17

Burkard Hillebrands Fachbereich Physik Technische Universität …kreisel/BEC_finite_k_Natal.pdf · 2010. 9. 28. · E k y [GHz] £ k = 90 ± E 0 E s 1) numerical diagonalization

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Magnon BEC at finite momentum

    From textbook knowledge towards BEC of magnons

    Andreas Kreisel, Francesca Sauli,Johanes Hick, Lorenz Bartosch,Peter KopietzInstitut für Theoretische PhysikGoethe Universität FrankfurtGermany

    SFB TRR 49

    European Physical Journal B 71, 59 (2009)Rev. Sci. Instrum. 81, 073902 (2010)arXiv:1007.3200

    Christian Sandweg, Matthias Jungfleisch,Vitaliy Vasyucka, Alexander Serga, Peter

    Clausen, Helmut Schultheiss,Burkard HillebrandsFachbereich Physik

    Technische Universität KaiserslauternGermany

  • 2

    1. Introduction:Spin-wave theory

    � Heisenberg model

    � determine ordered classical groundstate ferromagnet

    classical groundstate=quantum groundstate

    anti-ferromagnet(2 sublattices, Néel groundstate)

    triangular anti-ferromagnet(3 sublattices, frustration)Chernychev, Zhitomirsky ('09)Veillette et al. ('05)AK, Kopietz (in preparation)

    H =X

    ij

    Jij ~Si ¢ ~Sj

    AK, Hasselmann, Kopietz, '07AK, Sauli, Hasselmann, Kopietz, '08

  • 3

    1. Spin wave theory

    � expand in terms of bosons (1/S expansion), Holstein-Primakoff transformation

    � determine properties of resulting interacting theory of bosons

    0

    1

    2

    −1

    −2

    Ŝz = S ¡ n̂ n̂ = b̂yb̂ hb̂; b̂y

    i= 1

    r

    1¡ n̂2S

    = 1¡ n̂4S

    +O( 1S2)

    Ŝ+ =p2S

    r

    1¡ n̂2Sb̂

    Ŝ¡ =p2Sb̂y

    r

    1¡ n̂2S

    H=X

    ij

    Jij ~Si ¢~Sj

    H =X

    ~k

    E~kby~kb~k +

    X

    ~k1;~k2;~k3

    ¡3(~k1;~k2; ~k3)by~k1b~k2b~k3 +

    X

    1;2;3;4

    ¡4(1; 2; 3; 4)by1by2b3b4 + : : :

    Holstein, Primakoff, Phys. Rev. 58, 1098 (1940)

  • 4

    1. Spin wave theory:General results

    � ferromagnet

    quadratic excitation spectrum vanishing interaction vertices

    � antiferromagnet linear spectrum

    (Goldstone mode) two modes in magnetic field

    (2 sublattices) divergent interaction vertices

    ¡4 »s

    j~k1jj~k2jj~k3jj~k4j

    Ã

    1§~k1 ¢ ~k2j~k1jj~k2j

    !

    ¡4 » ¡(~k1 ¢ ~k2 + ~k3 ¢ ~k4)

    Hasselmann, Kopietz ('06)

  • 5

    2.1 Spin-wave theory for thin film ferromagnets

    � Motivation: Experiments on YIG Crystal structure:

    space group: Ia3dY: 24(c) whiteFe: 24(d) greenFe: 16(a) brownO: 96(h) red

    low spin wave damping good experimental control

    Gilleo et al. 58

    Magnetic system:40 magnetic ions in elementary cell40 magnetic bands

    Elastic system:160 atoms inelementary cell3x160 phonon bands

    103

    104

    105

    2.5

    3

    3.5

    4

    4.5

    Parametric pumping of magnons at high k-vectors creates magnetic excitations

    Observation of the occupation number using microwave antennas or Brillouin Light Scattering (BLS)Sandweg, et al., Rev. Sci. Instrum. 81, 073902 (2010)

    BEC of magnons at room temperature!Demokritov et al. Nature 443, 430 (2006)

    Question:Time evolution of magnons:Non-equilibrium physics of interacting quasiparticles

  • 6

    2.1 Simplifications to relevant physical properties

    crystal structure of YIG microscopic Hamiltonian

    quantum spin S ferromagnet

    dipole-dipoleinteractionsZeeman term

    Ĥmag=¡1

    2

    X

    ij

    JijS i ¢ Sj ¡ hX

    i

    Szi

    ¡ 12

    X

    i

    X

    j 6=i

    ¹2

    jrij j3[3(S i ¢ r̂ij)(Sj ¢ r̂ij)¡ S i ¢ Sj ]

    AK, Sauli, Bartosch, Kopietz ('09)

  • 7

    2.1 Linear Spin Wave Theory

    � classical groundstate for stripe geometry� Holstein Primakoff transformation (bosons)

    � partial Fourier transformation (quasi 2D)

    dipolar tensor

    Ĥ2 =X

    ij

    ·Aijb

    yibj +

    Bij

    2

    ³bibj + b

    yibyj

    ´¸

    Aij = ±ijh+ S(±ijX

    n

    Jin ¡ Jij) + S"

    ±ijX

    n

    Dzzin ¡Dxxij +D

    yyij

    2

    #

    ;

    Bij = ¡S

    2[Dxxij ¡ 2iDxyij ¡D

    yyij ]

    Filho Costa et al. Sol. State Comm. 108, 439 (1998)

  • 8

    2.1 Linear Spin-wave theory: Numerical approach

    102

    103

    104

    105

    106

    4

    4.5

    5

    5.5

    ky [cm

    −1]

    Ek

    y

    [G

    Hz] Θk = 90◦

    E0

    Es

    1) numerical diagonalization of 2Nx2N matrix

    E0 =ph(h+ 4¼¹Ms)

    Es = h+ 2¼¹Ms

    hybridization: surface mode

    2) evaluation of dipol sums(Ewald summation technique)

    d = 400a ¼ 0:5¹m N = 400

    minimum for BEC

    Demokritov et al. 06

    Bartosch et al. 06

    He = 700 Oe

    H2 =

    ÃA ~k B ~k

    ¡B T ~k ¡A ~k

    !

  • 9

    2.1 Linear spin-wave theory: Analytical approach

    � dispersion via Bogoliubov transformation

    � no dipolar interaction:

    � uniform mode approximation

    � lowest eigenmode approximation

    ¢ = 4¼¹MS

    ¢ = 0

    Ĥ =X

    ~k

    hA~kb

    y~kb~k +

    B~k2b~kb~k +

    B¤~k2by~kby~k

    i

    E~k =

    q[h+ ½ex~k2 +¢(1¡ f~k) sin

    2£~k][h+ ½ex~k2 +¢f~k]

    E~k = h+ ½ex~k2

    f~k =1¡ e¡j~kjd

    j~kjd

    f~k = 1¡j~kdjj~kdj3+j~kdj¼2+2¼2(1+e¡j~kdj)

    (~k2d2 + ¼2)2

    compare: Kalinikos et al. 86Tupitsyn et al. 08

    AK, Sauli, Bartosch, Kopietz ('09)

  • 10

    102

    103

    104

    105

    106

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    kz [cm

    −1]

    Ek

    z

    [G

    Hz]

    Θk = 0◦

    E0

    2.1 Comparison

    blue: analytical (uniform)green: analytical (eigenmode)black: numerical

    small deviations

    ferromagnetic resonance

    E~k =

    q[h+ ½ex~k2 +¢(1¡ f~k) sin

    2£~k][h+ ½ex~k2 +¢f~k]

    d = 400a ¼ 0:5¹mHe = 700 Oe

  • 11

    2.2 Condensate in YIG:BEC at finite momentum

    � Hamiltonian

    � new features for YIG system condensate at finite wave-vectors

    possible 2 condensates

    explicitly symmetry breaking term

    parallel pumping

    H2 =X

    ~k

    ²~kby~kb~k +

    1

    2

    X¡°byby + °¤bb

    ¢

    Ák = ±k;kminÁ0

    ²~k = ²¡~k

    Ák = ±k;kminÁ+0 + ±k;¡kminÁ

    ¡0

    103

    104

    105

    2.5

    3

    3.5

    4

    4.5

    −1

    −0.5

    0

    0.5

    1

    −1

    −0.5

    0

    0.5

    1

    −0.04

    −0.03

    −0.02

    −0.01

    0

    Napoleons hat potential

  • 12

    2.2 BEC at finite momentum

    � Euclidean action

    � Bogoliubov shift� Gross-Pitaevskii equation from stationary

    point

    � two component BEC does not solve GPE

    S[©] = S2[©]+ S3[©]+ S3[©]

    S2[©] =1

    2

    Z ¯

    0

    d¿X

    k

    (©¹a¡k ;©a¡k)

    µ@¿ + ²k ¡ ¹ °k

    °k ¡@¿ + ²k ¡ ¹

    ¶Ã©ak©¹ak

    !

    Á¾k = ±k;qþn + ±k;¡qÃ

    ¾n

    ©~k(¿) = Á~k + ±©~k(¿)

    0 =±S[©]

    ±©¾k (¿)

    ¯̄¯̄©=Á

    = (²k ¡ ¹)Á¹¾¡k + °kÁ¾¡k

    +1

    2pN

    X

    k+k1+k2=0

    X

    ¾1¾2

    ¡3(k¾;k1¾1;k2¾2)Á¾1k1Á¾2k2

    +1

    3!N

    X

    k+k1+k2+k3=0

    X

    ¾1¾2¾3

    ¡4(k¾;k1¾1;k2¾2;k3¾3)Á¾1k1Á¾2k2Á

    ¾3k3

  • 13

    2.2 BEC at finite momentum

    � interactions provoke condensation at integer multiples of

    � discrete Gross-Pitaevskii equationfor Fourier components

    � condensate density

    ~kmin Á¾k =pN

    1X

    n=¡1

    ±k;nqþn

    ½(r) = jÁa(r)j2

    = 4X

    n

    jÃnj2 cos2(nq ¢ r)

    ¡(²nq ¡ ¹)ù¾n ¡ °nþn =1

    2

    X

    n1n2

    X

    ¾1¾2

    ±n;n1+n2V¾¾1¾2nn1n2

    þ1n1þ2n2

    +1

    3!

    X

    n1n2n3

    X

    ¾1¾2¾3

    ±n;n1+n2+n3U¾¾1¾2¾3nn1n2n3

    þ1n1þ2n2þ3n3 :

  • 14

    2.2 Interaction Vertices for YIG

    � no symmetry

    0 0.02 0.04 0.06 0.08 0.1

    −0.4

    −0.2

    0

    0.2

    0.4

    0 0.002 0.004 0.006 0.008 0.01−0.2

    −0.1

    0

    0.1

    0.2

    0.3

    0.4

    10 20 30 40 50 60

    0

    0.1

    0.2

    0.3

    0.4

    finite size effects¡ »Ms Rezende 09ferromagnetic magnons k=kmin¡ » ¡Jk2

    F. Sauli (in preparation)U(1)

    H4 =1

    N

    X

    ~k1¢¢¢~k4

    ³ 1(2!)2

    ¡(2;2)bybybb+1

    3!

    n¡(3;1)bybbb+ h.c.

    o+1

    4!

    n¡(4;0)bbbb+ h.c.

  • 15

    2.2 Solution of GPE

    � solve discrete Gross-Pitaevskii equation

    ¡(²nq ¡ ¹)ù¾n ¡ °nþn =1

    2

    X

    n1n2

    X

    ¾1¾2

    ±n;n1+n2V¾¾1¾2nn1n2

    þ1n1þ2n2

    +1

    3!

    X

    n1n2n3

    X

    ¾1¾2¾3

    ±n;n1+n2+n3U¾¾1¾2¾3nn1n2n3

    þ1n1þ2n2þ3n3 :

    −4−2

    02

    4x 10

    4

    01

    2x 105

    2.5

    3

    3.5

    4

    4.5

    ky

    (cm−1

    )

    Ek

    (GH

    z)

    kz

    (cm−1

    )

  • 16

    3 Summary

    � description of magnetic insulators:Spin-wave theory

    � development of interactingspin-wave theory withdipole dipole interactions

    � interesting properties of theenergy dispersion

    � interactions: possiblecondensation of bosonsat finite wave-vectorsand integer multiples

    −4−2

    02

    4x 10

    4

    01

    2x 105

    2.5

    3

    3.5

    4

    4.5

    ky

    (cm−1

    )

    Ek

    (GH

    z)

    kz

    (cm−1

    )

  • 17

    4 Acknowledgement

    Group of Peter Kopietz at ITP in Frankfurt (Germany)

    www.itp.uni-frankfurt.de/~kreisel/en

    Poster: BEC at finite momentum