76
1 Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical Engineering [email protected]

Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

1

Atmospheric Formation of Ultrafine Particles

Charles Stanier Assistant ProfessorUniversity of IowaDepartment of Chemical and

Biochemical Engineeringcstanierengineeringuiowaedu

2

Outline

What is atmospheric new particle formationSome examples

Physical measurementsChemical measurementsModeling

What fraction of particles are from new particle formation vs combustion

3

What is Nucleation

Molecules

Neutral or ion clusters

Ternary or Ion-Induced Nucleation

Detectable Aerosol Particles001-10 cm-3s-1 regional eventsup to 105 cm-3s-1 in plumes

Initial Growth

Further Growth (1-20 nmhr)

CCNAmmoniumSulfateOrganics~ 1 nm 3 nm

LossBy

CondensationTo Pre-existingSurface Area

4

Nucleation Overview

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

NH3

5

Nucleation Observations

Kulmala McMurry et al (2004) J Aerosol Sci 35 pp 143-176

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 2: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

2

Outline

What is atmospheric new particle formationSome examples

Physical measurementsChemical measurementsModeling

What fraction of particles are from new particle formation vs combustion

3

What is Nucleation

Molecules

Neutral or ion clusters

Ternary or Ion-Induced Nucleation

Detectable Aerosol Particles001-10 cm-3s-1 regional eventsup to 105 cm-3s-1 in plumes

Initial Growth

Further Growth (1-20 nmhr)

CCNAmmoniumSulfateOrganics~ 1 nm 3 nm

LossBy

CondensationTo Pre-existingSurface Area

4

Nucleation Overview

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

NH3

5

Nucleation Observations

Kulmala McMurry et al (2004) J Aerosol Sci 35 pp 143-176

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 3: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

3

What is Nucleation

Molecules

Neutral or ion clusters

Ternary or Ion-Induced Nucleation

Detectable Aerosol Particles001-10 cm-3s-1 regional eventsup to 105 cm-3s-1 in plumes

Initial Growth

Further Growth (1-20 nmhr)

CCNAmmoniumSulfateOrganics~ 1 nm 3 nm

LossBy

CondensationTo Pre-existingSurface Area

4

Nucleation Overview

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

NH3

5

Nucleation Observations

Kulmala McMurry et al (2004) J Aerosol Sci 35 pp 143-176

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 4: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

4

Nucleation Overview

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

NH3

5

Nucleation Observations

Kulmala McMurry et al (2004) J Aerosol Sci 35 pp 143-176

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 5: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

5

Nucleation Observations

Kulmala McMurry et al (2004) J Aerosol Sci 35 pp 143-176

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 6: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

6

Particle Size

nmmicrom

10001

10001

10001

10001 10 100

Ultrafine

Fine Particles (lt 25 microm)

Con

cent

ratio

n Number Distribution

Mass Distribution

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 7: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

7

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 8: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

8

0 25 50 75 100

Number vs Mass Distribution

Pittsburgh PA2001-2002

Aerosol Mass (microgm3)

Num

ber

(c

m3 )

10x104

20x104

Negative correlationRelated to nucleation activityOccurring over wide area

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 9: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

9

New Particle Formation vs Visibility

USX Tower

USX Tower

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 10: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

10

Other Aerosol Impacts Visibility amp Climate

EPA (2001) National Air Quality Status and Trends

Yosemite CA

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

CloudFormation

CloudParticles

ScatteredRadiation

ScatteredRadiation

Earth

Sun

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 11: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

11

Physical Measurements

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 12: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

12

Dry-Ambient Aerosol Size Spectrometer

Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control data acquisition and data reduction software

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 13: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

13

Nucleation Frequency by Month

0

50

100

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

gt 1-hr Duration lt 1-hr Duration None

2001 2002

Frac

tion

of

Day

s W

ith

Nu

clea

tion

Significant fraction of days (30+)Most prevalent in spring fall

Pittsburgh 2001-2002

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 14: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

14

Example No NucleationP

arti

cle

Size

(n

m)

10

100

500

0000Time of Day

0600 1200 1800 2400

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Nu

mbe

r (

cm

3)

12x104

6x104

Pittsburgh August 10 2001

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 15: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

15

Example Weak Nucleation

105

104

103

102

Res

pon

sedN

dlo

gDp

(cm

-3)

Par

ticl

e Si

ze (

nm

)

10

100

500

Nu

mbe

r (

cm

3)

12x104

6x104

0000Time of Day

0600 1200 1800 2400

Pittsburgh July 2 2001

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 16: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

16

Sunlight and New Particle Formation

SUNRISE

Cloudy Morning

0000Time of Day

0600 1200 1800 2400

Cloud Free Morning

Par

ticl

e Si

ze (

nm

)

10

100

500

10

100

500Pittsburgh

Nov 10 2001

PittsburghNov 11 2001

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 17: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

17

Nucleationrsquos Spatial Coverage

Method simultaneous sampling

WindPittsburgh Philadelphia

RuralSampler

Main (Urban)Sampler

PhiladelphiaSampler

38 km 400 km

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 18: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

18

Spatial Coverage ResultP

arti

cle

Size

(n

m)

10

100

200

10

100200

38 km apartFebruary 25 2002

Pittsburgh

38 km Upwind Rural Location

400 km apartJuly 2 2001

Pittsburgh

Philadelphia

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 19: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

19

Diurnal Pattern

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

3-50

0 nm

Par

ticle

Cou

nt (c

m-3

)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

Non-nucleation w orkdays Non-nucleation w eekends

Regional nucleation days

(b)

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 20: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

20

Chemical Measurements

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 21: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

21

Aerosol Mass Spectrometer

Zhang Q Jimenez JL Caragaratna M Worsnop D

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 22: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

22

Aerosol Mass Spectrometer

Particle Inlet (1 atm)

Jayne et al Aerosol Science and Technology 331-2(49-70) 2000Jimenez et al Journal of Geophysical Research in press 2002

QuadrupoleMass Spectrometer

Thermal Vaporization

ampElectron Impact

Ionization

Aerodynamic Lens

(2 Torr)

Chopper

Turbo Pump

Turbo Pump

Turbo Pump

Time of Flight Region

Particle BeamGeneration

Aerodynamic Sizing Particle Composition

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 23: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

23

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 24: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

24

September 12 2002 Nucleation EventP

arti

cle

Size

(n

m)

10

100

500

0000 0600 1200 1800 2400

50

0

100

Mas

s Fr

acti

on1

0-6

0 n

m

Nitrate

Ammonium

SulfateOrganics

Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer

Zhang amp Jimenez (Univ Colorado-Boulder)

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 25: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

25

Chemistry of Growth Particle Mass Spectra at 20-33 nm

Detection of Nucleationby Particle Sizer

Zhang et al Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry Environ Sci Technol in press

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 26: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

26

Modeling

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 27: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

27

Chemistry of Nucleation Simulation1

SO2(g) + OH + H2O rarrHO2 + H2SO4nH2O

SO2

Inputs Processes Modeled OutputPreexisting Aerosol Distribution

SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature amp RH

NH3

SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

H2SO4 CondensationParticle Coagulation

Predicted Aerosol Distribution

1Model adapted from Capaldo Kasibhatla Pandis J Geophys Res 1999

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 28: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

28

Modeling H2SO4 Nucleation

Photochemical box model

Modeled gas-phase speciesSO2 H2SO4 OH NH3SO2 measured OH and NH3 calculated from measurements

220 fixed size sections ranging in size from 08 nm to 10 microm

T RH SO2 and UV radiation from measurements

Initial distribution available from dry size distributions

Maximum OH concentration assumed for each month scaled based onUV

5 x 106 moleculescm3 in summer1

1 x 106 moleculescm3 in winter2

1Ren et al (2003)2Heard et al (2001)

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 29: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

29

Comparison on July 27 2001

Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 30: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

30

Comparison on January 28 2002

25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 31: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

31

Sensitivities

NPF is thought to be sensitive toPM25 darr NPF uarrAmmonia uarr NPF uarr (but not sure how strong this effect)SO2 darr NPF darr (if NH3 in excess hellip that covers

most locations)SO2 darr NPF uarr (if NH3 limited eg northeast US

in summer)Reactive VOCs darrNPF ndash but growth of particles will be

limited ndash so they will not last aslong in the atmosphere

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 32: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

32

What fraction of ultrafines are from NPF

To a large extent we do not knowWill vary by locationNPF most important at midday and afternoons

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Threshold chemistrystill Unclear (SO2 + )and will vary from place to pla

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 33: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

33

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

Heavy TrafficUrban

AfternoonDownwindSuburbs

Rura

l US

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 34: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

34

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

rtic

le S

ize

(nm

)

Res

pons

edN

dlo

gDp

(cm

-3)

Bondville Illinois 2005

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 35: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

35

Mexico City Mar 17 2006

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 36: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

36

Pittsburgh PA

NOV 1

NOV 2

NOV 3

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 37: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

37

Pittsburgh PA

NOV 1

NOV 2

NOV 3

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 38: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

38

DOWNY DEC 2000 RIVERSIDE MAY 2001

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 39: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

39

DOWNY DEC 2000 RIVERSIDE MAY 2001

Traffic

Smog

and

Reg

iona

l Haz

e NPF LessImportant

NPF MoreImportant

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 40: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

40

Future Work

In the process of summarizing comparisons between Pittsburgh Rochester New York City Atlanta LA and St LouisUnify measurements detailed modeling and a ldquoscreeningrdquo model that attributes ultrafines to traffic vs new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants and advanced diesel influence new particle formation

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 41: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

41

Acknowledgements

StudentsAlicia Kalafut ndash Ultrafine Particle SamplingKazeem Olanrewaju ndash Ultrafine Particle Modeling

University of Iowa CallaboratorsGreg Carmichael Jerry Schnoor Bill Eichinger

Carnegie Mellon CollaboratorsSpyros Pandis Tim Gaydos Andrey Khlystov

Outside CollaboratorsAllen Williams

Illinois Soil and Water SurveyPeter McMurry

University of MinnesotaJimenez Group University of Colorado-Boulder

Jose-Luis Jimenez amp Qi Zhang

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 42: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

42

Additional Material

Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 43: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

43

Modeling framework

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 44: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

44

Modeling H2SO4 Nucleation

Photochemical box modelModeled gas-phase species

SO2 H2SO4 OH NH3

SO2 measured OH and NH3 calculated from measurements

220 fixed size sectoins ranging in size from 08 nm to 10 microm

( ) ( )( ) ( )

4242

42

42

42

3

2

SOHdepSOHSOH

cond

SOHnucgasSOH

CRRHCR

RHTNHCRnPTOHSORt

C

minus+

+=part

part

( )( ) ( ) ( )idepSOH

Ncondjcoag

SOHnuci

NRRHCRRHNR

RHTNHCRt

N

i minus++

=partpart

42

42 3

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 45: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

45

Sulfuric Acid Nucleation Formation

SO2 + OH + M rarr HOSO2 + MHOSO2 + O2 rarr HO2 + SO3(g)

SO3(g) + H2O + M rarr H2SO4(g) + MH2SO4(g) + nH2O(g) rarr H2SO4nH2O(aq)

________________________________________________________________________________________

SO2(g) + OH + O2 + (n+1)H2O rarr HO2 + H2SO4nH2O(aq)

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 46: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

46

Chemistry and deposition

Sulfuric acid is produced from the reaction of SO2 and OH1

Deposition

vdep for aerosol dependent on particle size2 10 cms used for H2SO4

3

]][[ 22OHSOkR SOgas =

1kSO2 from DeMore et al (1994)

Hcv

R iidrydep

=

3Brook et al (1999)2Hummelshoj et al (1992)

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 47: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

47

Condensation

Condensation rate

Change in number concentration

Flux between fixed sections

)()(2 0ppAKnFDDNJ pi minus= π

42421 SOHiiSOHiiNcond CNFCNFR i minus= minus

( ) ( )[ ]33142

6ip

ip

pimtSOH

iDDRT

DKMF

minus=

+ρπ

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 48: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

48

Coagulation

Coagulation rate

Generalized coagulation coefficient

Linear interpolation to preserve mass number

221

1

1 geminus= sumsum

infin

=minus

=minus kNKNNNKfR

jjjkkjkj

k

jjkjkcoag

( )( )βπ 212112 2 DDDDK pp ++=

kk

pkk VV

VVf

minus

minus=

+

+

1

1

kk

kpk VV

VVf

minus

minus=

++

11

β calculated using method of Fuchs (1964)

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 49: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

49

Ternary nucleation correlation

Parameterization from Napari et al (2002)Calculates nucleation rate using parameters of T RH NH3 H2SO4

Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions08 nm under typical January conditions

Approximation for composition of initial nuclei also dependent on nucleation rate and T

Approximately 4 molecules of sulfuric acid 4 of ammonium in July2 molecules of sulfuric acid 2 of ammonium in January

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 50: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

50

Nucleation rates

Presence of gas-phase ammonia necessary for nucleation in July

10 ppt generally enough

Both ammonia and sulfuric acid play important role in January

Cloud cover weaker UV radiation limit production of sulfuric acid

1 2 3 401

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

001 01 101

1

10

100

Sulfuric acid concentration (ppt)

Am

mon

ia (p

pt)

July

January

10-5 10-3 10-1

101 103 105 106

10-5 10-3

10-1

101 103

105 106

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 51: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

51

Sensitivity to SO2 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in SO2 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

nChange in SO2 Concentration ()

January

o

f mod

eled

day

s

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 52: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

52

Sensitivity to NH3 Emissions

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 1000

2

4

6

8

10

12

14

16

18

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

July

o

f mod

eled

day

s

0102030405060708090100

-100-80 -60 -40 -20 0 20 40 60 80 10002468

10121416182022242628

Day

s w

ith n

ucle

atio

n

Change in NH3 Concentration ()

January

o

f mod

eled

day

s

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 53: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

53

Future Work

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 54: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

54

Observational Analysis

Determine spatial extent of nucleation from ldquoSupersiterdquo 2001 observations and compare to SO2and NH3 maps

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 55: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

55

Observation-Model Hybrid

Prepare model-based predictions of seasonal nucleation frequency timing and growth rateCompare to previous (or new) measurements

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 56: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

56

Vertical Profile Sampling

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 57: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

57

Vertical Mixing Models

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 58: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

58

Perturbed Real Air Samples

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 59: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

59

Measurement technique

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 60: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

60R

H

APSAPS

Dry sheath airfor Nafion dryers

Vent excessdry air1 LPM

RH

RH

LL -- DM

AD

MA

NN-- D

MA

DM

A

RH

HEPA MFHEPA

HEPA

RH

HEPAMFHEPA

HEPA

AmbientAir In

Dry AirExhaust

CPCCPC

CPCCPC

AmbientAir In

AerosolInlets

MF

Clean Dry ampRegulated Air

3-Way Plug Valvew Solenoid Actuator∆P Flowmeter

Ball Valve Air Actuated

Mass Flow Meter

Bipolar Charger

Nafion DryerRotameter

DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

Add RH controlled inlets (aerosol water measurement)Control amp data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 61: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

61

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 62: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

62

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 63: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

63

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 64: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

64

Scanning Mobility Particle Sizer

Condensation Particle

Counter (CPC)

Sheath Flow

AerosolIn Charger

-

-

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 65: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

65

Traffic and modeling

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 66: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

66

Traffic Emission Sampling

1E+03

1E+04

1E+05

1E+06

1E+07

0001 001 01 1

Mobility Diameter (microm)

dNd

log(

Dp)

Dilu

tion

Cor

rect

ed (

cm-3

)

0E+00

1E+06

2E+06

3E+06

4E+06

0001 001 01 1

Log Scale Linear Scale

90th

Percentile

10th

Percentile

Note 10th and 90th percentiles on 30-min average size distributions

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 67: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

67

Total Emission Factors for Vehicles

0

1E+16

2E+16

3E+16

gt 95 CarsLow Speed

gt 95 CarsHigh Speed

lt 90 CarsHigh Speed

k

g fu

el

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 68: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

68

ldquoSpin-Offrdquo of Modeling Techniques

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 69: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

69

Calculation of gas-phase ammonia

Estimated from comparison of measured total NH3with PM25 SO4 NO3

When sufficient ammonia is available to neutralize these species excess ammonia assumed to be in gas-phaseOtherwise lower limit for parameterization used

Compared to equilibrium calculations using GFEMN for total NH3 NO3 and SO4

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 70: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

70

Bondville

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 71: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

71

0

10000

20000

30000

40000

50000

000 600 1200 1800 000

cc

-1

1

3

000 600 1200 1800 000

SO2 Concentration (ppb)

September 18 2005CPC Particle Count (blue) vs SMPS Particle Count (red)

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 72: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

72

Nucleation Box Model with May 2003 SWS Data

Constant NH3 of 15 microg m-3 (2200 ppt)Constant SO2 of 4 microg m-3 (154 ppb)Actual median RH and T from May datasetBright sun used for UV OH calculation

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 73: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

73

0 3 6 9 12 15 18 21 24

10

100

500

May Base Case

25

3

35

4

45

Part

icle

Siz

e (n

m)

Res

pons

edN

dlo

gDp

(cm

-3)

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 74: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

74

Mexico

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 75: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

75

PM Background Info

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals

Page 76: Atmospheric Formation of Ultrafine Particles · Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical

76

Typical Chemical Makeup

InorganicSaltsSO4

2-

NO3-

NH4+

Na+

Cl-

OrganicCompounds

Black Carbon

Metals