10
Cellular Respira,on Cellular Respira,on BIOL 222 Ch. 9 Energy Energy Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic molecules + O2 ATP powers most cellular work Heat energy ATP Energy Arrives as sunlight Photosynthesis Plants capture sunlight organic molecules and generates O 2 Carbs used in cellular respira@on Cells use energy stored in organic molecules to regenerate ATP Energy eventually leaves as heat Catabolic Pathways and Produc,on of ATP Catabolic Pathways and Produc,on of ATP The breakdown of organic molecules is exergonic Aerobic respira,on Consumes organic molecules and O 2 and yields ATP Typically glucose Fermenta,on Par@al degrada@on of sugars that occurs without O 2 Anaerobic respira,on similar to aerobic respira@on but uses compounds other than O 2 as the final electron acceptor

Ch. 9 Cellular Respira,on

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ch. 9 Cellular Respira,on

CellularRespira,onCellularRespira,onBIOL222

Ch.9

EnergyEnergy

Lightenergy

ECOSYSTEM

Photosynthesis in chloroplasts

CO2 + H2O

Cellular respirationin mitochondria

Organicmolecules +

O2

ATP powers most cellular work

Heatenergy

ATP

• Energy

• Arrivesassunlight

• Photosynthesis

• Plantscapturesunlight

• organicmoleculesandgeneratesO2

• Carbsusedincellularrespira@on

• Cellsuseenergystoredinorganicmolecules

• toregenerateATP

• Energyeventuallyleavesasheat

CatabolicPathwaysandProduc,onofATPCatabolicPathwaysandProduc,onofATP

• Thebreakdownoforganicmoleculesisexergonic

• Aerobicrespira,on

• ConsumesorganicmoleculesandO2andyieldsATP

• Typicallyglucose

• Fermenta,on

• Par@aldegrada@onofsugarsthatoccurswithoutO2

• Anaerobicrespira,on

• similartoaerobicrespira@on

• butusescompoundsotherthanO2asthefinalelectronacceptor

Page 2: Ch. 9 Cellular Respira,on

• Cellularrespira,on

• includesbothaerobicandanaerobicrespira@onbutisoGenusedto

refertoaerobicrespira@on

• 3of4macromoleculeclassesmaybeusedasfuel

• carbohydrates,fats,andproteins

C6H12O6+6O2→6CO2+6H2O+Energy(ATP+heat)

CellularRespira,onCellularRespira,on

ThePrincipleofRedoxThePrincipleofRedox

• oxida@on‐reduc@onreac@ons

• Chemicalreac@onsthattransferelectronsbetweenreactantsarecalled

• redoxreac,ons

• Oxida,on

• asubstanceloseselectrons

• isoxidized

• Reduc,on

• asubstancegainselectron

• isreduced(theamountofposi@vechargeisreduced)

• OIL‐RIG

becomes oxidized(loses electron)

becomes reduced(gains electron)

• Reducingagent

• electrondonor

• Oxidizingagent

• electronreceptor

• Someredoxrxnsdonot

transferelectrons

• butchangetheelectron

sharingincovalentbonds

• exampleisthereac@on

betweenmethaneandO2

ThePrincipleofRedoxThePrincipleofRedox

Reactants

becomes oxidized

becomes reduced

Products

Methane(reducing

agent)

Oxygen(oxidizing

agent)

Carbon dioxide Water

Page 3: Ch. 9 Cellular Respira,on

Oxida,onDuringCellularRespira,onOxida,onDuringCellularRespira,on

• Duringcellularrespira@on,thefuel(suchasglucose)isoxidized,and

O2isreduced:

becomes oxidized

becomes reduced

NADNAD++andtheElectronTransportChainandtheElectronTransportChain• Glucoseandotherorganicmolecules

• Brokendowninaseriesofsteps

• NAD+(nico@namideadeninedinucleo@de)

• Electroncarrier

• Electronsfromorganiccompoundstransferred

• func@onsasanoxidizingagentduringcellularrespira@on

• NADH

• ReducedformofNAD+

• representsstoredenergythatisusedtosynthesizeATP

Dehydrogenase

Fig.9‐4Fig.9‐4

Dehydrogenase

Reduction of NAD+

Oxidation of NADH

2 e– + 2 H+

2 e– + H+

NAD+ + 2[H]

NADH

+

H+

H+

Nicotinamide(oxidized form)

Nicotinamide(reduced form)

Page 4: Ch. 9 Cellular Respira,on

• NADH

• Deliverselectronstotheelectrontransportchain(ETC)

• ETCpasseselectronsinaseriesofsteps

• insteadofoneexplosivereac@on

• Slow,controlledenergyrelease

• O2receiveselectronsfromtheETC

• AGeranenergy‐yieldingtumbledownthechain

• Finalelectronacceptor

• TheenergyyieldedisusedtoregenerateATP

NAD+andtheElectronTransportChainNAD+andtheElectronTransportChain

Free

ene

rgy,

G

Free

ene

rgy,

G

(a) Uncontrolled reaction

H2O

H2 + 1 /2 O2

Explosiverelease of

heat and lightenergy

(b) Cellular respiration

Controlledrelease ofenergy for

synthesis ofATP

2 H+ + 2 e–

2 H + 1/2 O2

(from food via NADH)

ATP

ATP

ATP

1/2 O22 H+

2 e–

Electron transport

chain

H2O

TheStagesofCellularRespira,on:TheStagesofCellularRespira,on:APreviewAPreview

• Cellularrespira@onhasthreestages:

• Glycolysis

• Literally“sugarbreaking”

• breaksdownglucoseintotwomoleculesofpyruvate

• Citricacidcycle

• completesthebreakdownofglucose

• AlsocalledKrebscycle

• Oxida,vephosphoryla,on

• accountsformostoftheATPsynthesis

• IncludesElectronTransportChain

Fig.9‐6‐1Fig.9‐6‐1

Substrate-levelphosphorylation

ATP

Cytosol

Glucose Pyruvate

Glycolysis

Electronscarried

via NADH

Page 5: Ch. 9 Cellular Respira,on

Fig.9‐6‐2Fig.9‐6‐2

Mitochondrion

Substrate-levelphosphorylation

ATP

Cytosol

Glucose Pyruvate

Glycolysis

Electronscarried

via NADH

Substrate-levelphosphorylation

ATP

Electrons carriedvia NADH and

FADH2

Citricacidcycle

Fig.9‐6‐3Fig.9‐6‐3

Mitochondrion

Substrate-levelphosphorylation

ATP

Cytosol

Glucose Pyruvate

Glycolysis

Electronscarried

via NADH

Substrate-levelphosphorylation

ATP

Electrons carriedvia NADH and

FADH2

Oxidativephosphorylation

ATP

Citricacidcycle

Oxidativephosphorylation:electron transport

andchemiosmosis

• Oxida,vephosphoryla,on

• accountsforalmost90%oftheATPgeneratedbycellularrespira@on

• 32of36‐38total

• substrate‐levelphosphoryla,on

• ATPformedinglycolysisandthecitricacidcycle

Oxida,veOxida,vePhosphoryla,onPhosphoryla,on

Enzyme

ADP

PSubstrate

Enzyme

ATP+

Product

Page 6: Ch. 9 Cellular Respira,on

GlycolysisGlycolysis

• Glycolysis

• Breaksdownglucoseintotwomoleculesofpyruvate

• Occursinthecytoplasm

• Twomajorphases:

• Energyinvestmentphase

• Energypayoffphase

Fig.9‐8Fig.9‐8

Energy investment phase

Glucose

2 ADP + 2 P 2 ATP used

formed4 ATP

Energy payoff phase

4 ADP + 4 P

2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+

2 Pyruvate + 2 H2O

2 Pyruvate + 2 H2OGlucoseNet

4 ATP formed – 2 ATP used 2 ATP

2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+

Fig.9‐9‐1Fig.9‐9‐1

ATP

ADP

Hexokinase1

ATP

ADP

Hexokinase1

Glucose

Glucose-6-phosphate

Glucose

Glucose-6-phosphate

Page 7: Ch. 9 Cellular Respira,on

Fig.9‐9‐2Fig.9‐9‐2

Hexokinase

ATP

ADP

1

Phosphoglucoisomerase2

Phosphogluco-isomerase

2

Glucose

Glucose-6-phosphate

Fructose-6-phosphate

Glucose-6-phosphate

Fructose-6-phosphate

1

Fig.9‐9‐3Fig.9‐9‐3

Hexokinase

ATP

ADP

Phosphoglucoisomerase

Phosphofructokinase

ATP

ADP

2

3

ATP

ADP

Phosphofructo-kinase

Fructose-1, 6-bisphosphate

Glucose

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1, 6-bisphosphate

1

2

3

Fructose-6-phosphate

3

Fig.9‐9‐4Fig.9‐9‐4

Glucose

ATP

ADP

Hexokinase

Glucose-6-phosphate

Phosphoglucoisomerase

Fructose-6-phosphate

ATP

ADP

Phosphofructokinase

Fructose-1, 6-bisphosphate

Aldolase

Isomerase

Dihydroxyacetonephosphate

Glyceraldehyde-3-phosphate

1

2

3

4

5

Aldolase

Isomerase

Fructose-1, 6-bisphosphate

Dihydroxyacetonephosphate

Glyceraldehyde-3-phosphate

4

5

Page 8: Ch. 9 Cellular Respira,on

Fig.9‐9‐5Fig.9‐9‐5

2 NAD+

NADH2+ 2 H+

2

2 Pi

Triose phosphatedehydrogenase

1, 3-Bisphosphoglycerate

6

2 NAD+

Glyceraldehyde-3-phosphate

Triose phosphatedehydrogenase

NADH2+ 2 H+

2 P i

1, 3-Bisphosphoglycerate

6

2

2

Fig.9‐9‐6Fig.9‐9‐6

2 NAD+

NADH2

Triose phosphatedehydrogenase

+ 2 H+

2 P i

22 ADP

1, 3-Bisphosphoglycerate

Phosphoglycerokinase2 ATP

2 3-Phosphoglycerate

6

7

2

2 ADP

2 ATP

1, 3-Bisphosphoglycerate

3-Phosphoglycerate

Phosphoglycero-kinase

2

7

Fig.9‐9‐7Fig.9‐9‐7

3-Phosphoglycerate

Triose phosphatedehydrogenase

2 NAD+

2 NADH+ 2 H+

2 P i

22 ADP

Phosphoglycerokinase

1, 3-Bisphosphoglycerate

2 ATP

3-Phosphoglycerate2

Phosphoglyceromutase

2-Phosphoglycerate2

2-Phosphoglycerate2

2

Phosphoglycero-mutase

6

7

8

8

Page 9: Ch. 9 Cellular Respira,on

Fig.9‐9‐8Fig.9‐9‐8

2 NAD+

NADH2

2

2

2

2

+ 2 H+

Triose phosphatedehydrogenase

2 P i

1, 3-Bisphosphoglycerate

Phosphoglycerokinase

2 ADP

2 ATP

3-Phosphoglycerate

Phosphoglyceromutase

Enolase

2-Phosphoglycerate

2 H2O

Phosphoenolpyruvate

9

8

7

6

2 2-Phosphoglycerate

Enolase

2

2 H2O

Phosphoenolpyruvate

9

Fig.9‐9‐9Fig.9‐9‐9

Triose phosphatedehydrogenase

2 NAD+

NADH2

2

2

2

2

2

2 ADP

2 ATP

Pyruvate

Pyruvate kinase

Phosphoenolpyruvate

Enolase2 H2O

2-Phosphoglycerate

Phosphoglyceromutase

3-Phosphoglycerate

Phosphoglycerokinase

2 ATP

2 ADP

1, 3-Bisphosphoglycerate

+ 2 H+

6

7

8

9

10

22 ADP

2 ATP

Phosphoenolpyruvate

Pyruvate kinase

2 Pyruvate

10

2 P i

IntermediateIntermediateStepStep• IfO2ispresent

• pyruvateentersthe

mitochondrion

• Twoperoriginalglucose

• acetylCoA

• PyruvateaddedtocoenzymeA

• becomesacetylcoA

• Asitcrossesthemito

membranes

• YieldsfirstCO2wastes

• ReducesaNAD+toNADH

• Entersthecitricacidcycle

CYTOSOL MITOCHONDRION

NAD+ NADH + H+

2

1 3

Pyruvate

Transport protein

CO2Coenzyme A

Acetyl CoA

Page 10: Ch. 9 Cellular Respira,on

• Citricacidcycle

• AlsocalledtheKrebscycle

• Occursinthemitochondrial

matrix

• Cycleoxidizesorganicfuelderived

frompyruvate

• generates1ATP,3NADH,

and1FADH2perturn

• Twiceperglucose!

CitricAcidCycleCitricAcidCycle

Pyruvate

NAD+

NADH

+ H+Acetyl CoA

CO2

CoA

CoA

CoA

Citricacidcycle

FADH2

FAD

CO22

3

3 NAD+

+ 3 H+

ADP + P i

ATP

NADH

• Citricacidcycle

• Eightsteps

• Eachcatalyzedbyaspecificenzyme

• AcetylgroupofacetylCoAjoinsthecyclebycombiningwithoxaloacetate

• Formingcitrate

• CoenzymeAreturnstointermediatestep

• Thenextsevenstepsdecomposethecitratebacktooxaloacetate

• Makestheprocessacycle

• TheNADHandFADH2

• Deliverelectronstotheelectrontransportchain

CitricAcidCycleCitricAcidCycle