Bakir Chapter2 Final

Embed Size (px)

Citation preview

  • 8/9/2019 Bakir Chapter2 Final

    1/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Chapter 2 Semiconductor

    Device Physics Fundamentals

    2.1 Semiconductor Materials

    2.2 Crystal Structure

    2.3 Semiconductor Models

    2.4 Semiconductor Doping

    2.5 Carrier Statistic

    2.6 Carrier Transport

    2.7 Carrier Generation/Recombination

    Literature:

    Pierret, Chapter 1-3, page 1-132

    Acknowledgement Oliver Brand for slides

    1

  • 8/9/2019 Bakir Chapter2 Final

    2/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    2.1 Semiconductor Materials

    Material Classification by Resistivity:

    Literature: Pierret, Chapter 1.1, page 3-6

    MaterialResistivity

    [!"cm]

    Insulators 105< !

    Semiconductors 10-3< < 105 (108)

    Conductors !< 10-3

    Jaeger, Blalock, Table 2.1

    2

  • 8/9/2019 Bakir Chapter2 Final

    3/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Semiconductor Materials

    Semiconductors haveconductivities between thoseof insulators and those ofconductors

    Semiconductors are materialswhose electric properties

    (e.g. conductivity & resistivity)can be controlledover a widerange by doping, i.e. additionof controlled amounts ofspecific impurity atoms

    Semiconductor materials are

    the base of all semiconductordevices, such as diodes andtransistors (BJT andMOSFET)

    Pierret, Fig. 3.8

    3

  • 8/9/2019 Bakir Chapter2 Final

    4/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Resistivity/Conductivity of Insulators,

    Semiconductor and Conductors

    Sze, Fig. 2.1

    4

  • 8/9/2019 Bakir Chapter2 Final

    5/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    What Elements are Semiconductors based on?

    Elemental Semiconductors:Silicon (Si), Germanium (Ge)

    Compound Semiconductors:

    III-V: e.g. Gallium Arsenide (GaAs)II-VI: e.g. Zinc Selenide (ZnSe)IV-IV: Silicon Carbide (SiC)

    Alloy Semiconductors:Binary: Si1-xGexTernary: AlxGa1-xAs

    AlxIn1-xAsGaAs1-xPx

    Quaternary: GaxIn1-xAs1-yPy

    Because of its well-developedfabrication technology, SILICONis by far the most importantsemiconductor material

    Jaeger, Blalock, Table 2.2

    Shaded = most important semiconductor elements

    5

  • 8/9/2019 Bakir Chapter2 Final

    6/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Element and Compound

    Semiconductors

    6

  • 8/9/2019 Bakir Chapter2 Final

    7/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    The OtherSemiconductor Materials

    Silicon is the dominatingsemiconductor material The othersemiconductor

    materials are utilized inapplications requiring e.g.

    High speed

    Optoelectronic properties High temperature operation

    Example: Ternary alloys, suchas AlxGa1-xAs, have a tunablebandgap, enabling LEDs andlaser diodes with engineeredoutput spectrum

    Substantial research isperformed (also at GaTech!) onboth Si and non-Sisemiconductor devices

    7

  • 8/9/2019 Bakir Chapter2 Final

    8/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    2.2 Crystal Structure

    2.2.1 Unit Cell

    Unit Cell & Primitive Unit Cell

    Cubic Crystal Structure

    2.2.2 Semiconductor Lattice

    Diamond lattice Zincblende lattice

    2.2.3 Miller Indices

    Crystal Directions

    Crystal Planes

    Literature: Pierret, Chapter 1.2, page 6-16

    8

  • 8/9/2019 Bakir Chapter2 Final

    9/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Classification of Solids

    Solids can be classified based on their degree of atomic order

    Most semicon. devices are based on crystalline semiconductors!

    Amorphous

    No recognizablelong-range order

    Polycrystalline

    Solid is made up ofcrystallites, i.e.

    segments which arecompletely ordered

    Crystalline

    Entire solid is madeup of atoms in an

    orderly array

    Pierret, Fig. 1.1

    9

  • 8/9/2019 Bakir Chapter2 Final

    10/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    2.2.1 Crystal Unit Cell

    Crystal= Periodic 3-D arrangement ofatoms

    Unit cell= small portion of the crystal

    that can be used to reproduce thecrystal

    Primitive (unit) cell= smallest unit cell

    possible

    Unit cells (including primitive unit cells)are not unique

    A unit cell does not need to be primitive;often it is more convenient to have aslightly larger unit cell with orthogonal

    sides (instead of primitive cell with non-orthogonal sides)

    WWW-page on crystal structures:http://departments.kings.edu/chemlab/chemlab_v2/

    Which cells are unit cells?Which cells are primitive cells?

    Which cell is not a unit cell?

    10

  • 8/9/2019 Bakir Chapter2 Final

    11/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Cubic Crystal Structure

    Simple cubic (sc) is the simplestof all 3-D unit cells:

    Cube with an atompositioned at each corner

    Only 1/8 of each corneratom is inside the unit cell: 1

    atom per unit cell; eachatom has 6 nearestneighbors

    The side length is called thelattice constant a

    Very few materials crystallize ina simple-cubic lattice

    How can we seethe crystalstructure of a crystal?

    Sze, Fig. 2.3

    11

  • 8/9/2019 Bakir Chapter2 Final

    12/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Cubic Crystal Structures

    fcc

    andbcc

    Lattice Body-Centered-Cubic (bcc) unit cell

    Additional atom in the center of the cube

    2 atoms per unit cell8 nearest neighbors for each atom

    Examples: Cr, W, Na, Fe

    Face-Centered-Cubic (fcc) unit cell

    Additional atoms in the center of eachface of the cube

    Also known as cubic-close-packed (ccp) 4 atoms per unit cell

    12 nearest neighbors for each atom

    Examples: Ni, Ag, Au, Cu, AlSze, Fig. 2.3

    12

  • 8/9/2019 Bakir Chapter2 Final

    13/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    2.2.2 Diamond LatticeSilicon Crystal Structure

    Silicon and germanium have a

    diamond lattice, a special cubiccrystal structure

    The diamond lattice consists oftwo interpenetrating face-

    centered-cubic (fcc) latticesshifted by one-quarter of thecube body diagonal

    Each silicon atom has 4 nearestneighbors forming a tetraederstructure

    The silicon unit cell has a lattice

    constant a = 5.43 (T = 300 K)(1 = 10-10m = 10-8cm = 0.1 nm)

    Each silicon atom forms fourcovalent bonds with its nearestneighbors (see Chapter 2.3)

    Sze, Fig. 2.4

    Calculate:How many Si atoms dowe have per cm-3?

    13

  • 8/9/2019 Bakir Chapter2 Final

    14/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Diamond Lattice along Axis

    14

  • 8/9/2019 Bakir Chapter2 Final

    15/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Zincblende LatticeGaAs Crystal Structure

    Most III-V semiconductors (e.g.

    GaAs) have a zincblende lattice,again a cubic crystal structure

    Similar to the diamond lattice,the zincblende lattice consists of

    two interpenetrating face-centered-cubic (fcc) latticesshifted by one-quarter of thecube body diagonal, but withdifferent atoms occupying eachfcc sublattice

    The GaAs unit cell has a lattice

    constant a = 5.65 (T = 300 K)(1 = 10-10m = 10-8cm = 0.1 nm)

    Sze, Fig. 2.4

    15

  • 8/9/2019 Bakir Chapter2 Final

    16/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    2.2.3 Miller Indices

    Miller indices are used to specifycrystallographic planes anddirections

    How do I find the Miller index for aplane? Record where the plane

    intersects coordinate axes inunits of a: e.g. 1,2,3

    Invert intercept values:e.g. 1, 1/2, 1/3

    Multiply with constant to getsmallest possible set of wholenumbers: e.g. 6,3,2

    Enclose set with curvilinearbracket: e.g. (632)

    Note: What are the other planes indices?

    (6 " 32)# (63 2)

    (001)

    (632)

    (22 1)

    Pierret, Fig. 1.6

    16

  • 8/9/2019 Bakir Chapter2 Final

    17/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    More on Miller Indices

    Miller indices for directions are found analogous to thecomponents of a vector

    In a cubic crystal, the planes

    are equivalentbecause of symmetry and summarized as {100}

    For cubic crystals, the direction [hkl] is normal to the plane (hkl)

    (hkl) Particular crystal plane

    {hkl} Equivalent planes

    [hkl] Particular crystal direction

    Equivalent directions

    (100),(010),(001),(1 00),(01 0),(001)" {100}

    17

  • 8/9/2019 Bakir Chapter2 Final

    18/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Crystal Planes and Directions Cubic Crystal Structure

    Pierret, Fig. 1.7

    18

  • 8/9/2019 Bakir Chapter2 Final

    19/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2

    Semiconductor Fundamentals

    Wafer Flats

    Silicon wafers used for device processing have flats (or a notch)indicating crystal direction and doping type

    A {100} waferhas{100} surface

    For {100} wafer,the surface directionperpendicularto primary flatis [011]

    How is a waferfabricated?

    [011]

    19

  • 8/9/2019 Bakir Chapter2 Final

    20/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 Semiconductor

    Fundamentals

    2.3 Semiconductor Models

    2.3.1 Electron States in Atoms2.3.2 Semiconductor Bond Model

    Covalent Bonds2.3.3 Semiconductor Band Model

    Energy Bands

    Band Gap Electron and Holes

    Band Structure & Effective Mass

    Simplified Semiconductor Band Model

    Literature: Pierret, Chapter 2.1-2.3, page 23-40

    Pierret, Appendix A, page 733-748

    20

  • 8/9/2019 Bakir Chapter2 Final

    21/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 Semiconductor

    Fundamentals

    Silicon Atomic Structure

    Silicon with its 14 electronshas (in its ground state) filledn = 1 (2 electrons) and n = 2(8 electrons) levels; theseare deep-lying energy levels,tightly bound to the nucleus

    In case of the n = 3, thepossible states (2 s- and 6 p-states) are filled with the 4remaining electrons; these 4rather weakly boundelectrons are called valence

    electronsand participate inchemical reactions andatom-atom interaction

    Pierret, Fig. 2.2

    21

  • 8/9/2019 Bakir Chapter2 Final

    22/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 Semiconductor

    Fundamentals

    2.3.2 Semiconductor Bond Model

    Bonding to next neighbors isachieved by sharing valenceelectrons (electrons inoutermost shell), formingcovalent bonds

    In case of silicon: Atomic number

    = number of electrons= 14

    Number of valenceelectrons = 4

    Covalent tetraederbonding (diamond lattice)

    Sze, Fig. 2.11

    22

  • 8/9/2019 Bakir Chapter2 Final

    23/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 Semiconductor

    Fundamentals

    Semiconductor Bond Model

    Valence electrons areweakly bound (compared toelectrons in inner shells)

    Thermal energy at roomtemperature can break

    covalent bonds andfree

    electrons which now

    contribute to the materialsconduction

    Remaining are missingbonds/electrons, which are

    called holes (and alsocontribute to the conduction,but why?)

    Sze, Fig. 2.12

    23

  • 8/9/2019 Bakir Chapter2 Final

    24/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.3.3 Semiconductor Band Model

    Single atom:according to Bohrsatom model, theelectrons occupywell defined,discrete energy

    levels

    Crystal: due to the interaction of neighboring atoms, thediscrete energy levels split up and a bandstructureisdeveloping featuring allowed and forbidden energy bands

    Sze, Fig. 2.15

    24

  • 8/9/2019 Bakir Chapter2 Final

    25/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Semiconductor crystal has valence

    bandand conduction bandseparated by bandgap Eg

    At T = 0 K:

    Completely filled valence band

    Completely empty conductionband

    At elevated T, some electrons canbe excited from the valence to theconduction band

    Note: Electrons in bands are notassociated with particular atom

    From

    Isolated

    Atomsto a Crystal

    Pierret, Fig. 2.5

    25

  • 8/9/2019 Bakir Chapter2 Final

    26/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Semiconductor Band Model

    Reason for energy level splitting is the Pauli principlestatingthat no 2 electrons can occupy the same state (with respect toenergy, momentum, spin), i.e. have the same quantum numbersn, l, m, and s

    Simplified Model: valence and conduction band are separatedby a band gap; ECis the lowest energy of the conduction band,

    EVthe highest energy of the valence band

    EC

    EV

    Band GapEg

    26

  • 8/9/2019 Bakir Chapter2 Final

    27/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carriers: Electrons and Holes

    Completely filled band and empty band do not contribute to current

    conduction

    If an electron is excitedfrom the valence into the conduction band,the additional electronin the conduction band contributes to thecurrent conduction; similarly, the missing electron in the valence band(like a bubble in a liquid), a so-called hole, contributes to the currentconduction; the (thermal) excitation has created an electron/hole pair

    27

  • 8/9/2019 Bakir Chapter2 Final

    28/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Band Gap & Material Classification

    Pierret, Fig. 2.8

    Insulator Semiconductor

    Metal

    28

  • 8/9/2019 Bakir Chapter2 Final

    29/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Indirect vs. Direct Bandgap Semiconductor

    Simplified Si & GaAs Band Structure

    Sze, Fig. 2.18

    Indirect Bandgap Direct Bandgap

    #p $0 #p = 0

    Using quantummechanicsbysolving the 3-DSchrdingerequationin theperiodic potential

    of the nuclii Numerical

    calculations deliverthe band diagrams,i.e. the E(k), E(p)relationships with

    wavenumber kandcrystal momentump

    29

  • 8/9/2019 Bakir Chapter2 Final

    30/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Characteristics of Si and GaAs

    Silicon Si

    Element semiconductor Diamond lattice structure Indirect Semiconductor Generation of electron-hole

    pairs requires !E and !p Bandgap: Eg= 1.12 eV at

    room temperature Lattice constant: a = 5.43

    Gallium Arsenide GaAs

    III-V semiconductor Zincblende lattice structure Direct Semiconductor Generation of electron-hole

    pairs requires !E only,making GaAs suitable forphotonic applications

    Bandgap: Eg= 1.42 eV atroom temperature

    Lattice constant: a = 5.65

    30

  • 8/9/2019 Bakir Chapter2 Final

    31/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Simplified Semiconductor

    Bandstructure

    EC

    EV

    Band GapEg

    mn*

    mp*

    31

  • 8/9/2019 Bakir Chapter2 Final

    32/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Effective Mass meff (mn*, mp*)

    Definition 1-D:

    Definition 3-D:

    Electron kinetics in single-crystal material is similar tofree electron behavior but with effective mass meff

    meff

    "1=

    1

    !2

    #2E(k)

    #

    k

    2

    1

    meff

    "

    #$

    %

    &'

    ij

    =

    1

    !2

    (2E(k)

    (k i(kj

    32

  • 8/9/2019 Bakir Chapter2 Final

    33/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Effective Mass in Si, Ge & GaAs

    Material mn*/m0 mp

    */m0

    Si 1.18 0.81

    Ge 0.55 0.36

    GaAs 0.066 0.52

    Free electron mass: m0= 9.1 10-31kg

    Shown are average electron and hole effective masses asneeded for the density of statesat 300 K (see Chapter 2.5),but keep in mind that mn* and mp* are tensors!

    33

  • 8/9/2019 Bakir Chapter2 Final

    34/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Effective Mass Concept

    The movement of carriers (electrons and holes)inside the semiconductor crystal can be described byclassical (Newtonian) mechanics relations just byreplacing the free-electron-mass m0with the effectivemass m

    n* (or m

    p* for holes)

    The effective masses are however tensors, i.e. thecarrier acceleration generally varies with direction oftravel in the crystal

    F =mn* dvn

    dtand F =mp

    * dvp

    dt

    34

  • 8/9/2019 Bakir Chapter2 Final

    35/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.4 Semiconductor Doping

    Example: Silicon Doping: Doping with donoratoms,

    phosphorous Por arsenicAs,having both 5 valenceelectrons, yielding N-typesilicon

    Doping with acceptoratoms, boron B,having 3valence electrons, yieldingP-type silicon

    With doping, the electricalconductivity of thesemiconductor material isadjusted over a wide range

    35

  • 8/9/2019 Bakir Chapter2 Final

    36/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Semiconductor Doping

    Doping in Bond Model: N-Type Doping:fifths valence electron does notparticipate in covalent bonds tonext neighbors; only small energyis required to freethis electron,thus contributing to the materialsconductivity

    P-Type Doping:due to doping atom with threevalence electrons, one electron ismissing for the covalent bonds tothe four next neighbors; thismissing electron(called a hole)can hop from covalent bond tobond, thus also contributing to thematerials conductivity

    Sze, Fig. 2.23

    36

  • 8/9/2019 Bakir Chapter2 Final

    37/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Semiconductor Doping

    Doping in Band Model: Doping atoms distort the periodicity of

    the single-crystal crystal structure, thuscreating allowed (localized) energystates in the band gap

    N-Type Doping: additional electron

    states EDclose to the bottom of theconduction band EC; at roomtemperature, the electrons from thesestates are excited into the conductionband, increasing the conductivity

    P-Type Doping: additional electronstates EAclose to the top of the valence

    band EV; at room temperature, thesestates are occupied by electrons fromthe valence band, increasing thenumber of holes in the valence bandand, thus, the conductivity

    EC

    EiEV

    ED

    EC

    EiEV

    EA

    P in Si: EC- ED= 0.045 eV

    B in Si: EA- EV= 0.045 eV

    EC- ED resp. EA- EV"kT = 0.026 eVat room temperature

    37

  • 8/9/2019 Bakir Chapter2 Final

    38/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Concentration

    Intrinsic Semiconductor(no doping: NA, ND= 0)

    Carrier Concentration: n = p = n i

    Extrinsic Semiconductor(doping concentration NA, ND#0)

    Assumption: Complete Ionization (see Chapter 2.5) Majority Carrier Concentrations:

    N-Type Semiconductor:Density of donor atoms: ND[cm

    -3]Density of electrons (ND ni) : n"ND[cm

    -3]

    P-Type Semiconductor:Density of acceptor atoms: NA[cm-3]Density of holes (NA ni) : p"NA[cm

    -3]

    38

  • 8/9/2019 Bakir Chapter2 Final

    39/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5 Carrier Statistic

    2.5.1 Density of States2.5.2 Fermi Function & Fermi Energy

    Physical Interpretation Characteristics

    2.5.3 Carrier Densities Intrinsic/Extrinsic Semiconductor Intrinsic Fermi Energy Mass Action Law Temperature Dependence

    2.5.4 Charge Neutrality Relationship2.5.5 Non-Complete Ionization

    Pierret, Chapter 2.4-2.6, page 40-68

    39

  • 8/9/2019 Bakir Chapter2 Final

    40/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5.1 Density of States

    From quantum mechanics, we not only obtain the bandstructure, i.e., the E(k) relations, but also the density ofstates g(E)dE, i.e., how many allowed states are in therange E$E+dE:

    gC(E)dE =mn

    * 2mn* E "EC( )

    #2!3

    dE $ E "EC( )1/2

    gV(E)dE =mp

    *

    2mp*

    EV "E( )#2!3

    dE $EV "E( )1/2

    40

  • 8/9/2019 Bakir Chapter2 Final

    41/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Density of States

    Band Gap

    EC

    EV

    EgC(E)

    gV(E)

    g(E)

    Units of g(E)dE are [cm-3]

    41

  • 8/9/2019 Bakir Chapter2 Final

    42/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5.2 Fermi Function & Fermi Energy

    What determines whether anallowed state is occupied byan electron or not?

    Fermi Function f(E):

    f(E) is a probability functionwhich gives the probabilitywhether a state is occupiedor not

    EFis the Fermi Energy

    f(E) =1

    1+ e(E"EF)/kT

    42

  • 8/9/2019 Bakir Chapter2 Final

    43/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Characteristics of Fermi Function

    Because of Pauli principle:0 %f(E) %1

    f(E = EF) = 0.5The probability that a state is

    occupied at the Fermienergy is 50%

    f(E) is symmetric around EF:f(EF + E) = 1 f(EF E)

    For T = 0 the Fermi functionbecomes a step function, i.e.all states below EFareoccupied, all states above EFempty

    0

    0.5

    1

    0 1 2

    Energy E [eV]

    FermiFunctionf(E)

    EF= 1 eVkT = 0.0259 eV

    43

  • 8/9/2019 Bakir Chapter2 Final

    44/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Physical Interpretation of

    Fermi Energy EF

    The Fermi energy EFhas the function of athermodynamic potential

    In thermodynamic equilibrium, EFis constantacross the device!!!

    A gradient in EFindicates non-equilibrium, resulting ina net flow of carriers

    44

  • 8/9/2019 Bakir Chapter2 Final

    45/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Boltzmann/Classical

    Approximation

    Away from E = EF, i.e. for |E EF| > 3kT, the Fermi function canbe approximated by exponential functions:

    This approximation is called the Boltzmannor Classicalapproximation

    E "EF( ) >3kT # f(E) $e"(E"EF)/kT

    EF "E( ) >3kT # f(E) $ 1" e"(E"EF)/kT

    45

  • 8/9/2019 Bakir Chapter2 Final

    46/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5.3 Carrier Density n and p

    The carrier densities of electrons n [cm-3] and holes p [cm-3] canbe calculated from the density of states g(E) and the Fermifunction f(E):

    The solution of the integral generally requires numericalmethods; in case of the Boltzmann approximation however, theintegrals can be solved analytically!

    n = gC(E) f(E) dE

    EC

    Top

    "

    p = gV(E) 1# f(E)( )!"# $#

    dE

    Bottom

    EV

    "a hole is a non-occupied electron state

    %

    -%

    46

  • 8/9/2019 Bakir Chapter2 Final

    47/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Concentration

    Intrinsic

    ExtrinsicN-Type

    ExtrinsicP-Type

    47

  • 8/9/2019 Bakir Chapter2 Final

    48/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Density Boltzmann

    Approximation

    For electrons: (EC EF) &3kT

    For holes: (EF EV) &3kT

    n = NCe

    (EF!E

    C)/kT

    NC =2m

    n

    *kT

    2"!2

    #

    $%%

    &

    '((

    3/2

    )2.86 1019 cm!3

    Si @ 300K

    " #$$ %$$

    p = NVe

    (EV!E

    F)/kT

    NV =2

    mp

    *kT

    2"!2

    #

    $%%

    &

    '((

    3/ 2

    )2.66 1019 cm!3

    Si @ 300K

    " #$$ %$$

    EC

    Ei

    EV

    EC3kT&EF&EV+3kT

    NC,V

    =2.51!1019 m

    n,p

    *

    m0

    "

    #$$

    %

    &''

    3/2

    cm(3

    NC)3.2!1019 cm(3

    NV) 1.8 !1019 cm(3

    for Si@ 300K

    From Pierret:

    48

  • 8/9/2019 Bakir Chapter2 Final

    49/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Density General Solution

    For electrons:

    For holes:

    F1/2("c) is the tabulatedFermi-Dirac integralof order 1/2:

    n =NC2

    "

    F1/2 #C( ) with #C = EF $EC( ) /kT

    p =NV

    2

    "F1/2 #V( ) with #V = EV $EF( ) /kT

    ECEi

    EV

    Range

    for EF

    F1/2 "c( ) ="1/2

    1+ e"#"c

    0

    $

    % d"

    49

  • 8/9/2019 Bakir Chapter2 Final

    50/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Intrinsic Semiconductor

    No doping Carrier concentration n = p = ni (for every electron in theconduction band, we have a hole, i.e. missing electron,in the valence band)

    Fermi energy EF= Eiclose to center of band gap

    50

  • 8/9/2019 Bakir Chapter2 Final

    51/99

  • 8/9/2019 Bakir Chapter2 Final

    52/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Intrinsic Semiconductor Carrier Concentration ni(T)

    Pierret, Fig. 2.20

    Ge: ni,(300K) = 2.5 1013cm-3GaAs: ni,(300K) = 2.25 10

    6cm-3

    Si: ni,(300K) = 1.0 1010cm-3

    52

  • 8/9/2019 Bakir Chapter2 Final

    53/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Location of Ei

    From the intrinsic carrier concentrations

    With n = p, the intrinsic Fermi level E ican be extracted

    The intrinsic Fermi level is only in the center of the bandgap if mn* = mp* !!

    p = ni =NV e(EV "Ei)/kT

    n = ni =NC e(Ei"EC)/kT

    NV e(EV "Ei)/kT

    =NC e(Ei"EC)/kT

    " Ei =EC +EV

    2+

    3

    4kT ln

    mp*

    mn*

    #

    $

    %%

    &

    '

    ((

    53

  • 8/9/2019 Bakir Chapter2 Final

    54/99

  • 8/9/2019 Bakir Chapter2 Final

    55/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Extrinsic Semiconductor

    From Boltzmann approximation

    Analogous for the holes

    n =NCe(EF "EC)/kT

    =NCe(Ei"EC)/kT

    =

    ni

    ! "## $##

    e(EF "Ei)/kT

    n =nie(EF "Ei)/kT

    p = ni e(Ei"EF)/kT

    n p = ni2

    Mass-Action-Law

    55

  • 8/9/2019 Bakir Chapter2 Final

    56/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Fermi Energy EF Ei[eV] as a

    Function of Doping and Temp.

    Sze, Fig. 2.28

    56

  • 8/9/2019 Bakir Chapter2 Final

    57/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5.4 Charge Neutrality Relation

    In equilibrium, charge neutralityis fulfilled:

    Assuming complete ionization NA= NAand ND

    += ND:

    p

    holes

    !

    " n

    electrons

    !+ ND

    +

    ionized

    donors

    !

    " NA"

    ionized

    acceptors

    !

    =0

    p"n+

    ND"NA

    =

    0n p = ni

    2

    57

  • 8/9/2019 Bakir Chapter2 Final

    58/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Electron and Hole Concentration

    From mass-action-law and charge neutrality:

    Special Cases:

    n =ND"NA

    2+

    ND"NA2

    #

    $%

    &

    '(

    2

    + ni2

    p =NA"ND

    2 +NA"ND

    2

    #

    $%

    &

    '(

    2

    + ni2

    ND >>NA and ND >>ni: n =ND

    p=

    ni2

    /NDNA >>ND and NA >>ni: p =NA

    n =ni2 /NA

    58

  • 8/9/2019 Bakir Chapter2 Final

    59/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Measurement of Carrier Concentration Hall Effect

    The carrier concentration n or pcan be measured using the Halleffect

    Assume: p-type semiconductorplate with L > W t (thin plate)with current I applied in x-directionand a magnetic induction B

    z

    applied along z-direction

    Holes experience a Lorentz forcein y-direction:

    Hole accumulation creates electric field in y-direction (electrostatic force =

    Lorentz force, because no current flow in y-direction), resulting in a Hallvoltage VH:

    x

    y

    zBz

    +

    +VH

    VI

    L

    t

    W x

    y

    P-Type Semiconductor

    F = q (!

    v "!

    B) = (0,#qvxBz,0)

    VH = "yW = vxBzW =Jxqp

    BzW =1

    qp

    #RH

    !

    IBzt

    Hall Coefficient

    59

  • 8/9/2019 Bakir Chapter2 Final

    60/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.5.5 Temperature Dependence of

    Carrier Density

    60

  • 8/9/2019 Bakir Chapter2 Final

    61/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Temperature

    Dependence

    of Carrier

    Density

    Pierret, Fig. 2.22

    61

  • 8/9/2019 Bakir Chapter2 Final

    62/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Statistics Formula Summary

    Charge Neutrality & Mass-Action Law:

    Intrinsic Semiconductor

    Extrinsic Semiconductor

    Linking Doping and Carrier Concentration

    Linking Band Structure and Carrier Concentration

    62

  • 8/9/2019 Bakir Chapter2 Final

    63/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.6 Carrier Transport

    2.6.1 Carrier Drift Drift Current Mobility Resistivity

    Band Structure under Applied Field2.6.2 Carrier Diffusion

    Diffusion Current2.6.3 Total Current Equations

    2.6.4 Einstein Relations

    Pierret, Chapter 3.1-3.2, page 75-104

    63

  • 8/9/2019 Bakir Chapter2 Final

    64/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.6.1 Carrier Drift

    Drift = Charged particle motion in response to an

    applied electric field

    Macroscopic Definition: Carriers of a given type(electrons or holes) move along at a constantvelocity, the drift velocity, parallel or antiparallel to theapplied electric field

    Drift Current Densities[A/cm2]:!

    Jp,drift=

    q p

    !

    vd,p!

    Jn,drift = "q n !

    vd,n

    64

  • 8/9/2019 Bakir Chapter2 Final

    65/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Drift

    For small electric fields, the drift velocity isproportional to the applied electric field with themobility 'as proportionality factor:

    The mobility is the central parameter characterizingthe carrier drift, resulting in the following currentdensities:

    vd,p = p "

    vd,n = #n "

    !

    Jp,drift = q p p!

    "!

    Jn,drift = q n n!

    "!

    Jdrift =!

    Jn +!

    Jp = q nn+ pp[ ] !

    "

    65

  • 8/9/2019 Bakir Chapter2 Final

    66/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Drift Velocity in Undoped Si at

    Room Temperature

    Pierret, Fig. 3.4

    66

  • 8/9/2019 Bakir Chapter2 Final

    67/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Mobility

    Definition of the carrier mobility [cm2/Vs]:

    Room-temperature mobility of Si and GaAs:

    p "vd,p

    #n " $

    vd,n

    #

    Silicon (low-doped)'n"1360 cm

    2/Vs

    'p"460 cm2/Vs

    Gallium Arsenide (low-doped)'n"8500 cm2/Vs'p"400 cm

    2/Vs

    67

  • 8/9/2019 Bakir Chapter2 Final

    68/99

  • 8/9/2019 Bakir Chapter2 Final

    69/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Scattering

    Mechanisms I (a) Impurityand (b) lattice

    scatteringlimit the carriermobility

    The mobility decreases withincreasing totaldopingconcentration (NA+ ND)

    = q "

    m*

    mean free time

    between collisions

    effective mass

    Pierret, Fig. 3.5

    69

  • 8/9/2019 Bakir Chapter2 Final

    70/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Room Temperature Mobility in Si as a

    Function of Doping Concentration

    Pierret, Fig. 3.5a

    70

  • 8/9/2019 Bakir Chapter2 Final

    71/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Scattering

    Mechanisms IIT-dependence of the mobility:

    Lattice Scattering:in Si: &~ T(2.2'2.3)(experiment)Reducing the temperature meansless thermal lattice vibration, i.e.less interaction with carriers, i.e.

    higher mobility

    Impurity Scattering:

    in Si: &~ T+1.5(theory)Dominant scattering mechanism atlow temperatures; interaction isreduced at higher temperatures,

    i.e. higher thermal velocities,because carrier is less time inclose proximity to impurity

    &= &(T, NA+ND)

    Pierret, Fig. 3.7

    71

  • 8/9/2019 Bakir Chapter2 Final

    72/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Resistivity

    Definition of conductivity $and resistivity ![%cm]tensor:

    From the drift current, theresistivity is given by:

    !

    J=

    "

    !

    #=

    1

    $

    !

    #

    " =1

    q nn + pp( )Pierret, Fig. 3.8

    72

  • 8/9/2019 Bakir Chapter2 Final

    73/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Four-Point Probe

    The resistivity of asemiconductor can bedetermined by a current-voltage measurement usinga four-point probe

    W is the substrate thickness,CF a correction factor (seegraph)

    " =V

    IW CF

    73

  • 8/9/2019 Bakir Chapter2 Final

    74/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Band Bending by Electric Field

    The presence of an electricfield results in a bandbending, i.e. ECand EVareno longer constant

    Electrostatic Potential V:

    Note: V and E are arbitraryto within a constant!

    Electrostatic Field #:

    V = " 1q

    EC "Eref( )

    "= #$V

    " =1

    q

    dECdx

    =

    1

    q

    dEVdx

    =

    1

    q

    dEidx

    x

    V

    electronmovement

    x

    acceleration

    EC

    Ei

    EV

    Ecollisionloss of energy

    holemovement

    74

  • 8/9/2019 Bakir Chapter2 Final

    75/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Band Bending and Electric Field

    Pierret, Fig. 3.10

    75

  • 8/9/2019 Bakir Chapter2 Final

    76/99

  • 8/9/2019 Bakir Chapter2 Final

    77/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Diffusion Current

    In case of diffusion of charged particles, i.e. electronand holes in our case, a diffusion current is resulting(equaling the product of flux density and carriercharge)

    with diffusion coefficients Dnand Dp[cm2/s]

    Why has the electron diffusion current no

    sign?

    Jp,diff = "qDp #pJn,diff = qDn #n

    77

  • 8/9/2019 Bakir Chapter2 Final

    78/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.6.3 Total Current Equations

    Summing up drift and diffusion current densities, weobtain the total current density equations:

    !

    Jp = q p p

    !

    "#qDp

    !

    $p!

    Jn = q n n!

    "+ qDn!

    $n

    !

    J =!

    Jn +!

    Jp

    78

  • 8/9/2019 Bakir Chapter2 Final

    79/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.6.4 Einstein Relations

    Einstein Relationsrelate drift(') and diffusion (D)

    Simplified Derivation:

    Assume non-uniformly dopedn-type semiconductor in

    equilibrium (i.e. EF= const.across the material)

    In equilibrium, the total electronand hole current densities arezero:!

    Jp = q p p

    !

    "#qDp!

    $p = 0!

    Jn = q n n!

    "+ qDn!

    $n = 0

    Pierret, Fig. 3.14

    79

  • 8/9/2019 Bakir Chapter2 Final

    80/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Einstein Relations

    Fromwe obtain

    knowing that

    Inserting into the current density equation for theelectrons yields theEinstein Relationsrelating drift('n) and diffusion (Dn)

    (similar derivationfor Dpand 'p)

    Dn =kT

    qn and Dp =

    kT

    qp

    n =nie(EF"Ei)/kT

    dn

    dx= "

    nikT

    e(EF"Ei)/kTdEidx

    = "q#

    kTnie

    (EF "Ei)/kT

    =n

    ! "## $##

    # =1

    q

    dEi

    dx

    and dEF

    dx

    =0

    80

  • 8/9/2019 Bakir Chapter2 Final

    81/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Drift & Diffusion in Si (T = 300 K)

    81

  • 8/9/2019 Bakir Chapter2 Final

    82/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.7 Carrier Generation & Recombination

    Perturbation of semiconductor, i.e. an excess or deficit incarrier concentrationwith respect to the equilibrium values iscreated, resulting in non-equilibrium conditions

    If the perturbation is removed, recombination/generation (R-G)processes will restore equilibrium conditions; if perturbation ismaintained, R-G processes will stabilize the (non-equilibrium)carrier concentrations

    2.7.1 Generation and Recombination Processes

    2.7.2 R-G Statistics

    2.7.3 Continuity Equations

    Literature: Pierret, Chapter 3.3-3.5.1, page 105-132

    82

  • 8/9/2019 Bakir Chapter2 Final

    83/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.7.1 Generation/

    Recombination

    Processes Band-to-band R-G

    processes onlyinvolveelectron in conduction bandand hole in valence band

    R-G center generation/recombinationrequires

    R-G center (lattice defect orimpurity which generatesstates in the bandgap)

    Auger recombinationrequires 3 carriers (either 2holes and 1 electron or 2electrons and 1 hole)

    All processes occur at alltimes (even in equilibrium),with the process having thehighest rate dominating

    Reco

    mbination G

    enerat

    ion

    Pierret, Fig. 3.15

    83

  • 8/9/2019 Bakir Chapter2 Final

    84/99

  • 8/9/2019 Bakir Chapter2 Final

    85/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Perturbation:

    Carrier Injection/Generation

    Processes:

    Photogeneration

    Operation of diode in forward direction

    Impact ionization

    p n > ni2

    85

  • 8/9/2019 Bakir Chapter2 Final

    86/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Perturbation:

    Carrier Extraction/Recombination

    Process:

    Operation of diode in reverse direction

    p n < ni

    2

    86

  • 8/9/2019 Bakir Chapter2 Final

    87/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Carrier Generation/Recombination

    After switching off the distortion, the system returns tothe equilibrium state (p n = ni

    2) with a characteristictime constant, i.e. excess carriers will recombine (in casep n > ni

    2) or additional carriers will be generated (in case

    p n < ni2

    )Notation: nn electron density in n-type semiconductor

    pn hole density in n-type semiconductornn0, pn0 equilibrium carrier densities

    np electron density in p-type semiconductor

    pp hole density in p-type semiconductornp0, pp0 equilibrium carrier densities

    87

  • 8/9/2019 Bakir Chapter2 Final

    88/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Low-Level/High-Level Injection

    Low-Level Injection: High-Level Injection:

    "n = "p nn0

    pn = pn0 + "p $ "p > nn0

    Example: Injection by photogeneration (&n = &p) in n-typematerial

    "n = "p = 1012cm#3

    nn $ 1015cm#3

    pn $ 1012cm#3

    "n = "p = 1017cm#3

    nn $ 1017cm#3

    pn $ 1017cm#3

    Example: n-type Si, ND= nn0= 1015cm-3, p = ni

    2/n = 105cm-3

    88

  • 8/9/2019 Bakir Chapter2 Final

    89/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Low-Level/High-Level Injection

    Example:N-type semiconductorND= 10

    15cm-3 Equilibrium:

    nn0= ND= 1015cm-3

    pn0= ni2/n = 105cm-3

    Low-Level Injection:&n = &p = 1012cm-3nn"nn0= 10

    15cm-3pn"&p = 10

    12cm-3< nn0 High-Level Injection:

    &n = &p = 1017cm-3

    nn" 1017cm-3> nn0pn"&p = 1017cm-3 > nn0

    Equilibrium LL Injection HL Injection

    89

    2 7 2 R G St ti ti

  • 8/9/2019 Bakir Chapter2 Final

    90/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.7.2 R-G StatisticsBand-to-Band Recombination

    Likely in direct(band gap)semiconductors, such as GaAs

    Unlikely in indirect(band gap)semiconductors, such as Si,because of required momentumconservation

    In thermal equilibrium, thethermal generation rate Gthequals the recombination rate Rth:

    The thermal recombination rate isproportional to the electron andhole carrier densities with'being the proportionality factor

    Equilibrium:

    Non-Equilibrium:

    Gth =Rth =" nn0 pn0

    Sze, Fig. 3.10

    90

  • 8/9/2019 Bakir Chapter2 Final

    91/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Band-to-Band Recombination

    In non-equilibrium, the change in minority carrier concentrationis:

    Assuming steady state, dpn/dt = 0, we obtain

    with the net-recombination rate U

    The recombination rate and the thermal generation rate areproportional to the available carrier densities (see equilibrium):

    Assuming low-level injection, i.e. &p and pn0

  • 8/9/2019 Bakir Chapter2 Final

    92/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Band-to-Band Recombination

    The minority carrier lifetime (pcontrols the recombination velocityafter the distortion is switched off

    The minority carrier lifetime in case of the direct recombination isinversely proportional to the majority carrier equilibrium density nn0

    Excess carriers recombine after switching off GL(GL= 0 in DE) with thetime constant (p:

    How can we measure the minority carrier lifetime?

    U =" nn0 #p =pn$ pn0

    1

    " nn0

    =

    pn$ pn0%p

    "p #

    1

    $ nn0

    pn(t) = pn0 + "p GL e

    #t / "p

    dpn(t)

    dt=

    GL!U=

    GL!pn!p

    n0

    "p

    =

    GL!

    #pn

    "p

    92

  • 8/9/2019 Bakir Chapter2 Final

    93/99

  • 8/9/2019 Bakir Chapter2 Final

    94/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    R-G Center Recombination

    Dominant recombinationprocess in indirectsemiconductors, such as Si

    Indirect recombination &generation of electron-hole

    pairs via localized energystates in the band gap, socalled recombinationcentersor R-G centers

    The R-G centers arecharacterized by their

    energy Etand their densityNt

    Sze, Fig. 3.12

    94

  • 8/9/2019 Bakir Chapter2 Final

    95/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    Location of Impurity

    Atom Energy States

    Sze, Fig. 2.24

    95

    R G Center Recombination

  • 8/9/2019 Bakir Chapter2 Final

    96/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    R-G Center Recombination

    In a more involved derivation, an expression similar to that of the band-

    to-band R/G case can be obtained for R-G center recombination/generation (again assuming minority carriers and low-level injection) inresponse to a perturbation:

    The minority carrier lifetimes are now inversely proportional the R-Gcenter concentration NT:

    In case of arbitrary injection levels and for both carrier types in a non-degenerate semiconductor, we find:

    dpn(t)

    dt=G

    L!U =G

    L!

    "pn

    #p

    anddn

    p(t)

    dt=G

    L!

    "np

    #n

    !n"

    1

    NT

    and !p"

    1

    NT

    U =p

    nn

    n!ni2

    ( )"

    pp

    n+n

    ie

    (Ei!E

    t)/kT#

    $%&+"n nn +nie

    (Et!E

    i)/kT#

    $%&

    96

  • 8/9/2019 Bakir Chapter2 Final

    97/99

    2 7 3 C ti it E ti

  • 8/9/2019 Bakir Chapter2 Final

    98/99

    August 18, 2014 ECE 3040: Chapter 2.1-2.2 SemiconductorFundamentals

    2.7.3 Continuity Equationsputting it all together

    !n

    !t=

    !n

    !tdrift

    +

    !n

    !tdiffusion

    =

    1

    q"

    !

    Jn

    " #$$ %$$

    +

    !n

    !tthermalR#G

    =#$n

    %n

    " #$ %$

    +

    !n

    !tother processes

    e.g.GL

    " #$$ %$$

    !p

    !t=

    !p

    !tdrift

    +

    !p

    !tdiffusion

    =#1q"

    !

    Jp

    " #$$ %$$

    +

    !p

    !tthermalR#G

    =#$p%

    p

    " #$ %$

    +

    !p

    !tother processes

    e.g.GL

    " #$$ %$$

    Net change of carrier concentration due to currents and R/G:

    98

  • 8/9/2019 Bakir Chapter2 Final

    99/99

    A t 18 2014 ECE 3040 Ch t 2 1 2 2 S i d t

    1-D Continuity Equations

    !np(x,t)

    !t= +n

    p

    n

    !"!x

    +n"!np

    !x+D

    n

    !2np

    !x2 +G

    L#np #np0

    $n

    !pn(x,t)

    !t= #p

    n

    p

    !"

    !x#

    p"!p

    n

    !xDrift

    ! "### $###

    +Dp

    !2p

    n

    !x2

    Diffusion

    ! "# $#

    +GL

    Perturb.

    %

    #pn#p

    n0

    $p

    thermalR#G

    ! "# $#

    For minority carriers in 1-D case: Jp = q p p " # qDp $p

    Jn = q n n "+ qDn $n

    99