Ch3-Mathematical and Physical Backgrounds

  • Upload
    jeysam

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    1/53

    3-0

    3.1. Overview

    3.2. Linear Integral Transforms

    3.3. Images as Stochastic Processes

    3.4. Image Formation Physics

    Chapter 3: The Image, its Mathematical

    and Physical Background

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    2/53

    3-1

    3.1. Overview

    3.1.1. Linearity

    (a)Additivity ( ) ( ) ( )L L L x y x y

    ( ) ( )L a aLx x

    ( ) ( ) ( )L a b aL bL x y x y

    Let L : operator, mapping, function, or process

    a,b: scalars

    x,y: elements of a vector space

    e.g., vectors, functions

    (b)Homogeneity

    (c)Linearity

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    3/53

    3-2

    3.1.2. Dirac Delta Function

    Heaviside function:0 0

    ( )

    1 0

    tH t

    t

    0

    ( )1

    t aH t a

    t a

    0a

    0

    ( ) ( ) 1

    0

    t a

    H t a H t b a t b

    t b

    1( ) [ ( ) ( )]t H t H t

    0( ) lim ( )t t

    Pulse:

    Impulse:

    Dirac Delta Function:

    a b

    1,t dt

    0,t t 0

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    4/53

    3-3

    , , ,f x y f a b a x b y dadb

    Sampling (shifting property):

    , , ,f x y x a y b dxdy f a b

    , 1,x y dxdy , 0 ( , )x y x y 02D delta function:

    Image function:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    5/53

    3-4

    ( ) ( ) ( ) ( ) ( ) ( ) ( )h x f x g x f g x d f x g d

    3.1.3. Convolution ( )

    ( )f x f a a x da Assignment: Show

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    6/53

    3-6

    Discrete case:1 1

    0 0( ) ( ) ( ) ( ) ( )

    , : extended , ; 1

    N N

    e e e en n

    e e

    h k f n g k n f k n g n

    f g f g N A B

    WraparoundIfN

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    7/53

    5-6

    In practice,

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    8/53

    5-7

    1 2

    1 2

    ( , ) ( , ) ( , )

    ( 1, 2) ( 1, 2) ( 1, 1) ( 1, 1)

    (1,2) ( 1, 2)

    s t

    p x y m s t p x s y t

    m p x y m p x y

    m p x y

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    9/53

    3-8

    Properties: ,f g g f f g h f g h f g h f g f h

    a f g af g f ag f g f g f g

    Assignment : f g f g f g

    , , ,

    , , ,

    f g x y f a b g x a y b dadb

    f x a y b g a b dadb g f x y

    2-D convolution:

    Discrete: 1 1

    0 0

    , , ,M N

    e em n

    h i j g i m j n h m n

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    10/53

    3-9

    Correlation: ( )

    ( ) ( ) ( ) ( ) ( ) ( )f x g x f g x d f x g d

    1

    0

    ( ) ( ) ( ) ( ),N

    e e e e

    n

    f k g k f n g k n

    1N A B

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    11/53

    3-10

    Spatial

    domain

    3.2. Linear Integral Transforms

    domain 1 domain 2

    Transform:Frequency

    domaine.g.,

    Advantages: implicit explicit properties

    3.2.3. Fourier Transform

    Fourier series

    Fourier analysis = Fourier transform

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    12/53

    Fourier series-- A periodic (T) functionf(x) can

    be written as 0 1( ) / 2 cos sinn nnf x a a n x b n x

    / 2 /20

    / 2 /2

    / 2

    /2

    1 2( ) , ( )cos

    2 2

    , ( )sin

    T T

    nT T

    T

    n T

    a f x dx a f x n xdxT T

    b f x n xdxT T

    3-11

    ( ) exp( ),nn

    f x c jn x

    / 2

    / 2

    1

    ( )exp( )

    T

    n Tc f x jn x dxT

    In complex form

    (Assignment)

    where

    2

    0( ) [ ( )cos2 ( )sin2 ] ( )

    j xf x a x b x d c e d

    In continuous case,

    where

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    13/53

    3-12

    Some function is

    formed by a finite

    number of sinuous

    functions

    ( ) sin (1/3)sin 2 (1/5)sin 4f x x x x

    Some function requires

    an infinite number of

    sinuous functions tocompose

    1 1 1 1( ) sin sin3 sin5 sin7 sin9

    3 5 7 9f x x x x x x

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    14/53

    3-13

    The spectrumof a periodic function, which is

    composed of a finite number of sinuous functions,

    is discrete consisting of components at dc, 1/T,and its multiples

    For non-periodic functions, or 0T The spectrum of the function continuous

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    15/53

    3-14

    2 cos2 sin2j te t j t

    2

    (cos2 sin 2 )

    cos2 sin 2 ( )

    j t

    f t e dt f t t j t dt

    f t tdt j f t tdt F

    aggregates the sinuous

    component of f. F frequency-

    1-D:

    Fourier transform (FT)

    2 i tf t F f t e dt

    F

    -1 2 i tF f t F e d

    F

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    16/53

    3-15

    Complex spectrum Re Im( )F F j F

    Amplitudespectrum

    Phasespectrum

    Powerspectrum

    2 2Re Im ( )F F F

    1

    tan Im / ReF F

    2 2 2

    Re Im ( )P F F F

    0 , 0fF f t Fdt d

    1.

    2. 2 2

    f t dt F d

    (Parsevals theory)

    Properties:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    17/53

    3-16

    Examples:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    18/53

    3-17

    Discrete Fourier transform

    1

    0

    1 ( ) 2N

    n

    nkF k f n exp jN N

    1

    0

    ( ) 2N

    k

    nkf n F k exp j

    N

    ( ), 0, 1, , 1f n n N Input signal:

    where

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    19/53

    3-18

    Properties:

    1 2 1 2af bf aF bF Linearity

    Conjugate symmetry *, ( , )F u v F u v

    Periodicity

    , ( , )F u v F u N v

    , ,F u v F M u v , ,F m n F M m n , ( , )F m n F m N n

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    20/53

    3-19

    0 1 1{ , , , },f Nf f f 0 1 1{ , , , }NF F F F

    0 1 2 3 2 1{ , , , , , , }f N Nf f f f f f

    / 2 1 0 1 / 2 1{ , , , , , , }N N NF F F F F F

    0 0Let / 2 exp( 2 / ) exp( )

    ( ) (cos sin ) ( 1)j x x x

    u N j u x N j x

    e j

    0( ) ( )exp( 2 / ) ( 1) ( )x

    f x f x j u x N f x

    0 0

    0 0

    ( )exp( 2 / ) ( )

    ( ) ( )exp( 2 / )

    f x j u x N F u u

    f x x F u j ux N

    Shifting

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    21/53

    Examples:

    1-D signal {2 3 4 5 6 7 8 1}f

    {36 - 9.6569 4 - 4 - 4 1.6569 - 4

    4 1.6569 4 - 4 4 -9.6569 - 4 }

    j j j

    j j j

    F

    {2 -3 4 -5 6 -7 8 -1} f

    { 4 1.6569 4 -4 4 -9.6569 - 4

    36 - 9.6569 4 - 4 - 4 1.6569 - 4 }

    j j j

    j j j

    F

    3-20

    f F F

    2-D image

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    22/53

    Rotation

    Polar coordinates:

    cos , sinu w v w ( , ) ( , ),f x y f r ( , ) ( , )F u v F w

    0 0( , ) ( , )f r F w

    cos , sinx r y r

    3-21

    Convolution theorem ,f g F G f g F G

    Correlation theorem

    (Assignment)* *,f g F G f g F G

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    23/53

    3-22

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    24/53

    3-23

    Any real function can always be decomposed

    into its even and odd parts, i.e.,( )ef x ( )of x

    ( )f x

    ,2 2

    e of t f t f t f tf t f t ( ) ( ) ( ),e of x f x f x

    ( ) ( ) ( )

    ( ) R{ ( )} I{ ( )}e o

    f x f x f x

    F u F u i F u

    ( ) R{ ( )}

    ( ) I{ ( )}

    e

    o

    f x F u

    f x F u

    e.g.,

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    25/53

    Convolution involving impulse function

    ( ) ( )

    ( ) ( )

    f x g x

    g x x T

    ( ) ( )

    ( ) ( ) ( ) ( )

    f x g x

    g x x T x x T

    Copyf(x) at the location of each impulse

    ( ) ( )f x g x

    ( )g x

    ( )f x

    3-24

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    26/53

    3-25

    3.2.5. Sampling theory

    Objective: looking at the question of how

    many sampling should be takenso that no information is lost in

    the sampling process

    Sparsesampling

    Densesampling

    Continuousfunction

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    27/53

    f(x): band-limited

    function

    Sampling function

    ( ) ( )

    ( ) ( )

    S x x x

    x x x

    Spatial domain Frequency domain

    ( ) ( )f x S x dxSampling

    3-26

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    28/53

    3-27

    sin[2 ( )]( ) ( )

    2 ( )

    sinc[2 ( )] ( )

    nn

    n n

    n n

    n

    x xf x f x

    x x

    x x f x

    Interpolation Reconstruction Formula

    Whittaker-Shannon sampling theory

    1

    2x w 1-D:

    2-D:1 1

    ,2 2

    x yu v

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    29/53

    3-28

    3.2.6. Discrete cosine transform

    -- often used in image/video compression,

    e.g.,JPEG, MPEG, FGS, H.261, H.263, JVT

    1 1

    0 0

    1 1

    0 0

    2 ( ) ( ) 2 1 2 1( , ) ( , ) cos cos

    2 2

    1/ 2 0 where ( )

    1 otherwise

    2 2 1 2 1( , ) ( ) ( ) ( , ) cos cos ,

    2 2

    wh

    N N

    m n

    N N

    u v

    c u c v m nF u v f m n u v

    N N N

    kc k

    m nf m n c u c v F u v u v

    N N N

    ere 0,1..., 1, 0,1,..., 1m N n N

    0,1..., 1

    0,1,..., 1

    u N

    v N

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    30/53

    Fourier spectrum provides all the frequencies

    present in a signal but does not tell where they

    are present.

    Windowed Fourier transformsuffers from the

    dilemma:

    Small range poor frequency resolution

    Large range poor localization

    3.2.7. Wavelet transform

    3-29

    Wavelet: wave that is only nonzero in a small region

    Wave Wavelet

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    31/53

    3-30

    Haar:

    1 if 0 1/ 2

    ( ) 1 if 1/ 2 10 otherwise

    x

    x x

    2

    ( ) sin ,x

    x e xMorlet: Mexican hat: DOG, LOG

    Types of wavelets:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    32/53

    Operations on wavelet:

    (a) Dilation:

    i) Squashing ii) Expanding

    (b) Translation:

    i) Shift to the right ii) Shift to the left

    (c) Magnitude change:

    i) Amplification ii) Minification

    (2 )x

    ( )x

    ( / 2)x

    ( 2)x ( 2)x

    2 ( )x 1/ 2 ( )x

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    33/53

    Any function can be expressed as a sum of wavelets

    of the form ( )i i ia b x c

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    34/53

    3-33

    ,

    1( )s

    tt

    ss

    Wavelet transform:decomposes a function into

    a set of wavelets

    : wavelets

    New variables:

    scale

    translation

    where

    {0},s R R

    Inverse wavelet transform:synthesize a functionfrom wavelets coefficients

    ,( , ) ( ) ( )sR

    W s f t t dt

    ,( ) ( , ) ( )sR R

    f t W s t d ds

    t : mother wavelet

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    35/53

    ,

    1( , ) ( ) ( ),k s

    x

    W k s f t t N

    ,1( , ) ( ) ( ),k s

    x

    W k s f t t N

    0

    , ,

    1 1( ) ( , ) ( ) ( , ) ( )k s k s

    k j j

    f t W k s t W k s tN N

    3-34

    Discrete wavelet transform:

    , ( )k s t

    , ( )k s t

    : scaling

    functions

    : wavelet

    functions

    Approximation coefficients (cA)

    Detail coefficients (cD)

    Inverse discrete wavelet transform:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    36/53

    Multiresolution Analysisviews a function at various

    levels of resolution

    3-35

    h: step size

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    37/53

    Let

    3-36

    SA contain all the functions on the left-hand side

    andS

    W those on the right-hand side

    2

    , ,{ (2 ) : }s

    k s k s

    k k

    c t k c SA2

    , ,{ (2 ) : }sk s k sk k

    d t k d SW

    Function spaces:

    SA

    SW

    is generated by the bases

    is generated by the bases

    / 2

    ,( ) 2 (2 ),s s

    k s t t k k Z

    / 2

    , ( ) 2 (2 ),s s

    k s t t k k Z

    i.e.,(scaling

    functions)

    (wavelet

    functions)

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    38/53

    Scaling function1 0 1

    ( )0 otherwise

    xx

    / 2( ) 2 (2 ), 0,...,2 1j j jji x x i i

    / 2( ) 2 (2 ), 0,...,2 1j j jji x x i i

    1 0 1/ 2

    ( ) 1 1/ 2 1

    0 otherwise

    x

    x x

    Wavelet function

    3-37

    Example: Haar wavelet

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    39/53

    Properties:

    i) ii) iii)

    iv)2

    1 0 1 L A A A

    S S

    A W1 S S SA A W S SW A

    3-38

    Discrete signal ( ), 0, 1, , 1s i i N

    is decomposed into wavelet coefficients

    , ,1 ( ) ( )k s k si

    d s i iN

    Suppose scales and positions are based on

    power of 2 (dyadic)

    Approx. coefficients (cA)

    Detail coefficients (cD)

    , ,

    1( ) ( ),k s k s

    i

    c s i iN

    Fast Discrete Wavelet Transform:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    40/53

    3-39

    Inverse Discrete Wavelet Transform

    , , , ,

    1 1( ) ( ) ( )k s k s k s k s

    k k

    s t c t d tN N

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    41/53

    Wavelet transforms

    Low pass filtering: averaging ;

    High pass filtering: differencingInput data: a, b

    Average:s= (a+ b) / 2 (low pass filtering)

    Difference: d= as (high pass filtering)

    Wavelet coefficients: (s, d).

    3-40

    Inverse wavelet transforms

    Addition; subtraction

    Wavelet coefficients: (s, d).Addition:s + d=s+ (as)= a,

    Subtraction:sd=s (as)= 2s a = b

    Input data: (a, b).

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    42/53

    3-41

    Example:

    Input data 14, 22

    (i) Wavelet TransformAverage: s= (1422)/2 = 18,

    Difference: d = 14-18= -4

    Wavelet coefficients: (18, -4).(ii) Inverse Wavelet Transform (to recover the

    input data)

    sd= 18+(-4) = 14,

    sd= 18-(-4) = 22

    Input data: (14, 22).

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    43/53

    3-42

    2-D:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    44/53

    3-43

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    45/53

    3-44

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    46/53

    3-45

    Hadamard-Haar, Slant, Slant-Haar, Discrete sine,

    Paley-Walsh, Radon, Hough

    3.2.11. Other Orthogonal Image Transforms

    3.2.8. Eigen Analysis

    Let A be an nby n square matrix. x and are

    corresponding eigenvalueand eigenvectorof A

    if .

    1 1

    1, ( , , )

    nA PDP D P AP diag

    1[ ]

    nP e e

    : corresponding eigenvalues

    Let : eigenvectors ofA

    Let

    Then

    1, ,e en

    1, , n

    A x x

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    47/53

    3.2.9. Singular Value Decomposition

    m nA : real matrix

    column-orthonormal matrix m nU T

    nU U Id

    n nVT

    nVV Id TA UWV

    1 2( , , , )nW diag 1 2, , , n

    (i.e.,

    (i.e., ), s.t.

    ) and row-orthonormal matrix

    The singular values ofAare the eigenvaluesof and the corresponding eigenvectors

    are the columns of V

    TA A

    where

    : non-negative singular values

    of A

    3-46

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    48/53

    3-47

    1, ,e en

    1, , n

    1[ ]e enE

    : corresponding eigenvalues

    Let : eigenvectors of matrixB

    Let

    Then ,TB EDE 1( , , )nD diag

    ( )

    T T T T T T T

    A A UWV UWV VW U UWV 2 2 21 2( , , , )

    T T T

    nVW WV Vdiag V

    Compare with TB EDE2

    i T

    A A

    iTA A

    (a) The eigenvalues of correspond

    (b) The eigenvectors of are columns of V

    to the singular values of A

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    49/53

    3-48

    3.2.10. Principal Component Analysis (PCA)

    Karhunen-Loeve(KL) or Hotelling transforms

    PCA: linearly transforms a number of correlated

    variables into the same number of uncorrelated

    variables (principal components)

    1 2( , , , ) , 1, 2, ,T

    i nx x x i M xData vectors:

    Mean vectors: { }x Em x

    Covariance matrix: {( )( ) }Tx x xC E = x m x m

    n by n real symmetric matrix:xC

    M

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    50/53

    493-49

    1

    1,

    M

    x i

    iM m x

    1

    1

    1 1 1 1

    1

    1

    1

    ( )( )

    1( )

    1[ ( ) )]

    1

    1

    MT

    x i x i x

    i

    MT T T T

    i i i x x i x x

    i

    M M M MT T T T

    i i x x i x x i

    i i i i

    MT T T T

    i i x x x x x x

    i

    MT T

    i i x x

    i

    C M

    M

    M

    M

    M

    x m x m

    x x x m m x m m

    x x m m x m m x

    x x m m m m m m

    x x m m

    Approximation:

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    51/53

    503-50

    Let be corresponding

    eigenvalues and eigenvectors of .

    Assume

    Construct matrix

    and , 1, , ,i i i n e

    1 2 n 1 2 nA e e e

    xC

    ( )i i xA y x m

    The mean of ys:

    y 0m

    The covariance matrix of ys:T

    y xC AC A=

    1

    2

    0 0 00 0

    0 0 0

    0 0

    y

    n

    C

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    52/53

    ( ),i i xA y x mFrom

    The mean square error between

    Let ,kA k n

    1 1 1

    n k n

    i i i

    i i i k

    e

    3-51

    ( )i k i xA y x m

    ,i iy x i iy x

    1 T

    i i x i xA A x y m y m

    andi ix x

    and

    is

  • 8/10/2019 Ch3-Mathematical and Physical Backgrounds

    53/53

    523 52

    Eigen faces