Brige Design

Embed Size (px)

Citation preview

  • 8/14/2019 Brige Design

    1/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    2/174

  • 8/14/2019 Brige Design

    3/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Policy and OutlinePolicy and Outline

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    4/174

  • 8/14/2019 Brige Design

    5/174

    Course OutlineCourse Outline Page 01Page 01

    9. Bridge inspection9. Bridge inspection

    Second ExamSecond Exam

    First ExamFirst Exam

    8. Bridge management systems8. Bridge management systems

    Final ExamFinal Exam

    7. Substructures7. Substructures

    6. Bearing6. Bearing

    5. Design of reinforced concrete bridge girder.5. Design of reinforced concrete bridge girder.

    4. Design of reinforced concrete bridge deck4. Design of reinforced concrete bridge deck

    3. Bridge loads and load distribution.3. Bridge loads and load distribution.

    2. Theory of analysis of modern highway bridges.2. Theory of analysis of modern highway bridges.

    1.1. Materials used for bridge constructionMaterials used for bridge construction

    TopicTopic

    Connections with Other ClassesConnections with Other Classes Page 02Page 02

    Grading PolicyGrading Policy Page 03Page 03

    FinalFinal

    22stst

    ExamExam

    11stst

    ExamExam

    HWHW

    10%10%

    25%25%

    25%25%

    40%40%

    ReferencesReferences Design CodeDesign Code Page 04Page 04

  • 8/14/2019 Brige Design

    6/174

    ReferencesReferences -- TextbooksTextbooks Page 05Page 05

  • 8/14/2019 Brige Design

    7/174

    Chapter 01Chapter 01Types of BridgesTypes of Bridges

    Jordan University of Science and TechnologyJordan University of Science and Technology

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    8/174

  • 8/14/2019 Brige Design

    9/174

    Components of BridgeComponents of Bridge Page 001Page 001 Components of BridgeComponents of Bridge Page 002Page 002

    Components of BridgeComponents of Bridge Page 003Page 003 Components of BridgeComponents of Bridge Page 004Page 004

  • 8/14/2019 Brige Design

    10/174

    Components of BridgeComponents of Bridge Page 005Page 005 Components of BridgeComponents of Bridge Page 006Page 006

    Types of Bridge by TrafficTypes of Bridge by Traffic Page 007Page 007 Types: Highway BridgeTypes: Highway Bridge Page 008Page 008

  • 8/14/2019 Brige Design

    11/174

    Types: Pedestrian BridgeTypes: Pedestrian Bridge Page 009Page 009 Types: Railway BridgeTypes: Railway Bridge Page 010Page 010

    Types: TransitTypes: Transit GuidewayGuideway Page 011Page 011 Types: OthersTypes: Others Page 012Page 012

  • 8/14/2019 Brige Design

    12/174

    Types: OthersTypes: Others Page 013Page 013 Types: OthersTypes: Others Page 014Page 014

    Types of Bridge by Traffic PositionTypes of Bridge by Traffic Position Page 015Page 015 Types: Deck TypeTypes: Deck Type Page 016Page 016

  • 8/14/2019 Brige Design

    13/174

  • 8/14/2019 Brige Design

    14/174

    Types by Material & FabricationsTypes by Material & Fabrications Page 021Page 021 Types by Material & FabricationsTypes by Material & Fabrications Page 022Page 022

    Types by Material & FabricationsTypes by Material & Fabrications Page 023Page 023 Types by Material & FabricationsTypes by Material & Fabrications Page 024Page 024

    T f d b

  • 8/14/2019 Brige Design

    15/174

    Types by Material & FabricationsTypes by Material & Fabrications Page 025Page 025 Types of Bridge by StructureTypes of Bridge by Structure Page 026Page 026

    Types: Arch BridgeTypes: Arch Bridge Page 027Page 027 Types: Arch BridgeTypes: Arch Bridge Page 028Page 028

    T A h idT C A h B id

  • 8/14/2019 Brige Design

    16/174

    Types: Concrete Arch BridgeTypes: Concrete Arch Bridge Page 029Page 029 Types: Prestressed Concrete ArchTypes: Prestressed Concrete Arch Page 030Page 030

    Types: Steel Arch BridgeTypes: Steel Arch Bridge Page 031Page 031 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 032Page 032

    T B /Gi d B idT B /Gi d B id P 033P 033 T B /Gi d B idT B /Gi d B id P 034P 034

  • 8/14/2019 Brige Design

    17/174

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 033Page 033 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 034Page 034

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 035Page 035 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 036Page 036

    T B /Gi d B idT B /Gi d B id P 037P 037 T B /Gi d B idT B /Gi d B id P 038P 038

  • 8/14/2019 Brige Design

    18/174

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 037Page 037 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 038Page 038

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 039Page 039 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 040Page 040

    T B /Gi d B idTypes: Beam/Girder Bridges Page 041Page 041 T B /Gi d B idTypes: Beam/Girder Bridges Page 042Page 042

  • 8/14/2019 Brige Design

    19/174

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 041Page 041 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 042Page 042

    Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 043Page 043 Types: Beam/Girder BridgesTypes: Beam/Girder Bridges Page 044Page 044

    Types: Cantilever BridgesTypes: Cantilever Bridges Page 045Page 045 Types: Cantilever BridgesTypes: Cantilever Bridges Page 046Page 046

  • 8/14/2019 Brige Design

    20/174

    Types: Cantilever BridgesTypes: Cantilever Bridges Page 045Page 045 Types: Cantilever BridgesTypes: Cantilever Bridges Page 046Page 046

    Types: Cantilever BridgesTypes: Cantilever Bridges Page 047Page 047 Types: Cantilever BridgesTypes: Cantilever Bridges Page 48Page 48

    Types: CableTypes: Cable Stayed BridgeStayed Bridge Page 049Page 049 Types: CableTypes: Cable Stayed BridgeStayed Bridge Page 050Page 050

  • 8/14/2019 Brige Design

    21/174

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 049Page 049 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 050Page 050

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 051Page 051 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 052Page 052

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 053Page 053 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 054Page 054

  • 8/14/2019 Brige Design

    22/174

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 053Page 053 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 054Page 054

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 055Page 055 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 056Page 056

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 057Page 057 Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 058Page 058

  • 8/14/2019 Brige Design

    23/174

    Types: CableTypes: Cable-Stayed BridgeStayed Bridge Page 057g Types: CableTypes: Cable-Stayed BridgeStayed Bridge Page 058g

    Types: CableTypes: Cable--Stayed BridgeStayed Bridge Page 059Page 059 Types: Suspension BridgeTypes: Suspension Bridge Page 060Page 060

    Types: Suspension BridgeTypes: Suspension Bridge Page 061Page 061 Types: Suspension BridgeTypes: Suspension Bridge Page 062Page 062

  • 8/14/2019 Brige Design

    24/174

    Types: Suspension BridgeTypes: Suspension Bridge gg Types: Suspension BridgeTypes: Suspension Bridge gg

    Types: Suspension BridgeTypes: Suspension Bridge Page 063Page 063 Types: Suspension BridgeTypes: Suspension Bridge Page 064Page 064

    Types: Suspension BridgeTypes: Suspension Bridge Page 065Page 065 Types: OthersTypes: Others Page 066Page 066

  • 8/14/2019 Brige Design

    25/174

    Types: Suspension BridgeTypes: Suspension Bridge g Types: OthersTypes: Others g

    Types: OthersTypes: Others Page 067Page 067 Types: OthersTypes: Others Page 068Page 068

  • 8/14/2019 Brige Design

    26/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    27/174

    y gyy gy

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Chapter 02Chapter 02Preliminary DesignPreliminary Design

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    28/174

    Types of concrete bridgesTypes of concrete bridges Page 001Page 001 Which type should I use?Which type should I use? Page 002Page 002

  • 8/14/2019 Brige Design

    29/174

    yp g yp

    Components of BridgeComponents of BridgePage 003Page 003

    Span LengthSpan LengthPage 004Page 004

    Span LengthSpan Length Page 005Page 005 Span LengthSpan Length Page 006Page 006

  • 8/14/2019 Brige Design

    30/174

    Cost vs. Span LengthCost vs. Span LengthPage 007Page 007

    Cost vs. Span LengthCost vs. Span LengthPage 008Page 008

    Access for MaintenanceAccess for Maintenance Page 009Page 009 Beam SpacingBeam Spacing Page 010Page 010

  • 8/14/2019 Brige Design

    31/174

    MaterialsMaterialsPage 011Page 011

    Speed of constructionSpeed of constructionPage 012Page 012

    Site RequirementSite Requirement Page 013Page 013 Site RequirementSite Requirement Page 014Page 014

  • 8/14/2019 Brige Design

    32/174

    Site RequirementSite RequirementPage 015Page 015

    AestheticsAestheticsPage 016Page 016

    Preliminary DesignPreliminary Design Page 017Page 017 Preliminary DesignPreliminary Design Page 018Page 018

  • 8/14/2019 Brige Design

    33/174

    Preliminary DesignPreliminary DesignPage 019Page 019

    Preliminary DesignPreliminary DesignPage 020Page 020

    Preliminary DesignPreliminary Design Page 021Page 021 Preliminary DesignPreliminary Design Page 022Page 022

  • 8/14/2019 Brige Design

    34/174

    Preliminary DesignPreliminary DesignPage 023Page 023

    Preliminary DesignPreliminary DesignPage 024Page 024

    Page 025Page 025 Components of BridgeComponents of Bridge Page 026Page 026

  • 8/14/2019 Brige Design

    35/174

    Preliminary DesignPreliminary DesignPage 027Page 027

    Preliminary DesignPreliminary DesignPage 028Page 028

  • 8/14/2019 Brige Design

    36/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    37/174

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Chapter 03Chapter 03AASHTO LRFD DesignsAASHTO LRFD Designs

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    38/174

    AASHTO LRFD DesignsAASHTO LRFD Designs Page 01Page 01 Design CriteriaDesign Criteria Page 02Page 02

  • 8/14/2019 Brige Design

    39/174

    Load MultiplierLoad MultiplierPage 03Page 03

    Load MultiplierLoad MultiplierPage 04Page 04

    Load MultiplierLoad Multiplier Page 05Page 05 Load MultiplierLoad Multiplier Page 06Page 06

  • 8/14/2019 Brige Design

    40/174

    Load Factor & Load CombinationsLoad Factor & Load CombinationsPage 07Page 07

    Limit StatesLimit StatesPage 08Page 08

    Permanent LoadsPermanent Loads Page 09Page 09 Transient LoadsTransient Loads Page 10Page 10

  • 8/14/2019 Brige Design

    41/174

    Load CombinationsLoad CombinationsPage 11Page 11

    Load Factors for DC, DWLoad Factors for DC, DWPage 12Page 12

    Load CombinationsLoad Combinations Page 13Page 13 Load CombinationsLoad Combinations Page 14Page 14

  • 8/14/2019 Brige Design

    42/174

    Load CombinationsLoad CombinationsPage 15Page 15

    Load CombinationsLoad CombinationsPage 16Page 16

    Load CombinationsLoad Combinations Page 17Page 17 Notes on Load CombinationsNotes on Load Combinations Page 18Page 18

  • 8/14/2019 Brige Design

    43/174

    Resistance FactorsResistance FactorsPage 19Page 19

    Resistance FactorsResistance FactorsPage 20Page 20

    Resistance FactorsResistance Factors Page 21Page 21 LRFD Design ProcedureLRFD Design Procedure Page 22Page 22

  • 8/14/2019 Brige Design

    44/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    45/174

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Chapter 04Chapter 04Loads on BridgeLoads on Bridge

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    46/174

    OutlineOutline Page 001Page 001 Loads on BridgeLoads on Bridge Page 002Page 002

  • 8/14/2019 Brige Design

    47/174

    Typical LoadsTypical LoadsPage 003Page 003

    Dead Load: DCDead Load: DCPage 004Page 004

    Dead Load of Wearing Surface: DWDead Load of Wearing Surface: DW Page 005Page 005 Tributary Area for Dead LoadsTributary Area for Dead Loads Page 006Page 006

  • 8/14/2019 Brige Design

    48/174

    Live Loads of Vehicles: LLLive Loads of Vehicles: LLPage 007Page 007

    Live Loads of Vehicles: LLLive Loads of Vehicles: LLPage 008Page 008

    Live Loads of Vehicles: LLLive Loads of Vehicles: LL Page 009Page 009 Bridge LL vs. Building LLBridge LL vs. Building LL Page 010Page 010

  • 8/14/2019 Brige Design

    49/174

    Analysis Strategy for LLAnalysis Strategy for LL Page 011Page 011

    Design LaneDesign Lane Page 012Page 012

    Design LaneDesign Lane Page 013Page 013 Live Loads of Vehicles: LLLive Loads of Vehicles: LL Page 014Page 014

  • 8/14/2019 Brige Design

    50/174

    1. Design Truck1. Design Truck Page 015Page 015

    -44

    1. Design Truck1. Design Truck Page 016Page 016

    14Varies

    (14-30)

    8k

    32k

    32k

    (HS 20(HS 20--44)44)

    AASHTO HS 20AASHTO HS 20--44 Truck44 Truck

    1. Design Truck1. Design Truck Page 017Page 017

    AASHTO HS 25AASHTO HS 25--44 Truck44 Truck

    2. Design Tandem2. Design Tandem Page 018Page 018

  • 8/14/2019 Brige Design

    51/174

    14Varies

    (14-30)

    10k

    40k

    40k

    (HS 25(HS 25--44)44)

    AASHTO HS 25 44 Truck

    3. Uniform Lane Loading3. Uniform Lane Loading Page 019Page 019

    Analysis Strategy for LLAnalysis Strategy for LL Page 020Page 020

    Live Load CombinationsLive Load Combinations Page 021Page 021 Live Load PlacementLive Load Placement Page 022Page 022

  • 8/14/2019 Brige Design

    52/174

    Live Load PlacementLive Load Placement --TransverseTransverse Page 023Page 023 Live Load PlacementLive Load Placement --LongitudinalLongitudinal Page 024Page 024

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 025Page 025 Page 026Page 026Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    53/174

    Page 027Page 027Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 028Page 028Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Page 029Page 029Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 030Page 030Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    54/174

    Page 031Page 031Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 032Page 032Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Page 033Page 033Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 034Page 034Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    55/174

    Page 035Page 035Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 036Page 036Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Page 037Page 037Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 038Page 038Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    56/174

    Page 039Page 039Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 040Page 040Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Page 041Page 041Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 042Page 042Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    57/174

    Page 043Page 043Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 044Page 044Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Page 045Page 045Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 046Page 046Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

  • 8/14/2019 Brige Design

    58/174

    Page 047Page 047Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 048Page 048Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 049Page 049

    Example 05 :Example 05 :--Calculate the maximum reaction R100, shear V100, and moment M105Calculate the maximum reaction R100, shear V100, and moment M105 for the AASHTOfor the AASHTO

    vehicle loads (AASHTO). Use a simply supported beam of 35vehicle loads (AASHTO). Use a simply supported beam of 35--ft span.ft span.

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 050Page 050

    Example 05Example 05--Solution :Solution :--

  • 8/14/2019 Brige Design

    59/174

    ( ) p y pp( ) p y pp pp

    The influence lines for the actions required are shown in FigureThe influence lines for the actions required are shown in Figures below. The criticals below. The critical

    actions for the design truck, design tandem, and the design laneactions for the design truck, design tandem, and the design lane loads are determinedloads are determined

    independently and are later superimposed as necessary. The desigindependently and are later superimposed as necessary. The design truck is used first,n truck is used first,followed by the design tandem, and finally, the design lane loadfollowed by the design tandem, and finally, the design lane load..

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 051Page 051

    Example 05Example 05--Solution :Solution :--

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 052Page 052

    Example 05Example 05--Solution :Solution :--

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 053Page 053

    Example 05Example 05--Solution :Solution :--

    Influence Lines and Application of Live LoadsInfluence Lines and Application of Live Loads Page 054Page 054

    Example 05Example 05--Solution :Solution :--

  • 8/14/2019 Brige Design

    60/174

    Page 055Page 055Live Load PlacementLive Load Placement Design EquationDesign Equation Page 056Page 056Live Load PlacementLive Load Placement -- LongitudinalLongitudinal

    Page 057Page 057Live Load PlacementLive Load Placement Design ChartDesign Chart Page 058Page 058Live Load PlacementLive Load Placement Design ChartDesign Chart

  • 8/14/2019 Brige Design

    61/174

    Page 059Page 059Live Load PlacementLive Load Placement Design ChartDesign Chart Page 060Page 060Live Load PlacementLive Load Placement Design ChartDesign Chart

    Pedestrian Live Load: PLPedestrian Live Load: PL Page 061Page 061 Analysis Strategy for LLAnalysis Strategy for LL Page 062Page 062

  • 8/14/2019 Brige Design

    62/174

    Dynamic Load Allowance: IMDynamic Load Allowance: IM Page 063Page 063 Dynamic Load Allowance: IMDynamic Load Allowance: IM Page 064Page 064

    Analysis Strategy for LLAnalysis Strategy for LL Page 065Page 065 Multiple Presence of LLMultiple Presence of LL Page 066Page 066

  • 8/14/2019 Brige Design

    63/174

    Multiple Presence of LLMultiple Presence of LL Page 067Page 067 Distribution of LL to GirdersDistribution of LL to Girders Page 068Page 068

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 069Page 069 AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 070Page 070

  • 8/14/2019 Brige Design

    64/174

    DFDF

    Page 071Page 071

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 072Page 072

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 073Page 073 AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 074Page 074

  • 8/14/2019 Brige Design

    65/174

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 075Page 075 AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 076Page 076

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 077Page 077 AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 078Page 078

    Example 06 :Example 06 :--

    Determine the AASHTODetermine the AASHTO

    distribution factors fordistribution factors for

    bridge shown in Figurebridge shown in Figure

  • 8/14/2019 Brige Design

    66/174

    bridge shown in Figurebridge shown in Figure

    belowbelow..A girder section isA girder section is

    illustrated in Figureillustrated in Figurebelowbelow..

    The system dimensionsThe system dimensions

    and properties are asand properties are as

    followsfollows::

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 079Page 079

    Example 06Example 06 --Solution :Solution :--

    a.a. Interior Beams [A4.6.2.2.2b]Interior Beams [A4.6.2.2.2b] One design lane loaded:One design lane loaded: (Moment)(Moment)

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 080Page 080

    Example 06Example 06 -- Solution :Solution :--

    a.a. Interior Beams [A4.6.2.2.2b]Interior Beams [A4.6.2.2.2b] Two or more design lanes loaded:Two or more design lanes loaded: (Moment)(Moment)

    b.b. Exterior Beams [A4.6.2.2.2d]Exterior Beams [A4.6.2.2.2d] One design lane loadedOne design lane loadedlever rule:lever rule: (Moment)(Moment)

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 081Page 081

    Example 06Example 06 -- Solution :Solution :--

    b.b. Exterior Beams [A4.6.2.2.2d]Exterior Beams [A4.6.2.2.2d] Two or more design lanes loaded:Two or more design lanes loaded: (Moment)(Moment)

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 082Page 082

    Example 06Example 06 -- Solution :Solution :--

    LiveLive--Load MomentsLoad Moments

  • 8/14/2019 Brige Design

    67/174

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 083Page 083

    Example 06Example 06 --Solution :Solution :--

    a.a. Interior Beams [A4.6.2.2.2a]Interior Beams [A4.6.2.2.2a] One design lane loaded:One design lane loaded: (Shear)(Shear)

    a.a. Interior Beams [A4.6.2.2.2a]Interior Beams [A4.6.2.2.2a] Two design lanes loaded:Two design lanes loaded: (Shear)(Shear)

    b.b. Exterior Beams [A4.6.2.2.2b]Exterior Beams [A4.6.2.2.2b] One design lane loaded:One design lane loaded: (Shear)(Shear)

    b.b. Exterior Beams [A4.6.2.2.2b]Exterior Beams [A4.6.2.2.2b] Two design lanes loaded:Two design lanes loaded: (Shear)(Shear)

    AASHTO Girder Distribution Factor (DF)AASHTO Girder Distribution Factor (DF) Page 084Page 084

    Example 06Example 06 -- Solution :Solution :--

    LiveLive--Load ShearsLoad Shears

  • 8/14/2019 Brige Design

    68/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    69/174

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Chapter 05Chapter 05Other Loads on BridgeOther Loads on Bridge

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    70/174

    Other LoadsOther Loads Page 01Page 01

    F i

    Fatigue LoadFatigue Load Page 02Page 02

  • 8/14/2019 Brige Design

    71/174

    FatigueFatigue

    WindWindEarthquakeEarthquake

    Vehicle/ Vessel CollisionVehicle/ Vessel Collision

    Centrifugal ForcesCentrifugal Forces

    Braking ForceBraking Force

    Fatigue LoadFatigue Load Page 03Page 03 Water Loads: WAWater Loads: WA--AASHTO 3.7AASHTO 3.7 Page 04Page 04

    Water Loads: WAWater Loads: WA--AASHTO 3.7AASHTO 3.7 Page 05Page 053.7.33.7.3Stream PressureStream Pressure

    3.7.3.13.7.3.1LongitudinalLongitudinal

    The pressure of flowing water acting in the longitudinal directiThe pressure of flowing water acting in the longitudinal direction of substructureson of substructures

    shall be taken as:shall be taken as:

    Water Loads: WAWater Loads: WA--AASHTO 3.7AASHTO 3.7 Page 06Page 063.7.33.7.3Stream PressureStream Pressure

    3.7.3.23.7.3.2LateralLateral

    The lateral, uniformly distributed pressure on a substructure duThe lateral, uniformly distributed pressure on a substructure due to water flowing ate to water flowing at

    an angle,an angle, , to the longitudinal axis of the pier shall be taken as:, to the longitudinal axis of the pier shall be taken as:

  • 8/14/2019 Brige Design

    72/174

    where:where:

    pp = pressure of flowing water (= pressure of flowing water (ksfksf))

    CCDD = drag coefficient for piers as specified in Table 3.7.3.1= drag coefficient for piers as specified in Table 3.7.3.1 --11

    VV = design velocity of water for the design flood in strength and= design velocity of water for the design flood in strength and service limit statesservice limit states

    and for the check flood in the extreme event limit state (ft/s)and for the check flood in the extreme event limit state (ft/s)

    where:where:

    p = lateral pressure (p = lateral pressure (ksfksf))

    CL = lateral drag coefficient specified in Table 3.7.3.2CL = lateral drag coefficient specified in Table 3.7.3.2--11

    Wind LoadWind Load--AASHTO 3.8AASHTO 3.8 Page 07Page 07 Wind LoadWind Load--AASHTO 3.8AASHTO 3.8 Page 08Page 08

  • 8/14/2019 Brige Design

    73/174

  • 8/14/2019 Brige Design

    74/174

    Vehicular Collision Force: CTVehicular Collision Force: CT Page 17Page 17 Vehicular Collision Force: CTVehicular Collision Force: CT Page 18Page 18

  • 8/14/2019 Brige Design

    75/174

    Centrifugal Forces: CECentrifugal Forces: CE Page 19Page 193.6.33.6.3Centrifugal Forces: CECentrifugal Forces: CE

    Centrifugal forces shall be applied horizontally at a distance 6Centrifugal forces shall be applied horizontally at a distance 6.0 ft above the.0 ft above the

    roadway surface, C taken as:roadway surface, C taken as:

    where:where:

    v = highway design speed (ft/s)v = highway design speed (ft/s)

    f = 4/3 for load combinations other than fatigue and 1.0 for fatf = 4/3 for load combinations other than fatigue and 1.0 for fat igueigue

    g = gravitational acceleration: 32.2 (ft/s2)g = gravitational acceleration: 32.2 (ft/s2)

    R = radius of curvature of traffic lane (ft)R = radius of curvature of traffic lane (ft)Note:Note: The multiple presence factors specified in Article 3.6.1.1.2 shaThe multiple presence factors specified in Article 3.6.1.1.2 shall apply.ll apply.

    Braking Force: BRBraking Force: BR Page 20Page 203.6.43.6.4Braking Force: BRBraking Force: BR

    The braking force shall be taken as the greater of:The braking force shall be taken as the greater of:

    25 %25 % of the axle weights of the design truck or design tandem or,of the axle weights of the design truck or design tandem or,

    5%5% of the design truck plus lane loadof the design truck plus lane load

    5%5% of the design tandem plus lane loadof the design tandem plus lane load

    Note:Note:

    The multiple presence factors specified in Article 3.6.1.1.2 shaThe multiple presence factors specified in Article 3.6.1.1.2 shall apply.ll apply.

    These forces shall be assumed to act horizontally at a distanceThese forces shall be assumed to act horizontally at a distance of 6.0 ft above theof 6.0 ft above theroadway surface in either longitudinal direction to cause extremroadway surface in either longitudinal direction to cause extreme force effects.e force effects.

  • 8/14/2019 Brige Design

    76/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    77/174

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    Chapter 06Chapter 06

    Design of Slab for Bridge DeckDesign of Slab for Bridge Deck

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    78/174

    OutlineOutline Page 01Page 01 Bridge SuperstructureBridge Superstructure Page 02Page 02

  • 8/14/2019 Brige Design

    79/174

    Bridge SuperstructureBridge Superstructure Girder BridgeGirder Bridge Page 03Page 03 Bridge SuperstructureBridge Superstructure Girder BridgeGirder Bridge Page 04Page 04

    Components of BridgeComponents of Bridge Page 05Page 05 OutlineOutline Page 06Page 06

  • 8/14/2019 Brige Design

    80/174

    Table 4.6.2.2.1Table 4.6.2.2.1--11Common Deck SuperstructuresCommon Deck Superstructures Page 07Page 07 Table 4.6.2.2.1Table 4.6.2.2.1--11Common Deck SuperstructuresCommon Deck Superstructures Page 08Page 08

    Table 4.6.2.2.1Table 4.6.2.2.1--11Common Deck SuperstructuresCommon Deck Superstructures Page 09Page 09 Types of DeckTypes of Deck Page 10Page 10

  • 8/14/2019 Brige Design

    81/174

    Types of Slab ReinforcementTypes of Slab Reinforcement Page 11Page 11 Materials: ConcreteMaterials: Concrete Page 12Page 12

    In the absence of measured data, the modulus of elasticity, Ec, for

    concretes with unit weights between 0.090 and 0.155 kcf and specified

    compressive strengths up to 15.0 ksi may be taken as:

    5.4.2.45.4.2.4Modulus of ElasticityModulus of Elasticity

    Materials: ConcreteMaterials: Concrete Page 13Page 13

    5.4.2.45.4.2.4Modulus of ElasticityModulus of Elasticity

    Where:Where:

    K1 = correction factor for source of aggregate to be taken as 1.K1 = correction factor for source of aggregate to be taken as 1.0 unless determined0 unless determined

    by physical test, and as approved by the authority of jurisdictiby physical test, and as approved by the authority of jurisdicti onon

    Materials: ConcreteMaterials: Concrete Page 14Page 14

    5.4.2.65.4.2.6Modulus of RuptureModulus of Rupture

    Unless determined by physical tests, the modulus of rupture,Unless determined by physical tests, the modulus of rupture, ffrr inin ksiksi, for specified, for specified

    concrete strengths up to 15.0concrete strengths up to 15.0 ksiksi, may be taken as:, may be taken as:

  • 8/14/2019 Brige Design

    82/174

    wwcc = unit weight of concrete (= unit weight of concrete (kcfkcf); refer to Table 3.5.1); refer to Table 3.5.1--1 or Article C5.4.2.41 or Article C5.4.2.4ff c = specified compressive strength of concrete (c = specified compressive strength of concrete (ksiksi))

    Note:Note:

    For normal weight concrete withFor normal weight concrete with wcwc = 0.145= 0.145 kcfkcf,, EEcc may be taken as:may be taken as:

    Materials: Reinforcing SteelMaterials: Reinforcing Steel

    Page 15Page 15

    1001008080G80 (Table 2.3)G80 (Table 2.3)

    90906060G60 (Table 2.3)G60 (Table 2.3)

    70704040

    29,00029,000

    G40 (Table 2.3)G40 (Table 2.3)

    FFuu ((ksiksi))FFyy((ksiksi))EEss((ksiksi))Steel gradeSteel grade

    Materials: Reinforcing SteelMaterials: Reinforcing Steel Components of BridgeComponents of Bridge Page 16Page 16

    OutlineOutline Page 17Page 17 Minimum Slab ThicknessMinimum Slab Thickness Page 18Page 18

  • 8/14/2019 Brige Design

    83/174

    Minimum Slab ThicknessMinimum Slab Thickness Page 19Page 19 Slab SpanSlab Span SS Page 20Page 20

    Minimum Cover of ReinforcementMinimum Cover of Reinforcement Page 21Page 21 Minimum CoverMinimum Cover

  • 8/14/2019 Brige Design

    84/174

    Page 22Page 22

    Analysis and Design MethodsAnalysis and Design Methods Page 23Page 23 Empirical MethodEmpirical Method Page 24Page 24

    OutlineOutline Page 25Page 25 Empirical MethodEmpirical Method Page 26Page 26

  • 8/14/2019 Brige Design

    85/174

    Empirical MethodEmpirical Method Page 27Page 27 Empirical MethodEmpirical Method Page 28Page 28

    Strip MethodStrip Method Page 29Page 29 OutlineOutline Page 30Page 30

  • 8/14/2019 Brige Design

    86/174

    Strip MethodStrip Method Page 31Page 31 Strip MethodStrip Method Page 32Page 32

    Strip MethodStrip Method Design AidDesign Aid Page 33Page 33 Strip MethodStrip Method Design AidDesign Aid Page 34Page 34

  • 8/14/2019 Brige Design

    87/174

    Slab DesignSlab Design Page 35Page 35 Slab DesignSlab Design Page 36Page 36

  • 8/14/2019 Brige Design

    88/174

  • 8/14/2019 Brige Design

    89/174

  • 8/14/2019 Brige Design

    90/174

  • 8/14/2019 Brige Design

    91/174

  • 8/14/2019 Brige Design

    92/174

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 57Page 57

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (a):Step 09 (a): Positive Moment ReinforcementPositive Moment Reinforcement

    ft/ft-kip60.669.5224.0685.033.1 LLDWDC MMMM

    The calculation of the transformed section properties is based oThe calculation of the transformed section properties is based on a 1.0n a 1.0--ftft--wide doublywide doublyreinforced section as shown in Figure belowreinforced section as shown in Figure below

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 58Page 58

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (a):Step 09 (a): Positive Moment ReinforcementPositive Moment Reinforcement

    xdnAxdnAbx

    I sscr

    23

    22/3

    72112

    3

    2700

    c

    ss

    e df

    s

    xx

  • 8/14/2019 Brige Design

    93/174

    .1.722

    4

    29.85

    6.190.462.310.497.5c

    7.12546.049.05.7

    6125050

    0.0

    19.646.05.731.249.05.7125.0

    5.0

    2

    /

    /

    2

    2

    /2

    ina

    acbbx

    dAdAn

    AAnb

    .b.a

    where

    cbxax

    xxx

    xdnAxdnAbx

    ss

    ss

    ss

    reinforced section as shown in Figure belowreinforced section as shown in Figure below

    /ftin. 42

    2

    609072.119.646.05.7

    72.131.249.05.73

    72.112

    and the tensile stress in the bottom steel becomes

    ksi29.31

    6090

    72.119.61260.65.7

    .I

    Mynf

    cr

    s

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 59Page 59

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (a):Step 09 (a): Positive Moment ReinforcementPositive Moment Reinforcement

    28.1

    31.10.87.0

    31.11

    7.01

    c

    cs

    dh

    d

    For class 2 exposure conditions, e = 0.75 so that

    in.9at5No.Use

    OK4011

    31123129281

    750700

    2700

    08 max

    in..

    ...

    .

    df

    sin..s

    c

    ss

    e

    2700 css

    e df

    s

    xxxx

    xx

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 60Page 60

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (b):Step 09 (b): Negative Moment ReinforcementNegative Moment Reinforcement

    ft/ft-kip5.43953.4224.0685.033.1 LLDWDC MMMM

    .1.482

    4

    23.0

    5.190.495.71.310.4615.71c

    6.6749.05.746.015.71

    6125050

    0.0

    19.549.05.731.146.015.7125.0

    15.0

    2

    /

    /

    2

    2

    /2

    ina

    acbbx

    dnAdAn

    nAAnb

    .b.a

    where

    cbxax

    xxx

    xdnAdxAnbx

    ss

    ss

    ss

    The calculation of the transformed section properties is based oThe calculation of the transformed section properties is based on a 1.0n a 1.0--ftft--wide doublywide doubly

    reinforced section as shown in Figure belowreinforced section as shown in Figure below

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 61Page 61

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (b):Step 09 (b): Negative Moment ReinforcementNegative Moment Reinforcement

    xdnAdxAnbx

    I sscr

    23

    22/3

    31148146015748.112

    13

    2700

    c

    ss

    e df

    s

    xx

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 62Page 62

    Solution:Solution:--

    Step 09:Step 09: Control of CrackingControl of CrackingGeneralGeneral

    Step 09 (b):Step 09 (b): Negative Moment ReinforcementNegative Moment Reinforcement

    58.1

    31.20.87.0

    31.21

    7.01

    c

    cs

    dh

    d

    For class 1 exposure conditions, e = 1.0 so that

    2700

    c

    ss

    e df

    s

    xxxx

    xx

  • 8/14/2019 Brige Design

    94/174

    /ftin42

    2

    63.6448.119.549.05.7

    31.148.146.015.73

    and the tensile stress in the bottom steel becomes

    ksi28.54

    64.63

    48.119.512439.55.7

    cr

    sI

    Mynf

    For class 1 exposure conditions, e 1.0 so that

    in.7.5at5No.Use

    OK20.11

    31225428581

    0.1700

    2700

    5.7 max

    in.

    ...

    df

    sin.s

    c

    ss

    e

    Step 10: Fatigue Limit StateStep 10: Fatigue Limit State

    Fatigue need not be investigated for concrete decks in multi-girder applications

    [A9.5.3].

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 63Page 63

    Solution:Solution:--

    Step 11:Step 11: The design sketchThe design sketch

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 64Page 64

    Solution:Solution:-- Empirical Design o f Concrete Deck SlabsEmpirical Design o f Concrete Deck Slabs

    1. Design Conditions1. Design Conditions [A9.7.2.4][A9.7.2.4] Design depth subtracts the loss due to wear,Design depth subtracts the loss due to wear, hh ==

    77..5 in. The following conditions must be satisfied:5 in. The following conditions must be satisfied:

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 65Page 65

    Solution:Solution:-- Empirical Design o f Concrete Deck SlabsEmpirical Design o f Concrete Deck Slabs

    2. Reinforcement Requirements [A9.7.2.5]2. Reinforcement Requirements [A9.7.2.5]

    Example: Concrete Deck DesignExample: Concrete Deck Design Page 66Page 66

    Solution:Solution:-- Empirical Design o f Concrete Deck SlabsEmpirical Design o f Concrete Deck Slabs

    3. The design sketch3. The design sketch

  • 8/14/2019 Brige Design

    95/174

  • 8/14/2019 Brige Design

    96/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    97/174

    Prepared by:Prepared by: Dr. RajaiDr. RajaiAlrousanAlrousan

    Chapter 07Chapter 07Design a RC TDesign a RC T--beam bridgebeam bridge

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    98/174

  • 8/14/2019 Brige Design

    99/174

  • 8/14/2019 Brige Design

    100/174

  • 8/14/2019 Brige Design

    101/174

  • 8/14/2019 Brige Design

    102/174

  • 8/14/2019 Brige Design

    103/174

  • 8/14/2019 Brige Design

    104/174

  • 8/14/2019 Brige Design

    105/174

  • 8/14/2019 Brige Design

    106/174

  • 8/14/2019 Brige Design

    107/174

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 37Page 37

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    in.32.1625.359.09.0

    in.35.02/36.1625.352/

    max

    in.36.1

    in.625.35

    d

    ad

    d

    a

    ddd

    e

    e

    v

    sepos

    77--(1)(1) Determine VDetermine Vuu and Mand Muu at a distanceat a distance ddvv from an support.from an support. [A5.8.2.7].[A5.8.2.7].

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 38Page 38

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    8.44875.09167.025

    8.46

    1167.085167.09167.032

    kipsV

    kips

    V

    Ta

    Tr

    77--(1)(1) Determine VDetermine Vuu and Mand Muu at a distanceat a distance

    ddvv from an support.from an support. [A5.8.2.7].[A5.8.2.7].

  • 8/14/2019 Brige Design

    108/174

    in.8.284072.072.0 hev

    Distance from support as a percentage of the spanDistance from support as a percentage of the span

    0.0833120.35

    0.35

    L

    dv

    kips160.77.39167.00833.322

    1254.0

    9.249167.00833.322

    1697.1

    863.704.9100

    3318.46115.175.0

    4.99167.00833.322

    164.0

    833.100

    VkipsV

    kipsV

    kipsV

    kipsV

    DW

    DC

    IMLL

    Ln

    Ta

    Example: Concrete TExample: Concrete T--BeamBeam Page 39Page 39

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    6.8039.11674.20833.322

    1254.0

    41.79674.20833.322

    1697.1

    4.15094.29100

    3315.136948.075.0

    94.29674.20833.322

    164.0

    6.1243406.2674.225

    5.136

    340.08507.1674.232

    833.100 fkMfkM

    fkM

    fkM

    fkM

    ftkM

    ftk

    M

    DW

    DC

    IMLL

    Ln

    Ta

    Tr

    77--(1)(1) Determine VDetermine Vuu and Mand Muu at a distanceat a distance

    ddvv from an support.from an support. [A5.8.2.7].[A5.8.2.7].

    Example: Concrete TExample: Concrete T--BeamBeam Page 40Page 40

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    22/min,

    min

    .

    @

    @

    2

    833.100@

    /

    in40.0in0.11660

    44.7145.40316.00316.0

    :SforCheck

    in.7.446.101

    35604.09.0

    ips101.61.597.160

    neededisntreinforcmeshear59.17.160:1#

    )in40.020.02(stirrupsrect.closed4No.Assume7.16075.150.125.1

    29.552

    59.135145.40632.090.00632.0

    v

    yv

    vcv

    Sv

    vyvvv

    req

    CvdSv

    Cd

    v

    LLDWDCd

    Cv

    vvcvCv

    Af

    SbfA

    V

    dfAS

    kVVV

    kipsVkipsVZone

    AkipsIMVVVVV

    kipsV

    kipsdbfV

    v

    v

    v

    77--(2)(2) Calculate the ultimate concrete shear resistanceCalculate the ultimate concrete shear resistance [A5.8.2.7].[A5.8.2.7].

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 41Page 41

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    in.124.00.125

    in.248.00.125ksi0.364435149.0

    7.160

    :SforCheck

    max

    /

    max

    /@

    max

    vc

    vcvvv

    d

    u

    dSf

    dSfdb

    V

    v

    v

    77--(2)(2) Design for Shear.Design for Shear.

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 42Page 42

    Solution:Solution:--

    Step 07:Step 07: Shear DesignShear Design

    35604090

    kips455.46059.7

    kips269.55.0kips455.4@@

    ys

    s

    v

    d

    fv

    d

    ys

    dfA

    fA

    VV

    d

    MfA vv

    77--(3)(3) Check the adequacy of the longitudinal reinforcement.Check the adequacy of the longitudinal reinforcement.

  • 8/14/2019 Brige Design

    109/174

    2nt whenreinforcmeshearNo:Zone#3

    in.)#4@24(Use2

    whenneededS:Zone#2

    in.)#4@7(Usein.44.7Sin.24

    in.24in.28358.08.0ksi563.00.125ksi0.3644

    @max

    req.max

    max

    /

    C

    u

    CvdCv

    vcu

    V

    V

    VVV

    S

    dSfv

    v

    kips269.51085.09.0

    7.160

    9.035

    126.3805.0

    kips0817

    35604.09.0

    @@

    .

    s

    v

    d

    fv

    d

    req

    vyvvv

    Sv

    VV

    d

    M

    S

    dfAV

    vv

    Note:Note:

    If this equation is not satisfied,If this equation is not satisfied,

    1.1. either the tensile reinforcementeither the tensile reinforcement AAss

    must be increasedmust be increased

    2.2. or the stirrups must be placed closer together to increasesor the stirrups must be placed closer together to increases VVss

    ..

    Example: Concrete TExample: Concrete T--BeamBeam Page 43Page 43

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection (General)(General)

    88--(1)(1) Dead Load Deflection (Dead Load Deflection (DLDL))

    ShortShort--Term (Instanteous) Deflection of Uncracked and Cracked Members:Term (Instanteous) Deflection of Uncracked and Cracked Members:

    LLSDDLTi

    gc

    DLDL

    IELw

    3845

    4

    DL

    SDDL

    gc

    SDSD

    w

    w

    IE

    Lw

    384

    5 4

    88--(2)(2) Superimposed Load Deflection (Superimposed Load Deflection (SDSD))

    Example: Concrete TExample: Concrete T--BeamBeam Page 44Page 44

    Solution:Solution:--

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    beamsNo.

    lanesNo.100

    18

    100132

    384

    5,

    48

    6

    ,6

    80025.0maxmax

    3

    21

    43

    2

    2223

    2221

    %25

    2

    3

    1

    321

    321

    mdeflectionmg

    IMdeflectionmgP

    IMdeflectionmgPP

    IE

    Lw

    EI

    LP

    xbLLEI

    bxP

    xbLLEI

    bxP

    L

    ec

    LnLane

    e

    P

    e

    P

    e

    P

    all

    LanePPP

    PPP

    LaneTruck

    Truck

    LL

    Step 08:Step 08: Calculate the deflectionCalculate the deflection (General)(General)

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 45Page 45

    Solution:Solution:--

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    IfM

    II

    M

    MI

    M

    MI

    gr

    cr

    gcr

    a

    crg

    a

    cre

    1

    33

    Step 08:Step 08: Calculate the deflectionCalculate the deflection (General)(General)

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 46Page 46

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection

    88--(1)(1) Dead Load Deflection (Dead Load Deflection (DLDL))

    in.0.102

    898,1443860384

    123512/697.15

    384

    5 44

    gc

    DLDL

    IE

    Lw

    88--(2)(2) Superimposed Load Deflection (Superimposed Load Deflection (SDSD))

  • 8/14/2019 Brige Design

    110/174

    IMMmgMMM

    y

    TrdeflectionDWDCa

    t

    cr

    1105,105,105,105,

    88--(4)(4) Longtime Deflections (Longtime Deflections (LTLT))

    e/

    g

    Ionbasedisdeflectionousinstantanefor1.62.10.3

    Ionbasedisdeflectionousinstantanefor0.4240

    L1

    s

    s

    TiLT

    A

    A

    in.0.0153898,1443860384

    123512/254.05

    384

    5 44

    gc

    SDSD

    IE

    Lw

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    425.06

    385.0

    beamsNo.

    lanesNo.

    ft-kip22212/27.70

    144,898

    509.0

    mdeflectionmg

    y

    I

    fMt

    g

    rcr

    Example: Concrete TExample: Concrete T--BeamBeam Page 47Page 47

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    44

    33

    33

    105,105,105,105,

    in898,144in65,413938,5113,475

    263,57490

    2221898,144

    490

    222

    1

    ft-k490100

    33

    1350425.02.320.260

    1

    35075.183275.832

    e

    gcr

    a

    crg

    a

    cre

    TrdeflectionDWDCa

    Tr

    I

    IIM

    MI

    M

    MI

    IMMmgMMM

    k- ftM

    Example: Concrete TExample: Concrete T--BeamBeam Page 48Page 48

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    in.0.01652/1235125.312351235413,65860,36

    2/1235125.352.4

    6

    in.0.0662/1235125.312351235413,65860,36

    2/1235125.31.18

    6

    kips52.4100

    3318425.0

    10018

    kips1.18100

    33132425.0

    100132

    80025.0maxmax

    222

    2223

    222

    2221

    3

    21

    %25

    3

    1

    321

    321

    xbLLEI

    bxP

    xbLLEI

    bxP

    IMdeflectionmgP

    IMdeflectionmgPP

    L

    e

    P

    e

    P

    all

    LanePPP

    PPP

    LaneTruck

    Truck

    LL

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 49Page 49

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    in.0.0165

    in.0.066

    80025.0maxmax

    %25

    3

    1

    321

    321

    L

    P

    P

    all

    LanePPP

    PPP

    LaneTruck

    Truck

    LL

    Example: Concrete TExample: Concrete T--BeamBeam

    Page 50Page 50

    Solution:Solution:--

    Step 08:Step 08: Calculate the deflectionCalculate the deflection

    88--(3)(3) Live Load Deflection (Live Load Deflection (LLLL))

    in.0.3051877.00153.0102.0 LLSDDLTi

    88--(4)(4) Longtime Deflections (Longtime Deflections (LTLT))

    1 6030

    2103

  • 8/14/2019 Brige Design

    111/174

    in.0.525800

    1235

    800in.1877.0

    0.1325

    0.1877max

    0856.0111.001065.0066.025.0111.001065.0066.0max

    in.0.0856413,65860,3384

    123512/64.05

    384

    5

    in.0.111413,65860,348

    12351.18

    48

    44

    33

    2

    2

    3

    L

    IE

    Lw

    EI

    LP

    all

    LL

    ec

    LnLane

    e

    P

    P

    in.1.75240

    1235

    240

    Lin.1.2231305.01

    1.60.359.7

    2.10.3

    TiLT

  • 8/14/2019 Brige Design

    112/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    113/174

    Prepared by:Prepared by: Dr. RajaiDr. RajaiAlrousanAlrousan

    Chapter 08Chapter 08BearingsBearings

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    114/174

    Load TransferLoad Transfer Page 01Page 01 Components of BridgeComponents of Bridge Page 02Page 02

  • 8/14/2019 Brige Design

    115/174

    BearingBearing Page 03Page 03 BearingBearing Page 04Page 04

    Forces and Movements on BearingForces and Movements on Bearing Page 05Page 05 Types of BearingTypes of Bearing Page 06Page 06

  • 8/14/2019 Brige Design

    116/174

    Rocker/ Pin/ Roller BearingRocker/ Pin/ Roller Bearing Page 07Page 07 Rocker/ Pin/ Roller BearingRocker/ Pin/ Roller Bearing Page 08Page 08

    Elastomeric BearingElastomeric Bearing Page 09Page 09 Elastomeric Bearing with SliderElastomeric Bearing with Slider Page 10Page 10

  • 8/14/2019 Brige Design

    117/174

    Elastomeric BearingElastomeric Bearing Page 11Page 11 Curved BearingCurved Bearing Page 12Page 12

    Curved BearingCurved Bearing Page 13Page 13 Pot BearingPot Bearing Page 14Page 14

  • 8/14/2019 Brige Design

    118/174

    Pot BearingPot Bearing Page 15Page 15 Disk BearingDisk Bearing Page 16Page 16

    Which type of bearing should I use?Which type of bearing should I use? Page 17Page 17 Which type of bearing should I use?Which type of bearing should I use? Page 18Page 18

    TABLE 1:TABLE 1: Summery of Bearing CapacitiesSummery of Bearing Capacities

  • 8/14/2019 Brige Design

    119/174

  • 8/14/2019 Brige Design

    120/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    121/174

    CE 536 Bridge Engineering

    Prepared by:Prepared by: Dr. RajaiDr. RajaiAlrousanAlrousan

    Chapter 09Chapter 09SubstructuresSubstructures

  • 8/14/2019 Brige Design

    122/174

    Types of SubstructuresTypes of Substructures Page 01Page 01 Types of SubstructuresTypes of Substructures Page 02Page 02

  • 8/14/2019 Brige Design

    123/174

    Loads on SubstructuresLoads on Substructures Page 03Page 03 Loads from SuperstructureLoads from Superstructure Page 04Page 04

    Loads from SuperstructureLoads from Superstructure Page 05Page 05 Wind Loads (WS, WL)Wind Loads (WS, WL) Page 06Page 06

  • 8/14/2019 Brige Design

    124/174

    Vehicle Collision Forces (CT)Vehicle Collision Forces (CT) Page 07Page 07 Load CombinationsLoad Combinations Page 08Page 08

    Load CombinationsLoad Combinations Page 09Page 09 Design of Abutment and Retaining SubstructuresDesign of Abutment and Retaining Substructures Page 10Page 10

  • 8/14/2019 Brige Design

    125/174

    Roles and TypesRoles and Types Page 11Page 11 Types of AbutmentTypes of Abutment Page 12Page 12

    Types of AbutmentTypes of Abutment Page 13Page 13 Types of AbutmentTypes of Abutment Page 14Page 14

  • 8/14/2019 Brige Design

    126/174

    Types of AbutmentTypes of Abutment Page 15Page 15 Failure Limit StatesFailure Limit States Page 16Page 16

    Failure Limit StatesFailure Limit States Page 17Page 17 Loads on Abutment from SuperstructureLoads on Abutment from Superstructure Page 18Page 18

  • 8/14/2019 Brige Design

    127/174

    Loads on AbutmentLoads on Abutment Page 19Page 19 Loads on AbutmentLoads on Abutment Page 20Page 20

    Pressures generated by the Live Load and Dead Load Surcharges:Pressures generated by the Live Load and Dead Load Surcharges:

    Loads on AbutmentLoads on Abutment Page 21Page 21Defined the other loadsDefined the other loads

    Loads on AbutmentLoads on Abutment Page 22Page 22Dead load of the abutmentDead load of the abutment

  • 8/14/2019 Brige Design

    128/174

    Loads on AbutmentLoads on Abutment Page 23Page 23

    Soil Pressure DistributionSoil Pressure Distribution

    Loads on AbutmentLoads on Abutment Page 24Page 24

    Soil Pressure DistributionSoil Pressure Distribution

    Loads on AbutmentLoads on Abutment Page 25Page 25

    Soil Pressure DistributionSoil Pressure Distribution

    Configuration of abutment design load and loadConfiguration of abutment design load and load

    combinationscombinations Page 26Page 26

    TABLE 1:TABLE 1:Abutment Design Loads (Service Load Design)Abutment Design Loads (Service Load Design)

  • 8/14/2019 Brige Design

    129/174

    Configuration of abutment design load and loadConfiguration of abutment design load and loadcombinationscombinations

    Page 27Page 27

    TABLE 1:TABLE 1:Abutment Design Loads (Service Load Design)Abutment Design Loads (Service Load Design)

    Configuration of abutment design load and loadConfiguration of abutment design load and loadcombinationscombinations

    Page 28Page 28

    Table 11.5.6Table 11.5.6--11 Resistance Factors for Permanent Retaining WallsResistance Factors for Permanent Retaining Walls

    Configuration of abutment design load and loadConfiguration of abutment design load and load

    combinationscombinations Page 29Page 29

    Table 11.5.6Table 11.5.6--11 Resistance Factors for Permanent Retaining WallsResistance Factors for Permanent Retaining Walls

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations Page 30Page 30

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations

    Abutment Wingwall

    Abutment Drainage

    Abutment Slope Protection

  • 8/14/2019 Brige Design

    130/174

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations Page 31Page 31

    (1) Abutment(1) Abutment

    WingwallWingwall

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations Page 32Page 32

    Design loading forDesign loading forcantilevercantileverwingwallwingwall(1) Abutment(1) Abutment

    WingwallWingwall

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations

    Page 33Page 33(2) Abutment Drainage(2) Abutment Drainage

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations

    Page 34Page 34(3) Abutment Slope Protection(3) Abutment Slope Protection

  • 8/14/2019 Brige Design

    131/174

    Miscellaneous Design ConsiderationsMiscellaneous Design Considerations Page 35Page 35

    (3) Abutment Slope Protection(3) Abutment Slope Protection

    Reinforced Concrete AbutmentReinforced Concrete Abutment Page 36Page 36

    Design of AbutmentDesign of Abutment

    Step 1:Step 1: Select Preliminary Proportions of the Wall.

    Step 2:Step 2: Determine Loads and Earth Pressures.

    Step 3:Step 3: Calculate Magnitude of Reaction Forces on Base

    Step 4:Step 4: Check Stability and Safety Criteria

    a. Location of normal component of reactions.

    b. Adequacy of bearing pressure.

    c. Safety against sliding.

    Step 5:Step 5: Revise Proportions of Wall and Repeat Steps 2-4 Until Stability Criteria

    is Satisfied and Then Check

    a. Settlement within tolerable limits.

    b. Safety against deep-seated foundation failure.

    Step 6:Step 6: If Proportions Become Unreasonable, Consider a Foundation Supported

    on Driven Piles or Drilled Shafts.

    Typical Abutment Design SketchTypical Abutment Design Sketch

    Page 37Page 37

    TypicalTypical WingwallWingwall Design SketchDesign Sketch

    Page 38Page 38

  • 8/14/2019 Brige Design

    132/174

    Design of Retaining SubstructuresDesign of Retaining Substructures Page 39Page 39 Types of Retaining StructuresTypes of Retaining Structures Page 40Page 40

    Types of Retaining StructuresTypes of Retaining Structures Page 41Page 41

    Types of Retaining StructuresTypes of Retaining Structures Page 42Page 42

  • 8/14/2019 Brige Design

    133/174

    Types of Retaining StructuresTypes of Retaining Structures Page 43Page 43 Typical loads on retaining wallTypical loads on retaining wall Page 44Page 44

    Lateral LoadLateral LoadPage 45Page 45

    Lateral LoadLateral LoadPage 46Page 46

  • 8/14/2019 Brige Design

    134/174

    Typical Retaining wall Design SketchTypical Retaining wall Design Sketch Page 47Page 47 Design of PiersDesign of Piers Page 48Page 48

    PiersPiersPage 49Page 49

    PiersPiersPage 50Page 50

  • 8/14/2019 Brige Design

    135/174

    PiersPiers Page 51Page 51 PiersPiers Page 52Page 52

    PierPier ShpesShpes

    Page 53Page 53

    PierPier ShpesShpes

    Page 54Page 54

  • 8/14/2019 Brige Design

    136/174

    Pier TypesPier Types--Steel BridgesSteel Bridges Page 55Page 55

    Figure 1:Figure 1: Typical pier types for steel bridges.Typical pier types for steel bridges.

    Pier TypesPier Types-- river and waterway crossingsriver and waterway crossingsPage 56Page 56

    Figure 2:Figure 2: Typical pier types and configurations for river and waterway crTypical pier types and configurations for river and waterway crossings. .ossings. .

    Pier TypesPier Types--Concrete BridgesConcrete Bridges

    Page 57Page 57

    Figure 3:Figure 3: TypicalTypical

    pier types forpier types for

    Concrete bridges.Concrete bridges.

    Pier SelectionPier SelectionPage 58Page 58

  • 8/14/2019 Brige Design

    137/174

    Pier Selection GuidelinesPier Selection Guidelines Page 59Page 59 Strength Limit StatesStrength Limit States Page 60Page 60

    Loads on Piers from SuperstructureLoads on Piers from Superstructure

    Page 61Page 61

    Loads on Piers ItselfLoads on Piers ItselfPage 62Page 62

  • 8/14/2019 Brige Design

    138/174

    Pier Load Analysis for Wind LoadsPier Load Analysis for Wind Loads Page 63Page 63 Reinforced ConcreteReinforced Concrete ShortShort ColumnsColumns Page 64Page 64

    Reinforced ConcreteReinforced Concrete ShortShort ColumnsColumnsPage 65Page 65

    Reinforced ConcreteReinforced Concrete ShortShort ColumnsColumnsPage 66Page 66

  • 8/14/2019 Brige Design

    139/174

    Reinforced ConcreteReinforced Concrete ShortShort ColumnsColumns Page 67Page 67 Reinforced ConcreteReinforced Concrete ShortShort ColumnsColumns Page 68Page 68

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumnsPage 69Page 69

    Slenderness ratio

    klu /r k = effective length factor (reflecting the end restraint

    and lateral bracing conditions of a column)

    lu = unsupported column length

    r = radius of gyration (reflecting the size and shape of al ti )

    The degree of slenderness in a column is expressed in

    terms of "slenderness ratio," defined below:

    Slenderness EffectsSlenderness EffectsReinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns

    Page 70Page 70

    Unsupported Length,Unsupported Length, lluu

    The unsupported length (lu) of a column is measured as the clear distance between

    the underside of the beam, slab, or column capital above, and the top of the beam

    or slab below.

  • 8/14/2019 Brige Design

    140/174

    column cross-section)

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns Page 71Page 71

    Effective Length Factor, kEffective Length Factor, k

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns Page 72Page 72

    For compression members in a nonsway

    frame, an upper bound to the effective

    length factor may be taken as the smaller

    of the values given by the following two

    expressions (ACI R10.12.1. )0.82

    columnofiendat/

    /

    0.1)(05.085.0

    0.1)(05.07.0

    min

    BeamsB

    Columnsc

    i

    BA

    lEI

    lEI

    k

    k

    Effective Length Factor, kEffective Length Factor, k

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumnsPage 73Page 73

    Radius of Gyration, rRadius of Gyration, r

    The radius of gyration introduces the effects of cross-sectional size and shape to

    slenderness. For the same cross-sectional area, a section with higher moment of

    inertia produces a more stable column with a lower slenderness ratio. The radius

    of gyration r is defined below.

    AIr

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumnsPage 74Page 74

    Slenderness effects may be neglected for columns in non-sway frames if the

    following inequality is satisfied:

    Where

    M1/M

    2is the ratio of smaller to

    larger end moments.

    M1/M2 is negative value when

    the column is bent in double

    curvature

    40/1234 21 MMr

    klu

  • 8/14/2019 Brige Design

    141/174

    M1/M2 is positive when it is bent

    in single curvature.

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns Page 75Page 75

    Design of Slender ColumnsDesign of Slender Columns

    Slender columns in sway frames are designed for factored axial force Pu and

    amplified moment Mc. The amplified moment is obtained by

    Where moment magnification factor (ns) in is obtained by

    The critical column load, Pc (Euler buckling load) is;

    EI is computed either with

    11 22

    ssbbc MMM 22

    d

    sesgc IEIEEI

    1

    2.0

    22

    u

    ckl

    EIP

    0.1

    75.0

    1

    10.1

    75.01

    c

    u

    s

    c

    u

    mb

    P

    P

    P

    P

    C

    d

    gcIEEI

    1

    4.0

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns Page 76Page 76

    Design of Slender ColumnsDesign of Slender Columns

    Where the moment of inertia of reinforcement about the cross-sectional centroid (Ise) equal

    2318.0 bhI tse2325.0 bhI tse

    2313.0 bhI tse

    2322.0 bhI tse24

    10.0 hI tse

    faceperbars612.0

    faceperbars317.0

    23

    23

    bhI

    bhI

    tse

    tse

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumnsPage 77Page 77

    Coefficient Cm is equal to

    40.04.06.02

    1

    M

    MCm

    Design of Slender ColumnsDesign of Slender Columns

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumnsPage 78Page 78

    Design of Slender ColumnsDesign of Slender Columns

    An outline of the separate steps in the analysis/design procedurAn outline of the separate steps in the analysis/design procedure for swaye for sway

    frames follows along these lines:frames follows along these lines:

    Step 1:Step 1:

    Determine factored design forces:

    Note: M1 is the lower and M2 is the higher end moment.

    Step 2:Step 2:

    Calculate slenderness ratio klu/r

    i) Find unsupported column length, luii) Find the radius of gyration, r

    iii) Find effective length factor "k."

  • 8/14/2019 Brige Design

    142/174

    Figure 1 Figure 2

    ) d e ec ve e g ac o .

    This requires the calculation of stiffness ratios at the ends. First find

    beam and column stiffness.

    Step 3:Step 3:

    Check if slenderness can be neglected

    Reinforced ConcreteReinforced Concrete SlenderSlender ColumnsColumns Page 79Page 79

    Design of Slender ColumnsDesign of Slender Columns

    An outline of the separate steps in the analysis/design procedurAn outline of the separate steps in the analysis/design procedure for swaye for sway

    frames follows along these lines:frames follows along these lines:

    Step 4:Step 4:

    Compute moment magnification factor (b) and (s)

    i) Compute critical load Pcii) Compute Cmiii) Moment magnification factor (b) and (s)

    Step 5:Step 5:Compute amplified moment Mc

    Step 6:Step 6:

    Select reinforcement ratio and design the

    column section

    gc

    un

    Af

    PK

    /

    /ComputeA)

    hAf

    MR

    gc

    un /

    /ComputeB)

    CE 536 Bridge Engineering

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    143/174

    CE 536 Bridge Engineering

    Prepared by:Prepared by: Dr. RajaiDr. RajaiAlrousanAlrousan

    Chapter 10Chapter 10

    Bridge Management SystemsBridge Management Systems

  • 8/14/2019 Brige Design

    144/174

  • 8/14/2019 Brige Design

    145/174

  • 8/14/2019 Brige Design

    146/174

    CE 536 Bridge Engineering

    Jordan University of Science and TechnologyJordan University of Science and Technology

  • 8/14/2019 Brige Design

    147/174

    CE 536 Bridge Engineering

    Prepared by:Prepared by: Dr. RajaiDr. RajaiAlrousanAlrousan

    Chapter 11Chapter 11

    InspectionInspection

  • 8/14/2019 Brige Design

    148/174

  • 8/14/2019 Brige Design

    149/174

    11.3.1.111.3.1.1 Inspection of concrete decks and slabsInspection of concrete decks and slabs

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    ShrinkageShrinkage

    Temperature changesTemperature changes

    Bending loadingBending loading

    Shear loadingShear loading

    Freezing and thawingFreezing and thawing

    Corrosion of reinforcementCorrosion of reinforcement

    Sulfate or aggregate reactions.Sulfate or aggregate reactions.

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    In particular, a basic horizontal and vertical pattern with someIn particular, a basic horizontal and vertical pattern with some branching thatbranching that

    Concrete cracks due to tensile forces fromConcrete cracks due to tensile forces from

    Page 05Page 05

    11.3.1.111.3.1.1 Inspection of concrete decks and slabsInspection of concrete decks and slabs

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    Page 06Page 06

  • 8/14/2019 Brige Design

    150/174

    p , pp p ggsurrounds the larger aggregate particles could indicate a chemicsurrounds the larger aggregate particles could indicate a chemical attack. If thisal attack. If thisis suspected, ais suspected, a petrographicpetrographic examination should be carried out to establish itsexamination should be carried out to establish its

    presence or otherwise.presence or otherwise.

    Common Crack Locations and Types in Concrete StructuresCommon Crack Locations and Types in Concrete Structures

    Page 07Page 07

    Sulfate or aggregate reactionsSulfate or aggregate reactions

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Alkali Silica ReactionAlkali Silica Reaction

    Page 08Page 08

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Page 09Page 09

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Page 10Page 10

  • 8/14/2019 Brige Design

    151/174

    Shrinkage CracksShrinkage Cracks Temperature changesTemperature changes

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Page 11Page 11 11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR

    11.3.1 Superstructures11.3.1 Superstructures11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Page 12Page 12

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Page 13Page 13

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR11.3.1 Superstructures11.3.1 Superstructures

    11.3.1.1.111.3.1.1.1 Cracking:Cracking:

    Concrete Crack with Guidlines

    Type of Crack Width (mm)

    Hairline (HL) w 0.1

    Narrow (Fine) (N) 0.1< w 0.3

    Medium (M) 0.3< w 0.7

    Wide (W) w > 0.7

    Page 14Page 14

  • 8/14/2019 Brige Design

    152/174

    Crack width measuring ruleCrack width measuring rule

    11.3.1.111.3.1.1 Inspection of concrete decks and slabsInspection of concrete decks and slabs

    11.3.1.1.211.3.1.1.2 SpallingSpalling

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR

    11.3.1 Superstructures11.3.1 Superstructures

    Under pressure (for example, due to freezeUnder pressure (for example, due to freeze--thaw action) bits of concrete can fallthaw action) bits of concrete can fallaway from the deck leaving a crater, which defines the fractureaway from the deck leaving a crater, which defines the fracture surface.surface.

    The cause is often due to corrosion of reinforcement where the vThe cause is often due to corrosion of reinforcement where the volume of theolume of thecorrosion products is much greater than the virgin steel and thecorrosion products is much greater than the virgin steel and the resulting pressureresulting pressurecauses local fracture of the concretecauses local fracture of the concrete

    Typical spalling due to corroding steelTypical spalling due to corroding steel

    Page 15Page 15

    11.3.1.111.3.1.1 Inspection of concrete decks and slabsInspection of concrete decks and slabs

    11.3.1.1.311.3.1.1.3 Corrosion of reinforcementCorrosion of reinforcement

    11.3 WHAT TO LOOK FOR11.3 WHAT TO LOOK FOR

    11.3.1 Superstructures11.3.1 Superstructures

    In its early stages this can be detected by surface discoloratioIn its early stages this can be detected by surface discoloration and rust stains, andn and rust stains, andlater (when it has advanced) by spalling.later (when it has advanced) by spalling.

    The location and extent of any discoloration are recorded and aThe location and extent of any discoloration are recorded and a cover meter survey iscover meter survey iscarried outcarried out

    Typical spalling due to corroding steelTypical spalling due to corroding steel

    Page 16Page 16

  • 8/14/2019 Brige Design

    153/174

  • 8/14/2019 Brige Design

    154/174

  • 8/14/2019 Brige Design

    155/174

  • 8/14/2019 Brige Design

    156/174

  • 8/14/2019 Brige Design

    157/174

  • 8/14/2019 Brige Design

    158/174

    11.8 PLANNING AN INSPECTION11.8 PLANNING AN INSPECTION11.8.1 Condition Ratings11.8.1 Condition Ratings

    The following general condition ratings shall be used as a guideThe following general condition ratings shall be used as a guide in evaluatingin evaluatingItems:Items:

    Page 41Page 41 Page 42Page 42

  • 8/14/2019 Brige Design

    159/174

    Page 43Page 43 Page 44Page 44

    Page 45Page 45

  • 8/14/2019 Brige Design

    160/174

    Page 46Page 46

    Page 47Page 47 Page 48Page 48

    Page 49Page 49

  • 8/14/2019 Brige Design

    161/174

  • 8/14/2019 Brige Design

    162/174

    Jordan University of Science and TechnologyJordan University of Science and Technology

    CE 536 Bridge Engineering

  • 8/14/2019 Brige Design

    163/174

    Prepared by:Prepared by: Dr. Rajai AlrousanDr. Rajai Alrousan

    AppendixAppendix

  • 8/14/2019 Brige Design

    164/174

    Page 02Page 02

  • 8/14/2019 Brige Design

    165/174

    Chapter 02:Chapter 02:Preliminary DesignPreliminary Design

    Page 01Page 01

    Page 03Page 03

  • 8/14/2019 Brige Design

    166/174

    Page 04Page 04

    Live Load PlacementLive Load Placement Design EquationDesign Equation

  • 8/14/2019 Brige Design

    167/174

    Chapter 04:Chapter 04:Loads on BridgeLoads on Bridge

    Page 05Page 05 Page 06Page 06

  • 8/14/2019 Brige Design

    168/174

    Live Load PlacementLive Load Placement Design ChartDesign Chart

  • 8/14/2019 Brige Design

    169/174

    Page 09Page 09 Page 10Page 10

  • 8/14/2019 Brige Design

    170/174

    Chapter 06:Chapter 06:

    f l b ff l b f

  • 8/14/2019 Brige Design

    171/174

    Design of Slab forDesign of Slab forBridge DeckBridge Deck

    Page 13Page 13 Page 14Page 14

    Page 15Page 15

  • 8/14/2019 Brige Design

    172/174

    Page 16Page 16

  • 8/14/2019 Brige Design

    173/174

    Page 17Page 17 Page 18Page 18

    Chapter 07:Chapter 07:

    D i RC TD i RC T

  • 8/14/2019 Brige Design

    174/174

    Design a RC TDesign a RC T--beam bridgebeam bridge

    Page 19Page 19 Page 19Page 19