of the grainandliquid has been obtained (Grabar and Principe,1963). hus,dispersiontaining idsmarkedly n therapid dentificationf mineralsn grainmounts Las-kowski, 1965). Apertural screeningand centralscreeningwith a lOX dispersion taining objectiveenables ne o determine D of crystals, ot only ngrainmounts, ut also n petrographichin sections.Our purpose ere s to reportan evaluation f themethod,based n the determination f refractiven-dicesof albite, abradorite,quartz,and microclinenthin section,and to describe he technique n suf-ficientdetail to encouragets use.

    TheoryThe theoryof the dispersion tainingobjectivehasbeendescribedCherkasov, 960;Brown et al., 1963;Grabarand Principe,1963). standardOx objec-tive is fitted with two types of removablescreensplaced n the rear focalplaneof the objective.

    Apertural screeningThe aperturescreens a diaphragmwith an openspaceabout 2 mm in diameter. his diaphragmsplaced n the rear focal planeof the lOX objective(Fig. I ). To adjust he systemor proper llumination,

    the following conditionsaremet:l. Nicolsuncrossedoffi3-ffi4x / 79 0304-0440$02.0

  • 8/22/2019 AM64_440

    2/6

    LASKOWSKI ET AL.: REFRACTIVE NDEX MEASUREMENT 441C o l o r F r i n g

    Ap o r l u re

    CentralscreeningCentralscreeningan be used o define urther heresults btainedn the apertural creening easure-ment.Thecentral creens an opaque ot (l-3 mm n

    diameter)which is mountedon a glassplate.Thisscreens alsoplacedn the ear ocalplane fthe lOXobjective Fig. 2). To adjust the system or properil lumination,he ollowingconditions remet:L Remove he aperture creen2. Nicolsuncrossed3. High-power ondenserut4. Light intensityhigh5. Bertrandens n6. Insert entral creeno hat heopaque ot s nthe centerof the crosshairs7. Adjust the substage iaphragmof the micro-scope o that the radiusof l ight visible hrough heBertrandens sequal o the adiusofthe opaque oton the screen8. Adjust the opaquedo t so that it completelycovers he radiusof light createdn step79. Open hesubstageiaphragm ver oslightlyoallowa faint rim of l ight to be barelyvisible roundthe periphery f theopaque ot10 . Now take he Bertrandensoutll . The systems now arrangedor measurementwith the centralscreen.Figure2 shows he system chematically.arallelbundles f white ightstrike he iquid-grainbound-ary and are dispersednt o various ays A, B, C, D,E). Wavelength is not deviated t the iquid-grainboundary,hus wavelength is the wavelengthorwhich the indexof refractionof the liquid and theindex of refractionof the grain are equal.Wave-

    Table l Colors observ.O;;,:ffi;:."1 screening nd relared

    Wevelength of liquitl-grain n natch

    F o c o l P l o n e A r e o

    0 b j e c t i v e L e n s

    ! L i g h tFig.. l. Schematic diagram showing the effects of aperturalscreeningon dispersedrays of white light as viewed in focus.2. High-power ondenserut3. Light source t high ntensity4. Bertrandens n5. Aperture creenn6._ ubstage iaphragm f the microscope losedso that the radiusof light visible hrough he Ber_trand ens s slightlysmaller han the udiusof. andlocatedwithin, the aperturescreen7. Now take he Bertrandensou t8. The systems now arrangedor measurementwith the aperturescreen.Figure shows he system chematically.arallelbundles f white ightstrike he iquid-grainbound_aryand aredispersednto various ays A, B, C, D,E). Raysof wavelengths, B, D, andE aredeviated

    at the iquid-grain oundary, ut wavelength is no tdeviated.As light of wavelengthC is not deviated,tis thewavelengrhr colorof light for which he iquidand grain have the samerefractive ndex. All theDeep Violet to BlackDuk Blue violetRoyeJ. BlueBIue greenGreenYelfov greenYellorYeLlov olange to Red. ormgeRe d orege to RedRed to Bron red

    Less hm looo Ao!ooo-l+5oo oj+6oo-lr8ooAol+800-5200o5zoo-5\oo o5l+oo-5?odot?oo-5ooo o5ooo-5200Ao5zoo-5500 ocreater tbm 6500 Ao

  • 8/22/2019 AM64_440

    3/6

    42 LASKOI4/SKIET AL.: REFRACTIVE NDEX MEASUREMENTTable 2. Colors observed in central

    wavelensthsscreening and related

    fn focuB Becke lines Wavelength of llquid-greln n Datch

    C e n l r o l F o c o l P l o n o A r e o

    0 b l s c t l Y s L s n g

    Wh i teL ig h lFig. 2. Schematic diagram s howing the bffects of central

    screening on dispersed rays of white light as viewed in focus.

    lengthsA, B, D, and E are deviated t the liquid-grain boundary.As all of the wavelengths f dis-persed ight are collectedand pass hroughthe rearfocalplaneof the objective, hey encounterhe cen-tral screen. he centralscreen locksout wavelengthC and allowswavelengths, B, D, and E to passothe mage lane. hegrainborders f thecrystal husbecome lluminatedand colored.When viewed nfocus, he color at the grain border s related o theactualwavelengthas he complementaryolor o thewavelength) or which the indexof refractionof theliquidand hat of thegrainareequal Table ).Whende-focusing,wo Becke inesare produced.The col-ors of theseBecke inesare similarly related o thewavelengtht which he iquid-grain ndexmatch sobtained Table2) .Procedure or nD measurementn petrographic hinsection

    Measurement f an ndexof refractionof a specificmineral(in this casenD-betaof an albitewill bemeasured) an beperformeddirectlyon the thin sec-tion.The followingdescription f the determinationof the nD for the beta ndexof plagioclaseerves san example:l. It is necessaryo work with a thin sectionwith-out a coverslip. f the desiredslide has a coverslip,

    carefullypry the coverslip ffwith a sharp azor.Useof safety lassess advised.2. Select he largestgrain of a specificmineralspecies hich s oriented or the particular ndex de-sired or measurement.3. Place he thin sectionon the cutting apparatus(Fig. 3), and place he cuttingapparatus n the mi-croscope tage.Relocate he grain desired or mea-surement singa low-powerobjective.4. Place he brassguideacross he grain to bemeasured,nd hold heguide irm with the magnets.Make sure the indentationon the brassguide sacrosshe grain o bemeasured.5. Take the cuttingapparatus nd attached lide

    d R G c t o n g l e

    Ligbt Blue to fihiteGreenish azue

    Royal BlueBl-uish violetCrinson

    Light or@geGolden yellov

    PaLe Yel1ov

    Light Blue and HhiteG!eenBIue md GreenRoyel BlueBlue stl RedBlue violet ed

    P a i ^ F r n d a

    vloLet sd OregeFalnt Vio let 4dGoIalFaint Yeffow

    Greater thm ?000 Ao55OO-?OOOo63oo-5500 o51oo-5300Ao5?oo-6roo loSZOO-5?OOo

    Sooo-5200no)+l+oo-500o o

    Less thu l+\oo Ao

    W l l h G l o s sU n d s r s i d el o eS h 6 e f

    C o m n f 6 d T oM e l o l P e r l m s l o r

    o s s G u i d og n t

    l o n g e C ut I n C o r d b o o r d T oH o l d S l l d e

    Fig. 3. Cutting apparatus.A guide which allows one to orient thecutting tool to a selectedgrain. A slide is placed in the centralrectangle,and the assemblages placed directly on the microscopestage.The slide is viewed with a low-power objective, and a grainfor measurement s located. The brass guide is placed across thedesired grain and held in place by tlvo magnets. The entireassemblage s then removed from the stage of the microscope forcuttlng.

  • 8/22/2019 AM64_440

    4/6

    LASKOWSKI ET AL.: REFRACTIVE NDEX MEASUREMENT 443off the microscope tageand placeon a flat table.6. Apply threedropsof acetoneo the slide n thevicinity of the desired rainand rinsewith water.Becarefulno t to disturb he brass uide.

    7. Usinga high-speed rilling tool fittedwith a l-inch-diameterarborundum isc,makea vertical utalong hebrass uideacrosshegrain o bemeasured.This cut mustbe executedn one downwardmotionand must penetratehrough he rock section nto theglass.The deahere s to createa troughor slit n thegrain o be measured.8. Remove he slide from the cutting apparatusand add one drop of acetone o the freshcut with asmallpipette.Allow this drop to evaporate artially,then wash he entireslidewith water.Dry the slide.9. Beforeproceeding,heck o be sure hat thecutproduceds acrosshe grain n question.10. Placea drop of index iquid (Cargilleiquidsarepreferred)on the cut, making sure hat the tem-perature f the liquid s about25'C. A liquid-grainboundaryhasnow beenestablished. singsuccessivemounts, ind a liquidwhichproduces iscernable is-persion olors.Clean hecut on theslidewith a drop

    of acetone ach ime iquidsarechanged. s the Dof a given iquid approacheshe nD of the grain,dispersion olorswill become isibleat the cut-grainboundaryn normal l luminationwith low intensity.Make sure hegrain s n the desired pticalorienta-t lon.I L lnsert he aperture creen ndset he llumina-tion aspreviously escribed.12. Place he crosshairs t a point on the grainwherecolor fringes are observed,and recheck hecentering f the screen.13. Record he color observedhrough he aper-ture screen, nd refer o Table I for the wavelengthfor which the indicesof refractionof the grain andliquid areequal. Thealbitecrystaldescribedn Table3 yieldedgreenbordersas viewed hrough the aper-ture screen hena liquid with nD : 1.532 t 25"Cwas used.This indicated Table ) a crystal-l iquidindex match at somewavelength etween5200and5400A.114. Remove he aperture creen nd nsert he cen-tral screen. et he illumination or centralscreeningas previouslydescribed. erformstep 14without al-

    Table3. Results f dispersion tainingmeasurementsn known crystalsMateriaL Type of 4- D liquid Colors observed duing screeninguou t (25oc)Apertual Centra l grain n natch

    PublishednD

    nDmeasueCl

    01ess

    G la ssArooniuChlorideSodiwBronateLowQuutzLov

    Lov

    Lov

    A-lbtte

    A.1bite

    Labradorite

    Labrailor iteHigh CaLabradoriteHigh CaLabradorite

    Microcline

    Violet+0rqgeRoyal BlueBlue+Red.Blue+GreenViolet+0range8 1 . v io ] . + R e d o r n g .VioIet+0rmgeBI . v io l , + R e d . o r n g .Gold+VioletB1 . v io l . + R e d o r n g .81.viol+Red orng.Blue+Red8 1 . Y io l . + R e d o r n g .Blue+RedB1 . v io 1 . + R e d o r n g .Royal BlueViolet+OregeBlueViolet+0rangeBlue+RedViolet+OrmgeBlueViolet+0rangeBlueViolet+OrangeBlue+RedVioIet+0rengeBlue+Red.8 1 . v io l . + R e d o r n g .Blue+Red.

    52ooLo5too A' t .5r l:too ll6 \00 A" r. .5095:zoo ll,55o A' r .6396:roo l]5 \oo A" r.6 \67)+Toono5300A' r.552553oo ro5850A" r ' l \ t r6:zoo l!57ooA" 1.5\ \9:eoo al6150A- r. i i395zoo l6200 A" r.53r2:eoo l5o5oA- r, i35 i5eoo l5200A" 7.5592:eoo ll5r5o A" t .s ig \lroo ll5o5oA" r.5617:eoo ll6000A" L.5679>:>o,o. l6100A" r.5226

    I so .

    I so .

    I s o .

    I s o .

    r . 5 0 8 G r e e nGrain I .5I2 Yellov oruge

    f .ouo te f fov g r e e nGrain I .5I2 Ormge red

    t . o je u reencraln 1.535 Yet lov green

    1,608 31ue greenGrah f .bfz Green-Ye1. grn.

    I . 5 4 4 R o ya l B lu eGrain I.552 creen

    l . ) 4u u le e nGrain 1,544 YellovTnln t. >4 u Bfue greenSe c t i o n 1 , 5 4 4 Ye l1 o v g r e e nrnan I. >4 o Stue gleenbeclaon a. >> o le ilov orange

    1.532 creenGraln I.536 Red orangeThin L.532 creenSect ion ]-136 orege yeLlov

    r . ) ) o u reenGrain f . 5b 0 Orilge realt h in f . 5 5 6 G r e e n - B lu e grn .Dect lon f. >o u Ietfov ormge

    f. )o 4 laue greencrein I .558 Yeltov orangeThin I.56\ creenSect ion I .558 Yellov-Lt .OrmgeThin L,520 Yellov greenSect ion I .52\ Ormge

    t . ) r . r r u a r g l r r e . /

    LO I ( U Ag 1 I l e , /

    1.5392 casi l re)f ,o lo ) (usga l fe l1 . 5 5 3 ( B 1 o s s , 1 9 5 7 )1 .5)+ l+ Bross, r95?)

    1 .51+ l+

    I q ? t - t q ? 7 l r a r r t o c o \

    r . 5 3 1 -1 . t3 7f . > ) o - f . ) o y ( t r e r r , t 9 > 9 ,

    r .558-! .569r. jj3-r, j69r.558-r 569r . > z z - ! , > z o ( b f o s s , l y o l ,

    R

    R

    R

    B

    R

  • 8/22/2019 AM64_440

    5/6

    LASKOWSKI ET AL: REFRACTII/E NDEX MEASUREMENTtering the position of the slide on the microscopestage,or changing he l iquid.15. Observe he colorsproducedby central screen-ing, and refer to Table2 for the wavelengthat whichthe indicesof refraction of the grain and l iquid areequal. This wavelengthor range of possiblewave-lengths should coincide with the results obtainedfrom apertural screening. [The albite crystal de-scribed in Table 3 yielded violet and orange colorfringes viewed through the central screen when al iquid wi th nD : 1.532at 25oC was used.This in-dicated (Table 2) a crystal-l iquid index match atsomewavelengthbetween5000 and 5200A.116. For the alb i teexample, teps 3 and l5 y ie ldeda crystal-l iquid index match at some wavelengthwithin the rangeof 5200-54004 (step l3) an d withinthe range of 5000-52004 (step l5). These wo wave-length ranges overlap at 5200A, thus 52004 wa schosen as the wavelength for which the index ofrefractionofthe crystaland the l iquid (in this case D:1.532 at 25 'C) are equal . n somecases he resul tsattained from Tables I and 2 will overlap over arange of wavelengths. f this occurs,choosea mid-point within the overlapping wavelengthsas thewavelength for which the n of the crystal and thel iquid are equal .17. P lot the l iquid (at 25'C) on a graph of n us.wavelength Fig. a) . Plot the match wavelength,at-tained in step 16,on the liquid curve. For the albiteexample, he match wavelengthattained in step l6(5200A) wa s plotted at point ,4 on Figure 4.18. Clean he s l idewi th a drop of acetone, inse nwater, and dry.19. If a wavelengthmatch of 54004 or less wasattained above, choosea higher index l iquid for thenext measurement. f a wavelengthmatch of greaterthan 54004 wa sattainedabove,choosea lower ndexliquid for the next measurement.20. Repeat steps l-18 with the new index l iquid;be sure the crystal is in the same orientation as be-fore. (Wi th l iquid nD : 1.536at 25oC,6050A wasdetermined o be the wavelength or which the indexof refractionof the albite n Table 3, and liquid rD :1.536at 25"C, are equal. This match wavelength splotted at point B on Figure 4.)21. Draw a line through the two match points as nFigure4. This l ine s an accurate epresentation f thechange in index of refraction of the crystal in theorientation presentwith respect o a change n wave-length. The point on the Y axis where the resultingline intersects he sodium D line is the nD of thegrain, n the orientation ested point C on Figure4).

    DiscussionTable3 shows esults f digpersion easurementsmade on varioussamples. ll measurementsereconducted t about 25oC. ndicesof refractionofammonium hloride, odiumbromate, nd wo opti-ca l glassesall Cargil lestandards)were measuredusing grain mounts and the dispersionstainingmethodpreviously escribed.ccuracies f equal oor better han t0.001 were obtained n all cases.These esultsare comparablewith accuracies b-tained y Cherkasov1960) ndGrabar 1963).The indexof refraction or sodiumD lightof theepsilonayand D-omega or low quartz, D-betaofafbite,nD-beta f microcline, D-beta f labradorite,and rD-beta of high-calciumabradoriteweremea-sureddirectly rom petrographichin sections.neach ase, specific rain n a specific rientation aschosenor measurement.he ndexof refractionorsodium D light of the omega ay and nD-epsilonvalues f 1.5449 nd L5539measuredor low quartzcompare avorablywith the valuesgivenby Bloss(1967). he ndexof refractionor sodiumD lightofthe beta ay or albitewasmeasuredn thin sectionobe 1.5355. grainmountof thesame ample aveannD-beta f 1.5352. hese aluesall within a range fvaluesKerr, 1959)or the albite ield.The ndices frefractionor sodiumD lightof thebeta ays or low-calcium labradoriteand high-calciumabradoriteweremeasuredn thin sectiono be1.5594 nd 1.5679respectively.rain mountsof the same amplesavenD-betasof 1.5592and 1.5677 espectively. err(1959)placed he labradorite ield at nD-beta:1.558-1.569.he indexof refract ionor sodiumDlightof the beta ay of microcline asdeterminedobe 1.5226 rom a thin sectionmount. Bloss 1967)placed he microcline ield at nD-beta 1.522 ot .526 .Compositions related o nD-beta or the plagio-clase olid solutionseriesChayes, 952).Usinghi sgraph for nD-betaus. plagioclaseomposition,healbite, abradorite, nd high-calciumabradoritenTable 3 are estimatedo have compositions f 8percent northite, 3 percent northite, nd 68 per-centanorthite espectively.In cases iscussedbove, iquid-grainboundarieswerecreateddirectlyon thin section lides.Colorfringes were produced.To interpret these colorfringessome f them aint)producedn thin section,thedispersiontainingmethod spreferred ve rotherstandardmethods ecause f the accuracy ttained(+0.001),qualityof colorsproduceda color fringewhichappears ery aint n regular ight s generally

  • 8/22/2019 AM64_440

    6/6

    LASKOIYSKI ET AL.: REFRACT,IVE NDEX MEASUREMENT 445

    Liquld l* 20.1.336ot 25oC

    Liquid l* |ll D:t 532 ot

    A i n A "Fig' 4' Determination f nD of analbite.Liquids and 2areplot ed, us.wavelength,ccordingo valuesor zF, rD, andnC given oreach iquid' Line ACB representshe changen indexof refraction f thealbitewith respecto a changen wavelength. he crystal soriented o measurehe beta ndex.point c is the nD-beta 1.5355) f the albitecrystal.quite clear when the dispersion taining ens s em_ployed),and ease f interpretation f thecolorspro_duced.

    ReferencesBloss, F. D. (1967) An Introduction to the Methods of OpticatCrystallography.Holt, Rinehart, and Winston, New york.Brown,K. M., W. C. McCrone,R. Kuhn an d L. Forlini 1963)Dispersion tainingpart II-The systematic pplication o theidentification of transparent substances.The MicroscopeandCrystal Front, 14, 39-54.Chayes, . (1952)Relations etween ompositions nd ndices frefraction n natural plagioclase. m. J. Sci.,BowenVolume.g5_

    r05.Cherkasov, u. A. (1960)Applicationof focalscreeningo mea-surement f indices f refraction y the mmersionmethod.1zr.Geol.Reu.,2.218-235.Grabar,D. G., and A. H. Principe 1963) dentification f glassfragments y measurementf refractivendexanddispersion."/ .ForensicSci.,8, 54-67.Kerr, P. F. (1959)OpticalMineralogy.McGraw-Hill, New york.Laskowski,D. E. (1965)Chemicalmicroscopy f urinarycalculi.Anal Chem., 7, 1399-1404.Manuscript receiued,March 27, 1978;acceptedor publication,May 22, 1978.