47
1 BBN and CMB bounds on hidden sector vectors Graham White, TRIUMF JHEP 1901 (2019) 074 and arxiv 2002.xxxx with John Coffey, Lindsey Forestell and David Morrissey

BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

!1BBN and CMB bounds on hidden sector vectorsGraham White, TRIUMF

JHEP 1901 (2019) 074 and arxiv 2002.xxxxwith John Coffey, Lindsey Forestell and David Morrissey

Page 2: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Where to look for hidden sectors!2

Collider builders

New physics Mass

Page 3: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Where to look for hidden sectors!3

Page 4: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Why bother with cosmo?!4

arXiv:1407.0993 Fradette et al arXiv1605.07195 Berger et al

Page 5: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Outline!5

1. Big Bang nucleosynthesis 2. Model independent BBN constraints 3. Ionization of the intergalactic medium during recombination 4. Spectral distortions to the cosmic microwave background 5. Model Dependent constraints

Page 6: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Big Bang nucleosynthesis

• Inverse beta decay

• n/p~ frozen out at ~0.8 MeV

• Deuterium bottleneck

• At T ~ 150 keV bottleneck is broken and abundances are frozen in

• Most in Hydrogen and

!6

p + e → n + νe

D + γ → p + n

4He

Page 7: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Big Bang nucleosynthesis!7

Takes only BAU as input

BAU from cmb Predicts observed light element abundances

Constrains energy injection from new long lived particles

Most focus has been on the injections >> GeV

Particle data group

Page 8: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Big Bang nucleosynthesis!8

Focus on EM injection < 1 GeV

Initial injection of photons, electrons, muons, pions or neutrinos

Neutrinos decouple, muons and pions decay

Electrons and photons interact with the background resulting in an EM cascade

EM cascade breaks up nuclei

Page 9: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Electromagnetic Cascade!9

γ + γBG → e+ + e−

γ + γBG → γ + γ

γ + NBG → NBG + e+ + e−

γ + e−BG → γ + e−

e∓ + γBG → e∓ + γ

X → e+ + e− + γ

Photon-photon pair production

Photon photon scattering

Pair creation on nuclei

Compton scattering

Inverse Compton

Final state radiation

New

Page 10: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Photon spectrum• Spectrum

• Rate of injection

• Distribution:

• Conventional wisdom: Universal spectrum

!10Ni

γ ≡dni

γ

dE→ Nf

γ

f̄(E) =1R

Nγ(E) −ξγ

Γγ(EX)δ(E − EX)

R = nX(t)/τx

dnγ

dE≈ R

pγ(Eγ)Γγ(Eγ)

Effective threshold for pair production

Page 11: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Photon spectrum• Problems with Universal spectrum for low E

injections:

• Nuclear thresholds

!11

EX < (EC, Em)

Page 12: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Electromagnetic Cascade!12

1028

1030

1032

1034

1036

1038

1040

0.001 0.01 0.1

f̄ γ(G

eV−2)

Eγ (GeV)

EX = 30MeV

Universal SpectrumPoulin+Serpico

T = 1 eVT = 10 eV

T = 100 eV

1028

1030

1032

1034

1036

1038

1040

0.001 0.01 0.1

f̄ γ(G

eV−2)

Eγ (GeV)

EX = 30MeV

Universal SpectrumT = 1 eVT = 10 eV

T = 100 eV

Page 13: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Light element abundances!13

Yp = 0.245 ± 0.004

nD

nH= (2.53 ± 0.05) × 10−5

n3He

nH= (1 ± 0.5) × 10−5

(Helium mass fraction)

Page 14: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Light element abundances!14

Yp = 0.245 ± 0.004

nD

nH= (2.53 ± 0.05) × 10−5

n3He

nH= (1 ± 0.5) × 10−5

Theory uncertainty (photon capture)

Emission lines from Metal poor extragalactic regions 1503.08146

Observations of solar winds etc To determine composition of proto-solar cloud

Page 15: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Boltzmann equations• Take BBN products as initial conditions

!15

dYA

dt= ∑

i

Yi ∫∞

0Nγ(Eγ)σy+i→A(Eγ) − YA ∑

f∫

0Nγ(Eγ)σy+A→f(Eγ)

Page 16: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Nucleon-destruction!16

D + γ → p + n

3He + γ → D + p

4He + γ → 3He + n

First Deuteron destruction (2.2 MeV)

First Deuteron creation (5.5 MeV)

First (important) Helium destruction (20.6 MeV)

Page 17: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Benchmarks for photon injection!17

10 MeV 30 MeV 100 MeV

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

Page 18: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Benchmarks for electron injection!18

10 MeV 30 MeV 100 MeV

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

Page 19: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Benchmarks for electron injection!19

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

4 6 8 10 12-15

-14

-13

-12

-11

-10

-9

log10τ(s)

EXYX(GeV

)

D

3He

4He

10 MeV 30 MeV 100 MeV

Page 20: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Monochromatic injection!20

-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.5-9.0

�EV = Ec(τV)

�EICγ ≤ 2MeV

ExYx(GeV)

Electrons Photons

Page 21: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!21

Monochromatic Injection into

1. Muons 2. � 3. � 4. �

π+π−

π0γπ+π−π0

Page 22: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!22

dNdEγ

=dNdEγ

rad

+dNdEγ

FSR

+dNdEγ

dir

dNdEe

=dNdEe rad

+dNdEγ

dir

All unstable —calculate the final photon and electron spectrum .

Some energy lost into neutrinos

Monochromatic Injection into

1. Muons 2. � 3. � 4. �

π+π−

π0γπ+π−π0

Page 23: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!23

Can calculate spectrum from decays of SM particles in the rest frame and boosting

γ = mV /2mSM = 1/ 1 − β2

dNx

dE=

24π ∫ dΩ′ �

1γ(1 + β cos θ′�E′ �/p′�)

dNx

dE′�

Page 24: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!24

Radiative contributions for muons

Page 25: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!25

Radiative contributions for charged pions

Note: take polarization into account

π− μ−

ν̄μ

νμe−

ν̄e

Page 26: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!26

Radiative contributions for charged pions

dNdEγ

= ∑l∈e,μ

BR(π+ → l, μ)dNdEγ

π+→l+νl

+ BR(π+ → μ+νμ)dNdEγ

μ

See also 1) HAZMA 2) Plehn et al 1911.11147

Page 27: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!27

FSR contributions for charged pions

Vπ+

π−γ

dNdE

∼αmπ+

π2(1 − x)

xlog ( m2

V(1 − x)m2

π+ )

Typically subdominant!

Page 28: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!28

FSR contributions for muons

Vμ+

μ−γ

dNdE

∼αmπ+

π1 + (1 − x)2

xlog ( m2

V(1 − x)m2

μ )

Typically dominant!

Note: Leading log becomes a poor approximation for light dark matter! We use the full FSR spectrum

Page 29: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Other model independent constraints!29

-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.5-9.0

μ π+π−π0

π+π−π0γExYx(GeV)

Page 30: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Model dependent constraints!30

Vector mediators: Dark Photons Gauged lepton family numbers �U(1)B−L

Page 31: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Model dependent constraints!31

Vector mediators: Dark Photons Gauged lepton family numbers �U(1)B−L

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

DP

BR

mV (GeV)

e+e�

µ+µ�

⇡+⇡�

⇡+⇡�⇡0

⇡0�inv

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(B�L)

BR

mV (GeV)

e+e�

µ+µ�

⇡+⇡�

⇡+⇡�⇡0

⇡0�inv

VMD to estimate � decaysωData driven calculation of � meson decaysρ

Page 32: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Model dependent constraints!32

DP B − L

-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.5-9.0

ExYx(GeV)

Page 33: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Model dependent constraints!33

-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.5-9.0

Lμ − Le Lτ − Le Lμ − Lτ

ExYx(GeV)

Page 34: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB ionization constraints!34

Energy injected at very late times can affect the ionization history of the Universe, modifying the CMB

Constraints on the dark matter fraction from �1012s ≲ τ ≲ 1025s

Page 35: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB ionization constraints!35

Not all energy injected is deposited into the intergalactic medium

�( dρdt )

dep

= f(z)( dρdt )

inj

fion(z) =H(z)∑species ∫ ∞

zd log(1 + zin)

H(zin)∫ T(zin, z, E)E dN

dEdEe−t(z)/τχ

∑species ∫ E dNdE

dE

Only care about energy deposited into ionization

Energy is not deposited immediately

Depletion of initial abundance

Page 36: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB ionization constraints!36

Principal components

Tracy Slatyer 1109.6322 See also her work in 2015/2016 (project epsilon)

Most important

PC 1 PC 2 PC 3

Constraints � ∼ ei(z)∫dzz ∑

i

PCi(z)f(z)

Page 37: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB ionization constraints!37

-20.5

-20.0

-19.5

-19.0

-18.5

-18.0

-17.5

-17.0

DP B − L

ExYx(GeV)

Page 38: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB ionization constraints!38

-20.5

-20.0

-19.5

-19.0

-18.5

-18.0

-17.5

-17.0Lμ − Le Lτ − Le

Lμ − Lτ

ExYx(GeV)

Page 39: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB spectral distortion constraints!39Cobe/FIRAS and PIXIE can detect departures from a black body spectrum

Decays occurring between the decoupling of double Compton scattering and Compton scattering � change the photon chemical potential

Decays after decoupling of Compton scattering and recombination � change the Compton y parameter

2 × 106 ≳ z ≳ 5.2 × 104

(5.2 × 104 ≳ z ≳ 1090)

Page 40: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

CMB spectral distortion constraints!40

μγ ∼ 1.4∫ dt𝒥μ(t)(Δ ·ργ

ργ ) y ∼ 4∫ dt𝒥y(t)(Δ ·ργ

ργ )Δ ·ργ = femmV

n0V

τVe−t/τv

𝒥μ𝒥y

1000 5000 1 ×104 5 ×104 1 ×105 5 ×105 1 ×106

0.001

0.010

0.100

1

zC zDC

Page 41: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Cobe and Pixie Limits!41

COBE : μ < 9 × 10−5 , |y | < 1.5 × 10−5

PIXIE : μ < 1 × 10−8 , |y | < 2 × 10−9

Page 42: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Freeze in abundances!42

sdYV

dt= ⟨

⟩neqV ΓV

YV = (YV)I+ (YV)II

(YV)I=

32π2

m3VΓ̃V ∫

xQCD

0dx

K1(x)x2sH

(YV)II=

32π2

m3VΓV ∫

xQCD

dxK1(x)x2sH

Page 43: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Freeze in abundances!43

1 5 10 50 100 500 1000

5.×10-19

1.×10-18

2.×10-18

mV

mVYV(GeV

)

B − L

DP

∼ 5/2

Page 44: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Parameter constraints!44

DP B − L

Le − LτLe − Lμ

ϵeff = g 1/4παem

DP B − L

Le − LμLe − Lτ

Page 45: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Conclusions!45

We are motivated to look for light hidden sectors Cosmological constraints become very interesting in this region Between Spectral distortion, ionization history and BBN, an enormous parameter space can be probed! We demonstrated this for several well motivated hidden sector vector mediators

Page 46: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Back up slides!46

Page 47: BBN and CMB !1 bounds on hidden sector vectors · Pair creation on nuclei Compton scattering Inverse Compton Final state radiation New. ... 0.001 0.01 0.1 ¯ f ... Extra details on

Extra details on Tracy’s code!47

Used functions from 2015 code to get f_ion

Used functions from 2012 code to do the PCA, rescaling f by the assumed ionization fraction and using f_ion generated by the 2015 code