30
Cálculo diferencial El Cálculo Diferencial, es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal . siste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada . Una noción estrechamente relacionada es la de diferencial . En el estudio del cambio de una función cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite . El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra. Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de f(x) en cada punto x. Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos. La inversa de una derivada se llama primitiva, antiderivada o integral indefinida . Diferenciación y diferenciabilidad

Cálculo diferencial

Embed Size (px)

Citation preview

Page 1: Cálculo diferencial

Cálculo diferencialEl Cálculo Diferencial, es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal. siste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial.

En el estudio del cambio de una función cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra.

Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de f(x) en cada punto x. Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos.

La inversa de una derivada se llama primitiva, antiderivada o integral indefinida.

Diferenciación y diferenciabilidad

La Diferenciación puede ser usada para determinar el cambio que se produce como resultado de otro cambio, si está determinada una relación matemática entre dos objetos.

Una función es diferenciable en un punto x si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto x perteneciente al intervalo. Si una función no es continua en c, entonces no puede ser diferenciable en c; sin embargo, aunque una función sea continua en c, puede no ser diferenciable. Es decir, toda función diferenciable en un punto C es continua en C, pero no toda función continua en C es diferenciable en C (como f(x) = |x| es continua pero no diferenciable en x = 0).

Page 3: Cálculo diferencial

Las derivadas se definen tomando el límite de la pendiente de las rectas secantes conforme se van aproximando a la recta tangente.

Es difícil hallar directamente la pendiente de la recta tangente de una función porque sólo conocemos un punto de ésta, el punto donde ha de ser tangente a la función. Por ello, aproximaremos la recta tangente por rectas secantes. Cuando tomemos el límite de las pendientes de las secantes próximas, obtendremos la pendiente de la recta tangente.

Para obtener estas pendientes, tomemos un número arbitrariamente pequeño que llamaremos h. h representa una pequeña variación en x, y puede ser tanto positivo como negativo. La pendiente de la recta entre los puntos (x,f(x)) y (x + h,f(x + h)) es

Esta expresión es un Cociente Diferencial de Newton. La derivada de f en x es el límite del valor del cociente diferencial conforme las líneas secantes se acercan más a la tangente:

Si la derivada de f existe en cada punto x, podemos definir la derivada de f como la función cuyo valor en el punto x es la derivada de f en x.

Puesto que la inmediata sustitución de h por 0 da como resultado una división por cero, calcular la derivada directamente puede ser poco intuitivo. Una técnica es simplificar el numerador de modo que la h del denominador pueda ser cancelada. Esto resulta muy sencillo con funciones polinómicas, pero para la mayoría de las funciones resulta demasiado complicado. Afortunadamente, hay reglas generales que facilitan la diferenciación de la mayoría de las funciones descritas; ver abajo.

Page 4: Cálculo diferencial

Algunos ejemplos de cómo utilizar este cociente:

Ejemplo 1

Consideremos la siguiente función:

Entonces:

Esta función es constante, para cualquier punto de su dominio vale 5 (por eso f(x+h)=5). Nótese el último paso, donde h tiende a cero pero nunca lo alcanza. Si pensamos un poco, observaremos que la derivada además de ser la pendiente de la recta tangente a la curva, es a la vez, la recta secante a la misma curva.

Ejemplo 2

Consideremos la gráfiica de . Esta recta tiene una pendiente igual a 2.0 en cada punto. Utilizando el cociente mostrado arriba (junto a los conceptos de límite, secante, y tangente) podremos determinar las pendientes en los puntos 4 y 5:

Entonces:

Y vemos que se cumple para cualquier número n:

Page 5: Cálculo diferencial

Por tanto, se deduce que el valor de la función derivada de una recta es igual a la pendiente de la misma.

Ejemplo 3

Mediante esta diferenciación, se puede calcular la pendiente de una curva. Consideremos

que:

Entonces:

Para cualquier punto x, la pendiente de la función es .

El Cociente Diferencial Alternativo

La derivada de f(x) (tal como la definió Newton) se describió como el límite, conforme h se aproxima a cero. Una explicación alternativa de la derivada puede ser interpretada a partir del cociente de Newton. Si se utiliza la fórmula anterior, la derivada en c es igual al límite conforme h se aproxima a cero de [f(c + h) - f(c)] / h. Si se deja que h = x - c (por ende c + h = x), entonces x se aproxima a c (conforme h tiende a cero). Así, la derivada es igual al límite conforme x se aproxima a c, de [f(x) - f(c)] / (x - c). Esta definición se utiliza para una demostración parcial de la regla de la cadena.

Notaciones para la diferenciación

La derivada de una función puede a su vez ser diferenciable, hablándose entonces de segunda derivada de la función como la derivada de la derivada de ésta. Análogamente, la derivada de la segunda derivada recibe el nombre de tercera derivada, y así sucesivamente.

A partir de la segunda derivada : hasta la enésima derivada : reciben el nombre de Derivada de Orden Superior.

Page 6: Cálculo diferencial

La notación más simple para la diferenciación que se utiliza en la actualidad se debe a Lagrange y utiliza un apóstrofo o comilla: ′. De esta manera se expresan las derivadas de la función f(x) en el punto x = a, se escribe:

para la primera derivada,

para la segunda derivada,

para la tercera derivada, y luego de forma general,

para la n-ésima derivada (donde normalmente se da que n > 3).

Para la función cuyo valor en cada x es la derivada de , se escribe . De forma

similar, para la segunda derivada de f se escribe , y así sucesivamente.

La otra notación común para la diferenciación se debe a Leibniz. Para la función cuyo valor en x es la derivada de f en x, se escribe:

Se puede escribir la derivada de f en el punto a de dos formas distintas:

Si la resultante de f(x) es otra variable, por ejemplo, si y=f(x), se puede escribir la derivada como:

Las derivadas de orden superior se expresan así

o

para la n-ésima derivada de f(x) o y respectivamente. Históricamente, esto proviene del hecho de que, por ejemplo, la tercera derivada es:

que se puede escribir sin mucho rigor como:

Page 7: Cálculo diferencial

Eliminando las llaves nos da la notación que está arriba.

La notación de Leibniz es tan versátil que permite especificar la variable que se utilizará para la diferenciación (en el denominador). Esto es específicamente relevante para la diferenciación parcial. Y también hace más fácil de recordar la regla de la cadena, debido a que los términos "d" se cancelan simbólicamente:

.

Sin embargo, es importante recordar que los términos "d" no se pueden cancelar literalmente, debido a que son un operador diferencial. Sólo se utilizan cuando se usan en conjunto para expresar una derivada.

La notación de Newton para la diferenciación consiste en poner un punto sobre el nombre de la función:

y así sucesivamente.

La notación de Newton se utiliza principalmente en la mecánica, normalmente para las derivadas con respecto al tiempo tales como la velocidad y la aceleración y en la teoría de ecuaciones diferenciales ordinarias. Normalmente sólo se utilizan para la primera y segunda derivadas.

Otra notación consiste en colocar una letra 'D' mayúscula para indicar la operación de diferenciación con un subíndice que indica la variable sobre la que se derivará:

Dxf,

que es equivalente a la expresión:

En ese contexto se considera a la diferenciación como una operación sobre funciones, de

modo que los símbolos y Dx son llamados operadores diferenciales.

Page 8: Cálculo diferencial

Aplicaciones importantes del cálculo diferencial

Recta tangente a una función en un punto

La recta tangente a una función f(x) es como se ha visto el límite de las rectas secantes cuando uno de los puntos de corte de la secante con la función se hace tender hacia el otro punto de corte. También puede definirse a la recta tangente como la mejor aproximación lineal a la función en su punto de tangencia, esto es, la recta tangente es la función polinómica de primer grado que mejor aproxima a la función localmente en el punto de tangencia que consideremos.

Si conocemos la ecuación de la recta tangente ta(x) a la función f(x) en el punto "a" podemos tomar ta(x) como una aproximación razonablemente buena de f(x) en las proximidades del punto "a". Esto quiere decir que si tomamos un punto "a + h" y lo evaluamos tanto en la función como en la recta tangente, la diferencia f(a + h) − t(a + h) será despreciable frente a "h" en valor absoluto si "h" tiende a cero. Cuanto más cerca estemos del punto "a" tanto más precisa será nuestra aproximación de f(x).

Para una función f(x) derivable localmente en el punto "a", la recta tangente a f(x) por el punto "a" es:

ta(x)= f(a) + f '(a)(x-a)

Uso de las derivadas para realizar gráficos de funciones

Las derivadas son una útil herramienta para examinar las gráficas de funciones. En particular, los puntos en el interior de un dominio de una función de valores reales que llevan a dicha función a un extremo local tendrán una primera derivada de cero. Sin embargo, no todos los puntos críticos son extremos locales. Por ejemplo, f(x)=x³ tiene un punto crítico en x=0, pero en ese punto no hay un máximo ni un mínimo. La prueba de la primera derivada y la prueba de la segunda derivada permiten determinar si los puntos críticos son máximos, mínimos o ninguno.

En el caso de dominios multidimensionales, la función tendrá una derivada parcial de cero con respecto a cada dimensión en un extremo local. En este caso, la prueba de la segunda derivada se puede seguir utilizando para caracterizar a los puntos críticos, considerando el eigenvalor de la matriz Hessiana de las segundas derivadas parciales de la función en el punto crítico. Si todos los eigenvalores son positivos, entonces el punto es un mínimo local; si todos son negativos es un máximo local. Si hay algunos eigenvalores positivos y algunos negativos, entonces el punto crítico es un punto silla, y si no se cumple ninguno de estos casos, la prueba es no concluyente (e.g., los engeivalores son 0 y 3).

Una vez que se encuentran los extremos locales, es mucho más fácil hacerse de una burda idea de la gráfica general de la función, ya que (en el caso del dominio mono dimensional) se incrementará o decrementará uniformemente excepto en los puntos críticos, y por ello

Page 9: Cálculo diferencial

(suponiendo su continuidad) tendrá valores intermedios entre los valores en los puntos críticos de cada lado.

Aproximación local de Taylor

Hemos visto que podemos aproximar mediante su recta tangente a una función derivable localmente en un punto. Si se cumple que la función es suficientemente suave en el punto o dominio de estudio (esto es, la función es de clase ) cabe la posibilidad de intentar aproximar a la función no por polinomios de grado uno, sino por polinomios de grado dos, tres, cuatro y sucesivamente. Esta aproximación recibe el nombre de "desarrollo polinómico de Taylor" y se define de la siguiente manera:

Donde P(x) es el polinomio de grado n que mejor aproxima a la función en el punto x=a. Nótese que si evaluamos P(x) en x=a todos los términos salvo el f(a) se anulan, luego P(a) = f(a). Nótese también que la ecuación de la recta tangente del apartado anterior corresponde al caso en el que n=1.

El polinomio de Taylor es un polinomio "osculador". De entre todos los polinomios de orden no mayor que "n" y que pasan por f(a) el desarrollo polinómico de Taylor de f(x) en x=a es el que posee el contacto de mayor orden con f(x)en "a". Se basa en la idea de que si dos funciones comparten en x=a el mismo valor, la misma primera derivada, la misma segunda derivada etc, la misma i-ésima derivada, (lo que brevemente se expresa diciendo que las dos funciones tienen un contacto de orden "i") entonces dichas funciones serán muy parecidas cerca de x=a, queriendo decir por parecidas que podemos aproximar a una de las dos por la otra cometiendo un error despreciable.

Cuando a=0 el desarrollo se denomina "desarrollo de MacLaurin". En la práctica la mayoría de las veces se emplean desarrollos de MacLaurin. Ejemplos de desarrollos importantes de MacLaurin son:

Page 10: Cálculo diferencial

Nótese el símbolo que denota aproximación que no igualdad. Si la función a aproximar es infinitamente derivable y agregamos infinitos términos al desarrollo entonces el se convierte en un = .

Este último paso de agregar infinitos términos no se puede tomar a la ligera. Hemos dicho que la aproximación de grado uno, dos, tres etc es una aproximación local en el punto en que se evalúa la función, esto es, si nos alejamos mucho del punto la aproximación dejará de ser precisa. Cuantos más términos agreguemos al desarrollo en serie de Taylor tanto más precisa será nuestra aproximación si estamos en un entorno del punto. Podríamos pensar pues que al añadir infinitos términos podemos evaluar la función aproximada en cualquier punto de su dominio de definición con precisión absoluta. Esto no siempre es cierto, pues dependerá del carácter de la serie de Taylor en el punto en que la evaluamos.

El estudio del carácter de una serie es un problema frecuentemente complejo. Se trata de definir los valores para los cuales la serie es convergente, esto es, determinar el radio de convergencia de la misma. Dentro del intervalo de convergencia de la serie sí que podemos tomar infinitos términos y admitir que la serie nos da el valor "exacto" de la función en el punto. Sin embargo, fuera del intervalo de convergencia la serie no proporcionará el valor exacto de la función aunque agreguemos infinitos términos.

Los desarrollos en serie de Taylor presentan grandes ventajas a la hora de operar funciones cuyas ecuaciones involucran expresiones complicadas tales como funciones trascendentes (senos, logaritmos, etc). Sin embargo también presentan ciertos inconvenientes. Un inconveniente importante es que el número de términos necesarios para aproximar con precisión razonable a la función en un punto alejado del evaluado (pero siempre dentro del intervalo de convergencia de la serie) se dispara al infinito. Otro inconveniente es que la expresión polinómica de la función puede hacer difícil detectar sus propiedades elementales, por ejemplo, no es obvio deducir del desarrollo del seno que se trata de una función periódica.

Conociendo el desarrollo en serie de una función f(x) en x=a es inmediato obtener sus derivadas sucesivas f'(a),f''(a),f'''(a) etc . Según se desprende de la definición, sin más que multiplicar el i-ésimo coeficiente (correspondiente al término de grado i) por i! obtenemos la derivada i-ésima en el punto "a" de la función. Asimismo calcular una integral definida sobre un intervalo perteneciente a un entorno del punto "a" es también inmediato, pues la función primitiva se obtiene fácilmente integrando cada término del desarrollo. Si bien cabe señalar que dicha integral no será exacta, sino aproximada, y será tanto más precisa cuanto más pequeño sea el intervalo de integración y cuanto más centrado esté dicho intervalo en el punto x=a.

Los desarrollos en serie son una potente herramienta en el cálculo de límites. Un límite aparentemente complejo puede convertirse en trivial sin más que sustituir cada función por su desarrollo en serie y realizar las operaciones correspondientes de simplificación.

Page 11: Cálculo diferencial

Física

Es posible que la aplicación más importante del cálculo en la física sea el concepto de "derivada temporal" -- la tasa de cambio en el tiempo -- que se requiere para la definición precisa de varios conceptos importantes. En particular, las derivadas con respecto al tiempo de la posición de un objeto son significativas en la física Newtoniana:

La velocidad (velocidad instantánea; el concepto de la velocidad promedio que prevalece en el cálculo) es la derivada, con respecto al tiempo, de la posición de un objeto.

La aceleración es la derivada, con respecto al tiempo, de la velocidad de un objeto.

La Sobreaceleración o el tirón es la derivada, con respecto al tiempo, de la aceleración de un objeto.

Por ejemplo, si la posición de un objeto está determinada por la ecuación:

entonces la velocidad del objeto es:

La aceleración del objeto es:

y el tirón del objeto es:

Si la velocidad de un objeto está dada como una función del tiempo, entonces la derivada de dicha función con respecto al tiempo, describe la aceleración del objeto como una función del tiempo.

Page 12: Cálculo diferencial

Puntos singulares

Se denominan puntos singulares ó estacionarios a los valores de la variable en los que se anula la derivada f'(x) de una función f(x), es decir, si f ´(x)=0 en x1, x2, x3, . . . , xn, entonces x1, x2, x3, . . . , xn son puntos singulares de f(x). Los valores f(x1), f(x2), f(x3), . . . , f(xn), se llaman valores singulares.

Puntos críticos

Por punto crítico se entiende: un punto singular, un punto donde no exista la derivada o un punto extremo a ó b del dominio [a,b] de definición de la función.

Si la segunda derivada es positiva en un punto crítico, se dice que el punto es un mínimo local; si es negativa, se dice que el punto es un máximo local; si vale cero, puede ser tanto un mínimo, como un máximo o un punto de inflexión. Derivar y resolver en los puntos críticos es a menudo una forma simple de encontrar máximos y mínimos locales, que pueden ser empleados en optimización. Aunque nunca hay que despreciar los extremos en dichos problemas

Teoremas para el cálculo de la derivada

La definición de la derivada en términos de límites se emplea para demostrar las reglas de diferenciación. Dichas reglas sirven para calcular la derivada de una función a través de una manipulación algebraica en vez de recurrir a la aplicación directa del cociente diferencial de Newton.

Regla de la constante: La derivada de cualquier constante es cero.

Regla de la multiplicación por una constante:

Si c es cualquier número real, entonces la derivada de cf(x), es igual a c multiplicado por la derivada de f(x). Esto es una consecuencia de la linealidad, que se verá más adelante.

Linealidad :

para todas las funciones f y g y todos los números reales a y b.

Regla general de la potencia (Regla del polinomio):

Si , para todo r real,

entonces

Page 13: Cálculo diferencial

Regla del producto :

para todas las funciones f y g.

Regla del cociente :

si g es diferente de cero.

regla de la cadena :

Si ,

entonces .

Funciones inversas y diferenciación :

Si ,

entonces ,

y si y su inversa son diferenciables,

entonces para los casos en que y cuando ,

Derivada de una variable con respecto a otra cuando ambas son funciones de una tercera variable:

Sea y .

entonces

Diferenciación implícita :

Si es una función implícita,

se tiene que:

De forma adicional, es útil conocer las derivadas de algunas funciones comunes. (Vea la tabla de derivadas).

Como ejemplo, la derivada de

Page 14: Cálculo diferencial

es

.

Para las funciones logarítmicas:

La derivada de e elevado a x es e elevado a x

La derivada del logaritmo natural (ln) de x es 1 dividido entre x

Para las funciones trigonométricas

La derivada del seno de x es el coseno de x.

La derivada del coseno x es menos seno de x.

La derivada de la tangente de x es la secante al cuadrado de x.

La derivada de cotangente de x es menos cosecante al cuadrado de x.

La derivada de la secante de x es el producto de la secante de x por la tangente de x.

La derivada de la cosecante de x es el producto de menos cosecante de x por la cotangente de x.

Para las funciones trigonométricas hiperbólicas

La derivada del seno hiperbólico de x es el coseno hiperbólico de x.

Extensión del concepto de derivada

Cuando una función depende de más de una variable, se utiliza el concepto de derivada parcial. Las derivadas parciales se pueden pensar informalmente como tomar la derivada de una función con respecto a una de ellas, manteniendo las demás variables constantes.

Page 15: Cálculo diferencial

Las derivadas parciales se representan como (en donde ; es una 'd' redondeada conocida como 'símbolo de la derivada parcial').

El concepto de derivada puede ser extendido de forma más general. El hilo común es que la derivada en un punto sirve como una aproximación lineal a la función en dicho punto. Quizá la situación más natural es que las funciones sean diferenciables en las variedades. La derivada en un cierto punto entonces se convierte en una transformación lineal entre los correspondientes espacios tangenciales y la derivada de la función se convierte en un mapeo entre los grupos tangenciales.

Para diferenciar todas las funciones continuas y mucho más, se puede definir el concepto de distribución.

Para las funciones complejas de una variable compleja, la diferenciabilidad es una condición mucho más fuerte que la simple parte real e imaginaria de la función diferenciada con respecto a la parte real e imaginaria del argumento. Por ejemplo, la función f(x + iy) = x + 2iy satisface lo segundo, pero no lo primero. Vea también Función holomórfica.

Vea también: diferintegral. óptimo de una función real de dos variables sujeta a restricciones

Dadas las funciones, de valor real, y ambas con dominio, el problema consiste en hallar los valores máximos o mínimos (valores extremos) de cuando se restringe a tomar valores en el conjunto.

Función trigonométricaLas funciones trigonométricas, en matemáticas, son relaciones angulares que se utilizan para relacionar los ángulos del triángulo con las longitudes de los lados del mismo según los principios de la Trigonometría.

Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.

Page 16: Cálculo diferencial

Todas las funciones trigonométricas de un ángulo θ pueden ser construidas geométricamente en relación a una circunferencia de radio unidad de centro O.

Conceptos básicos

Identidades trigonométricas fundamentales.

Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.

Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las

Page 17: Cálculo diferencial

primeras tablas, pero no se utilizan actualmente; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1).

Función Abreviatura Equivalencias (en radianes)

Seno sin (sen)

Coseno cos

Tangente tan

Cotangente ctg

Secante sec

Cosecante csc (cosec)

Definiciones respecto de un triángulo rectángulo

Page 18: Cálculo diferencial

Para definir las razones trigonométricas del ángulo: α, del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:

La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.

El cateto opuesto (a) es el lado opuesto al ángulo que queremos determinar. El cateto adyacente (b) es el lado adyacente al ángulo del que queremos determinar.

Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para ángulos dentro de ese rango:

1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:

El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo α , en cuyo caso se trata de triángulos semejantes.

2) El coseno de un ángulo es la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:

3) La tangente de un ángulo es la relación entre la longitud del cateto opuesto y la del adyacente:

Page 19: Cálculo diferencial

4) La cotangente de un ángulo es la relación entre la longitud del cateto adyacente y la del opuesto:

5) La secante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto adyacente:

6) La cosecante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto opuesto:

Funciones trigonométricas de ángulos notables

Animación de la función seno.

0° 30° 45° 60° 90°

sen

0 1

cos 1 0

Page 20: Cálculo diferencial

tan

0 1

Representación gráfica

Definiciones analíticas

La definición analítica más frecuente dentro del análisis real se hace a partir de ecuaciones diferenciales. Usando la geometría y las propiedades de los límites, se puede demostrar que la derivada del seno es el coseno y la derivada del coseno es el seno con signo negativo. (Aquí, como se hace generalmente en cálculo, todos los ángulos son medidos en radianes.)

El teorema de Picard-Lindelöf de existencia y unicidad de las ecuaciones diferenciales lleva a que existen las funciones anteriores que se llaman respectivamente seno y coseno, es decir:

Page 21: Cálculo diferencial

Esta definición analítica de las funciones trigonométricas permite una definición no-geométrica del número π, a saber, dicho número es el mínimo número real positivo que es un cero de la función seno.

Series de potencias

A partir de las definición anterior pueden establecerse que las funciones seno y coseno son funciones analíticas cuya serie de Maclaurin viene dada por:

Estas identidades son aveces usadas como las definiciones de las funciones seno y coseno. Con frecuencia se utilizan como el punto de partida para el tratamiento riguroso de las funciones trigonométricas y sus aplicaciones (por ejemplo en las Series de Fourier), debido a que la teoría de las series infinitas puede ser desarrollada a partir de la base del sistema de números reales, independientemente de cualquier consideración geométrica. La diferenciabilidad y continuidad de estas funciones es entonces establecida a partir de las definiciones de series por si misma.

Relación con la exponencial compleja

Existe una relación importante entre la exponenciación de números complejos y las funciones trigonométricas:

Esta relación puede probarse usando el desarrollo en serie de Taylor para la función exponencial y el obtenido en la sección anterior para las funciones seno y coseno. Separando ahora en parte real e imaginaria en la expresión anterior se encuentran las definiciones de seno y coseno en términos de exponenciales complejas:

A partir de ecuaciones diferenciales

Las funciones seno y coseno satisfacen la igualdad:

Page 22: Cálculo diferencial

Es decir, la segunda derivada de cada función es la propia función con signo inverso. Dentro del espacio funcional de dos dimensiones V, que consiste en todas las soluciones de esta ecuación,

la función seno es la única solución que satisface la condición inicial y

la función coseno es la única solución que satisface la condición inicial .

Dado que las funciones seno y coseno son linearmente independientes, juntas pueden formar la base de V. Este método para definir las funciones seno y coseno es escencialmente equivalente a utilizar la fórmula de Euler. Además esta ecuación diferencial puede utilizarse no solo para definir al seno y al coseno, con ella también se pueden probar las identidades trigonométricas de las funciones seno y coseno.

Además, la observación de que el seno y el coseno satisfacen y′′ = −y implica que son funciones eigen del operador de la segunda derivada.

La función tangente es la única solución de la ecuación diferencial no lineal

satisfaciendo la condición inicial y(0) = 0. Existe una interesante prueba visual de que la función tangente satisface esta ecuación diferencial.

Funciones trigonométricas inversas

Las tres funciones trigonométricas inversas comúnmente usadas son:

Arcoseno es la función inversa del seno de un ángulo. El significado geométrico es: el arco cuyo seno es dicho valor.

La función arcoseno real es una función , es decir, no está definida para cualquier número real. Esta función puede expresarse mediante la siguiente serie de Taylor:

Page 23: Cálculo diferencial

Arcocoseno es la función inversa del coseno de un ángulo. El significado geométrico es: el arco cuyo coseno es dicho valor.

Es una función similar a la anterior, de hecho puede definirse como:

Arcotangente es la función inversa de la tangente de un ángulo. El significado geométrico es: el arco cuya tangente es dicho valor.

A diferencia de las anteriores la función arcotangente está definida para todos los reales. Su expresión en forma de serie es:

Generalizaciones

Las funciones hiperbólicas son el análogo de las funciones trigonométricas para una hipérbola equilatera. Además el seno y coseno de un número imaginario puro puede expresarse en términos de funciones hiperbólicas.

Las funciones elípticas son una generalización biperiódica de las funciones trigonométricas que en el plano complejo sólo son periódicas sobre el eje real. En particular las funciones trigonométricas son el límite de las funciones elípticas de Jacobi cuando el parámetro del que dependen tiende a cero.

Historia

Artículo principal: Historia de la trigonometría

El estudio de las funciones trigonométricas se remonta a la época de Babilonia, y gran parte de los fundamentos de trigonometría fueron desarrollados por los matemáticos de la Antigua Grecia, de la India y estudiosos musulmanes.

Page 24: Cálculo diferencial

El primer uso de la función seno (sin(·)) aparece en el Sulba Sutras escrito en India del siglo VIII al VI a. C. Las funciones trigonométricas fueron estudiadas por Hiparco de Nicea (180-125 a. C.), Aryabhata (476-550), Varahamihira, Brahmagupta, al-Khwarizmi, Abu'l-Wafa, Omar Khayyam, Bhaskara II, Nasir al-Din Tusi, Regiomontanus (1464), Ghiyath al-Kashi y Ulugh Beg (Siglo XIV), Madhava (ca. 1400), Rheticus, y el alumno de éste, Valentin Otho. La obra de Leonhard Euler Introductio in analysin infinitorum (1748) fue la que estableció el tratamiento analítico de las funciones trigonométricas en Europa, definiéndolas como series infinitas presentadas en las llamadas "Fórmulas de Euler".

La noción de que debería existir alguna correspondencia estándar entre la longitud de los lados de un triángulo siguió a la idea de que triángulos similares mantienen la misma proporción entre sus lados. Esto es, que para cualquier triángulo semejante, la relación entre la hipotenusa y otro de sus lados es constante. Si la hipotenusa es el doble de larga, así serán los catetos. Justamente estas proporciones son las que expresan las funciones trigonométricas.