27
9/8/2009 1 ESM 2009 - Timisoara 1 CARPATH Alexandru STANCU Professor, Director CARPATH “Alexandru Ioan Cuza” University, Faculty of Physics, Department of Physics & Centre for Applied Research in Physics and Advanced TecHnologies (CARPATH) Iasi, ROMANIA “Alexandru Ioan Cuza” UNIVERSITY IASI - ROMANIA Centre for Applied Research in Physics and Advanced Technologies Center of Excellence in Scientific Research (2006-2011) of The Romanian National Commission for Scientific Research in Universities Preisach model of hysteresis in magnetic materials and FORC based identification techniques European School on Magnetism 2009: Models in magnetism : from basic aspects to practical uses September 1-10th 2009, Timisoara, Romania ESM 2009 - Timisoara 2 CARPATH Outline Introduction – about hysteresis Scalar Preisach model FORC identification technique Examples – ferromagnetic systems Hysteretic processes in spin-transition materials Conclusions

CARPATH ESM 2009 - Timisoara 2 - Magnetism

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

1

ESM 2009 - Timisoara 1CARPATH

Alexandru STANCU

Professor, Director CARPATH

“Alexandru Ioan Cuza” University, Faculty of Physics, Department of Physics &Centre for Applied Research in Physics and Advanced TecHnologies (CARPATH)

Iasi, ROMANIA

“Alexandru Ioan Cuza” UNIVERSITY

IASI - ROMANIA

Centre for Applied Research in Physics and Advanced Technologies

Center of Excellence in Scientific Research (2006-2011) of The Romanian National Commission for Scientific Research in Universities

Preisach model of hysteresis in magnetic materials and FORC based identification techniques

European School on Magnetism 2009:Models in magnetism : from basic aspects to practical uses

September 1-10th 2009, Timisoara, Romania

ESM 2009 - Timisoara 2CARPATH

Outline

Introduction – about hysteresisScalar Preisach modelFORC identification techniqueExamples – ferromagnetic systemsHysteretic processes in spin-transition materialsConclusions

Page 2: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

2

ESM 2009 - Timisoara 3CARPATH

Which hysteresis model we choose in a given situation ?

How we choose ?Criteria ? To simulate correctly high order magnetization curves ?Identification methodologies …In many papers the identification is made using an arbitrary selection of

magnetization processes. Is it OK?

Can we use for identification only the Major Hysteresis Loop ?

ESM 2009 - Timisoara 4CARPATH

Identical MHL for essentially different systems

-20000 -10000 0 10000 20000

-1.0

-0.5

0.0

0.5

1.0

Nor

mal

ized

mom

ent

Applied field

-20000 -15000 -10000 -5000 0 5000 10000 15000 20000-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

-1.00E-10

2.94E-9

5.98E-9

9.02E-9

1.21E-8

1.51E-8

1.81E-8

2.12E-8

2.42E-8

2.73E-8

3.03E-8-20000 -15000 -10000 -5000 0 5000 10000 15000 20000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

-1.00E-10

2.95E-9

6.00E-9

9.05E-9

1.21E-8

1.52E-8

1.82E-8

2.13E-8

2.43E-8

2.74E-8

3.04E-8

Page 3: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

3

ESM 2009 - Timisoara 5CARPATH

To understand … Preisach model

m0/m0s

H

+1

–1

A(Hα,0)B(Hβ,0)

Hc

S(Hs,0)

IHiI

F. Preisach 1935M.A. Krasnoselskii & A.V. Pokrovskii 1983, 1989I.D. Mayergoyz 1986

Ps

H0

x

y

z

ϕ0

ϕ

θθ0

Stoner Wohlfarth model

ESM 2009 - Timisoara 6CARPATH

Preisach plane

T(Hα1,Hβ1)

M(Hα1,Hβ1)

m0/m0s

H

+1

–1

A(Hα1,0)B(Hβ1,0)

O

T0(Hm,–Hm)

M(Hα1,Hβ1)

M0(Hm,−Hm)

Q

Q0

P

P0

P(Hα,Hβ)

Hβ Hc0

O

hs

hchi

hc=const.

hi=const.

Page 4: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

4

ESM 2009 - Timisoara 7CARPATH

MHL

O

Q0

P0

+

M0

L(t)

O

Q0

P0

+

M0

H

-Hm

Hm

O

Q0

P0

+ –

M0

H

-Hm

Hm

-3000 -2000 -1000 0 1000 2000 3000

-1.0

-0.5

0.0

0.5

1.0

H

MHL(+) MHL(–)

Nor

mal

ised

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

ESM 2009 - Timisoara 8CARPATH

Magnetization processes

O

Q0

P0

M

L1 (Hα=H)

L2

M0

Hα=Hβ

O

Q0

P0

I

II

III

L1 (Hα=H)

L2 (Hβ=H)

M0

O

Q0

P0

I

II

III

L1 (Hα=H)

L2 (Hβ=H)

M0

H

H

H

Page 5: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

5

ESM 2009 - Timisoara 9CARPATH

For more examples … Hystersoft

http://www.eng.fsu.edu/~pandrei/HysterSoft/index1.html

Petru AndreiDepartment of Electrical and Computer EngineeringFlorida State University and Florida A&M University

Univ. of Florida - Iasi University – Technical Univ. Wien

ESM 2009 - Timisoara 10CARPATH

Generalized use of FORCs

Conclusion: FORC diagram can be calculated for ANY hysteretic system.

Page 6: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

6

ESM 2009 - Timisoara 11CARPATH

Conclusion …

FORC distribution and FORC diagram can be obtained from experimental data.

Problems:How we “decode” the information contained in an experimental FORC diagram ? Does it contain sufficient information to identify ANY hysteresis model ?

ESM 2009 - Timisoara 12CARPATH

-200.0n0.0200.0n400.0n

600.0n800.0n1.0µ1.2µ1.4µ1.6µ1.8µ

-1000

-500

0

500

-200.0n0.0

200.0n400.0n600.0n800.0n

1.0µ1.2µ1.4µ1.6µ1.8µ

-1000

-500

0

5000 1000 2000

Hi (Oe) Hi (Oe)

Hc (Oe)

0 90 180 270 3600

90

180

270

360

θ (deg)

θ r (deg

)

100 110 120 130 140 150100

110

120

130

140

150

TA(K)

T B(K

)

Ni

Co

Zn

Fe pure

Page 7: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

7

ESM 2009 - Timisoara 13CARPATH

FORC diagram method.

-3000 0 3000

-0.7

0.0

0.7MHL+

MHL-

m-FORC

(Hr,H)

Hr

Nor

mal

ized

mag

netic

mom

ent

Applied magnetic field (Oe)

H

( ) ( )2 ,1,2

FORC rr

r

m H HH H

H Hρ

−∂= −

∂ ∂

T(Hα1,Hβ1)

M(Hα1,Hβ1)

m0/m0s

H

+1

–1

A(Hα1,0)B(Hβ1,0)

O

T0(Hm,–Hm)

M(Hα1,Hβ1)

M0(Hm,−Hm)

Q

Q0

P

P0

Rectangular hysteron

Preisach plane

P(Hα,Hβ)

Hβ Hc0

O

hs

hchi

hc=const.

hi=const.-3000 -2000 -1000 0 1000 2000 3000

-1.0

-0.5

0.0

0.5

1.0

m

H

ESM 2009 - Timisoara 14CARPATH

FORC distribution

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0dH=dH

αdHr=dH

β

B(H+dH,Hr+dHr)A(H,Hr)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-1.0

-0.5

0.0

0.5

1.0

H=Hα

Hr=Hβ

Nor

mal

ized

mag

netic

mom

ent

A

B

A

B

A

B

Case A ρ = 0

Case B ρ < 0

Case C ρ > 0

Page 8: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

8

ESM 2009 - Timisoara 15CARPATH

Symmetry

-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

-8 -4 0 4 8-1.0

-0.5

0.0

0.5

1.0

m

H (arb.units)

-2 0 2 4 6-6

-4

-2

0

2

H (arb. units)

Hr (

arb.

uni

ts)

-2 0 2 4 6-6

-4

-2

0

2

H (arb. units)

Hr (

arb.

uni

ts)

ESM 2009 - Timisoara 16CARPATH

Magnetic characterization of samples using FORC diagrams

Main problemsState dependent interaction field distributionReversible magnetization processes

Page 9: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

9

ESM 2009 - Timisoara 17CARPATH

Mean field interactions

( )0

m f HH H mα

⎧ =⎨

= +⎩

H

m 1

α

-4000 -2000 0 2000 4000

-1.0

-0.5

0.0

0.5

1.0 m(Happl+αm)

Magnetic field (Oe)

Nor

mal

ized

mag

netic

mom

ent

ESM 2009 - Timisoara 18CARPATH

Preisach – singular distributions

α=0

Page 10: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

10

ESM 2009 - Timisoara 19CARPATH

Preisach – singular distributions

α<0

0 2 4 6 8 10 12

-6

-4

-2

0

2

4

6

Hc (a. u.)

Hi (

a. u

.)

ESM 2009 - Timisoara 20CARPATH

Preisach – singular distributions

α>0

Page 11: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

11

ESM 2009 - Timisoara 21CARPATH

Operative plane

-4000 -2000 0 2000 4000

-1.0

-0.5

0.0

0.5

1.0 m(Happl+αm)

Magnetic field (Oe)

Nor

mal

ized

mag

netic

mom

ent

-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

-0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

ESM 2009 - Timisoara 22CARPATH

FORC – patterned medium

0 2 4 6 8 10 12

-6

-4

-2

0

2

4

6

Hc (a. u.)

Hi (

a. u

.)

0 2 4 6 8 10 12

-6

-4

-2

0

2

4

6

Hc (a. u.)

Hi (a

. u.)

0 2 4 6 8 10 12

-6

-4

-2

0

2

4

6

Hc (a. u.)

Hi (a

. u.)

Page 12: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

12

ESM 2009 - Timisoara 23CARPATH

Magnetizing mean field interactions

-3000 -2000 -1000 0 1000 2000 3000

-1.0

-0.5

0.0

0.5

1.0

m

H

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

0 1000 2000

ESM 2009 - Timisoara 24CARPATH

Alpha = 0

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

0 1000 2000 3000 4000

Page 13: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

13

ESM 2009 - Timisoara 25CARPATH

Alpha = 300

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

0

0 1000 2000 3000 4000

ESM 2009 - Timisoara 26CARPATH

Alpha = 500

0.00000000.00000020.00000040.00000060.00000080.00000100.0000012

0

1000

0.00000000.00000020.00000040.00000060.00000080.00000100.0000012

0

10000 1000 2000 3000 4000

Page 14: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

14

ESM 2009 - Timisoara 27CARPATH

Alpha = 600

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

-1000

0

1000

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

-1000

0

1000

0 1000 2000 3000 4000

ESM 2009 - Timisoara 28CARPATH

Alpha = 1000

0.0000000

0.0000001

0.0000002

0.0000003

0.0000004

-1000

0

1000

0.0000000

0.0000001

0.0000002

0.0000003

0.0000004

-1000

0

1000

0 1000 2000 3000 4000

Page 15: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

15

ESM 2009 - Timisoara 29CARPATH

Operative plane

0 200 400 600 800 1000

-100

-50

0

50

100

150

200

250H

iMax

alpha

HiMax

0.00000000.00000020.00000040.00000060.00000080.0000010

0

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010

0

0 1000 2000 3000 4000

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

-100

0

100

200

300

400

500

600

700

HiM

ed, H

iSig

Hc

HiMed HiSig

ESM 2009 - Timisoara 30CARPATH

0.00000000.00000020.00000040.00000060.00000080.0000010

0

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010

0

0 1000 2000 3000 4000

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

0

0 1000 2000 3000 4000

Compare the results…

Page 16: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

16

ESM 2009 - Timisoara 31CARPATH

Reversible vs. irreversible magnetization processes

-3000 0 3000

-0.7

0.0

0.7MHL+

MHL-

m-FORC(Hr,H)

Hr

Nor

mal

ized

mag

netic

mom

ent

Applied magnetic field (Oe)

H

ESM 2009 - Timisoara 32CARPATH

Relation with deltaM measurement

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

-1000 0 1000

-0.5

0.0

0.5

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

Stancu A., Bissell PR, Chantrell RW, JAP, 2001

Page 17: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

17

ESM 2009 - Timisoara 33CARPATH

Problems with deltaM/Henkel plots

Sensitive to the quality of the demagnetization state in IRM processNegative (demagnetizing-like) deltaM is compatible with statistical interactions (no preference to demagnetizing interactions)

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

-2000 -1000 0 1000 2000 3000

-3000

-2000

-1000

0

1000

2000--3

2234567899

2

ESM 2009 - Timisoara 34CARPATH

BaFe (oriented sample)-positive deltaM

-3000 -2000 -1000 0 1000 2000 3000

-1.0

-0.5

0.0

0.5

1.0

m

H

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

-1000

0

1000

-0.0000010.0000000.0000010.0000020.0000030.0000040.0000050.000006

-1000

0

10000 1000 2000

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

Stancu A., Bissell PR, Chantrell RW, JAP, 2001

Page 18: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

18

ESM 2009 - Timisoara 35CARPATH

BaFe (random sample)

-4000 -2000 0 2000 4000

-1.0

-0.5

0.0

0.5

1.0

m

H

-0.00000020.00000000.00000020.00000040.00000060.00000080.00000100.00000120.00000140.00000160.0000018

-1000

0

1000

-0.00000020.00000000.00000020.00000040.00000060.00000080.00000100.00000120.00000140.00000160.0000018

-1000

0

1000

0 1000 2000 3000

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

Stancu A., Bissell PR, Chantrell RW, JAP, 2001

ESM 2009 - Timisoara 36CARPATH

Video magnetic tape

-2000 -1000 0 1000 2000-1.0

-0.5

0.0

0.5

1.0

IRM DCD MHL deltaM

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

-1000

0

1000

0.0000000

0.0000005

0.0000010

0.0000015

0.0000020

-1000

0

1000

0 2000

Stancu A., Bissell PR, Chantrell RW, JAP, 2001

Page 19: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

19

ESM 2009 - Timisoara 37CARPATH

Experimental procedure - SORC

Order “0”

Order “1”

Order “2”

-1000 0 1000

-0.5

0.0

0.5

Nor

mal

ized

Mag

netic

Mom

ent

Applied Magnetic Field (Oe)

ESM 2009 - Timisoara 38CARPATH

Second-Order Reversal Curves

- 8 - 6 - 4 - 2 0 2 4 6 8- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

m/m

s

A p p l i e d f i e l d ( a . u . )- 8 - 6 - 4 - 2 0 2 4 6 8

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

A p p l i e d f i e l d ( a . u . )

-4 -2 0 2 4-4

-2

0

2

4

H

Hr

-4 -2 0 2 4-4

-2

0

2

4

H

Hr

-0.20

-0.10

0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80-4 -2 0 2 4

-4

-2

0

2

4

H

Hr

-0.050

-0.040

-0.030

-0.020

-0.010

0

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.10

FORC SORC FORC-SORC

Stancu A., Andrei P., JAP, 2005

Error evaluation !!!

Page 20: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

20

ESM 2009 - Timisoara 39CARPATH

Experimental data

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

m

H -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

m

H-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

m

H

0 1000 2000 3000 4000 5000-5000

-4000

-3000

-2000

-1000

0

0 1000 2000 3000 4000 5000-5000

-4000

-3000

-2000

-1000

0

0 1000 2000 3000 4000 5000-5000

-4000

-3000

-2000

-1000

0

ESM 2009 - Timisoara 40CARPATH

FORC-Preisach distributions

The distribution of the interaction fields is NOT stable. It depends on the magnetic state. Preisach distribution is moving and has variable variance.Reversible magnetization processes are coupled with the irreversible ones

Page 21: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

21

ESM 2009 - Timisoara 41CARPATH

FORC …

FORC distribution gives a static, average image of the interactions while the interaction field distribution is changing during the magnetization processesWithout a proper model the dynamics can’t be observed and evaluated

ESM 2009 - Timisoara 42CARPATH

FORC technique applied to other systems

Preisach and FORC identification technique can be applied to ANY hysteretic system …

Page 22: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

22

ESM 2009 - Timisoara 43CARPATH

Spin crossover systems

Fe(II)d6

Low spin state

Diamagnetic S=0 Paramagnetic S=2

Different colors

Different volumes

High spin state

Different vibrational properties

Δ0 t2g

eg egt2g

Ea

Ener

gy

Metal-ligand distance

LS HS Δ

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

nHS

Pressure[bar]

110 120 130 140 150 1600.0

0.2

0.4

0.6

0.8

1.0

nHS

T[K]

0 10000 20000 30000 40000 50000 60000 700000.0

0.2

0.4

0.6

0.8

1.0

55 K

50 K

45 K

nHS

temps(sec)

ESM 2009 - Timisoara 44CARPATH

Thermal hysteresis in spin transition materials

115 120 125 130 135 140 145 1500.0

0.2

0.4

0.6

0.8

1.0

n HS

T(K)

a

110 115 120 125 130 135 1400.0

0.2

0.4

0.6

0.8

1.0

b

n HS

T(K)

100 105 110 115 120 125 1300.0

0.2

0.4

0.6

0.8

1.0

n HS

T(K)

c

95 100 105 110 1150.0

0.2

0.4

0.6

0.8

1.0

n HS

T(K)

d

fast

514 nm

3T2

1T2

slow

fast

fast

kHL

1A1

5T2

3T1

1T1

ΔHS

LSmetal-ligand distance

ener

gy LIESST

The LIESST Effect (Light Induced Excited Spin State Trapping)

Page 23: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

23

ESM 2009 - Timisoara 45CARPATH

Preisach model for thermal hysteresis

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P'(Tα,T

β)

Tα=T

β

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

P(T,Tr)

T/T0

T=T0

nHS

/NT=T

α

Tr=T

β

Normalized sample temperature

90 100 110 120 1300.0

0.2

0.4

0.6

0.8

1.0

nH

S

T[K]

Tanasa et al, PRB 2005; Enachescu et al, PRB 2005

ESM 2009 - Timisoara 46CARPATH

Thermal hysteresis. Effect of impurities

100 110 120 130 140 150100

110

120

130

140

150

TA(K)

T B(K

)

Ni

Co

Zn

Fe pure

0 5 10 15 20 25105

110

115

120

125

130

135

140

c(K)

b(K

)

Page 24: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

24

ESM 2009 - Timisoara 47CARPATH

Pressure & temperature hysteresis

0 200 400 600 800 1000 12000.0

0.2

0.4

0.6

0.8

1.0

p2n H

S

p(bar)

Δp=180bar

p1

168 170 172 174 176 178 180 1820.0

0.2

0.4

0.6

0.8

1.0

n HS

T (K)

ΔT=2K

600 750 900

0.0

0.2

0.4

0.6

0.8

1.0

170 175 180 1850.0

0.2

0.4

0.6

0.8

1.0600 750 900

p(bar)3

T (K)

2

1

12

34

4

5 6

5

6

7

7

8

9

9

8

p(bar)

initial statefinal state

nHSn

HS

0400

8001200

1600

0.0

0.2

0.4

0.6

0.8

1.0

160165

170175

180185

n HS

tempe

ratur

e T(K

)

pression p(bar)

Multi-ferroic materials

ESM 2009 - Timisoara 48CARPATH

Elastic model of hysteresis

Low spin state

High spin state

Molecular volume change during transitionelastic interactions appear inside the sample

System shape and volume change during transition

L. Stoleriu, C. Enachescu, A. Stancu, A. Hauser, IEEE Trans. Magn., 2008C. Enachescu L. Stoleriu, A. Stancu, A. Hauser, PRL 2009

Page 25: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

25

ESM 2009 - Timisoara 49CARPATH

Elastic model of hysteresis and relaxation

Low spin state

High spin state

For every particle the following differential system is solved at every step:

2

2

2

2

⎧= −⎪⎪

⎨⎪ = −⎪⎩

i ixi

i iyi

d x dxm F

dtdtd y dy

m Fdtdt

μ

μ

Fxi are the algebraic sums of forces acting on particule on the two directionsµ is the damping constant

ESM 2009 - Timisoara 50CARPATH

Cooperativity effect – ralaxation process

0 2 4 6 8 10

0,0

0,2

0,4

0,6

0,8

1,0

Hig

h sp

in fr

actio

n

Monte Carlo time

Page 26: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

26

ESM 2009 - Timisoara 51CARPATH

Size effects in nanoparticulate spin transition materials

A. Rotaru, Ph.D. Thesis, 2009

ESM 2009 - Timisoara 52CARPATH

ConclusionsThe extensive use of the FORC technique induced a new interest in the Preisach modelUnfortunately, in many cases the analysis is not completeWe recommend at least a mean field analysis / work in the operative planeAll FORC analysis should be coupled with a statistical model specific to the physical system analyzed

Page 27: CARPATH ESM 2009 - Timisoara 2 - Magnetism

9/8/2009

27

ESM 2009 - Timisoara 53CARPATH