16
Laboratory for Advanced Semiconductor Epitaxy LASE [email protected] http://lase.ece.utexas.edu Boron Gallium Arsenide Alloys for Photodetectors on Silicon R. Corey White 1 , K. M. McNicholas 2 , and S.R. Bank 2 1 Electrical and Computer Engineering Dept. North Carolina State University 2 Microelectronics Research Center and ECE Dept. The University of Texas at Austin

Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

Laboratory for AdvancedSemiconductor Epitaxy

[email protected]

http://lase.ece.utexas.edu

Boron Gallium Arsenide Alloys for Photodetectors on Silicon

R. Corey White1, K. M. McNicholas2, and S.R. Bank2

1Electrical and Computer Engineering Dept.North Carolina State University

2Microelectronics Research Center and ECE Dept.The University of Texas at Austin

Page 2: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 2

Challenge: direct-gap materials on silicon

[1] M.R. Feldman, Appl. Opt. (1988)[2] Fang et al., Opt. Express (2008) [5] Beling et al., IEEE J. Quantum Electron. (2015)[3] Mi et al., Electron. Lett. (2005) [6] Kang et al., Nature (2008)[4] Kunert et al., J. Cryst. Growth (2008) [7] Conley et al., Opt. Express (2014)

[2][5]

[6]

[7]

emitters detectors

[3]

[4][1]

optical interconnects

applications

Page 3: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 3

‘New’ III-V material to lattice-match silicon

A Zaoui et al. J. Phys.: Condens. Matter 13 (2001) S. Azzi et al. Solid State Communications 144 (2007)

4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.60.0

0.5

1.0

1.5

2.0

2.5

3C-SiC

BGaInAs

Si

BInAs

BGaAs

GaSb

AlSb

InSb

AlPGaP

InAs

AlAs

Band

gap

(eV)

Lattice Constant (Å)

GaAs InP

BSb

BAsBP

III V 5 6 7 8

B C N OBoron Carbon Nitrogen Oxygen

13 14 15 16

Al Si P SAluminum Silicon Phosphorus Sulfur

31 32 33 34

Ga Ge As Se Gallium Germanium Arsenic Selenium

49 50 51 52

In Sn Sb TeIndium Tin Antimony Tellurium

81 82 83 84

Tl Pb Bi PoThallium Lead Bismuth Polonium

3.2 4.4 4.8 5.2 5.6 6.0 6.40.00.51.01.52.02.53.03.55.56.06.5

BP BAs

SiBSb

InN

GaN

AlN

GaAs InP

GaSb

AlSb

InSb

AlPGaP

InAs

AlAs

Ba

ndga

p (e

V)

Lattice Constant (Å)• No good previous approach to lattice-match direct bandgaps to silicon• Small lattice constants new strain engineering opportunities• Lattice-matched direct gap alloys by incorporating boron

Page 4: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 4

Need for characterization of BGaAs

Previous Research:• lacks a consistent trend• is limited to 8% boron

(insufficient to match silicon’s lattice constant)

• is limited by growth constraints to relatively poor quality material

• devices have never been reported

S. M. Ku, J. Electro. Soc. 1966. V. Gottschalch et al. , J. Crys. Growth, 2003.D. J. Stukel, Phys. Rev. B, 1970. W. Shan et al., J. App. Phys., 2003. T. L. Chu et al, J. Electro. Soc., 1974. F. Saidi et al., Mat. Sci. Eng.: C, 2006. M. P. Surh et al., Phys. Rev. B, 1991. R. Hamila et al., J. Lumin., 2009. A. Zaoui et al., J. Phys., 2000. M. Guemou et al., Phys. B, 2012. G. L. W. Hart et al., Phys. Rev. B, 2000. R. Hamila et al., J. App. Phys., 2012.V. K. Gupta et al., J. Elec. Mat., 2000. S. Ilahi et al, Physica B, 2013. J. F. Geisz et al., App. Phys. Let., 2000.

Page 5: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 5

Photocurrent measurement setup design

White Light Source: provides a spectrum of light (all wavelengths)

Chopper Wheel: chops incoming light at a certain frequency synced with the SRS

Monochromator: selects a single wavelength of light

Optic Fiber: transports light to the sample

Sample: III-V semiconductor photodetectors

Probe Station: measures signal from photodetector electrodes

SRS Lock-In Amplifier: amplifies and measures the signal from the probe station

light source chopper wheel monochromator

optic fiber

sample

probe stationSRS lock-in

amplifier

Page 6: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 6

Photocurrent measurement setup results

At Monochromator Output:

wavelength (nm)

sign

al (

mV

)

Signal Increase due to New White Light SourceOriginal Setup• Max: 4.35 mV • Min: 0.97 mVImproved Setup• Max: 11.66 mV• Min: 5.74 mV

System Improvements:• Tungsten lamp source -> Supercontinuum source• Wider aperture fiber optic cable• Focused optics

signal increase of 4.5x

At Sample Stage:

signal increase of 150x

Signal Increase due to Wider Aperture Optic Fiber CableOriginal Setup• Max: 0.097 mV • Min: 0.001 mVImproved Setup• Max: 8.55 mV• Min: 0.95 mV

improved

original

improved

original

Page 7: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 7

Thin film photocurrent results

wavelength (nm)

sign

al (

µV)

GaAs:

BGaAs:

wavelength (nm)

sign

al (

µV)

GaAs

Metal

GaAs

Metal

BGaAs

Page 8: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 8

Photodetector design optimization

M. Sirkis and N. Holonyak, J. Phys., 1966.

metalmetalIII-V semiconductor

metalIII-V semiconductor

metal

Old MSM Design:• Higher capacitance• Lower Shockley-Ramo

current• One step fabrication (metal

deposition)• Larger distance between

electrodes

New MSM Design:• Lower capacitance• Higher Shockley-Ramo current• Two step fabrication

(lithography, metal deposition)• Small distance (5-20 µm)

between interdigitated fingers of electrodes

Page 9: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 9

Conclusion and Future WorkA functioning photocurrent measurement setup for thin film devices was designed and assembled. It is one of the only reported photocurrent systems to utilize a supercontinuum source.

Further Work:• Investigation of new MSM

photodetector design

• Growth of thicker BGaAs films

• Testing of tunability of the material’s bandgap

• Quantification of the material’s detection and responsivity

• Doped BGaAs for PiN devices

Page 10: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

Laboratory for AdvancedSemiconductor Epitaxy

[email protected]

http://lase.ece.utexas.edu

AcknowledgementsThis work is based upon work supported primarily by the National Science Foundation under Cooperative Agreement No. ECCS-1542159, who provided funding for this research.

In addition to my graduate student mentor and the Principle Investigator, I would like to thank the NNCI program, UT Austin, the Microelectronics Research Center, and the LASE group (including Leland Nordin, Andrew Briggs, and Alec Skipper for their help with fabrication).

Page 11: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

Laboratory for AdvancedSemiconductor Epitaxy

[email protected]

http://lase.ece.utexas.edu

Questions?

Page 12: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 12

Supercontinuum light source

NKT Photonics

wavelength (nm)

pow

er d

ensi

ty (

µW/n

m)

Page 13: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 13

Molecular beam epitaxy

heater

movableshutter

sources

heatedsubstrate

• Deposition controlled to sub-monolayer precision

• Ultra-pure materials – B: vertical e-beam evaporator– Group IIIs: SUMO effusion sources– Group Vs: Valved cracker sources– RE-Vs : High-temperature sources

• In situ Characterization– Reflection high-energy electron-

diffraction (RHEED)• Real time monitoring of film quality,

growth rate

• Growth Parameters– III:As ~10-200x BEP ratio– Substrate temp. room temp-700oC

• Growth rates and alloy composition calibrated from high-resolution X-ray diffraction

Page 14: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 14

B-III-V growth optimization

LaxLu1-xAs

1 Groenert et al. J. Cryst. Growth (2004) 5 Geisz et al., J Cryst. Growth (2001)2 Hamilia et al. J. Alloys Compd. (2010) 6 Gottschalch et al., J. Cryst. Growth (2003)3 Detz et al. J. Cryst. Growth 2017 7 Geisz et al., J. Elec. Mat. (2001)4 Ptak et al. J. Cryst. Growth (2012)

Current Record B concentrations ~8%Key advancements:• MBE

– Low growth temperatures1

– Large V/III flux ratio1

– Fast growth rates3

– Surfactant mediated growth4

• MOCVD– Low growth temperatures5

– Large V precursor pressure6

– Optimized precursor chemistry7

Ref.2

Ref.1

Ref.2

Ref.1

Page 15: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 15

B-III-V: fundamental questions remain

What are the limits of B incorporation?• Miscibility gap predicted1, but unexplored

How does the band gap change with B composition?• Increase or decrease in Eg with increasing B fraction?

Where does the direct to indirect transition occur?• 30%4 - 77%7 B

What are the band alignments/offsets?Dopant incorporation

1 Hart et al., Phys. Rev. B (2000) 5 Ilahi et al., Phys. B (2013)2 Groenert et al. J. Cryst. Growth (2004) 6 Saidi et al., Mat. Sci. Eng. C (2006)3 Chimot et al., Phys. B (2005) 7 Guemou et al., Phys. B (2012)4 Gupta et al., J. Elec. Mat., (2000)

Page 16: Boron Gallium Arsenide Alloys for Photodetectors on Silicon · R. Corey White 1, K. M. McNicholas 2, and S.R. Bank 1 Electrical and Computer Engineering Dept. North Carolina State

R. Corey White (http://lase.ece.utexas.edu) 16

Shockley-Ramo current

M. Sirkis and N. Holonyak, J. Phys., 1966.