31
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 20 Biotechnology

Chapter 20

  • Upload
    luisa

  • View
    22

  • Download
    0

Embed Size (px)

DESCRIPTION

Chapter 20. Biotechnology. Overview: The DNA Toolbox. Sequencing of the human genome was completed by 2007 DNA sequencing has depended on advances in technology, starting with making recombinant DNA - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 20

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

PowerPoint® Lecture Presentations for

Biology Eighth Edition

Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

Chapter 20Chapter 20

Biotechnology

Page 2: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Overview: The DNA Toolbox

• Sequencing of the human genome was completed by 2007

• DNA sequencing has depended on advances in technology, starting with making recombinant DNA

• In recombinant DNA, nucleotide sequences from two different sources, often two species, are combined in vitro into the same DNA molecule

Page 3: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

DNA Cloning and Its Applications: A Preview

• Most methods for cloning pieces of DNA in the laboratory share general features, such as the use of bacteria and their plasmids

• Plasmids are small circular DNA molecules that replicate separately from the bacterial chromosome

• Cloned genes are useful for making copies of a particular gene and producing a protein product

Page 4: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• Gene cloning involves using bacteria to make multiple copies of a gene

• Foreign DNA is inserted into a plasmid, and the recombinant plasmid is inserted into a bacterial cell

• Reproduction in the bacterial cell results in cloning of the plasmid including the foreign DNA

• This results in the production of multiple copies of a single gene

Page 5: Chapter 20

Fig. 20-2

DNA of chromosome

Cell containing geneof interest

Gene inserted intoplasmid

Plasmid put intobacterial cell

RecombinantDNA (plasmid)

Recombinantbacterium

Bacterialchromosome

Bacterium

Gene ofinterest

Host cell grown in cultureto form a clone of cellscontaining the “cloned”gene of interest

Plasmid

Gene ofInterest

Protein expressedby gene of interest

Basic research andvarious applications

Copies of gene Protein harvested

Basicresearchon gene

Basicresearchon protein

Gene for pest resistance inserted into plants

Gene used to alter bacteria for cleaning up toxic waste

Protein dissolvesblood clots in heartattack therapy

Human growth hor-mone treats stuntedgrowth

2

4

1

3

Page 6: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Using Restriction Enzymes to Make Recombinant DNA

• Bacterial restriction enzymes cut DNA molecules at specific DNA sequences called restriction sites

• A restriction enzyme usually makes many cuts, yielding restriction fragments

• The most useful restriction enzymes cut DNA in a staggered way, producing fragments with “sticky ends” that bond with complementary sticky ends of other fragments

Animation: Restriction EnzymesAnimation: Restriction Enzymes

Page 7: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• DNA ligase is an enzyme that seals the bonds between restriction fragments

Page 8: Chapter 20

Fig. 20-3-3Restriction site

DNA

Sticky end

Restriction enzymecuts sugar-phosphatebackbones.

53

35

1

One possible combination

Recombinant DNA molecule

DNA ligaseseals strands.

3

DNA fragment addedfrom another moleculecut by same enzyme.Base pairing occurs.

2

Page 9: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• A probe can be synthesized that is complementary to the gene of interest

• For example, if the desired gene is

– Then we would synthesize this probe

G5 3… …G GC C CT TTAA A

C3 5C CG G GA AATT T

Page 10: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• The DNA probe can be used to screen a large number of clones simultaneously for the gene of interest

• Once identified, the clone carrying the gene of interest can be cultured

Page 11: Chapter 20

Fig. 20-7

ProbeDNA

Radioactivelylabeled probe

molecules

Film

Nylon membrane

Multiwell platesholding libraryclones

Location ofDNA with thecomplementarysequence

Gene ofinterest

Single-strandedDNA from cell

Nylonmembrane

TECHNIQUE

Page 12: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Expressing Cloned Eukaryotic Genes

• After a gene has been cloned, its protein product can be produced in larger amounts for research

• Cloned genes can be expressed as protein in either bacterial or eukaryotic cells

Page 13: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR)

• The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA

• A three-step cycle—heating, cooling, and replication—brings about a chain reaction that produces an exponentially growing population of identical DNA molecules

Page 14: Chapter 20

Fig. 20-85

Genomic DNA

TECHNIQUE

Cycle 1yields

2molecules

Denaturation

Annealing

Extension

Cycle 2yields

4molecules

Cycle 3yields 8

molecules;2 molecules

(in whiteboxes)

match targetsequence

Targetsequence

Primers

Newnucleo-tides

3

3

3

3

5

5

51

2

3

Page 15: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Gel Electrophoresis and Southern Blotting

• One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis

• This technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size

• A current is applied that causes charged molecules to move through the gel

• Molecules are sorted into “bands” by their size

Video: Biotechnology LabVideo: Biotechnology Lab

Page 16: Chapter 20

Fig. 20-9

Mixture ofDNA mol-ecules ofdifferentsizes

Powersource

Powersource

Longermolecules

Shortermolecules

Gel

AnodeCathode

TECHNIQUE

RESULTS

1

2

+

+

Page 17: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• In restriction fragment analysis, DNA fragments produced by restriction enzyme digestion of a DNA molecule are sorted by gel electrophoresis

• Restriction fragment analysis is useful for comparing two different DNA molecules, such as two alleles for a gene

• The procedure is also used to prepare pure samples of individual fragments

Page 18: Chapter 20

Fig. 20-10

Normalallele

Sickle-cellallele

Largefragment

(b) Electrophoresis of restriction fragments from normal and sickle-cell alleles

201 bp175 bp

376 bp

(a) DdeI restriction sites in normal and sickle-cell alleles of -globin gene

Normal -globin allele

Sickle-cell mutant -globin allele

DdeI

Large fragment

Large fragment

376 bp

201 bp175 bp

DdeIDdeI

DdeI DdeI DdeI DdeI

Page 19: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• Reverse transcriptase-polymerase chain reaction (RT-PCR) is quicker and more sensitive

• Reverse transcriptase is added to mRNA to make cDNA, which serves as a template for PCR amplification of the gene of interest

• The products are run on a gel and the mRNA of interest identified

Page 20: Chapter 20

Fig. 20-13

TECHNIQUE

RESULTS

Gel electrophoresis

cDNAs

-globingene

PCR amplification

Embryonic stages

Primers

1 2 3 4 5 6

mRNAscDNA synthesis 1

2

3

Page 21: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• In situ hybridization uses fluorescent dyes attached to probes to identify the location of specific mRNAs in place in the intact organism

Page 22: Chapter 20

Fig. 20-14

50 µm

Page 23: Chapter 20

Fig. 20-18

TECHNIQUE

Mammarycell donor

RESULTS

Surrogatemother

Nucleus frommammary cell

Culturedmammary cells

Implantedin uterusof a thirdsheep

Early embryo

Nucleusremoved

Egg celldonor

Embryonicdevelopment Lamb (“Dolly”)

genetically identical tomammary cell donor

Egg cellfrom ovary

Cells fused

Grown inculture

1

33

4

5

6

2

Page 24: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Stem Cells of Animals

• A stem cell is a relatively unspecialized cell that can reproduce itself indefinitely and differentiate into specialized cells of one or more types

• Stem cells isolated from early embryos at the blastocyst stage are called embryonic stem cells; these are able to differentiate into all cell types

• The adult body also has stem cells, which replace nonreproducing specialized cells

Page 25: Chapter 20

Fig. 20-20

Culturedstem cells

Early human embryoat blastocyst stage

(mammalian equiva-lent of blastula)

Differentcultureconditions

Differenttypes ofdifferentiatedcells

Blood cellsNerve cellsLiver cells

Cells generatingall embryoniccell types

Adult stem cells

Cells generatingsome cell types

Embryonic stem cells

From bone marrowin this example

Page 26: Chapter 20

Fig. 20-24This photo shows EarlWashington just before his release in 2001,after 17 years in prison.

These and other STR data exonerated Washington andled Tinsley to plead guilty to the murder.

(a)

Semen on victim

Earl Washington

Source of sample

Kenneth Tinsley

STRmarker 1

STRmarker 2

STRmarker 3

(b)

17, 19

16, 18

17, 19

13, 16 12, 12

14, 15 11, 12

13, 16 12, 12

Page 27: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Environmental Cleanup

• Genetic engineering can be used to modify the metabolism of microorganisms

• Some modified microorganisms can be used to extract minerals from the environment or degrade potentially toxic waste materials

• Biofuels make use of crops such as corn, soybeans, and cassava to replace fossil fuels

Page 28: Chapter 20

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

• Most public concern about possible hazards centers on genetically modified (GM) organisms used as food

• Some are concerned about the creation of “super weeds” from the transfer of genes from GM crops to their wild relatives

Page 29: Chapter 20

Fig. 20-UN3

Cut by same restriction enzyme,mixed, and ligated

DNA fragments from genomic DNAor cDNA or copy of DNA obtainedby PCR

Vector

Recombinant DNA plasmids

Page 30: Chapter 20

Fig. 20-UN4

G

Aardvark DNA

Plasmid

53

3TCCATGAATTCTAAAGCGCTTATGAATTCACGGC5AGGTACTTAAGATTTCGCGAATACTTAAGTGCCG

A

CTTA

AAG

T TC

Page 31: Chapter 20

Fig. 20-UN7