38
Beyond Zero Resistance – Phenomenology of Superconductivity Nicholas P. Breznay SASS Seminar – Happy 50 th ! SLAC April 29, 2009

Breznay Superconductivity

Embed Size (px)

Citation preview

Page 1: Breznay Superconductivity

Beyond Zero Resistance – Phenomenology of Superconductivity

Nicholas P. Breznay

SASS Seminar – Happy 50th!

SLAC

April 29, 2009

Page 2: Breznay Superconductivity

Preview

• Motivation / Paradigm Shift

• Normal State behavior

• Hallmarks of Superconductivity– Zero resistance

– Perfect diamagnetism

– Magnetic flux quantization

• Phenomenology of SC– London Theory, Ginzburg-Landau Theory

– Length scales: and – Type I and II SC’s

Page 3: Breznay Superconductivity

Physics of Metals - Introduction

• Atoms form a periodic lattice

• Know (!) electronic states key for the behavior we are interested in

• Solve the Schro …

… in a periodic potential

EH

)(2

)( 22

rVm

rH

)()( KrVrV

K is a Bravais lattice vector

K

Wikipedia

Page 4: Breznay Superconductivity

Physics of Metals – Bloch’s Theorem

• Bloch’s theorem tells us that eigenstates have the form …

… where u(r) is a function with the periodicity of the lattice …

ErVm

)(2

22

Em

H 22

2

)()( ruer rki

)()( Kruru

rkiAer )(

Free particle Schro

Wikipedia

Page 5: Breznay Superconductivity

Physics of Metals – Drude Model

• Model for electrons in a metal– Noninteracting, inertial gas

– Scattering time

• Apply Fermi-Dirac statistics

)(

)(tp

Eqtpdt

d damping

term

H

E

k

E

k

EfEf

m

kE

2

22

http://www.doitpoms.ac.uk/tlplib/semiconductors/images/fermiDirac.jpg

Page 6: Breznay Superconductivity

Physics of Metals – Magnetic Response

• Magnetism in media

• Larmor/Landau diamagnetism– Weak anti-// response

• Pauli paramagnetism– Moderate // response

• Typical values –– Cu~ -1 x 10-5

– Al~ +2 x 10-5

minimal response to B fields– r ~ 1 B = 0H

)(0 MHB in SI

linear response

familiarly

H

E

k

E

k

EfEf

HM

H

H

H

r

0

0 )1(B

Page 7: Breznay Superconductivity

Physics of Metals – Drude Model Comments

• Wrong!– Lattice, e-e, e-p, defects,

– ~ 10-14 seconds MFP ~ 1 nm

• Useful!– DC, AC electrical conductivity

– Thermal transport• Lorenz number T

– Heat capacity of solids

Wikipedia

Em

neJ

2

m

nep

p

0

22

2

2

,1)(

)(

)(tp

Eqtpdt

d

3ATTCv

Electronic contribution

Lattice

1~'sfe

meas

28

2

22

1044.23 K

W

e

k

TL B

8106.21.2 measL

Page 8: Breznay Superconductivity

Preview

• Motivation / Paradigm Shift

• Normal State behavior

• Hallmarks of Superconductivity– Zero resistance

– Perfect diamagnetism

– Magnetic flux quantization

• Phenomenology of SC– London Theory, Ginzburg-Landau Theory

– Length scales: and – Type I and II SC’s

Page 9: Breznay Superconductivity

Hallmark 1 – Zero Resistance

• Metallic R vs T– e-p scattering (lattice interactions) at high temperature

– Impurities at low temperatures

R

Temperature

ResidualResistance

(impurities)

Impure metal

Electrical resistance

R0

Lattice (phonon)interactions

Pure metal

TD/3

Page 10: Breznay Superconductivity

Hallmark 1 – Zero Resistance

• Superconducting R vs T

R

Temperature

R0

Superconductor

Tc“Transition temperature”

Page 11: Breznay Superconductivity

Hallmark 1 – Zero Resistance

• Hard to measure “zero” directly

• Can try to look at an effect of the zero resistance

• Current flowing in a SC ring– Not thought experiment –

standard configuration for high-field laboratory magnets (10-20T)

• Nonzero resistance changing current changing magnetic field

• One such measurement

SuperconductorCirculating

supercurrent

Magnetic (dipole) field

From Ustinov “Superconductivity” Lectures (WS 2008-2009)

I

1810Cu

SC

Page 12: Breznay Superconductivity

Hallmark 1 – Zero Resistance Notes

• R = 0 only for DC

• AC response arises from kinetic inductance of superconducting electrons– Changing current electric field

• Model: perfect resistor (normal electrons), inductor (SC electrons) in parallel

• Magnitude of “kinetic inductance”:

At 1 kHz, NormalRL 1210~

Vac

L

R

http://www.apph.tohoku.ac.jp/low-temp-lab/photo/FUJYO1.png

Page 13: Breznay Superconductivity

Hallmark 2 – Conductors in a Magnetic Field

Normal metal

Field off

Applyfield

t

EJB

t

BE

B

E

0

0

jE

)1(~)( /0

teBtB

RL /

Page 14: Breznay Superconductivity

Hallmark 2 – Conductors in a Magnetic Field

Applyfield

Perfect (metallic) conductor SuperconductorNormal metal

Cool Cool

Field off

Applyfield

Applyfield

Page 15: Breznay Superconductivity

Hallmark 2 – Meissner-Oschenfeld Effect

Superconductor

CoolApplyfield

• B = 0 perfect diamagnetism: M = -1

• Field expulsion unexpected; not discovered for 20 years.

HHM

MHB

0)(0

B/0

H

-M

HHc Hc

Page 16: Breznay Superconductivity

Hallmark 3 – Flux Quantization

27150 102~

2102~

2cmG

e

hcsV

e

h

Earth’s magnetic field ~ 500 mG, so in 1 cm2 of BEarth there are ~ 2 million 0’s.

first appearance of h in our description; quantum phenomenon

0nAdB

Total flux (field*area) is integer multiple of

Page 17: Breznay Superconductivity

Hallmark 3 – Flux Quantization

Apply uniform field

Measure flux

Page 18: Breznay Superconductivity

Aside – Cooper Pairing

• In the presence of a weak attractive interaction, the filled Fermi sphere is unstable to the formation of bound pairs electrons

• Can excite two electrons above Ef, obtain bound-state energy < 2Ef due to attraction

• New minimum-energy state allows attractive interaction (e-p scattering) by smearing the FS

The physics of superconductors Shmidt, Müller, Ustinov

Page 19: Breznay Superconductivity

Preview

• Motivation / Paradigm Shift

• Normal State behavior

• Hallmarks of Superconductivity– Zero resistance

– Perfect diamagnetism

– Magnetic flux quantization

• Phenomenology of SC– London Theory, Ginzburg-Landau Theory

– Length scales: and – Type I and II SC’s

Page 20: Breznay Superconductivity

SC Parameter Review

g(H)

HHc

gnormal state

gsc state

2

2

0cHg

• Magnetic field energy density

• Extract free energy difference between normal and SC states with Hc

• Know magnetic response important; use R = 0 + Maxwell’s equations … ?

Page 21: Breznay Superconductivity

London Theory – 1

• Newton’s law (inertial response) for applied electric field

SJdt

dE 2en

m

s

en

J

dt

dmeE

s

S svdt

dmF

sss evnJ

dt

dJ

m

Een Ss 2

dt

Jd

m

Een Ss

2

dt

Jd

dt

Bd

m

en Ss

2

02

B

m

enJ

dt

d sS

Supercurrent density is

Bm

enJ sS

2

We know B = 0 inside superconductors

Faraday’s law

Fritz & Heinz London, (1935)

Page 22: Breznay Superconductivity

London Theory – 2

SJdt

dE 2en

m

s

Bm

enJ sS

2

London Equations

t

EJB

000

JB

0

Bm

enBB s

2

02

Bm

enB s

2

02

Ampere’s law

=0; Gauss’s law for

electrostatics

Page 23: Breznay Superconductivity

Magnetic Penetration Depth -

B(z)

z

20

2

en

m

s BB

2

2 1

• Screening not immediate;

characteristic decay length

• Typical ~ 50 nm

• m,e fixed – uniquely specifies the superconducting electron density ns

Sometimes called the “superfluid

density”

/0)( zeBzB

B0

SC

Page 24: Breznay Superconductivity

Ginzburg-Landau Theory - 1

42

2 ns ff

• First consider zero magnetic field

• Order parameter

• Associate with cooper pair density:

• Expand f in powers of ||2

To make sense, > 0, (T)

Free energy ofsuperconducting state

Free energy ofnormal state

2sn

Need > -Infinity; B > 0

Free energy of SC state

~ # of cooper pairs

Page 25: Breznay Superconductivity

Ginzburg-Landau Theory - 2

42

2 ns ff

42

2 ns ff

02

2 ns ffd

d

2

• For < 0, solve for minimum in fs-fn …

http://commons.wikimedia.org/wiki/File:Pseudofunci%C3%B3n_de_onda_(teor%C3%ADa_Ginzburg-Landau).png

Page 26: Breznay Superconductivity

• Know that fn-fs is the condensation energy:

Ginzburg-Landau Theory - 3

242

2 ns ff

2

2

ns ff

2

02

1csn Bff

sn ff

2

02

1cB

2

0cB

Page 27: Breznay Superconductivity

Ginzburg-Landau Theory - 4

qAip

• Momentum term in H:

• Now – include magnetic field

• Classically, know that to include magnetic fields …

0

2242

22

2

1

2

BeAi

mff ns

ipVm

pH ,

2

2

0

2

2B

fmagnetic

42

2 ns ff

Page 28: Breznay Superconductivity

Ginzburg-Landau Theory - 5

• Free Energy Density 0

2242

22

2

1

2

BeAi

mff ns

02

22

1

2 0

2242

dVB

eAim

0F

022

1 22 eAim

eAim

eJ 2Re

2 *

Page 29: Breznay Superconductivity

Ginzburg-Landau Theory - 6

022

1 22 eAim

Take real,normalize

2 0

22

23

m

0

2)(32

2

mT

Define

mTT

2)()(

2

0)(

22

2 T

Linearize in

Page 30: Breznay Superconductivity

Superconducting coherence length -

x

(x)Vacuum SC

Superconductor

022

1 22 eAim

0)(

22

2 T

• Characteristic length scale for SC wavefunction variation

Page 31: Breznay Superconductivity

• London Theory magnetic penetration depth

• Ginzburg-Landau Theory coherence length

two kinds of superconductors!

Pause

Page 32: Breznay Superconductivity

Surface Energy and “Type II”

H(x)

x

(x)H(x)

x

(x)

Page 33: Breznay Superconductivity

Surface Energy: H(x)

(x)

gmagnetic(x)

2

2

0c

cond

Hg

2

2

0c

cond

Hg

energy penalty for excluding B

energy gain for being in SC state

gsc(x)

SC

Page 34: Breznay Superconductivity

Surface Energy: H(x)

(x)

gmagnetic(x)

2

2

0c

cond

Hg

2

2

0c

cond

Hg

energy penalty for excluding B

energy gain for being in SC state

net energy penalty at a surface / interface

gnet(x)

gsc(x)

SC

Page 35: Breznay Superconductivity

Surface Energy: H(x)

(x)

gmagnetic(x)

2

2

0c

cond

Hg

2

2

0c

cond

Hg

energy penalty for excluding B

energy gain for being in SC state

net energy gain at a surface / interfacegnet(x)

gsc(x)

SC

Page 36: Breznay Superconductivity

Type I Type II

H(x)

(x)

gmagnetic(x)

gnet(x)

gsc(x)

H(x)

(x)

gmagnetic(x)

gnet(x)

gsc(x)

• predicted in 1950s by Abrikosov• elemental superconductors

2

1

2

1

nm (nm) Tc (K) Hc2 (T)

Al 1600 50 1.2 .01

Pb 83 39 7.2 .08

Sn 230 51 3.7 .03

nm (nm) Tc (K) Hc2 (T)

Nb3Sn 11 200 18 25

YBCO 1.5 200 92 150

MgB2 5 185 37 14

Page 37: Breznay Superconductivity

Type II Superconductors

H

Normal state cores

Superconducting region

http://www.nd.edu/~vortex/research.html

Page 38: Breznay Superconductivity

• London Theory magnetic penetration depth

• Ginzburg-Landau Theory coherence length

two kinds of superconductors

The End