5
Short communication An empirical equation for temperature and pressure dependence of liquid heat capacity  Jovan D. Jovanovic ´  a , Andjela B. Knez ˇ evic ´ -Stevanovic ´  b , Dus ˇ an K. Grozdanic ´  a, * a Chemical Engineering Department, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia b Ministry of Environment, Environmental Protection Division, 2080-A Labieux Road, Nanaimo BC V9T 6J9, Canada 1. Introduction Calculation of liquid heat capacities of chemical compounds is an important step in design of many unit operations. For heating or cooling liquids, energy requirements are proportional to the hea t capacit ies.Values of thisproper ty aretherefore nec essary for equipment design, calculation of energy requirement s, equili- brium yields and separation ratios. Heat capacities of mixtures may be determined from the heat capacities of the individual components. Expe rimental liquid heat capacit y data are avai labl e for many substances (Palczewska-Tulin ´ ska, 199 7; Za ´ bransky ´ et al ., 1996, 2002), but mostly at the saturation line or at low pressures. 2. Liquid heat capacity correlation equation s As a result of slight compressibility of liquids, majority of the literat ure expe rimental data sets contain onl y temp erature dependency. Most of the data are measured at the saturation line (only temp era ture dependent) , or at the atmo spheric or constant pressure, and as such are not useful in development of a model that includes pressure dependenc y. Remainin g publishe d liquid heat capa city dat a cover mostly lower pressure regions (up to 10 MPa ) with insi gnicant pre ssur e inuence (lower than experimental error) and only limited number of data sets with wide ranges of tempera tures and pressures. At lower or constant press ures, liq uid heat capac it y can be app roximated wit h saturated liquid heat capacity equations (  Jovanovic ´  and Grozda- nic ´ , 2004; Poling et al., 2001). As a result, experimental data sets andcorrel atio n models coverin ig wide ranges of pre ssure are very rare. Oneof themodelsis a four -par ameter equation deve lope d by Guseinov et al . (1988): c  p  ¼  A þ BT þ C p þ DT p  (1) Ther e is also a ve- para mete r model devel oped by  Garg  et al . (1993) : c  p  ¼  A þ BT þ CT 2 þ DT 3 þ ET p  (2) and a nin e-pa rame ter model develope d by  Nakagawa  et al . (1993): c  pl R  ¼ A þ  B ð1 T r Þ 0;5 þ  C ð1 T r Þ þ  D ð1 T r Þ 3 þ E p 0;5 r þ  F p 0;5 r ð1 T r Þ 0;5 þ  G p 0;5 r ð1 T r Þ 1;5 þ H p r þ  I p r ð1 T r Þ 1;5  (3)  Journal o f the Taiwan Institute of Chemical Engineers 40 (2009) 105–109 A R T I C L E I N F O  Article history: Received 13 May 2008 Recei ved in revis ed form 4 July 2008 Accepted 7 July 2008 Keywords: Heat capacity Correlation Liquid Model High pressure A B S T R A C T A newempiri calequatio n forliquidheat capacit y cal cul ation, as a functi on of temper atur e andpressure is recommended. This four-parameter equation was tested and compared to the four-parameter equation developed by Guseinov et al. (1988), ve-parameter equation developed by Garg et al.  (1993) and nine- par ameter equa tion develop ed by Naka gawa et al . (1993) , using 73 sets wi th 4395 li ter atu re experimental heat capacity data for 46 chemical compounds. The obtained results indicate that the proposed four-parameter equation gives in many cases better results than the tested four- and ve- parameter equations and in few cases even better than the nine-parameter equation.  2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. * Corr espon ding autho r. Tel.: +381 11 3370 499; fax: +381 11 3370 387. E-mail address:  [email protected] (D.K. Grozdanic ´ ). Contents lists available at  ScienceDirect  Journal of the Taiwan Institute of Chemical Engineers journal homepage: www.elsevier.com/locate/jtice 1876-1070/$ – see front matter  2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.jtice.2008.07.001

An Empirical Equation for Temperature and Pressure Dependence of Liquid Heat Capacity.jtchE,40,2009,105-109

Embed Size (px)

Citation preview

  • an

    ic

    of Be

    anai

    Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 105109

    Heat capacity

    Correlation

    Liquid

    or li

    ara

    al. (

    lop

    y d

    equation gives in many cases better results than the tested four- and ve-

    parameter equations and in few cases even better than the nine-parameter equation.

    2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

    Contents lists availab

    Journal of the Taiwan Institu

    .e1. Introduction

    Calculation of liquid heat capacities of chemical compounds isan important step in design of many unit operations. For heatingor cooling liquids, energy requirements are proportional to theheat capacities. Values of this property are therefore necessary forequipment design, calculation of energy requirements, equili-brium yields and separation ratios. Heat capacities of mixturesmay be determined from the heat capacities of the individualcomponents. Experimental liquid heat capacity data are availablefor many substances (Palczewska-Tulinska, 1997; Zabranskyet al., 1996, 2002), but mostly at the saturation line or at lowpressures.

    2. Liquid heat capacity correlation equations

    As a result of slight compressibility of liquids, majority of theliterature experimental data sets contain only temperaturedependency. Most of the data are measured at the saturationline (only temperature dependent), or at the atmospheric orconstant pressure, and as such are not useful in development of a

    model that includes pressure dependency. Remaining publishedliquid heat capacity data cover mostly lower pressure regions (upto 10 MPa) with insignicant pressure inuence (lower thanexperimental error) and only limited number of data sets withwide ranges of temperatures and pressures. At lower or constantpressures, liquid heat capacity can be approximated withsaturated liquid heat capacity equations (Jovanovic and Grozda-nic, 2004; Poling et al., 2001). As a result, experimental data setsand correlationmodels coverinigwide ranges of pressure are veryrare. One of themodels is a four-parameter equation developed byGuseinov et al. (1988):

    c p A BT C p DT p (1)

    There is also a ve-parameter model developed by Garg et al.(1993):

    c p A BT CT2 DT3 ET p (2)

    and a nine-parameter model developed by Nakagawa et al.(1993):

    c plR A B

    1 Tr0;5 C1 Tr

    D

    1 Tr3 E p0;5r

    F p0;5r

    1 Tr0;5 Gp

    0;5r

    1 Tr1;5 H pr

    I pr

    1 Tr1;5(3)

    Model

    High pressure

    * Corresponding author. Tel.: +381 11 3370 499; fax: +381 11 3370 387.

    E-mail address: [email protected] (D.K. Grozdanic).

    1876-1070/$ see front matter 2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.doi:10.1016/j.jtice.2008.07.001Short communication

    An empirical equation for temperaturecapacity

    Jovan D. Jovanovic a, Andjela B. Knezevic-StevanovaChemical Engineering Department, Faculty of Technology and Metallurgy, UniversitybMinistry of Environment, Environmental Protection Division, 2080-A Labieux Road, N

    A R T I C L E I N F O

    Article history:

    Received 13 May 2008

    Received in revised form 4 July 2008

    Accepted 7 July 2008

    Keywords:

    A B S T R A C T

    A new empirical equation f

    recommended. This four-p

    developed by Guseinov et

    parameter equation deve

    experimental heat capacit

    proposed four-parameter

    journa l homepage: wwwd pressure dependence of liquid heat

    b, Dusan K. Grozdanic a,*

    lgrade, Karnegijeva 4, 11000 Belgrade, Serbia

    mo BC V9T 6J9, Canada

    quid heat capacity calculation, as a function of temperature and pressure is

    meter equation was tested and compared to the four-parameter equation

    1988), ve-parameter equation developed by Garg et al. (1993) and nine-

    ed by Nakagawa et al. (1993), using 73 sets with 4395 literature

    ata for 46 chemical compounds. The obtained results indicate that the

    le at ScienceDirect

    te of Chemical Engineers

    l sev ier .com/ locate / j t i ce

  • The objective of this study was to continue our previousinvestigation on saturated liquid heat capacity (Jovanovic andGrozdanic, 2003, 2004, 2005) and develop a new empiricalequation, applicable to the wide range of experimental values of

    temperatures and pressures. The newmodel should provide a goodcorrelation from atmospheric to high pressures, does not includedependency on critical parameters, is simple, with a limitednumber of parameters and does not result in numerical problems.On the basis of our preliminarlly study that covers a large numberof organic compounds, with the data sets presented in Table 1, thefollowing equation is recommended:

    1

    c pl A B

    T CT2

    DT p (4)

    3. Results and discussion

    Accuracy of the presented equations was tested on 73 sets ofliterature experimental data, with 4395 experimental points for 46compounds. Selected data sets with pressures above 10 MPa arepresented in Table 1. A comparison of the Eqs. (1)(4) is included inTable 1, with the number of experimental points per set, criticaltemperature and pressure, temperature and pressure range, and anaverage absolute percent error for tested equations.

    Overall percent errors are calculated as follows:

    Pav PN

    i1 niAAPEiPNi1 ni

    (5)

    AAPE 100Xn

    i1

    jc p;exp;i c p;cal;ijc p;exp;i

    (6)

    The obtained results, shown (with the overall percent error1.62%) in Table 1 indicate that the accuracy of the newrecommended equation is better then the Guseinov, Mirzaliev

    Nomenclature

    A, B, C, D, E, F, G, H, I adjustable equation parameters

    AAPE average absolute percent error (%)

    cp liquid heat capacity (J/mol K)

    cp,cal calculated liquid heat capacity (J/mol K)

    cp,exp experimental liquid heat capacity (J/mol K)

    n number of experimental data points

    N number of data sets

    p pressure (MPa)

    pc critical pressure (MPa)

    pmax maximum pressure value per set (MPa)

    pmin minimum pressure value per set (MPa)

    pr reduced pressure p/pcPav overall percent error (%)

    R universal gas constant (J/mol K)

    T temperature (K)

    Tc critical temperature (K)

    Tmax maximum temperature value per set (K)

    Tmin minimum temperature value per set (K)

    Tr reduced temperature T/Tc

    J.D. Jovanovic et al. / Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 105109106Table 1The literature data and results of correlationNo. Compound n Authors Tc(K)

    1. 1,1,1,2,3,3,3-Heptauoropropane 62 Hykrda et al. (2004) 375.9

    2. 1,1,1,2,3,3,3-Heptauoropropane 46 Wirbser et al. (1992a) 375.9

    3. 1,1,1,2-Tetrauoroethane 52 Hykrda et al. (2004) 374.1

    4. 1,1,2-Trichlorotriuoroethane 77 Wirbser et al. (1992b) 487.3

    5. 1,2-Dimethylbenzene 36 Garg et al. (1993) 630.3

    6. 1,3-Dimethylbenzene 36 Garg et al. (1993) 617.0

    7. 1,4-Dimethylbenzene 36 Garg et al. (1993) 616.2

    8. 1-Bromobutane 21 Zaripov et al. (2004) 569.4

    9. 1-Bromoheptane 21 Zaripov et al. (2004)

    10. 1-Bromohexane 21 Zaripov et al. (2004)

    11. 1-Butanol 58 Naziev et al. (1986a) 562.0

    12. 1-Decanol 94 Fulem et al. (2002) 687.3

    13. 1-Decanol 79 Naziev and Bashirov (1988) 687.3

    14. 1-Heptanol 94 Fulem et al. (2002) 632.6

    15. 1-Heptanol 77 Naziev and Bashirov (1988) 632.6

    16. 1-Hexanol 110 Fulem et al. (2002) 610.3

    17. 1-Hexanol 97 Arutyunyan (1981) 610.3

    18. 1-Nonanol 78 Naziev et al. (1986b) 670.7

    19. 1-Octanol 92 Fulem et al. (2002) 652.5

    20. 1-Octanol 77 Naziev et al. (1986b) 652.5

    21. 2,2,4-Trimethylpentane 18 Johnson et al. (1990) 543.8

    22. 2-Butoxyethanol 54 Malhotra and Woolf (1993) 643.0

    23. 2-Methyl-1-propanol 65 Naziev et al. (1992) 547.7

    24. 2-Methylaniline 57 Guseinov et al. (1988) 717.0

    25. 2-Methylbutane 35 Czarnota (1988) 460.4

    26. 2-Methylpentane 20 Czarnota (1998) 497.7

    27. 2-Propanol 27 Drehner (1979) 508.3

    28. 3-Methyl-1-butanol 64 Naziev et al. (1992) 577.2

    29. 3-Methylaniline 57 Guseinov et al. (1988) 709.1

    30. 3-Methylpentane 8 Czarnota (1980) 504.6pc(MPa)

    Tmin(K)

    Tmax(K)

    pmin(MPa)

    pmax(MPa)

    Eq. (1)

    (%)

    Eq. (2)

    (%)

    Eq. (3)

    (%)

    Eq. (4)

    (%)

    2.91 223.2 283.2 1.10 20.00 0.29 0.28 0.22 0.27

    2.91 273.2 374.2 .60 15.00 12.91 12.77 5.54 6.50

    4.06 223.2 283.2 .75 18.20 0.73 0.75 0.39 0.66

    3.38 288.2 487.2 .60 30.00 4.23 4.17 1.91 3.20

    3.73 318.1 373.1 .10 10.00 0.04 0.04 0.03 0.04

    3.54 318.1 373.1 .10 10.00 0.06 0.06 0.06 0.06

    3.51 318.1 373.1 .10 10.00 0.06 0.06 0.05 0.06

    4.26 298.0 348.0 .10 147.00 1.00 0.88

    298.0 348.0 .10 147.00 0.47 0.88

    298.0 348.0 .10 147.00 0.54 0.38

    4.50 321.1 522.1 .10 50.00 0.94 0.94 0.49 0.60

    2.31 325.7 570.7 2.00 30.00 1.28 0.25 1.35 0.77

    2.31 304.1 523.0 .10 50.00 0.48 0.48 0.13 0.33

    3.06 325.7 570.7 2.00 30.00 1.58 0.62 2.12 1.04

    3.06 303.4 522.1 .10 50.00 0.62 0.58 0.36 0.48

    3.42 325.7 570.7 2.00 30.00 1.63 0.78 2.68 1.07

    3.42 293.2 533.2 .10 60.00 4.35 4.29 0.94 2.85

    2.53 303.1 522.5 .10 50.00 0.53 0.53 0.16 0.38

    2.78 325.7 570.7 2.00 30.00 1.28 0.47 1.68 0.79

    2.78 303.2 523.2 .10 50.00 0.61 0.61 0.15 0.40

    2.57 360.0 550.0 2.00 10.00 1.48 1.48 1.08

    3.34 288.1 348.1 .10 350.00 0.92 0.92 0.29 0.84

    4.30 300.7 519.3 .10 50.00 0.76 0.66 1.66 0.39

    4.70 303.2 523.2 .10 25.00 0.13 0.13 0.05 0.07

    3.38 288.7 299.3 .10 820.40 6.28 6.19 1.91 6.10

    3.04 298.3 299.5 .10 756.20 3.78 3.80 3.73

    4.90 323.2 498.2 4.76 30.00 4.80 4.45 1.87 3.42

    3.93 302.1 521.1 .10 50.00 1.12 0.95 1.47 0.81

    4.15 303.2 523.2 .10 25.00 0.08 0.08 0.04 0.14

    3.12 298.9 299.4 .10 1014.67 1.85 1.77

  • .6

    .1

    .1

    .1

    .3

    .8

    .6

    J.D. Jovanovic et al. / Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 105109 107Table 1 (Continued )

    No. Compound n Authors Tc(K)

    31. 3-Methylpentane 137 Oguni et al. (1982) 504

    32. Benzene 8 Czarnota (1991) 562

    33. Benzene 50 Naziev et al. (1986a) 562

    34. Benzene 86 Akhundov and Sultanov

    (1974)

    562

    35. Chlorobenzene 240 Akhundov et al. (1986a) 632

    36. Cyclohexane 128 Sar et al. (1975) 553

    37. Decane 12 Czarnota (1993b) 617and Shakhmuradov and GargBanipalAhluwalia equations andslightly worse then NakagawaHoriSatoWatanabe equation,despite the lower number of parameters. Furthermore, somedifculties in evaluation of inverse coefcient matrix of normalequations, during testing of GargBanipalAhluwalia andNakagawaHoriSatoWatanabe equations, were encounteredmodels are inapplicable to certain experimental data sets.Obtained results with error above 20% were not considereduseable, and as such are not included in Table 1. Usability ofNakagawaHoriSatoWatanabe correlation model is furthemore

    38. Decane 72 Banipal et al. (1991) 617.6

    39. Decane 69 Kuznecov et al. (1988) 617.6

    40. Ethane 21 Grini et al. (1996) 305.3

    41. Ethylbenzene 36 Garg et al. (1993) 617.2

    42. Ethylbenzene 33 Johnson et al. (1990) 617.2

    43. Ethylbenzene 72 Akhundov et al. (1975) 617.2

    44. Ethylcyanide 64 Guseinov and Mirzaliev

    (1985)

    564.4

    45. Ethylcyclohexane 21 Johnson et al. (1990) 609.1

    46. Fluorobenzene 146 Akhundov et al. (1986b) 560.1

    47 Fluorotrichloromethane 52 Wirbser et al. (1992b) 471.2

    48. Heptane 52 Guseinov and Mirzaliev

    (1984)

    540.1

    49. Heptane 47 Kuznecov et al. (1988) 540.1

    50. Hexadecane 60 Banipal et al. (1991) 720.6

    51. Hexane 18 Zaripov et al. (2002) 507.9

    52. Hexane 73 Bessieres et al. (2000a) 507.9

    53. Hexane 42 Guseinov and Mirzaliev

    (1984)

    507.9

    54. Hexane 65 Gerasimov and Grigorev

    (1978)

    507.9

    55. Hexane 57 Naziev et al. (1986b) 507.9

    56. Hexane 44 Guseinov and Mirzaliev

    (1985)

    507.9

    57. Methanol 57 Dettmann et al. (2006) 512.5

    58. Methanol 10 Tanaka et al. (2007) 512.5

    59. Methylcyanide 63 Guseinov and Mirzaliev

    (1984)

    548.0

    60. Nonane 72 Banipal et al. (1991) 594.6

    61. Nonane 41 Kuznecov et al. (1988) 594.6

    62. Octane 18 Czarnota (1993a) 568.8

    63. Octane 60 Banipal et al. (1991) 568.8

    64. Octane 34 Kuznecov et al. (1988) 568.8

    65. Propylcyanide 65 Guseinov and Mirzaliev

    (1985)

    582.3

    66. Toluene 24 Sun et al. (2002) 591.7

    67. Toluene 80 Shulga et al. (1986) 591.7

    68. Toluene 60 Nefedov and Filippov (1980) 591.7

    69. Toluene 193 Akhundov and Eksaev

    (1973)

    591.7

    70. Tridecane 77 Bessieres et al. (2000b) 676.2

    71. Water 52 Naziev et al. (1986a) 647.3

    72. Water 69 Ernst and Philippi (1990) 647.3

    73. Water 10 Zaripov et al. (2004) 647.3

    Overall percent

    error, Pavpc(MPa)

    Tmin(K)

    Tmax(K)

    pmin(MPa)

    pmax(MPa)

    Eq. (1)

    (%)

    Eq. (2)

    (%)

    Eq. (3)

    (%)

    Eq. (4)

    (%)

    3.12 110.3 291.1 .10 108.00 0.44 0.42 0.74

    4.89 298.3 298.6 .10 68.10 6.55 1.41

    4.89 322.1 498.4 .10 50.00 1.07 1.03 0.21 0.84

    4.89 302.6 561.8 5.00 25.00 10.83 9.34 5.89 7.16

    4.52 301.3 630.8 8.00 25.00 5.74 4.18 3.30 3.87

    4.08 295.4 548.0 .50 50.00 2.03 2.05 2.97 1.48

    2.11 298.8 299.2 .10 254.50 2.33 2.34limited to data sets with at least eleven data points and knownvalues for critical temperature Tc and pressure pc. Unlike the othermodels, the new model is useful even for correlation at xedpresures. At xed pressure, some terms in Eqs. (1)(3) are the sameand that is believed to be a cause of numerical problems. As it canbe seen from Table 1, new recommended model is accurate andapplicable to lower and higher pressures, except near the criticaltemperature where the NakagawaHoriSatoWatanabe modelis recommended. Parameter values in Eq. (4) are presented inTable 2.

    2.11 318.1 373.1 .10 10.00 0.06 0.06 0.06 0.06

    2.11 292.7 593.4 .10 60.00 0.62 0.62 1.02 0.46

    4.87 150.0 250.0 32.00 50.70 0.38 0.31 0.53

    3.61 318.1 373.1 .10 10.00 0.07 0.05 0.04 0.06

    3.61 350.0 550.0 2.00 20.00 0.34 0.34 0.17 0.28

    3.61 301.6 607.8 8.00 25.00 0.72 0.72 2.14 0.52

    4.18 303.2 523.2 .10 25.00 1.08 1.07 0.12 0.65

    3.04 380.0 580.0 2.00 10.00 0.32 0.30 0.33

    4.55 301.8 559.3 .50 15.00 9.56 8.09 4.33 6.65

    4.41 288.2 453.2 .60 30.00 3.20 3.22 1.50 2.37

    2.74 303.2 523.2 .10 25.00 1.00 1.02 0.62 0.80

    2.74 292.5 534.8 5.00 60.00 1.46 1.47 2.06 1.08

    1.40 318.1 373.1 .10 10.00 0.05 0.04 0.03 0.05

    3.02 298.1 348.2 .10 147.00 1.16 0.93

    3.02 313.1 373.1 .10 100.00 0.38 0.38 0.11 0.37

    3.02 303.2 503.2 5.00 25.00 1.14 1.14 0.98 0.86

    3.02 293.4 505.3 .50 60.00 0.95 0.95 1.44 0.85

    3.02 308.4 496.7 .10 50.00 0.87 1.15 0.90 0.81

    3.02 313.2 503.2 5.00 25.00 1.13 1.40 0.92 1.06

    8.08 248.2 473.2 .50 12.50 1.08 0.92 0.41 0.60

    8.08 280.0 360.0 .10 15.00 1.46 1.46

    4.83 303.2 523.2 .10 25.00 1.73 1.61 0.46 1.00

    2.29 318.1 373.1 .10 10.00 0.07 0.07 0.06 0.07

    2.29 323.8 589.6 5.00 60.00 1.05 1.05 1.41 0.73

    2.49 298.1 299.1 .10 473.60 3.06 2.91

    2.49 318.1 373.1 .10 10.00 0.05 0.05 0.05 0.05

    2.49 329.1 543.8 5.00 60.00 0.69 0.85 0.46 0.66

    3.79 303.2 523.2 .10 25.00 0.72 0.72 0.15 0.47

    4.11 297.5 423.9 3.36 34.41 0.58 0.59 0.38 0.61

    4.11 255.5 401.5 3.50 993.50 0.74 0.73 0.49 1.74

    4.11 300.0 580.0 5.00 30.00 2.28 2.24 1.69 1.36

    4.11 302.9 582.0 .50 25.00 3.73 3.29 2.26 3.04

    1.68 313.2 373.2 .10 10.00 0.12 1.11 0.05 0.12

    22.12 318.7 494.2 .10 50.00 0.40 0.39 0.16 0.40

    22.12 298.2 643.2 20.00 50.00 10.75 9.42 1.79 7.36

    22.12 298.0 348.0 .10 98.00 0.35 0.36

    2.26 1.99 1.42 1.62

  • Table 2Values of parameters in Eq. (4)

    No. Compound A B C D

    1. 1,1,1,2,3,3,3-Heptauoropropane 9.54190 104 1.72780 100 1.46716 102 3.96857 1082. 1,1,1,2,3,3,3-Heptauoropropane 2.15776 102 1.45927 101 2.00082 103 2.09206 1073. 1,1,1,2-Tetrauoroethane 1.13484 103 2.52547 100 2.28402 102 7.13385 1084. 1,1,2-Trichlorotriuoroethane 2.82977 103 4.87320 100 6.96109 102 6.53305 1085. 1,2-Dimethylbenzene 7.21345 104 1.88541 100 1.47383 102 5.22623 1096. 1,3-Dimethylbenzene 1.29594 103 1.46678 100 5.82277 101 6.66316 1097. 1,4-Dimethylbenzene 2.44676 103 4.04775 100 5.02559 102 7.62192 1098. 1-Bromobutane 1.69931 102 1.34461 101 1.93596 103 1.42484 1089. 1-Bromoheptane 7.60578 103 6.82886 100 9.85906 102 9.57057 109

    10. 1-Bromohexane 7.92513 103 7.11681 100 9.97240 102 1.11147 10811. 1-Butanol 7.60306 104 9.41577 101 1.56612 102 8.56591 10912. 1-Decanol 3.60921 103 1.58784 100 3.94315 102 3.04769 10913. 1-Decanol 2.28772 104 9.17780 101 6.23329 101 2.68463 10914. 1-Heptanol 4.66609 103 2.16604 100 5.58774 102 7.34137 10915. 1-Heptanol 2.94171 104 1.17915 100 7.62632 101 4.49391 10916. 1-Hexanol 5.40113 103 2.63602 100 6.79321 102 9.68319 10917. 1-Hexanol 3.59687 103 4.29753 100 6.06128 102 2.93109 10818. 1-Nonanol 2.02861 104 1.03810 100 7.60159 101 2.95724 10919. 1-Octanol 4.33262 103 2.01110 100 5.07371 102 5.55320 10920. 1-Octanol 1.09651 104 1.21415 100 1.00186 102 3.92716 10921. 2,2,4-Trimethylpentane 3.54377 103 4.56754 100 7.22415 102 3.28378 10822. 2-Butoxyethanol 4.46313 103 1.22939 100 2.92294 102 1.75710 10823. 2-Methyl-1-propanol 3.88920 103 1.07625 100 4.69025 102 1.39273 10824. 2-Methylaniline 3.07407 104 2.86922 100 3.40201 102 1.14398 10825. 2-Methylbutane 3.16445 101 1.84871 102 2.76039 104 7.14365 101026. 2-Methylpentane 4.23623 101 2.53590 104 3.79459 106 1.42235 10927. 2-Propanol 6.32866 103 3.38924 100 1.00169 103 5.06121 10828. 3-Methyl-1-butanol 3.74971 103 1.43883 100 4.97034 102 1.66921 10829. 3-Methylaniline 3.17055 104 2.86635 100 3.48666 102 1.26971 10830. 3-Methylpentane 1.28947 103 7.71669 105 1.15449 108 3.90047 10931. 3-Methylpentane 2.77503 103 9.80343 101 6.02195 101 3.63866 10932. Benzene 1.27784 102 7.62661 104 1.13790 107 2.65612 10833. Benzene 1.69641 103 1.62396 100 4.24096 101 1.54380 10834. Benzene 1.01631 102 1.06962 101 1.69652 103 9.35451 10835. Chlorobenzene 4.59917 103 6.55675 100 9.93524 102 7.92612 10836. Cyclohexane 1.17836 103 3.08496 100 2.50691 102 1.53304 10837. Decane 1.25886 102 7.53133 104 1.12641 107 3.12136 10938. Decane 1.14589 103 2.21691 100 2.76906 102 3.97509 10939. Decane 3.01236 104 1.27003 100 1.23351 102 3.48202 10940. Ethane 4.56179 103 5.80953 100 4.53114 102 2.56609 10841. Ethylbenzene 7.48653 104 2.79335 100 2.83041 102 6.84095 10942. Ethylbenzene 1.25063 105 2.32943 100 2.20235 102 1.32618 10843. Ethylbenzene 8.41236 105 2.44538 100 2.52097 102 1.50509 10844. Ethylcyanide 4.95362 103 7.67762 100 1.01745 103 4.56861 10845. Ethylcyclohexane 1.05969 103 1.38332 100 1.17054 102 1.75655 10846. Fluorobenzene 1.43987 102 1.40844 101 2.40646 103 1.19459 10747. Fluorotrichloromethane 2.46023 103 5.82673 100 7.98834 102 8.05627 10848. Heptane 1.23610 103 2.87586 100 3.56999 102 1.45871 10849. Heptane 4.62877 104 2.30948 100 2.52676 102 1.01604 10850. Hexadecane 4.51408 104 1.30670 100 1.72578 102 9.79770 101051. Hexane 1.95017 103 3.42604 100 3.87743 102 1.63574 10852. Hexane 1.62087 103 3.47425 100 4.37501 102 5.30452 10953. Hexane 2.03048 103 3.57759 100 4.43744 102 3.20838 10854. Hexane 3.57039 104 1.99573 100 1.73002 102 1.11886 10855. Hexane 1.20980 104 1.94962 100 1.44812 102 1.18366 10856. Hexane 1.77665 103 3.33076 100 3.86565 102 3.26472 10857. Methanol 1.42183 102 1.31040 101 1.54993 103 4.88051 10858. Methanol 5.04351 107 3.67990 100 1.39245 101 3.95453 10859. Methylcyanide 1.01932 102 1.23489 101 1.64077 103 8.64977 10860. Nonane 4.23478 103 4.39834 100 6.24177 102 4.37328 10961. Nonane 1.35992 104 1.75933 100 2.03128 102 4.80689 10962. Octane 6.71674 101 4.01109 104 5.98872 106 3.90741 10963. Octane 1.53729 103 2.76746 100 3.38870 102 7.45005 10964. Octane 2.17712 104 1.63566 100 1.55080 102 5.68401 10965. Propylcyanide 2.53424 103 5.39044 100 7.26305 102 2.72408 10866. Toluene 6.18488 105 3.04252 100 3.26635 102 6.50729 10967. Toluene 5.96242 104 2.43212 100 2.13262 102 3.90260 10968. Toluene 1.12358 103 3.47279 100 3.84017 102 3.86501 10869. Toluene 5.38051 103 6.87094 100 1.04032 103 4.22872 10870. Tridecane 5.19242 104 8.77852 101 8.93392 101 4.48936 101071. Water 2.41920 103 7.31050 100 1.23238 103 2.85331 10872. Water 2.23608 102 2.50925 101 4.41440 103 1.08367 10773. Water 1.16732 103 8.98355 100 1.39189 103 2.04880 108

    J.D. Jovanovic et al. / Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 105109108

  • J.D. Jovanovic et al. / Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 105109 1094. Conclusions

    According to this study, a new equation for accurate correlationof liquid heat capacity over a wide temperature and pressure rangewas recommended. New model is an accurate four-parameterliquid heat capacity equation and this correlation ts available datawithin experimental errors.

    Acknowledgements

    This work was supported by a grant from the Research Fund ofSerbia, Belgrade and the Faculty of Technology and Metallurgy,University of Belgrade (project no. 142064).

    References

    Akhundov, T. S. and R. A. Eksaev, ]kFBeD4Ha:\>@e 4FF:e*@&a>4e 42@$aD>@6HeB:@e@e 4FF:e*@&a>4e 42@$aD>@6HeB:@e2@:a & 4>HeD&a:e He46 50250 $aD, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 17 (11), 72 (1974).

    Akhundov, T. S. and C. I. Sultanov, ]kFBeD4Ha:\>@e 4FF:e*@&a>4e 42@$aD>@6HeB:@e2@:a BD4 F&eDkD4H4ReFk4x *a&:e>4bx 80250 $aD 4Heab HeB:@e2@:a & 4>HeD&a:e He46*@ 1, 5;Aa, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 29 (1),56 (1986a).

    Akhundov, T. S., F. G. Abdullaev, R. T. Akhundov, and A. A. Guseinov, 32@$aD>abHeB:@e2@:a & 4>HeD&a:e He46 *@ 15, 0 ;Aa, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 29 (8), 78(1986b).

    Arutyunyan, G. S., ]kFBeD4Ha:\>@e4FF:e*@&a>4e 42@$aD>@6 HeB:@e-(ekF4:@&@( FB4DHa BD4 Da2:4R>Zx He4bx, Izv. Akad.Nauk Az. SSR, Ser. Fiz. Tehn. Mat. Nauk, 2 (2), 97 (1981).

    Banipal, T., S. Garg, and C. Ahluwalia, Heat Capacities and Densities of Liquid n-Octane, n-Nonane, n-Decane, and n-Hexadecane at Temperatures from 315.15 K to373.15 K and at Pressures up to 10 MPa, J. Chem. Thermodyn., 23, 923 (1991).

    Bessieres, D., H. Saint-Guirons, J.-L. Daridon, and J.-Y. Coxam, Apparatus for Simulta-neous Determination of the Densities and Heat Capacities of Liquids and of Liquidswith Dissolved Gas under an Extended Range of Pressure (0.1100 MPa), Meas.Sci. Technol., 11 (N69) (2000a).

    Bessieres, D., H. Saint-Guirons, and J.-L. Daridon, Thermophysical Properties of n-Tridecane from 313.15 to 373.15 K and up to 100 MPa from Heat Capacity andDensity Data, J. Therm. Anal. Cal., 62, 621 (2000b).

    Czarnota, I., Heat Capacity of 3-Methylpentane at High Pressures, Bull. Acad. Pol. Sci.Ser. Sci. Chim., 28, 651 (1980).

    Czarnota, I., Heat Capacity of 2-Methylbutane at High Pressures, J. Chem. Thermodyn.,20, 457 (1988).

    Czarnota, I., Heat Capacity of Benzene at High Pressures, J. Chem. Thermodyn., 23, 25(1991).

    Czarnota, I., Heat Capacity of Octane at High Pressures, J. Chem. Thermodyn., 25, 355(1993a).

    Czarnota, I., Heat Capacity of Decane at High Pressures, J. Chem. Thermodyn., 25, 639(1993b).

    Czarnota, I., Heat Capacity of 2-Methylpentane at High Pressures, J. Chem. Thermo-dyn., 30, 291 (1998).

    Dettmann, C., G. Ernst, and H. Wirbser, Excess Enthalpy HE and Massic Heat Capacityof (Water + Methanol) at Temperatures between 323 K and 513 K and Pressures upto 10 MPa, J. Chem. Thermodyn., 38, 56 (2006).

    Drehner, I., Experimental Determination of the Isobaric Specic Heat Capacity ofPropan-2-ol up to Pressures of 30 MPa and Temperatures of 573 K, J. Chem.Thermodyn., 11, 993 (1979).

    Ernst, G. and R. Philippi, Flow-calorimetric Results for the Specic Heat Capacity cp ofWater at Pressures between 20 and 50 MPa and Temperatures between 298.15 and673.15 K, J. Chem. Thermodyn., 22, 211 (1990).

    Fulem, M., K. Ruzicka, and V. Ruzicka, Heat Capacities of Alkanols. Part I. Selected 1-alkanols C2 to C10 at Elevated Temperatures and Pressures, Thermochim. Acta, 382,119 (2002).

    Garg, S. K., T. S. Banipal, and J. C. Ahluwalia, Heat Capacities and Densities of Liquid o-xylene, m-xylene, p-xylene, and Ethylbenzene, at Temperatures from 318.15 K to373.15 K and at Pressures up to 10 MPa, J. Chem. Thermodyn., 25, 57 (1993).

    Gerasimov, A. A. and B. A. Grigorev, ]kFBeD4Ha:\>@e 4FF:e*@&a>4e 42@$aD>@6HeB:@e-(ekFa>a, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 21 (5), 46 (1978).

    Grini, P. G., H. S. Maehlum, E. Brendeng, and G. A. Owren, Enthalpy IncrementMeasurements on Liquid Ethane between the Temperatures 146.0 K and 256.2 K,at Pressures (1.6, 3.20, and 5.07) MPa, J. Chem. Thermodyn., 28, 667 (1996).Guseinov, S. O. and A. A. Mirzaliev, ?$ @*>@< &aD4a>He 4 >ek@H@DZx De2J:\HaHax424b 42@$aD>@6 HeB:@e@(@ Da2@(De&a, Izv.Vyssh. Uchebn. Zaved., Neft i Gaz, 27 (5), 41 (1984).

    Guseinov, S. O. and A. A. Mirzaliev, ]kFBeD4Ha:\>@e 4FF:e*@&a>4e @$Xe@642@$aD>@6 HeB:@eaFZVe>>Zx >4HD4:@& BD4 &ZF@k4x HeZx *a&:e>4bx, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 28 (5), 58 (1985).

    Guseinov, S. O., A. A. Mirzaliev, and Sh.G. Shakhmuradov, 3FF:e*@&a>4e 42@$aD>@6HeB:@eHeD&a:e 42e>4bHe4b, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 31 (9), 13 (1988).

    Hykrda, R., J. Y. Coxam, and V. Majer, Experimental Determination of Isobaric HeatCapacities of R227 (CF3CHFCF3) from223 to 283 K at Pressures up to 20 MPa, Int. J.Thermophys., 25, 1677 (2004).

    Johnson, M. K., H. Sato, A. G. Williamson, and P. T. Eubank, Enthalpies for Ethylben-zene, Isooctane, and Ethylcyclohexane in the Fluid State, J. Chem. Eng. Data, 35,101 (1990).

    Jovanovic, J. D. and D. K. Grozdanic, Saturated-Liquid Heat Capacity: New PolynomialModels and Review of the Literature Experimental Data, J. Serb. Chem. Soc., 68, 479(2003).

    Jovanovic, J. D. and D. K. Grozdanic, Saturated-Liquid Heat Capacity of OrganicCompounds: New Empirical CorrelationModel, J. Serb. Chem. Soc., 69, 233 (2004).

    Jovanovic, J. D. and D. K. Grozdanic, Saturated-Liquid Heat Capacity Calculation ofAlkanes, J. Serb. Chem. Soc., 70, 1545 (2005).

    Kuznecov, M. A., V. E. Harin, A. A. Gerasimov, and B. A. Grigorev, 32@$aD>abHeB:@e-a:ka>@& E7-E10 BD4 He4bx *@ 60 ;Aa, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 31 (11), 49 (1988).

    Malhotra, R. and L. A. Woolf, Thermodynamic Peoperties of 2-Butoxyethanol atTemperatures from 288 K to 348 K and Pressures from 0.1 MPa to 380 MPa, J.Chem. Thermodyn., 25, 1189 (1993).

    Nakagawa, S., T. Hori, H. Sato, and K. Watanabe, Isobaric Heat Capacity for Liquid 1-Chloro-1,1-diuoroethane and 1,1-Diuoroethane, J. Chem. Eng. Data, 38, 70(1993).

    Naziev, Ya. M. and M. M. Bashirov, 3FF:e*@&a>4e 42@$aD>@6 HeB:@eZ6BD4$@D *:b424b 42@$aD>@6 HeB:@e@e4FF:e*@&a>4e 42@$aD>@6 HeB:@e4bx, Inzh. -Fiz. Zh., 51, 998 (1986b).

    Naziev, Ya. M., M. M. Bashirov, and M. A. Talybov, 3FF:e*@&a>4e 42@$aD>@6HeB:@e@e 4FF:e*@&a>4e HeB:@e@FH4 H@:J@:a, Izv. Vyssh. Uchebn.Zaved., Neft i Gaz, 23 (2), 51 (1980).

    Oguni, M., K. Watanabe, T. Matsuo, H. Suga, and S. Seki, Construction of an AdiabaticCalorimeter Workable under Constant High-pressure, Bull. Chem. Soc. Jpn., 55, 77(1982).

    Poling, B. E., J. M. Prausnitz, and J. P. OConnell, The Properties of Gases and Liquids,McGraw-Hill, New York (2001).

    Palczewska-Tulinska, M., Solid and Liquid Heat Capacity Data Collection: C1C33 Com-pounds, DECHEMA, Frankfurt am Main (1997).

    Sar, L. I., A. A. Gerasimov, and B. A. Grigorev, ]kFBeD4Ha:\>@e 4FF:e*@&a>4eHeB:@ea, Izv. Vyssh. Uchebn. Zaved., Neft i Gaz, 18 (11), 61(1975).

    Shulga, V. M., F. G. Eldarov, Y. A. Atanov, and A. A. Kuyumchev, Thermal Conductivityand Heat Capacity of Liquid Toluene at Temperatures between 255 and 400 K andat Pressures up to 1000 MPa, Int. J. Thermophys., 7, 1147 (1986).

    Sun, L., J. Venart, and R. Prasad, The Thermal Conductivity, Thermal Diffusivity andIsobaric Heat Capacity of Toluene and Argon, Int. J. Thermophys., 23, 1487 (2002).

    Tanaka, K., I. Fujita, and M. Uematsu, Isobaric Specic Heat Capacity of{xCH3OH + (1 x)H2O} with x = (1.0000, 0.7943, 0.4949, 0.2606, 0.1936, 0.1010,and 0.0496) at T = (280, 320, and 360) K in the Pressure Range from (0. 1 to15) MPa, J. Chem. Thermodyn., 39, 961 (2007).

    Wirbser, H., G. Brauning, and G. Ernst, Flow-calorimetric Specic Heat Capacities ofthe Refrigerents CFCl3 (R11) and CF2ClCFCl2 (R113) at Pressures between 0.6 MPaand 30 MPa and Temperatures between 288.15 K and 503.15 K, J. Chem. Thermo-dyn., 24, 783 (1992b).

    Wirbser, H., G. Brauning, J. Gurtner, and G. Ernst, Flow-calorimetric Specic HeatCapacities and Joule-Thomson Coefcients of CF3CHCF3 (R227) a New WorkingFluid in Energy Technics at Pressures up to 15 MPa and Temperatures between253 K and 423 K, J. Chem. Thermodyn., 24, 761 (1992a).

    Zabransky, M., V. Ruzicka, V. Majer, and E. S. Domalski, 1996.Heat Capacity of Liquids,Critical Review and Recommended Values, Monograph No. 6, Vols. I and II.American Chemical Society, Washington, DC (1996).

    Zabransky, M., V. Ruzicka, and E. S. Domalski, Heat Capacity of Liquids: Critical Reviewand Recommended Values. Suplement I, J. Phys. Chem. Ref. Data, 30, 1199 (2002).

    Zaripov, Z. I., S. A. Burtsev, A. V. Gavrilov, and G. K. Mukhamedzyanov, ThermalProperties of n-Hexane at Temperatures of 298.15363.15 K and Pressures of0.098147 MPa, Theor. Found. Chem. Eng., 36, 400 (2002).

    Zaripov, Z. I., S. A. Burtsev, A. V. Gavrilov, and G. K. Mukhamedzyanov, Determinationof the Thermophysical Properties of Halogenated Hydrocarbons in Heat-Conduct-ing Calorimeter, High Temp., 42, 314 (2004).

    An empirical equation for temperature and pressure dependence of liquid heat capacityIntroductionLiquid heat capacity correlation equationsResults and discussionConclusionsAcknowledgementsReferences