58
Associate Professor: C. H.LIAO

Associate Professor: C. H.L IAO. Contents: 3.1 Introduction 99 3.2 Simple Harmonic Oscillator 100 3.3 Harmonic Oscillations in Two Dimensions 104

Embed Size (px)

Citation preview

Page 1: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Associate Professor: C. H.LIAO

Page 2: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Contents:

3.1 Introduction 993.2 Simple Harmonic Oscillator 1003.3 Harmonic Oscillations in Two Dimensions

1043.4 Phase Diagrams 1063.5 Damped Oscillations 1083.6 Sinusoidal Driving Forces 1173.7 Physical Systems 1233.8 Principle of Superposition-Fourier Series 1263.9 The Response of Linear Oscillators to

Impulsive Forcing 129

Page 3: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

3.1 Introduction

1. If the particle is displaced from the origin (in either direction), a certain force tends to restore the particle to its original position. An example is an atom in a long molecular chain.

2. The restoring force is, in general, some complicated function of the displacement and perhaps of the particle's velocity or even of some higher time derivative of the position coordinate.

3. We consider here only cases in which the restoring force F is a function only of the displacement: F = F(x).

Page 4: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 5: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

3.2 Simple Harmonic Oscillator

Page 6: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

the kinetic energy

The incremental amount of work dW

Page 7: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

ωo represents the angular frequency of the motion, which is related to the frequency νo

by

Page 8: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Find the angular velocity and period of oscillation of a solid sphere of mass mand radius R about a point on its surface. See Figure 3-l.

Sol.: The equation of motion for θ is

Page 9: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

the restoring force is

where

Page 10: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 11: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 12: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 13: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 14: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 15: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

We may consider the quantities x(t) and to be the coordinates ofa point in a two-dimensional space, called phase space.

Page 16: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

3.5 Damped Oscillations

The motion represented by the simple harmonic oscillator is termed a free oscillation;

Page 17: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

The general solution is:

Page 18: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

The envelope of the displacement versus time curve is given by

Page 19: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Sol.:

Page 20: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 21: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 22: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 23: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 24: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Sol.:

Page 25: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

The simplest case of driven oscillation is that in which an external driving force varying harmonically with time is applied to the oscillator

where A = F0/m and where w is the angular frequency of the driving force

Page 26: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 27: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 28: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 29: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

3.7 Physical SystemsWe stated in the introduction to this chapter

that linear oscillations apply to more systems than just the small oscillations of the mass-spring and the simple pendulum.

We can apply our mechanical system analog to acoustic systems. In this case, the air molecules vibrate.

Page 30: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 31: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 32: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Sol.:

Page 33: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Sol.:

Page 34: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

The quantity in parentheses on the left-hand side is a linear operator, which we may represent by L.

Page 35: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

In the usual physical case in which F(t) is periodic with period τ = 2π /ω

F(t) has a period τ

*Fourier's theorem for any arbitrary periodic function can be expressed as:

Page 36: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Sol.:

Page 37: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Thanks for your attention.

Page 38: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104

Problem discussion.Problem:3-1, 3-6, 3-10, 3-14, 3-19, 3-24, 3-26, 3-29, 3-

32, 3-37, 3-43

Page 39: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 40: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 41: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 42: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 43: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 44: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 45: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 46: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 47: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 48: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 49: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 50: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 51: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 52: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 53: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 54: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 55: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 56: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 57: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104
Page 58: Associate Professor: C. H.L IAO. Contents:  3.1 Introduction 99  3.2 Simple Harmonic Oscillator 100  3.3 Harmonic Oscillations in Two Dimensions 104